012539-3-F

EFFECTS OF GROUND PROFILE ON THE PERFORMANCE OF
AIR TRAFFIC CONTROL RADAR BEACON SYSTEMS

Chiao-Min Chu
Dipak L. Sengupta

Abstract

Theoretical expressions necessary to obtain the effects of ground profile on
the SLS mode performance of an ATCRBS have been derived. The theory is based
on ray optics and neglects any effects of diffraction. Focussing effects of ordinary
concave cylindrical surfaces are found to be important in regions very close to the
horizon. It is believed that such effects will not be of significance for normal ATCRBS
operation.

On the basis of the theoretical formulations a computer program has been
developed to obtain numerical results for ATCRBS using various antenna systems
located above a ground with a specified profile. It is assumed that the ground con-
sists of planar sections having arbitrary dielectric constant. The computer program
is capable of handling any ground profile as long as it can be approximated by planar
sections. Some representative results are discussed for simple cases of a ground
consisting of two planar sections. The performance of an ATCRBS located at the
NAFEC area has been studied theoretically by assuming a ground profile typical of
the NAFEC area. Theoretical results are compared with those obtained in actual

flight tests.
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PREFACE

The report investigates theoretically the effects of ground profile on the
SLS mode performance of an ATCRBS. A computer program is developed to obtain
numerical results for the various quantities characterizing the performance of
ATCRBS located above a ground of given profile and having arbitrary dielectric con-
stant. The program can handle any ground profile as long as it can be approximated
by linear sections. Diffraction effects are neglected. The computer program has

been prepared by G.F. Hopp.
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1. INTRODUCTION

The overall performance of Air Traffic Control Radar Beacon System
(ATCRBS) using various interrogétor antenna systemé located above a perfectly
dielectric flat ground has been discussed theoretically in our earlier reports [_ 1, 2].

In the present report an attempt is made to develop analytical and computational tech-
niques by which the ATCRBS performance may be quantitatively assessed when the
ground is of a given profile. For simplicity of analysis the variations in the ground
surface are assumed to be two dimensional; in spite of this restriction, it is believed
that the results of the present investigation may find applications in many practical
situations. The main task involved in the present study can be stated as follows: given
the free space far field patterns of the interrogator antenna system, obtain the modi-
fication of its far zone field patterns when the antenna system is placed above a ground
with known electrical properties and a given profile in the vertical plane. From a
knowledge of the modified field patterns, it is possible to obtain the various quantities
characterizing the performance of an ATCRBS in the presence of the assumed ground.
Only the SLS mode performance of ATCRBS is considered in the present report. For
a given antenna system the following quantities of interest characterizing the ATCRBS
performance are studied: P1 and P2 pulse amplitude patterns, P1/P2 pulse ratio
patterns, the effective azimuth beamwidth, and the number of replies.

The outline of the report is as follows. Section 2 discusses the theoretical
approach to obtain the effects of ground profile on the radiation pattern of a given
antenna. Profiles of ground consisting of planar surfaces and the effects of reflections
from convex and concave surfaces are considered. For realistic ground profiles the
numerical method is the most convenient way of obtaining meaningful results. Section
3 uses the ideas and results of Section 2 to develop a general computer program for
calculating the various quantities characterizing the performance of ATCRBS in the
presence of a ground whose profile may be approximated by sections of planar sections.
The effects of diffraction, multiple reflection and the curvature of the ground are
neglected. If necessary, these effects may be included in the program. The computer

program is developed such that the output data and format correspond to the general



ATCRBS computer program discussed in our previous reports [1,2]. Section 4
discusses some simple numerical examples to illustrate the power and the capabil-
ities of the computer program. Numerical results are obtained for an ATCRBS using
the Hazeltine open array antenna system [1__] Theoretical results are also obtained
for this ATCRBS in the presence of an assumed ground profile which approximates

a typical terrain profile in the NAFEC area as seen by an aircraft during a radial
flight at constant height. Theoretical results are compared with those obtained by
actual flight tests. Some numerical results are also obtained for the P1 pulse
amplitude patterns for an ATCRBS using the existing Hog-Trough antenna [:ljlocated
above a selected NAFEC ground profile. Measured results for this case are not

available at the present time.



