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ABSTRACT

The propagation of electromagnetic waves along open structures whose
transverse cross section are composed of two symmetrically placed circular
sectors is investigated. The problem is first formulated in the form of a dual
summation equation. By introducing a new set of basis functions to represent
the surface field, the dispersion relation for such a structure is developed,
systematic techniques of finding the approximate solutions of the dispersion
relation are formulated, and numerical solutions for the first two orders of

approximation are carried out to illustrate the feasibility of using the technique.

In general, the scattering and resonance problem of open structures of
cylindrical, spherical or other configurations may be formulated in the form of
dual summation equations. The approach introduced in this work, i.e., the
use of appropriate basis fuaciions and the numerical soiution oI these equations,

therefore, may open a new avenue in the solution of a wide class of problems.
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I

STATEMENT OF THE PROBLEM

In this study, the propagation of electromagnetic waves along a class
of open structures is investigated by introducing a new set of basic functions
in the representation of the surface field. To illustrate this approach, let
us consider the waves guided along a curved transmission line composed of
infinitely long, symmetrically located conducting circular sectors as shown
in Figure 1. Assuming that the time dependence and z-variation of the
field to be ej(‘Jt B jBZ, (B is the unknown propagation constant to be determined),

all the field components may be generated from a single field component

EZ (for TM modes) or HZ (for TE modes). Explicitly, for TM modes, we

denote,
o
Z (yr)
2n+l
E (z, §) = Z A ————— gccs(2a+1) § (1)
2 n=0 a Z2n+l(ya)
where
2
[8) 2
y= 5 -8B . (2)
c

The Zn's are Bessel functions, representing Hankel functions of the second
kind HLZ) for r >a and the Bessel functions Jn for r <a. The unknown
propagation constant is then determined from the boundary conditions as
r—» a. For perfectly conducting structures, these conditions are listed
below:

(a) The vanishing of the tangential component of electric field
on the conductors yields:

a
E (a, p) = DZOAH cos (2n+1) = 0 (3)
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Figure 1: Curved transmission line



and
a

E¢(a, ) = -j_-yé Z (2n+1) An sin (2n+1) ¢ =0 (3)

n=0
for e L, , where L, denotes the range of #§ such that —¢0<¢<¢ o» 3nd
1r-¢0<¢<7r+¢0,

(b) The discontinuity of the tangential component of magnetic field across -
the conductors yields,

e, o A

JZ(.':1,56)=--'—29 Z: ) = cos (2n+1) f = 0 (4)
mya o=0 H2n+1('ya) J2n-f-1 (a)

for f e L,, where e L, denotes the range of § such that

2

¢0<¢<7r—¢0, 7r+¢0<¢<27r-¢0.
Similarly, for TE modes, we denote

. Z (yr)
H, (x, § iOBn E,_Z_n_tl__(_%_) sin (2o+1) ¢ (5)

2nt+l

The boundary conditions are:

: a
-Jwu : -
@ 1o - 220§ m s o 0
n=0
for fe L,
a

(2n+1) ]311
(2) \
ont1 (1) oy ()
and : (7
9 B
J¢(a, ¢) ) -

n
1 ]
Tva Lo Hy o (@Y L

b 7 Ga, ) =2

772 n=0 H cos (2n+1) §

a) sin (2n+1) §

for ¢€L2 .



It is interesting to note that in both cases, the boundary conditions

may be expressed in the following general form:

a
1
J(P) = Z Cncos(n+§)2¢=0, ¢eL2 . (8)
n=0
and o
1
E(¢)=DZOCnGn('ya)sin(n+§)2¢=0, ¢eL1. (9)

Here, except for a constant factor J ({f) denotes J (a, ¢#), and E(f) denotes

E ¢(a, d). Gn(ya) are known functions of (vya), for the TM case, we use

_ T (2)
Gn (ya) = ; (2n+1) H2n+1 (va) J2n+1 (vya) (10)
while for the TE case, we use*
(2)
1
G (va)=- Tonr1 (1) Hop g (1) (a2 (1)
n'? j (2n+1) U ’

Mathematically, therefore, our problem of finding the propagation constants
for the transmission line illustrated in Figure 1 is equivalent to that of find-
ing the set of values of vy ( or ya ) such that nontrivial solutions exist for the
homogeneous "dual summation equations" given by Eqgs. (8) and (9). Although
detailed analysis concerning the existence of solutions of such a problem is

difficult to carry out, we assert that solutions do exist, based on the following

