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ON THE SYNTHESIS OF THE VERTICAL PLANE PATTERNS
OF ATCRBS ANTENNAS

Dipak L. Sengupta

ABSTRACT

Synthesis of the vertical plane patterns of ATCRBS antennas by linear
arrays of isotropic elements are discussed. The synthesis method discussed here
is based on the Fourier techniques which approximate the desired pattern in the
least mean square sense. Analytical expressions have been derived for the field
gradient obtainable from an antenna of given aperture length. The results have
been applied to study the pattern characteristics of various improved ATCRBS
antennas. The theoretical results compare fairly well with the measured values.
It is recommended that further work be done on this problem to maximize the field

gradient of an antenna of given length.
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PREFACE

This report investigates theoretically the field gradient (or the elevation
plane pattern roll-off) at the boundaries of the pattern beams produced by linear
aperture antennas designed on the basis of Fourier synthesis techniques. Both
continuous aperture antenna and linear arrays of odd and even number of discrete
isotropic elements are considered. Analytical expressions are derived for the
field gradients in dB/ 1° as functions of the various antenna parameters. Theor-
etical results compare favorably with the corresponding measured values for the

improved ATCRBS antennas.
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1., INTRODUCTION

It is known [1, 2] that the undesirable effects of ground reflection and of
certain multipath sources located on or near ground on the ATCRBS performance
are considerably reduced if the free space vertical (or elevation) plane patterns of
the beacon antennas possess large field gradients or the elevation pattern roll-offs
at the horizon. The field gradient at the horizon for an antenna is defined to be the
rate of decay of the free space far field in the elevation plane just below the horizon.
It is usually expressed in dB per degree. Sometimes it is found convenient to
define the field gradient in a direction which corresponds to a point 6dB below the
maximum value of the elevation plane beam. When the 6-dB point of the beam is
directed along the horizon, the two definitions give identical values for the field
gradient. The existing ATCRBS antenna uses a 2-foot (about 2\) vertical aperture
and its measured field gradient at the 6-dB point has been found to be 0.37 dB/ 1°,
By using longer vertical apertures, various improved ATCRBS antennas have been
designed to have larger field gradients [3 - 5]. For example, the 4'-aperture
Hazeltine open array and 8'-aperture Westinghouse array antennas have measured

field gradients of 1.14 dB/1° and 2.5 dB/1° respectively.

From physical considerations it is expected that the field gradient of an
antenna should increase with an increase of its vertical aperture. In the present
report we develop some principles which will provide some guidelines to estimate
quantitatively the amount of field gradient that may be obtained from a given vertical
aperture. The ultimate objective of the present investigation is to estimate the
largest field gradient compatible with a large value of the field at the horizon that
can be achieved from an antenna with a given vertical aperture. Of course, the
elevation plane pattern of the antenna must also satisfy the other desired require-
ments with respect to sidelobe level, beamwidth, etc.

The proper way to study such a problem would be to formulate it as an
aperture synthesis problem with appropriate constraints on the desired pattern. How-
ever, in this study we follow a simpler approach based on Fourier synthesis tech-
niques so that some approximate design principles may be developed without soph-

isticated analysis. Another reason for the approach followed here is that the
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elevation patterns of most of the improved ATCRBS antennas have been designed by
Fourier techniques.

The outline of the report is as follows. Section 2 considers the synthesis of
a continuous linear source distribution and the field gradients obtained thereof. It
is found that the continuous aperture results give a good rough indication of the field
gradients that are obtained in practice. Section 3 discusses the synthesis of the
elevation plane pattern using a linear aperture of discrete elements. Theoretical
expressions are derived for the field gradients obtainable from such antennas

designed by Fourier techniques. Section 4 gives a general discussion.



2. CONTINUOUS LINEAR APERTURE

Consider an aperture of length L aligned along the vertical x-axis as shown

in Fig. 1. The angles in space are measured from the normal to the aperture so that

X
5 !
ABOVE (+8)
0 8 —e=7 HORIZON
BELOW (-8)
L
-/2

FIG. 1: A continuous aperture of length L.

the horizon is in the direction 6 = 00. Plotted as a function u = sin6, the ideal
free space elevation plane pattern function of the antenna is of sector beam shape

and may be represented by

F.(u) =1, 0<u<u, =sinf
i - =1 1
(1)

=0 otherwise.