2. EFFECTS OF GROUND PROFILE ON RADIATION PATTERN

2.1 General Statement of the Problem

Given the free space far field pattern of an antenna, we are interested in
investigating the modification of the far zone field pattern when the antenna is placed
above a ground with known complex dielectric constant (or index of refraction) and
a given profile. We shall carry out our investigation based on the following condi-
tions:

a) Assume the antenna is vertically polarized, and the free space far field

pattern (6, gS) is known. To conform with the notation used in our previous work, the

elevation angle 6 is measured from the horizontal, as illustrated in Fig. 1.

lzaxh(wrtic&l)

¢ \{/ 86, )

horizontal

FIG. 1: The geometry of the problem.

b) Assume that the ground profile is smooth (with very small slope), and
that as a first approximation, the geometrical optics approach is valid. Moreover,

the reflected wave from the ground may be assumed to be essentially vertically

polarized.



c) We are interested primarily in the far field pattern at small elevation
angles.

To study the effect of ground profile, let us refer to Fig. 1 and consider an
incident ray in the direction of the unit vector §i(-ei, ¢i). When this ray is reflected
from the ground, the direction of the reflected ray is given by §r(e, ). 1If the unit
normal, ﬁ, to the ground at the reflection point is known, then the reflected direc-

tion is given by

A _ A A AA
5 (6, §) = 5.0, ¢i)—2(si-n)n . (1)

Assuming that for smooth ground, multiple reflection does not occur, then this
reflected ray would interfere in the far zone with a direct ray in the direction 3(0, )
and modify the field pattern. In general, given a direction (0, ¢), and depending on

the ground profile, there may be several incident directions (—Gi, ,61) that would

fore, that the first problem to be solved is: Given any direction (6, ¢) and a given
ground profile, find all the values (Gi, ,‘i) satisfying Eq. (1). Although in principle
a computer program may be developed to solve this problem (discussed in Section 2.2),
in the present chapter we assume that the smooth ground profile may be approxi-
mated in sections by inclined planes, and by concave or convex quadratic surfaces,
and derive appropriate analytic expressions for computation later.

To calculate quantitatively the modification of the field pattern, it is necessary
to know the reflected field in the far zone region. To obtain the reflected field, it is
necessary to know the following quantities:

(i) The reflection coefficient [3],

stinel -\[N2—1+sin293
o= | i
stinei+\/F—1+sin29i

(2)

where

N= Je do (3)



is the index of refraction of the ground, and 9; is the angle between the incident ray
and the tangent plane at the point of reflection, i.e.,
sing! = -0-8, =n-8 . (4)
i i r

(ii) The divergence factor D due to the curvature of the ground profile,
which may be approximately calculated (see Appendix A).

(iii) The path difference A between the direct ray and the reflected ray, which
may be calculated if the ground profile is known.

Incorporation the three factors p, A, D above, the combined far zone field

at a point (R, 6, ) due to the direct and the reflected rays are given by

Bo,f) = HEEHG PR {ﬂe, #+3 oD (-0, 4) e‘jBA} )

where the summation is over all possible directions (—Gi, ¢i) corresponding to the
reflected direction §(6, #), and p,D,A are all functions of Gi, ’Si’ W is the effective
radiated power and G is the gain of the antenna.

In the present section we investigate the effects of simple ground profiles,
such as plane, convex and concave cylindrical surfaces on the reflected rays and use
these results later to "synthesize" the reflected field of a realistic ""smooth" ground

profile.

2.2 Planar Profiles

In this section we consider, as a first approximation, the reflection from a
ground whose profile may be approximated by sections of planar surfaces, as illus-
trated in Fig. 2. Neglecting the diffracted field at the corners, the reflection from
each planar section may be considered separately. For example, the section AB of
the ground profile in Fig. 2 may be considered as part of a large ground plane as
illustrated in Fig. 3. If the normal to AB is inclined at an angle o to the vertical
(z-axis) and has an azimuth angle B related to an arbitrarily chosen x-axis, then we
have
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A A . A
f(a, B) = Zcosa + Xsinacos P + ysinasinf . (6)

From Egs. (1) and (6), the following relations may be obtained.

a) Reflected direction in terms of incident direction:

sinf = sin@icos2oz- sin 20 cos Gicos(¢i-B) (7
cos ¢ cos §. cos B
cose{ } = cos 0, { 1} +gin 20 sin6, { }
sin ¢ . singSi v ' Usinp
cosBl
-(1-cos2a)cos(@. - B)cos 0, { (8)
! ! sinf

The two equations in Eq. (8) determine § without ambiguity.

b) Incident direction in terms of reflected direction:

sinf, = sin @ cos 2o + sin 2o cos O cos(g - ) (9)
cos¢.1 cos § cos B
cose.{ ' =cosh { - sin2a sinf, { }
! sin¢,) sin ¢ ' (sinB
i
. cosf3
- (1~ cos 2a)cos(p - B)cos 6 { } (10)
sinf3

Comments similar to Eq. (8) apply to Eq. (10) also.