These particular forms of G _(ya) were chosen to simplify the expressions
developed later for approximate solutions of va.



two physical arguments: ,

(a) It is known that the structure illustrated in Figure 1 supports
the TEM mode of propagation. In this case, f = b—; , and vy = 0, thus
we know the '"dual summation equation' has at least one solution - namely
va =0,

(b) In the published works on wave propagation along slotted
cylindrical waveguide, such as the works of Harrington (1943) and Goldstone
and Oliner (1961), experimental evidence of high order propagation (with
imaginary part of B < 0) was reported. On physical ground, therefore, one'-
may suspect higher order modes also exist in the present structure which
may be considered as a cylindrical waveguide with two slots. Our primary
objective, therefore, is to develop a systematic approach, with the help of
computers, to determine numerically the solution set (ya) for the system
of dual summation equations. Rased on the known solutions given by the
TEM mode of propagation, we first define sets of functions as the basis
of approximating the field components. These sets of functions, including
members that are discontinuous and unbounded, may be used to accurately
represent the dominant components (from the well known edge condition) of
the surface fields. Using this basis for the field representation, an infinite
system of equations is obtained for the propagation constant. Since the
dominant compdnents of the fields are included in the first few terms of the
field representation, truncation of the infinite system appears to be reason-
able. Procedures of approximate evaluation of the higher order propagation
constants by including N (arbitrary) equations of the infinite set are then |

developed.



it
CONSTRUCTION OF BASIC FUNCTIONS
It is well known that the structure illustrated in Figure 1 supports

the TEM mode of propagation. For this mode, the field components may

be represented by

..j%z
E=e VV (x, y) : (12)
and
¥,
1 Jc A
H=— ¢ ZzxVV(x,y (13)
=7 g

where V (x, y) satisfies the two dimensional Laplace equation and the boundary
conditions. By obtaining V through the use of conformal transformatien, it

is easily verified that, except for multiplicative constants,

0 ¢EL1
E¢(a, f) = | (14)
. ¢€L2
/cos2¢0-cosz¢
and
1
J (a, §= fer,
z ‘\/cos2¢-cos2¢0 15
15
0 ﬂeL2

On the otherhand, in the dual summation equations (8) and (9), we

see that for y=0,

Gn('ya) =1,



Thus Equation (9) and (10) are reduced to:

a
J(§) = Z C cos(n+-;-)2¢=0 ¢eL2 (16)
n=0 1
€
E(f) - Z Cnsin(n+%)2¢=0 fel, . (17
n=0

Compafison of (14), (15) with (16) and (17) reminds one of the Dirichlet-
Mehler relations involving associated Legendre functions. From the

Dirichlet - Mehler relations, we have (Erdélyi, et al, 1953) for 7 >A>0 ,

a
1

I'(l-+m) Z P " (cos A) cos (n+=) x
2 2= n 2

/%sin_mA(cosx-cosA)m_ 1/2 0<x<A

= (18)
0 A<x<7
And, if we replace x by 7 -x and Aby 7 =4,
a
1 -
T(>+m) Z P™ (-cos 4) (-1)" sin (n +5 ) x
2 n 2
n=0
0 0<x<A

B (19)

1’2. (-1)m sin ™ A(cos A- cos x )m-1/2 A<x<T .,



In the above, if we let m =0, x =2, and A=2¢0, we have

a
1
z Pn(cos2¢0) cos (n+-2-)2¢
n=0
1 1
- 2/cosz¢-cos2¢0
0

and

- P (cosz¢)sin(n+-1-)2¢
Z n 0 2 .
n=0

0

1 1
: cosz¢0-c052¢

From Equations (20) and (21), and their periodic extensions, it is evident

0<2¢<2¢0

2¢0<2¢<1r

0<2p<2f,

2¢0<2¢<w

(20)

(21)

that Equations (16) and (17), i.e., the dual summation equations (8) and (9)

for the case of vy =0, admit the non-trivial solution:

Cn =P (cos 2 y50)

Moreover, this solution yield values for E (@) and J (§) that agree with the

solution obtained by using the conformal transform techniques.

In general, since dominant components of the fields ( J (§) and E (#)

are the same as that of the TEM case, it is logical to expand the fields in a .

set of furctions including those given by (20) and (21). We therefore introduce



a new set of basis functions that may be used to represent J(@). These are:

®
f (4, %)= Z sin™ A p (cos A) cos (n+l )x . (22)
m n=o n 2

For all ranges of real x, the functions fm (A, x) are sketched in Figure 2.