Note that in the visible region of space the range of u is -1 <u<+1. Fig. 2 shows

a sketch of the ideal sector beam pattern for which the source distribution is to be

+|
Rlu)
U|(=Sinel)
+ . L — = U(=8in8)
-1 +1

FIG. 2: The ideal pattern of the antenna.



synthesized. The parameter u, shown in Fig. 2 is governed by the desired coverage
and the beamwidth of the antenna.
The source distribution f(x) necessary to synthesize the pattern given in Fig.

2 may be obtained by using the following Fourier transform relations [6]:

@
Fi(ku) = f(x)explikux)dx , (2)
-0
®
f(x) = 2_17r- Fi(ku) exp(-ikux)d(ku) , (3)
-0

where k = 27/) is the free space propagation constant. Since for all practical an-
tennas the aperture lengths are finite, the pattern produced by the synthesized anten-
na will be given by

L/2
Fs(ku) = f(x)exp(ikux)dx . (4)
-1L/2

The source distribution function for the present case may be obtained by using
Egs. (1) and (3) and is given by

sin(kulx/ 2)

1 .
fx) = o~ exp(-lkulx/Z)T , -Ll2<x<Lf2. (5)

The far field pattern of the synthesized antenna may now be obtained by using
Eqgs. (5) and (4) and is given by

F (0) = F (ku)
s s

(6)

%{Si(ﬂLsine/k) + Si[zkL (sinf, - sine):]} ,

where Si(x) is the sine integral defined by



Si(x) = - dv . (7
0
Note that from Eq. (6),
F (0) = 1 Si(f-l—‘sine;):F(e) (8)
s T A 1- s 1 !

which predicts that the field at the horizon will depend on the parameter 91.

The slope of the pattern in any direction 6 in space may be obtained by
differentiating Eq. (6) with respect to 6 and is given by

sin(lésiw) sin[—-ﬁL (sinf@, - sinei]
A A 1
0 7L T 7L

(T sm6> {:_)t— (sin 61 - sm@i]

Equation (9) indicates that the slope of the pattern at any point 6 is proportional to

F'(0) = L cos (9)
s A

the normalized aperture length L/A. The slope at the horizon is from Eq. (9):

sin<7r—L sin@ >

)= &1 —2 1
s A 7L .

5o,

(10)

From Eq. (10) it may be concluded that for sufficiently large L/\ such that
7L/\(sin6 1) >>1, the slope of the pattern is directly proportional to L/) and is

independent of the parameter 6.. However, for small values of L/) the slope may

be increased beyond L/\ by prc1>per choice of 0 1

In order that the results may be applied directly to the measured patterns
of an antenna, let us express the various results given above in terms of units used
during measurement. It is normal practice to normalize a given antenna pattern with
respect to the field at the beam maximum, i.e., normalized field in the direction of
the beam maximum is unity. Expressed in dB the normalized elevation plane pattern
of the antenna is given by

F (6)
P(9) = 20 log10 - (11)
m
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where Fm is the field in the direction of the maximum and FS(G) is as defined
earlier and is a positive quantity. The field gradient ag(e) in dB/ 1° at 0 is now
defined as

= p
ag(e) = T80 P'(6) . (12)

Using Eqs. (11) and (12) it can be shown that

T 20 F;S(G) F’S(O)

a (9) = 180 lom 0.1518 F (9)
loge ]

dB/1° . (13)

Substituting Eqs. (6) and (9) in Eq. (13) we obtain the following:

sin(&%@-% sin [%(sine -sinO:)]

(M> —(sme —sineﬂ

. (14)
{ <7rLsm6> + 81[ sme1 - sineﬂ}
From Eq. (14) it follows that the field gradient at the horizon is given by
sm(>L smel
(A smé)1
1 (7L .
- Sl<>t smel)

Table 1 gives the field gradient values at the horizon, obtained from Eq. (15), as

a (6) = 0. 1518
g

(15)

ag(O) = 0.1518(L/})

the quantity L/A is varied and for values of 6, = 7/6 and /4.

Table 1: Field Gradient in dB/1°
@ (0) in dB/1°

L/ 6, = 7r/6 6, = /4
1 0.13 0.18
2 0.52 0.69
3 1.08 0.94
4 1.34 1.08
5 1.32 1.65
6 1.72 1.81
7 2.31 1.98
8 2.54 2.29
9 2.56 2.65

10 2.95 3.13

11 3.51 3.52

(o]



Figure 3 shows the variations of the field gradient with L/x for 6, = /6
and 7/4. For comparison the measured values of ag for some ATCRBS antennas
are also shownin Fig. 3. The results indicate that continuous aperture theory pre-
dicts fairly well the field gradients obtained from the improved ATCRBS antennas
designed by Fourier techniques. The elevation plane patterns of ATCRBS antennas
are usually obtained by linear arrays of discrete elements. It is therefore desirable
to discuss the pattern synthesis and the field gradients of such antennas. This is

done in the next section.



ag(O) IN dB/I°

B EXPERIMENTAL
40+

30

FIG. 3: Field gradient of a continuous aperture antenna as a function of L/x

for two values of 91.