¢) The "angle of incidence" 9{ :
sinf] = cosa sinf, - sina cos (9icos(,15i -B) = cosasinf + sinacosfcos(p-pf)  (11)

The above equations enable one to determine the direction of the reflected
field, and the reflection coefficient p. For planar sections, the divergence factor
D is unity, so that in order to compute the reflected field, we need the path differences

A. From geometrical configurations, it is easily seen that



A= 2Hpcosa[cosasin6 + sina cos 6 cos(g-P)] , (12)

where Hp is as shown in Fig. 3.

Although the above equations are useful in detailed numerical computation of
the reflected fields, we shall at present consider a simple case when 3 = 0. More-
over, since the x-direction may be arbitrarily chosen, we shall assume that gSi =0.

For this case, the above equations may be simplified to

= (13)
Bi =0+ 2o (14a)
or
6 = i 20 (14Db)
0'=0.-a=0+a (15)
i i
and A= 2Hpcosa sin(6 +a) (16)

Let us now apply the above equations to a hypothetical ground profile consisting
of three planar sections, I, II and III, as illustrated in Fig. 4. For simplicity, we
choose the profile such that every portion of the ground is illuminated (no shadowing),
and all the reflected rays reach the far zone and interfere with the direct ray (no
multiple reflection). As illustrated in Fig. 4, the planar section I starts at the

point C(xc; zc) with a downward slope tana, and is illuminated by rays with incident

1
direction

where Gc =tan (17)

and H is the height of the antenna. The planar section II is between B(xb, zb) and

C(Xc’ zc), and has an upward slope

(18)
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This section is illuminated by incident rays with incident direction

6, >0, >0 (19)

where 6. = tan (20)

Similarly, the section III is between A(6, Za) and B(xb, zb), and has a downward
slope

tana, = a . (21)

6.>6, . (22)

Using equations (13) to (16), we may construct a table for the directions of
incidence and reflection, the angle of incidence, and the path difference for the rays
reflected from each part of the ground. This is given in Table 1.

To interpret the information given in the table, and to use it to compute the
reflected and total fields, let us plot Bi, Gi and A’ against 6, as shown in the
sketches given by Figs. 5, 6, and 7 respectively. From these figures, the following
appear to be clear:

a) From Fig. 5, it is seen that in the range of 6 from -, to Bc— 2a/1, we
have only one reflected ray, reflected from part I of the ground. Similarly for the
range of 6 from Bc- 2a2 to 0, -2x., we have only one reflected ray from part II of

b 3

the ground while for the range of 6 from Gb- 20:2 to 900, we have only one reflected

ray from part III of the ground.

11



TABLE I
ANGLES OF INCIDENCE, REFLECTION AND THE PATH DIFFERENCE
APPROPRIATE FOR VARIOUS GROUND SECTIONS

Ground 0., incident 0, reflected 0 :!1’ angle of A, path dif-
Section direction direction (Eq.14)  incidence (Eq.15)  ference (Eq.16)

- - - 1 3 +
I 6,20, >0 6 -2 >0>-a 6 - 20120 [cosalsm(e a))]

X2(H-z -x tana.)
c c 1
. ) ) i Cep o4
I 6, 26,0 6-22,>020 -2, 6 -, >0!>0 -a, [cosa,sin(0 az)j
x2(H—zb—xbtana2)
- '>0 - in(6 +
m 6,6 6>0, -2, 6:>6 -a, [cosa,sin(6 a,)]
XZ(H-za)

90 ’/91 =0
_________ e — 91 = eb
61
- L =
/ ei ec
AR b=
— O

Oc-?a 6 -?a3 6 -_2a2 90
FIG. 5: Plot of Gi vs. 0.

12



- 0 6% §-2; -2,

FIG. 6: Plot of 0{ vs. 0.