The dominant features of this set of functions are:
a) Inthe interval Ly k-1 7 + A <x<2kr - A},
f (Ax) =0 (23)
m

b) In the complementary interval L'I: {2k7r - A<x<2k7m+ é} .

1
/W_/2( A)m_i
fm( A %)=t coS X - c1os (24)
r (m+§)

where the positive sign holds for even k and the negative sign for odd k.

c) fo is discontinous, unbounded, and at the end points of L'1

1
/cos x - cos A

£ (A, x)~ (25)

d) fl is continuous, but has discontinuous derivative; f2, together

with its first derivative is continuous. In general, fn € Cn 1

" Note that for A =2 p, x=29, L'l and L}, are L, and L, together with

their periodic extensions. 2 2



Figure 2: Sketches of fm
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These features illustrate the advantage of using the f function as

the basis of expansion for J ().

Another set of functions, "dual" to the fn's , can be obtained

from Equation (22) by replacing 4 and x respectively by 7 - A and

7 - Xx. This set of functions is defined by

gm(A, X)=fm(7r-A, T - X)

®
= Z (-1)® sin™ AP;m (-cos A) sin (n+% )x .

n=0

For real values of x, the functions gm (4, x) are sketched in Figure 3.

Again, the following dominant features are obvious:

a) In the interval L'1 <2k7r - A<x <2km + A} s o

e

8., (a,x)=0.
b) In the interval L{2(k-1) 7+ <x <27 - &),

1
-y 7/2 (cos A- cos x)m "2

g (4, x)=+
m P(m+1§)

c) g, is discontinuous and unbounded. At the end points of L',

1
A ~
go( > %) /cosA-cosx

d) In general, g, € Cn—l‘

11

(26)

(27)

(28)

(29)
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Figure 3: Sketches of 8
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This set appears to be appropriate in using as basis of expansion for E (ff).

A set of relations, useful in solving the type of dual summation

equations of interest, are noted here. From the relations

1 1] 1] ]
22™ _m _ m
(1-x7) P (x) = ... P (x)dx (30)
n n
X X X
and
P (x) = nld—n(z—l)“ . (31)
n 2% n' dx

We see that for n2>m,

P (cx) = ()" PP ™ () (32)
n n

where for n <m, P;m(x) and P;m (-x) are linearly independent. Using

Equation (31), it is eésy to deduce from Equation (22) that,

©
Z (—1)n sin™ A P;m (-cos A) cos (n+% )x =

n=0

m=1
i p m+n_-m, 1
=('”mfm(A»X>-<-1>mz sin A[Pnn)(cos&-(—l) Pn (-cos A)] cos (n + : ) 3

n=0
(33)
Similarly, from Equation (26), we have
©
Zsinm AP;m (cos A) sin (n +% ) X =
n=0
. m=1 A N m 1
=(-1)"¢g 8% Z sinmA[P;m(cos N-(-1)" mPn (-cosA)]sin (n+5)x
n=0 (34)

13



We shall use these new basis functions to deduce the approximate disper-

sion relation of the curved transission in the next section.

14



m

THE DISPERSION RELATION

By denoting  x=2§ A=2 ¢0 , the problem of finding the

propagation constants of the higher order modes of the open transmission
line illustrated in Figure 1 may be stated as follows:

Find the set of vy such that non-trivial solutions of the following
dual summation equations exist:

® ;
J(¢)=§Ocncos(n+é)x=0 x € L (35)

™
E(¢)=ZCnGn('ya)sin(n+%)x=0 XeL’l . (36)
n=0

Moreover, due to the well known edge conditions, we require, as x — 0 in

1
Ll

1
J(¢)~ COS X - COS A (37)

andas x—» Ain L'2

1 .
E () N/cos A~ cos X ’ : (38)

In order to derive an equation from which <ya ( or ) may be solved, the

the following facts are to be noted.

15



(a) Any member of fm (x, A) satisfies Equation (35) (c.f. Eq. (23)),
In particular, fo (x, A) also satisfies the edge condition, given by Equation

(37). Thus, we may represent
®

J(P) = Z @ fm (x, A) . (39)

m-=0

(b) As n— o,

(2) j 22
nH(x)J (z) —» 4|1+ 2= . (40)
. n n T 2
4n
Thus, for the TM case,
(2) (2) (2)*
G (ya) = (2n+1) B (ya) o) (va) —» 1+ —2 (41)
n J 2n+1 2p+1 2
4 (2n+1)
Similarly, as n— © ,
1 @) 5 - 2
— -d=q+ ) . (42)
n T2 2
Z 4n
Thus, for the TE case,
H' (va) J" (va) 2
+ +
)= = ) — 1y (43)
] 4(2n+1)",
In either case, we may write
G (12) 2 1+5 (ya) (44)
n ra) = n ra

* The completeness of such a representation can be easily demonstrated
and will not be considered here.