3. LINEAR APERTURE OF DISCRETE ELEMENTS

The synthesis of a desired vertical plane pattern using a linear array of
discrete elements is discussed in the present section. The cases of the linear aper-

ture consisting of odd and even number of elements are discussed separately.

3.1 Linear Aperture of Odd Number of Elements

We assume that a linear aperture of length L is aligned along the x-axis
which lies in the vertical direction. The linear aperture consists of an array of
(2N+1) isotropic elements, uniformly spaced with interelement spacing d as shown
in Fig. 4. Angles 0 in space are measured from the normal to the aperture, so that

6 = ‘00 is the horizontal direction.

i N

FIG. 4: Linear array of (2N+1) isotropic sources.



Plotted as a function of u = sin6, the desired vertical plane pattern of the

antenna is

Fi(u) =1, uy(= sinf,) <u< u1(= sinf_)

2 1

(16)
=0, otherwise.

Figure 5 shows a sketch of the desired pattern given by Eq. 16. The parameters

ﬁm)

#HbF--

u|(=sin 9|)

—a y(=SiN 8)

' 0 uy=sinb,) "

FIG. 5: Desired vertical plane pattern.

u and u, are governed by the considerations of beamwidth, pattern slope, etc. We
apply the Fourier synthesis techniques to obtain the required excitation of the source
elements so that the synthesized pattern of the array approximates the desired pat-
tern in the least mean square sense [6] . For this purpose it is natural to assume
that the interelement spacing d = 1/2 which is also a convenient choice from prac-
tical considerations. Cin
Let the excitation of the nth element be represented by Ine ! where In is
the amplitude and an is the phase of excitation. The far field pattern of an array of

(2N+1) such elements, spaced A/2 apart, is given by

10



N

-l .
F_(6) = ;—‘Ine n inTsing (17)

-N

By applying Fourier synthesis techniques, it can be shown 6 that to approx-
imate the desired pattern given in Fig. 5, the array excitation coefficients In’ ozn in

Eq. (17) must be given by

. |om, . i
sm[z(sme1 smezﬂ

I = , (18)
n n7T

S Y/ :
a = (sm91+sm62) . (19)

Note that the array excitation is such that In = I_n and o =-a_ . After introducing
Egs. (18) and (19) into Eq. (17), the synthesized pattern may be written explicitly

as follows:

sin “—(sme - sin6,)
FS(G) = %(sm@ - sin® )+ 2Z 2J

sin61+sin62
cos {mr <sin6 - —'—2————> (20)

The slope of the pattern at any direction & may be obtained by differentiating Eq. (20)

with respect to 6 and is given by

)] sin [.IL;E (sinf - sin 92)j

F'(O) Ncos#@ cos[(N+l)—(sm6 sinf
2 LT, .
Nsm[g(sme-smel)}

sin P—I— (sinf - sin 61)

- coSs [(N+1) — (8inf - smGJ (21)

Nsml: (sin6 - smG}

As in the continuous aperture case we assume that 62 = (0. Under this condition the

field and the pattern slope at the horizon are given by

11



sine1 isin(nfrsinel)
P R AT @)

1

in H7—rsi.n6>
SN 7y 1

(T
sm(z sm91>

The field gradient at any direction 6 may be obtained by using Eqs. (13), (20) and
(21). For the case with 6

T

F'(0) = N- cos BN+1) ? sinOJ (23)

9 = 0, the field gradient at the horizon is given by

F'(0)

S
0) =0.1518 ——

. (Nﬂ .
sin ——2 sm91>
(T,
sm(2 smG)

N- cos [(N+1) g sinel]

=0.1518 ’Hsiinel N sin(mrsi’neﬂlr) =
+
2. q “”

Table 2 gives the field gradient in dB/ 1° at the horizon that can be obtained from a
linear array of isotropic elements, spaced /2 apart, and containing (2N+1) ele-

ments. Note that the results are shown for two values of the parameter 6. = /6

and m/4. Observe that for \/2-spacing between the elements the total apelrture of
the array is given by L/X = N. The results shown in Table 1 indicate that for the
range of N considered, the field gradient values are slightly different for the two
values of 6.