] [ L

>

! :

O by O byl 0k 0
L

FIG. 7: Plot of the path difference A vs. 6.
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b) From Fig. 5, it is seen that in the range of 6 from Bc- 20, to Gc— 20

no reflected field is predicted by this approximate model. This is gen;rally true ?f
we approximate a convex surface by two planes and neglect the diffraction at the
joint. An improved model taking into consideration the curvature at the transition
to estimate the reflected field for convex surfaces is considered in Section 2.3.

c) In the range of 6 from 60- 202 to Gb— 2a/3, we have two reflected rays,
reflected from part II and part III of the composite ground. This is generally true
if we approximate a concave surface by two planes. For concave surfaces with
smooth transition, such as in the case of a cylindrical cavity, this piecewise planar
approximation may not be accurate, and a detailed analysis is carried out in Section
2.3.

d) For each direction 6, knowing 9{, the number of reflected rays, the
path difference A for each ray, and the local properties of the ground, the total
field can be computed from Eq. 5.

e) In the case of a vertically polarized antenna, and for small 6, we know
p = -1. Then the information about A given in Fig. 7 for the case where there is

only one reflected ray (such as part I of the curve) may be used approximately to

estimate the first few minima of the total field pattern by finding emin such that
BA® . ) =2nT , n=1,23... (23)
min

2.3 Reflection from Convex Surfaces

When a given ground profile cannot be approximated accurately by sections
of planar surfaces, an improved model for the profile may be introduced by joining
planar surfaces by quadratic surfaces to yield a smooth transition of the slope of the
ground profile. For convex surfaces, such a model is illustrated in Fig. 8. In this
figure, we show that two planar parts, I and ITI, are joined smoothly by part II. We
shall assume that the planar part I has a downward sloping angle a, while the planar
part III, starting from A(O, za), has a downward sloping angle ag. For simplicity,

the smooth surface is assumed to be a circular cylinder with center at (xO, z 0) and

14
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radius a. The points B(xb, zb) and C(Xc’ Zc) where the planar surfaces join the

cylinder are given respectively by

= x_+asi =z +
X =X, atsmoz3 , Zy z,tacosa, (24)

and

X, = x0+asina1 , z, = z0+acosoz1 . (25)

Any point on the cylindrical section BC can be represented in the parametric form

x=x0+asinc , zZ = z0+acoso (26)
where
@ >02a, . (27)
The reflected rays from this composite surface therefore consist of three
types:
a) For 8 >6.>a ,
c—i—-"1
H-z
-1 ¢
where 6 =tan s (28)
c X

rays are reflected from part I of the surface. From the results of Section 2. 2, we

see that for each Gi, the direction of the reflected ray is

0=0-20, , (29)
i 1
the angle of incideﬁce is
6! = 6.- -a ’ (30)
i i1
and the path difference is
A= 2(H—zc-xctanal)cosalsm(e +a/1) . (31)

16



b) Similarly, for Gi geb,

where 6, = tan b s (32)

rays are reflected from part III of the surface. For each Gi, we have

6 =0, -2 (33)
i 3
6! =0.-a (34)
i i3
and A =2(H-z )cosa,sin(6+a,) . (35)
a 3 3
c) For Gb >6> Gc’ the rays are reflected from a cylindrical surface of

radius a. In Appendix A it is shown that, according to geometric optics, the rays
reflected from such convex surfaces have the same direction and path difference as
the rays reflected from the tangent plane. The amplitude of the field associated

with the rays, however, has to be corrected by a "'divergence factor" given by

asinei
D= 2R +asin0 (36)

where 6{ is the angle of incidence,
and \:Rl is the distance from the antenna to the point of reflection.
Using the parametric form representing the cylindrical surface (Egs. 26 and

27), we see that for given o, the slope of the tangent plane is o, and the incident

angle is
1 H-zO-acoso
0, = tan . . (37
i x _tasinc
0
Thus we have
0= Bi- 20 (38)
0! =(0,-0) (39)
i i

17



1/2
Rl = [(H-zo—acoso)2 +(x0+asino)2:‘ ' (40)

and A= 2(H-zO—aseco-xotanc)cosesin(G +0) . (41)

Based on Eqgs. (29), (33) and (38), we may sketch the Gi, 6 relations as shown

in Fig. 9. From Fig. 9, we see that for each 0, there is only one reflected ray.

90

Z

0

FIG. 9: Bi vs. 6 for the ground profile shown in Fig. 8.