16



and note that as n — @,

(1a)°
\ya) ) (45)

S_(ya) —
n 4 (Zn-l-l)2

Equation {45) justifies our truncation procedure introduced later that

Sn (ya) may be neglected for any particular +ya such that
(ya) <<(2n+1)

(¢) For Sn (ya) = 0, Gn (ya) =1, we have va =0, corresponding

to the TEM mode of propagation.

(d) For SIl (ya) = -1, Gn (ya) = 0, then, ya are the zeros of

-~ . & mar ~n and + Am ~F i ~nY f
a 1€ 4 1L 5S¢ anG uic OG5 Ci ; ior tne L &L Cacse.
J2n+1(’7 ) for the TM case and the zcr J 2n+1(,a or the TE case

(e) Interms of SIl (ya), we may rewrite Equation (36) in the form
@ ®
1
E(¢)=ZC sin(n+—)x+ZC S ('ya)sin(n-i-l)x . (46)
520 n 2 o) n n 2

Here, the second summation in Equation (36) is of higher order in Lz in
comparison to the first summation, and may be neglected (at least pa?tially
for large n) in numerical computations.

Based on the above facts, let us deduce in steps the approximate
dispersion relations for ya. In the zeroth approximation, let us neglect
all the Sn's except SO and take only one term of Equation (39) in repre-

senting J (§). Thus we let,

17



= A :
J (§) a fo( , X) . A (47)
From Equation (22), we have,

C =a P (cosd) . (48)
n o'n

Substitute into Equation (46), and use Equation (34), we have,
1
= A, x) + A in(n+=)x-=
E (§) aogo( , X) o Pn(cos )SO (ya) sin (n 5 )x =0

X € L'1 . (49)

Since go( A, x) is always 0 for x e L', Equation (49) is satisfied only

when,

So('ya) =0 .

This is the TEM solution, i.e.,

va =0

In the first approximation, let us assume that So and S, are non-zero,

, 1
and use two terms in Equation (39). Thus,

J(¢)=aofo(A, x) +a fl(A, x) . (50)
This means

- 3 -1
Cn~a0 Pn(cosA)+a sin A Pn (cos A) . (51)

1

18 -
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Substituting Equation (51) into Equation (46), and using Equation (39), yields

E(¢)=aogo(A, x)v-oz1 gl(A, x)+

-

-1 . -
+ gin = rczr S P(cosA)ta,S sinAP (cosA;1+a sinA |P 1(cosA)Jr P 1(—cos,g) +
2 Lo on ) n _J 1 o 0

. "
+ singx a S, P (cosA)+a S sinAP (cos/_\ﬂ; =0 xel! . (52)
2 oln 11 n J !
This is possible only if
-1 j. -1 -1
aS P (cosA)+a, |S sinAP (cosA)+sinA |P (cosA)+P (-cosA)i=0
oon l{o n J 0 0 B
' (53)
a S,P (cosA)+a,S sinAP-l(cosA)=O . ' (54)
oln 11 n .
For non-trivial solution of @ and a, the dispersion relation takes the form:
So 2 “
S, 5—(1-003;3) -2cosAl =0 . (55)

The condition S, =0 yields < =0, the TEM propagating condition, while the

1
other condition is

4 cos A

5 (56)
(1 - cos 4)

S, (va) =

The interpretation of Equation (56) is interesting. For A = 1800, ¢0 = 900,

corresponding to a closed circular gyide,

So (ya) = - 1.

19



Thus, in the limiting case, the solution of Equation (56) yields the TM1
if we assume

or TE . modes of propagation. For the lowest mode, TE

1 11’
that ya for the open structure is close to that of a closed circular guide,
i.e., va = 1. 84, then
s, (ya) Y80 03 <<y
2 4x(5

The approximation introduced, i.e., neglecting Sn (va) for n > 2 appears
to be reasonable. For the TM case, and for high order modes, however,
higher approximation is necessary.