Figure 6 shows ozg(O) vs. N(= L/)) for the linear array with odd number of
elements. The corresponding measured values are also shown for comparison. It
is found, in general, that the theoretical values seem to be larger than the mea-
sured values. For a given N, a judicious choice of 91 would yield the largest
compatible value of arg. Figure 7 shows ozg(O) vs. N(or L/A) for the discrete and

continuous aperture cases. The results for the linear ér'ray'of discrete elements

appear to be larger than those of the continuous array.

12



Table 2: Field gradient at the horizon o (0) in dB/1°
for a linear array of (2N+1) elBments.
a,(0) in dB/1°

N =L/x 0, =7/6 0, = /4
1 0.217 0.40
2 0.80 0.96
3 1.31 0.91
4 1.31 1.37
5 1.44 1.84
6 2.02 1.79
7 2.53 2.35
8 2.53 2.69
9 2.65 2.69
10 3.24 3.32

A typical pattern computed from Eq. (20) with N =4, d =1/2 (i.e., L = 4)),
62 = 0° and 6, =7 /4 is shown in Fig. 8. The field gradient at the horizon is found
tobe ~1.37dB. The sidelobe level is about 18dB. Note that the field gradient at
= 0° obtained from the continuous aperture theory for an aperture of length L = 4A,
6, = 7 /4 is about 1.08dB.
Equation (23) (or 24) indicates that for a given N, the parameter 91 may be
chosen to obtain the largest slope of the pattern at 6 = 00. If 6 1 is chosen such that

sinG1 =(2M+1)/N, M =0,1,2... then it follows from Eq. (23) that

+
FI(0)=N+L, for si0 = 2M+1 (25)

1 N
With N =4, M = 1 we obtain from Eq. (25) 6, ~ 51°, Figure 9 shows a pattern

1
obtained for N =4, d =1/2, 62 =0°% and 6, ~51°. 1t can be seen from Fig. 9 that

the field gradient in this case is about 1.5 d]; which is slightly larger than that shown
in Fig. 8. The sidelobe level in Fig. 9 is about 20 dB down.

Figures 10a - 10d show some selected patterns produced by linear arrays of
odd number of elements designed according to 62 =0° and 61 = r/4. From these
patterns and also from Fig. 8 it appears that achieving 20 dB sidelobe is possible

even with N =4 (i.e., L = 4)\).

13
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@ EXPERIMENTAL
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ag(O) IN dB/I°
N
o
1

FIG. 6: Field gradient of a linear aperture of (2N+1) elements as a
function of N (= L/A) for two values of ..
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ag(O) IN dB/I°

a0k e EXPERIMENTAL
30
20r
CONTINUOUS

I.OF

—~

1 1 1 1 1 | 1 1 1 1 Il

0 | 2 3 4 5 6 7 8 9 10 I

FIG. 7: Field gradients of continuous and discrete apertures as functions

of length or number of elements, 6. = 7 /4.

1
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3.2 Linear Aperture of Even Number of Elements

Consider a linear aperture of length L aligned along the x-axis which lies
in the vertical direction. The aperture consists of an array of 2N isotropic elements,

uniformly spaced with interelement spacing d, as shown in Fig. 11. Note that in the

o

>

p

eet— O

—z

I»

-N

FIG. 11: Linear array of 2N isotropic sources spaced d apart.

present case the total length of the aperture is given by

L =(2n-1)d (26)

22



e., for d =1/2,
L/A=(N-l)
5) -

It is assumed that the interelement spacing d = A/2. Following the same procedure

as in Section 3.1, it can be shown that the synthesized pattern is given by

N

. LT,
! —lan m-z- sin 6
F (0) = E Ie e s (27)
s N n

where the prime on the summation indicates that the n =0 term is omitted. The
array excitation coefficients In’ o are given by
sin[(2n-1)-7-r(sin6 - sinf )]
4 1 2

I = - R (28)
n (2n-1) 2

PN .
an—(2n 1)4(sm61+sm92) . (29)

For negative values of n, the excitation coefficients in Eq. (27) are obtained from

Eqs. (28) and (29) using the relations

I =1 , a =-a . (30)
-n n -n n

Using the above relations the synthesized pattern can be written explicitly as

sin|(2n- 1)—(sm9 -sinf,) ' sinf_ +sinf
FS(B) =2 Z |: ] cos lEZn- 1)% (sine- -———12—-——2->:I