These reflected rays may be computed by using the appropriate p, A and D, and
combined with the direct ray to yield the far zone pattern.

It is to be noted that if the planar section III and I are extended and joined
discontinuously (in slope) then, according to section 2.2, there would be a range of
9 in which direction there are no reflected rays, if the diffraction fields are
neglected. The "'smooth" model introduced here, therefore, gives the first order
correction for the neglected diffraction field. A more refined model may be obtained
by using surfaces of continuous variation of radius of curvature so that the diver-

gence factor D given by Eq. (36) does not change abruptly at points B and C.

18



2.4 Reflection from Concave Surfaces

In section 2.2, it is seen that if a ground profile is concave and is approxi-
mated by two planar surfaces joined together with a discontinuity in slope, there
exists a range of reflected direction where one may observe more than one reflected
ray. In general, for a concave surface with continuous slope variation, there exists
a region where the reflected rays may converge and form a caustic. To simplify the
analysis, we may represent part of a concave surface by a concave cylinder (with
constant radius of curvature), and study the reflection from a concave cylinder. The
reflection from any concave surface with varying radius of curvature can then be
estimated by approximating the given surface with several sections of cylinders.

In Appendix A, the reflection of rays from a concave cylindrical surface are
investigated. The results are summarized and illustrated in this section. Let us
denote

a = the radius of curvature of the surface
R. = the distance from a source point to the point of reflection, and

1
6'1 = the angle between an incident ray and the tangent plane;

then, as shown in Appendix A, if
2R1— asin6i<0 (42)

the reflected ray diverges and no caustic is formed. This situation is illustrated in
Fig. 10(a). Locally the reflected rays appear to be diverging from a virtual source
at a distance f from the point of reflection, where
R, asinf!
1 i

f= _——_——asmei- 2R1 . (43)

For this case, the far zone reflected field is equal to the reflected field from the

tangent plane multiplied by the divergence factor given by
D= R . - (44)

On the other hand, if

19
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virtual ~~
souroce

FIG. 10(a): Reflection from a concave surface (no caustic)

T (source point)

FIG. 10(b): Reflection from a concave surface (caustic formation).
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2R1- asin0i>0 , (45)
the reflected rays form a caustic at a distance

R 12 sin 6;
from the point of reflection. This condition is illustrated in Fig. 10(b). The
reflected field strength at the caustic is usually very large, and cannot be predicted
by using ray theory. For the present investigation, it is true that we usually have
very shallow cavities, so that a is very large and caustics are formed only when 6%
is very small. Under these conditions, the caustic is usually very low (less than a
hundred feet above the ground), so that at higher altitudes the far zone reflected field
can again be estimated by using the tangent plane approximation multiplied by the
divergence factor D = Jﬁﬁ; .

Explicitly, if H is the height of the transmitter, then the height of the caustic
above the horizon is given by

h =H-R_sin6 + fsinh (47)
[¢ 1 i

and the horizontal distance from the transmitter to the caustic is
x =R_cos6 +fsinh (48)
c 1 i

where 6 is the direction of the reflected ray and -Gi is the direction of the incident
ray.

Before carrying out an illustrative example on the location of the caustic, it
is necessary to investigate (a) the possibility of shadowing, i.e., if a part of the sur-
face is in the shadow region, therefore giving no reflection, and (b) the possibility
of multiple reflection, i.e., if some of the reflected rays are obstructed by the con-
cave surface and reflected again before reaching the far zone. Criteria for these
possibilities can be deduced geometrically by refei‘ring to Fig. 11, As shown in

this figure, an incident ray with a depression angle Gi (angle with horizontal) is
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o = 0 (vertical)

FIG. 11: Diagram to describe the criteria for obtaining various rays.

reflected by a concave cylinder (dotted line) at a point defined by an angle ¢ mea-

sured from a vertical line passing through the axis of the cylinder. It is seen that

the incident ray intersects the cylinder at a point defined by the angle

-a, = -(20.+ o)
1 i

while the reflected ray intersects the cylinder at a point defined by the angle

= (20 +
oz2 (29i 30)

Thus, for a convex cylinder with angular span

the rays with incident direction ei such that

20.+o0>a
i 1

are not shadowed, and the rays with Gi such that .
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20+ 30 >a (52)
i 2

are not obstructed.