For the second order approximation, we assume that S11 (va) 2o

for n >3, and represent

T@)r=a t (s, A)+a £ (x, A +a i (x A) (57)

The resulting approximate dispersion relation is,

|
|
S P (cos4) 'SinA [S P'l(cosA) :S' 2A K
R | R .m SoPo (cos &)
: 1 -1 ! 2
I + P0 (cos A) + P “(-cos A)] | + P “ (cos &) - P-z(—cos A)-]
| ) | ) 0 g
SP(cosA)TS';;;_—i-—A— ————— 'sin Al5. % (os &) N
1% : InAS P (cos A) 1Sin A[SlP1 (cos A)
[ I -2 3
! : + Pl (cos A) + Plz(-cos A)]
_______ L

B
Ssz (cos A): Sin A

1 _
S2 P2 (cos A) ISin~ AS_ P 2 (cos A)

20




Explicitly, Equation (58) may be written as

41 3. 2 ] 16 32 2] '
+2- 13y -15y" + 32y - 24| 5. - = (3 - 2y) S +==(2-6y+3y")| = 0
S2 [SOS1 ” [By Sy + 32y S1 y4( y) S0 y6( y+3y )

(59)
where, for simplicity, we denote
y = (1 - cos 4) . (60)
In the limiting case of cos A= - 1, y =2, Equation (59) is reduced to:
+ =
s, (va) [51 (ya) + 1] [so (ya) 1] 0o . (61)

The three factors in Equation (26) yield the propagation constants (i..e, 7a)
for TEM, TM1 (or TEl) and TM3 (or TEB) modes of propagation respectively.

In general, of course, we should represent

00

J(p)-= Z a £ (x4) (62)

m=0

and an infinite determinant is obtained. However, if we are computing <va
numerically, we may truncate the determinate to ( N+1)x (N+1) order,

i.e., represent

J(¢)-= ia f (x,A) . (63)
m___omm

Any solution of the truncated determinant satisfying the criterion that (c.f.

Equation (45))

21



2
4 (2N+1)

should yield numerically acceptable propagation constants. It is to be noted
that with our particular choice of basis functions in representing the surface

fields (J (§) or E (§)), the truncation appears to be reasonable since,

(a) The first few terms of the series represent the dominant components

of E (§) and J (§) correctly,

(b) The edge conditions are automatically satisfied in this representation,
and

(c) It has been shown that results of the first few orders of approximation
yield exact results in the limiting case of -AO =90°, This fact is easily shown

to be true for any order of truncation.

For the N-th approximation whep J( ,5‘ is approximated by Equaticn {64)

we have
N
C = E o sintap™® (cos A) . (64)
n m n
m=0

The truncated determinant, i.e., the approximate dispersion relation, takes

the form
Det Kn,ml =0 : (65)
where
K, = S0 sin™ A P;m (cos A)
+5in™ A P (cos A ) - (-1 B (~cos 4) (66)

22



Some reduction of the determinant, and the numerical scheme for
computing ya from the determinantal equations are discussed in the

next section.

23
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NUMERICAL COMPUTATION OF +vya

Although in principle, the solution for the set of ya satisfying the
dispersion relation for any order (N) of approximation appears to be a
straightforward mathematical problem, the actual numerical computation
of ya is far from trivial due to the complicated functions (Hankel functions
for complex arguments) involved in these equations. For the first order
approximation, the dispersion relation given by Equation (57) are re-

written as:

4 cos A

(68)
(1 - cos A)2

F (ya) = S0 (ya) =

For a given A =2 ¢O' the solution of Equation (68) for complex < a can be
carried out by Newton-Raphson's iterative method. The convergence in
this case appears to be good. For TM modes, some of the numerical re-

sults are tabulated in Table 1. For large § , the solutions are close to

0)

the zero's of Bessel functions; for the smaller § , the deviation from the

OJ
zero's of Bessel functions becomes greater.

For the second order approximation, Equation (60) is again written

as
4 3,.2
F (1a) = 8 (va) S, (ya) +=, (3y"-15y +32y-24) S, (ya)
y
16 32 2
- 2(3-2y)so(w)+y6 (2-6y+3y)=0 (69)
where

y =(1-cosa) .

24



va From First Approximation TM Mode

Table 1.