(2n- 1)—
(31)
As before, we study the patterns for 62 = 0 for which case Eq. (31) reduces to
N sin [(Zn-l)%sinelj . sine1
F (6) =2 E cos [(2n-1) 7 sinf- (32)
] T 2 2
1 (2n-1) 2

23



The pattern slope at 6 is obtained by differentiating Eq. (32) with respect to 8 and
is given by
sin(Nrsing) S0 I:Nw(sme—smel)_j‘

N
2smzs1n9 2sm|:2 (sin6 sm@l):l

Fé(e) = 2co0s0 (33)

The values of FS(O) and F'S(G) at the horizon 9 = 0° may be obtained from Egs. (32)
and (33) and are given by

N . T .
smEZn—l) 4 s1n61]

F (0) = (34)
S 1 (2n- 1)%
l: sin(ersinGl) ]
F'(0) =2|[N- —————= (35)
S 2sin(ér sin6]>

Using Eqs. (34) and (35) and the definition of the field gradient at the horizon discussed

earlier, the following relationship is obtained.

sin(NwsinGl),

N -

(T
2sm<2 sm61>

. .
N smEZn- 1) 5 smel]

(2n-1)§

(36)

a (0) =0.1518
g

Table 3 gives the field gradient in dB/ 1° at the horizon that can be obtained
from a linear array of isotropic elements, spaced \/2 apart, and containing 2N
elements. The results are shown for two values of the parameter 6 1’ 7/6 and 7/4.

Figure 12 shows a, vs. N (= L/x+1/2) for a linear array of 2N elements

designed with 6, = 0° and 6, = 7/6 and 7/4.

24



Table 3: Field gradient at the horizon & (0) in dB/ 1°

for a linear array of 2N elemdnts. 92 =0,
d=21/2.
o (0) in dB/1°

N=2+1 5 =m€ o =4/

A2 1 1

2 0.50 0.73

3 1.10 0.95

4 1.36 1.05

5 1.31 1.69

6 1.70 1.78

7 2.33 2.00

8 2.57 2.63

9 2.52 2.62

10 2.91 2.97

Figures 13a and 13b compare the field gradients of linear antennas containing

odd and even numbers of elements for two values of 6 T 7r/ 6and 7 / 4, For a given

value of N, the total length of the array of odd number of elements is larger than that

of even number of elements by A/2. This is why the field gradients for the odd num-

bered arrays are in general larger than those of the even numbered arrays, as shown

in Fig. 13. It is interesting to note in Fig. 13 that for certain values of N, the two

arrays drrays possess essentially the same field gradient. The practical implication

of this is that for certain values of N, there will be a saving of one element by using

an even number of elements to achieve the field gradient.

Figures 14a and 14b show the complete theoretical patterns of a linear array

of 8 elements designed with 6, =7 /6 and 7 /4 respectively.
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FIG. 12: Field gradient of a linear array of 2N elements as a function of
N (= L/x+1/2) for two values of 6, .
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FIG. 13(a): Field gradients of linear arrays of (2N+1) and 2N elements as
functions of N. 6, = z /6.
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FIG. 13(b): Field gradients of linear arrays of (2N+1) and 2N elements as

functions of N. 6, = r /4.
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4, DISCUSSION

Fourier synthesis of a sector beam pattern by a linear array of discrete
isotropic elements has been discussed. The results have been applied to study the
characteristics of the free space vertical plane patterns of the exiting and improved
ATCRBS antennas, believed to be designed by Fourier techniques. It is found that
the field gradient of such an antenna depends mainly on the overall length of the aper-
ture, i.e., on the number of elements used. The field gradient for a given aperture
length may be estimated roughly by using the continuous aperture theory. For better
accuracy the discrete elements theory should be used. The expressions derived for
the field gradients are found to be fairly accurate.

In the present report we have considered only the method based on Fourier
techniques which approximate the desired pattern in the least mean square sense.

It should be noted that such a solution does not provide an answer to the question
whether the field gradient obtained for a given aperture length is largest. In this
sense the present design is not optimum. It is desirable that the problem should be
further investigated in the light of the following: is it possible to obtain larger field
gradients for a given aperture length if a different error criterion is used to syn-

thesize the pattern, e.g., using the minimax criterion?
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APPENDIX A
REPORT OF INVENTIONS

A diligent review of the work performed under this contract has revealed

no new innovation, discovery, improvement or invention.
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