As an example of estimating the caustic region, let us consider a concave
cavity located at a distance D = 2100 ft from an antenna of height H = 35 ft, as
sketched in Fig. 12. The cavity is 800 ft wide and 5 ft deep. (The dimensions of
this example are taken from the ground profile furnished us by the sponsor.) Assume
that the cavity is approximately cylindrical in shape, then the radius a and half angle

2 of the cylinder may be evaluated from the relations

2a smaO =5

and a(1 -cosao) =800 ft .

The solution of the above yields
a = 16,002 ft

and o, = 1.432° |

To study the focusing effect of the rays reflected from this cavity, we express
the coordinates of every point on the cylinder in parametric form in terms of the

angle o by
x = D+acoso (53)

y= a(cosao—coso) (54)

with

(o) (o)
= > = -
1.432 a >0 QD 1.432 .

Therefore, the incident direction of a ray reflected at a point o is given by

-1 H- a(cosoz0 - C0S0)
ei = tan D+acoso (35)

The corresponding angle of incidence of this ray is
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0!'=06.+0 (56)
i i

while the corresponding direction of the reflected ray is

6 = Gi+20 . (57)

Moreover,

2
R1 =J[H—a(cosa0—coso)] +(D+acoso)2

and

A= 2R1sin26£ : (59)

From Eqgs. (51), (52) and (55), it is found numerically that the points with
1.432° >0 >-0. 274° are illuminated and the rays reflected from these points form
a caustic region. Using Egs. (55) - (58) and (46) - (48), we may construct a table
concerning the directions of incident and reflected rays, and the locations of the
caustic region. This is given as Table II. From this table, we see that the caustic
region is very close to ground, so that for high altitudes, the far zone field Eq. (5)
may be used. The example shows that the caustic effects may be neglected for
normal flights.

TABLE II
VARIOUS PARAMETERS FOR THE CONCAVE CAVITY PROBLEM
o (deg) Gi (deg) 9; (deg) 0 (deg) R, (ft)  £(ft) X, (ft) hc (ft)

-0.274 1.127 0.853 0.679 2023.9 126.6 2261.8 -3.32
0 1.091 1.091 1.091 2100.4 164.1 2264.1 -3.50
0.5 1.008 1.518 2.018 2240.0 232.3 2471.8 3.76
1.0 0.904 1.904 2.094 2379.7 299.3 2678.3 12.60
1.432 0.802 2.234 3.666 2501.0 356.4 2855.4 22.80
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2.5 Discussion

We have derived the basic theoretical expressions necessary to obtain the
effects of various ground profiles on the far field produced by a beacon antenna
located above ground. The theory is based on ray optics and neglects any effects of
diffraction. Focussing effects of concave cylindrical surfaces are found to be impor-
tant in regions very close to the horizon. Hence it is believed that such effects will
not be of significance for normal ATCRBS operation.

Based on the formulation developed here, a general computer program can
be developed to obtain the far field lobing patterns and other pertinent results for
given antenna and ground profiles. The ground profile will be synthesized by sections
of planar surfaces with linear slopes and cylindrical surfaces. This is discussed in

the next section.
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3. THE EFFECTS OF GROUND PROFILE ON ATCRBS PERFORMANCE:
DEVELOPMENT OF THE COMPUTER PROGRAM

3.1 Introduction

General theoretical formulation and the derivation of various expressions
necessary to obtain the effects of ground profile in the far field patterns of ATCRBS
antennas located above ground have been discussed in Section 2. In the present
section we develop a computer program, based on the formulation discussed in
Section 2, calculate the various quantities characterizing the performance of an
ATCRBS in the presence of a ground whose profile may be approximated by sections
of planar surfaces. It is assumed that the free space pattern of the ATCRBS antenna
is known. For the present, we neglect the effects of diffraction, multiple reflection
and the curvature of the ground. Only the SLS mode performance of ATCRBS is con-
sidered here. The quantities of interest are: P1 and P2 pulse patterns, P1/P2
pulse ratio patterns, effective azimuth beamwidth, the number of replies and the
coverage diagram. The computer program is developed such that the output data
and format correspond to the general ATCRBS computer program discussed in our

earlier reports [1, 2].