First Set of Roots

Second Set of Roots

¢0 Re Im Re Im
87.5 3.8316950 0.0 7,0155994 0.0

75° 3.8416062 0.0000934  7.0337080 0.0603267
60° 4,0425478 0.0474268 17.3553023 0.1318178
50° 4,3667455 0.4574768  7.6335519 0.6966593

25



For any given A, Newton- Raphson's method is again used to compute
the complex roots. In this case the convergence is very poor, and no
numerical acceptable roots were obtained after 10 iterations even when
we start with the initial guess predicted from the first approximation. A

modified conjugate gradient program was also tried in an attempt to solve
|F(ya)l =0 (70)

without success. After considerable amount of numerical experimentation,
we have developed a scheme combining the searching and iterating tech-
nique in computing vya . The convergence is greatly improved in using

this scheme. Since the numerical problem of computing complex roots of
complex equations involving transcendental equations is known to be a very
difficuit task, our new scheme appears tu represent a significant contribution
in solving such problems. A detailed description of this searching and
iterating scheme is given in Appendix A. For TM modes of propagation,
some numerical results are given in Table 2. It is to be noted that not

all of the roots in Table 2 satisfy the criterion

lval? << ax@N+D? =176

They are tabulated, however, to illustrate the feasibility of evaluating all
the complex roots.
For any higher order approximation, the dispersion relation given

by Equation (66) may be written in the form,

F (ya) = det[K]=0 (71)

26



(ya) From Second Approximation TM Mode

Table 2.

First Set of Roots

Second Set of Roots

¢0 Re Im Re Im

87.5°  3.9685815 0.4489306 6.0104261 0.6061281
75° 4,1029203 1,5604187 5.7068481 1.2732071
60° 3.9995496 1.4339417 5.6891943 1.8720847
50° 2.8350118 1.5225492 5.9726308 0.4743322

27



where K is a matrix, with elements

m m
= i A A
Kn m (va) Sn (va) Sin Pn (cos A)

+Sin" A [:P;m (cos A) - (_1)n+mP!:m (-cos A)]

nom=0,1,2, ......... N. (72)

Explicit expression for the dispersion relation using a Laplace development
of the determinant appears to be unnecessary since we are interestéd only
in the numerical solutions. For numerical computation, however, since

each of the matrix elements K m 2re functions of (ya) and A, they

3
A

must be calcuiated for each A& aad every iteration. To simplify the com-

putation, we have succeeded in reducing Equation (70) to the following form:

F (ya) =det ([s] + [Q]) =0 (73)
where
S, (va)
[s] - s, (va) (74)
SN(va) '

is a diagonal matrix, and is independent of A . On the otherhand, [Q] is

a matrix depending only on A =2 ¢O’ For any A, if we denote

y=1-cosA,
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the elements of [Q] may be computed by using the following equations:

, 2j i-j-1 . .
L2 N (2j-t-1)!
A =0T t§0( D G55 ¢ Gaoon
i>]j ()
Aij =0 i<j
r
_ (ntkir)! 1 (-1 y*F
b) Cn,k_i (2k+r)!  (n-k-1)! 1! (9 (76)
n=0
c) Qi,N :Ai,N (77)
= -G e
D Qe T AL -1 T O e (78)
N
e) Q, ,=A = Z Q.. C. (79)
i,k i,k ferit) ij 3,k ,

For a fixed N and A, the matrix elements Qi can be computed first,

and in the iteration solution for va, only the elé;{lents of S matrix need
to be computed in each iteration. The detailed derivation of Equation (73)
is given in Appendix B, Computation of ya, using this scheme appears to
be feasible if N is not too large. Actual computation to date, however,

has been completed for N =2 only.
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\'

CONCLUSIONS AND RECOMMENDATIONS

The modal analysis of the guided wave propagation along an open
structure such as illusirated in Figure 1 yields a set of ""dual summation
equations' for the propagation constants. By introducing new sets of basis
functions in the expansions of surface fields, the approximate dispersion re-
lation (for any order N of approximation) have been developed, Numerical
scheme for obtaining the complex roots of the dispersion relation were de-
veloped. Although the actual computation was carried out only for N = 2,
there appears to be no doubt that the scheme is applicable for moderate
values of N. Future Work concerning this problem should probably include
(a) more calculations for higher values of N to invesfigate numerically the
effect of truncation, aad (b) more detaiied analysis to determine the behavior
of the matrix elements Qij which, physically may be interpreted as "coupling
coefficients' between different modes.

The basic mathematical scheme developed in this study may in principle
be modified and extended to include the solutions of the following problems:

(a) The propagation of waves along a circular waveguide with one
longitudinal slot. Although others have performed a theoretical analysis of
propagation along slotted cylinders previously, for example, in the works of
Goldstone and Oliner (1961), Harrington (1959) and Chen (1973), theoretical
analysis and numerical computation of the propagation constants for higher
order modes are still lacking.

(b) The complex resonant frequency of spherical resonators. The
modal analysis of such an open structure yield also a set of dual summation

equations involving associated Legendre functions P:ln (cos 6). The solution
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of the dual summation equations by introducing the proper basis function
to represent the surface field should be worth investigating.

(¢) The modal analysis of scattering problems involving open
structures such as slotted cylinder and slotted spheres yields a set of
inhomogeneous dual summation equations. A systematic approach for
solving such scattering problems by introducing proper basis functions
for the representation of the surface fields should also be tried. The
scattering problem of the sources by slotted cylinders has been investigated
by Hayashi (1966) by using singular integral equations. It appears that
the basic advantage of using singular integral equations is to obtain the
dominant component of the surface fields which is the first term of our
representation. The computation of other higher order terms, however,

is more involved in the singular integral formulation.
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APPENDIX A

SEARCHING AND ITERATING PROCEDURE

Let us consider the problem of finding a complex root z =x+jy

satisying the equation
f(z) =0 (A.1)

where f(z) is a complex function, involving transcendental functions such
as Hankel functions. When the standard Newton-Raphson's method of find-
ing roots of Equation (A.1) is not successful, a searching and iterating pro-
cedure may be used in improving the convergence. In illustrating this pro-
cedure, we assume that near any zero of f(z), the function is analytic

and the derivative of f(z) may be computed. We shall denctc
f(z) =f(x+jy)=U(x, Y +jV(x, y) (A.2)

f'(z) = AAf;Z) = UX (x, y)+i Vx (x, y)

=+Vy (X; Y) - i Uy (X: Y) (A,B)

and assume that given xandy , U, V and their partial derivitives may be
evaluated. Our suggested procedure for finding the complex roots are
illustrated schematically in Figure A-1. The procedure may be described

in the following steps:
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(a) Given any initial Yy compute U (x, yo) and V (x, yo), and scan
X coarsely over a chosen range. As illustrated in Figure A-1, there exists
points A (xj, yo) such that U(x:, yo) =0, and B (x:, yo) such that
A (x:, yo) = 0. From the coarse searching, in general for simple roots,
U changes sign at xi and V changes sign at xz . Values of x2 and xb
may be computed more exactly, from the results of coarse searching and
Newton-Raphson iterative procedure. To improve convergence, if the dif-
ference between xi and x: are too large, another value of y, may be

chosen and the coarse searching repeated.

b
(b) From xz, yo, and Xo’ yo, we determine yl, corresponding to the
y coordinate of C, which is the intersection of the two tangent lines AC

and BC. To determine yy» we first computed

a a
U = Uy (Xo ’ yo)

Ua=U (xa,y)
y vy o’7o
b b
Vx_vx (xo' yo)
b _

Vy—vy (xlg, yo)

From these partial derivatives, it is easily seen that

Y1=(xo-xo) Ta V5 (A.4)
X X
xi Ui xg Vb Uxa be
1\Ta Vo Ua  Ub (A.5)
y y y y
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Figure A-1: Illustration of Searching and iterating
Procedure.
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(c) Start from (Xl’ yl), i.e., the point C. The process may be

repeated, until for any Yo

are less than some preset criterion of convergence.

(d) In some cases, this procedure may fail. For these cases in

general

b

a b a
-xml > Ixm-l " *m-1|°

|x
m

If this happens, the role of x and y should be interchanged in order to

obtain convergence.
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APPENDIX B

REDUCTION OF THE DISPERSION RELATION

The dispersion relation for the N-th approximation, given by
Equation (66), indicates that the determinant of matrix [K] should be

zero. If we denote

y. =(1 - cos A) (B.1)
p;, L= sin A P;m(cos a), (B.2)
Hn,m = sin™ A [P;m(cos A) - (-1)n;+n P;m(-cos A)}

=P, ot - (—1)m+npn, (2 | (B.3)

the elements of LK] matrix are given by
= +
K 8, (va) Py, ol Hn, o

n, m

Thus, the [K] matrix may be written as

[x] - [s]le] + [n] | (3.9

[s]- 8 (B.5)
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and the matrices [p] and [H]have elements P and Hn m respectively.

)

Since S depends only on(ya) and p and H depends only on y, the

roots (ya) of the dispersion relation are the same as that of the equation,
-1
det ([s]+ [H][p]” ) =0 . (B.6)

Therefore, the matrix [Q] in equation (73) is given by

[q] - (1] [P]_l (B.7)

BCORCE . as

The scheme for evaluating the elements Qii of the matrix [Q] given
in Equation (75) through Kquation (79) can be derived from the expression

of pn,m (c.f. Hobson, 1955).

n
vl -1
b (¥) = ym Z ((n+r). L (-1) ‘.

n,m

y.\r
(3) . (B.9)

The derivation makes use of a discontinuous summation formula which we

shall state now. This relation is given by

n

n' r (a+r)!
Z)(n-r)'. 7 D o)
r:
(a-b)! n a'
(ab-m! "L (orat a2(a-b) 2n
_ a! (b-a+n-1)!
"] (b-a-1)! (bt)! b>a (b.10
0 otherwise.
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The proof of this relation is straightforward. One starts from the binomial

expansion

=l T (B.11)

- 1 1
0 (n-1) 1!

(1-u"

Multiply the above by Ua, differentiate both sides of the produce (a - b) times
and let U —» 1 thus obtaining the first part of Equation (B.10). Similarly, if
we integrate both sides of the product (b - a) times, and let U —» 1, the second
part of Equation (B.10) is obtained. The third part of Equation (B.10) be-
comes clear after the first two parts have been determined. Based on Equation

(B.10), one finds that

n
0 m(z_y)zsz(m-r)’. 1 (-nF (l-x)r*

e O(n—r)l r! (m+r)

_om OGS )Yy Sl (oot ()T 1
- g (2) E;O (o-r)! r!' (m-s+r)! (B.12)

—

m DS ys| %  (p (DY 1
*e Z s! (3) _Z (n-r)!  r! (m-str)!
S=m r=s-m

e

In Equation (B.12) the series in the square brackets may be expressed in

closed form by using Equation (B.11). Therefore, we have

X r r+m
- om m+n (-1) (n+1)! y
pn, m(2—Y) =2 (-1) (r+m)[ (n_r)!rl. ( 5 )
r=0
n-m-1 |
om (-1) 1) y s (m-s-1)! 1
Z ( 2 ) (m -n-S- 1)[ (n+m_s)| (B. 13)
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where the second series is nonvanishing only if m >n. Thus, we have

- m-n-1 S
2m (_1)m+n+1 (-1) (x )S (m-s-1)M
- s! " 2° (m-n-s-1)! (m+n-s)!
s=0
Hn, m(y) = < m>n
0 m<n . (B.14)
"

In other words, the matrix [H] is an upper triangular matrix with diagonal

terms zero.

In order to find [Q] ,  we would like to find the inverse matrix [p]
However, since the order of matrix N is kept arbitrary, one finds that a
relation independent of N, which reduces the[p] matrix into triangular
form may be more suitable for computational purposes. This relation is

given by:

[¢] [¢] = [c] (B. 15)

where [a] is a lower triangular matrix while [C] is an upper triangular
matrix., The diagonal elements of [C] are unity, and the element of [ a]

are
Q..
A
yitj

where aij are constants (independent of y) and satisfying

@, =0 a>j . (B.16)
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The quantities o,

ij

By matrix multiplication, we see that the elements of the

given by,

1 pl‘S sSn
c_= )y ——
rn 520 ys+n

r n

1 (r +t)! t y %sn

" n Z (r-t)(-l)(2)Z (s+1t)!
y t=0 s=0

Since C =1, r=n,andC =0 r<n, the set o satisfy
rn rn sn

n
%en
Z s+ = 0 t<n
s=0 :
(-1)n n' .n
~ (20! 2 t=n

Using Equation (B.10), it is evident that

mtm m! 2% (n+m-1)!

%n,m =(-1) (m-1)! 0! (m-n)! n2m
and
n-s
) (ntrts)! rl1  yF_ 1
C'n,s ) & (-9 (17 L (%) (2s+1)!

Now, if we multiply both sides of Equation (B.8), by [a:l we have

[a)le]- (=[] # [4]

41

[C] matrix is

and Cij can again be deduced by using Equation (B. 10).

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)



The elements of the A matrix is easily shown to be:

Loy
A= Y B
U gy kv

s\t 2~
A L y)J

(-1
j-i-1 .
ot ( RTESIY Cofledlt 11
z (] t-i-1)! (j-t+i)! Z (k+t-j G-k k!
k=j-t
Again, use Equation (B.10), we have
2j 1
o1 1+J+1 2, i D (¥ @it-D)t 1 (B.2)
ij 2 (j-t-i-1)1  (t)} (j-t+i)! )
t=0‘

From Equation (B.21) and (B.22), the expressions for the elements g.., are

then easily deduced.
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