3.2 Basic Expressions

Let the ground profile in the x-z plane, where x is the horizontal axis, be
as shown in Fig. 13. The points on the ground whére the ground profile changes
its slope and/or its refractive index are denoted by the set of points (xj, zj),
j=1,2,3,...,M. Each ground section is assumed to be planar with a given slope

between (xj, Zj) and (xj 1) and level (slope = 0) beyond the point (xM,zM) as

Z
+1° it
shown in Fig. 13. Note that the ground profile is assumed to be independent of the
y-coordinate. Thus, the ground is approximated by (M+1) sections of planar sur-

faces. The first section is between (0, 0) and (xl, Zl) having a slope given by
a, = tan-l(z /x.) (60)
1 171"

and the slope of the jth section, located between (xj-l’

z, ) and (x,z,), is
i-1 i

27



MISSING
PAGE



aj=tan_1;‘]——l:—1 ., j=1,2,...,M. (61)

The (M+1)th section located beyond the point (xM, zM) is assumed to be horizontal

and consequently

a =0 . (62)

The set of equations (60) - (62) completely specifies a given ground profile approxi-
mated by linear sections.
The index of refraction for each section of ground is assumed to be known and

is given by Nj such that
N, = [e. , (63)
=G

where ej is the relative permittivity of the jth ground section.

It is assumed that the antenna under study is located on the z-axis and at a
height H above the horizontal axis, as shown in Fig. 13. The field at any far zone
point located at an elevation angle 6 will be the sum of the contributions due to a
direct ray from the antenna in the direction 6 and a ray (or rays) from the antenna
and reflected by a ground section (or sections) in the direction 6. The direct ray
and a ray reflected by the jth ground section in the direction of the far field point
are shown in Fig. 14. Let an incident ray with depression angle GIj, after reflection
by the jth ground section, has an elevation angle 0 so that it reaches the far field
point. For any given angle 6, the corresponding depression angle of the incident
ray may be obtained from Fig. 14 and is given by

"0l =0-20, , (64)
J J

where aj is the slope of the jth ground section defined before. To obtain the
reflection coefficient of a ground section let us denote the angle of incidence at the

jth section by GPJ_ as shown in Fig. 14. It can be shown that
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OP. =0-a. . (65)

For vertically polarized incident waves, the Fresnel coefficient of reflection is

given by [3]:

. . 2
sz s1n(6Pj) - \/Ni- 1+sin (GPﬁ

P, (66)

I s+ N - 1+sin’(6P)
J J J J

Note that, in general, pj is complex and Eq. (66) is valid for both real and complex
values of Nj'

To calculate the phase of the reflected field relative to the direct field caused
by the propagation path difference, let us denote by HPj the distance between the
antenna and the point of intersection on the z-axis of the extended jth section pro-
file, as shown in Fig. 14. It can be shown that HPj may be obtained from

HP, =H-z, _+x, ,tana. . (67)
i -1 7j-1 J

The path difference between the direct ray and the ray reflected in the 6-direction

by the jth section of the ground may be expressed in terms of HPj and is given by:
A, = 2HP, cos(e,) sin(6P,) . (68)
J J J J

The electric field at a far field point (R, 6) due to the ray reflected by the
jth section of the ground may now be written in the following form:

i8R

e
T R

Kf(-0L) |, 69
jd( J.) (69)

where
i= T,
A is a constant, A
B = 2w /) is the free space propagation constant,

f d(6) is the free space elevation plane pattern of the antenna,
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K =p.e , (70)
i P
pj is the reflection coefficient as defined by Eq.(66).

The total field at (R, 6) consists of the direct field and the field reflected

in the 6-direction by the ground sections and can now be written as

M+1 .
S |
E(R’G)Total =A fd(6)+ - Kjfd(-BIj) T (71)

Given any 6 and a ground profile it is possible to calculate the incident angle
GIJ. (or (-)Pj) such that the ray reflected from the jth section, if the section extends
from x =0 to x = 0, is in the direction 6. Of course, in actual cases not all GIj
are physically possible due to the following: (a) the finite extent of each ground sec-
tion and (b) the possibility of geometrical shadowing. To obtain the criteria for the
occurrence of the nonphysical values of GIj let us refer to Fig. 15 and define the

depression angle corresponding to (xj, zj) by

-1 H-z,
s, =tan  —1 | (72)
j X,
J
It is evident from Fig. 15 that if
I, <s, or 01, > s, (73)
b il
then there is no reflection from the jth section due to its finite size or, in other
words, acceptable incident angles GIJ. for the jth section must lie in the range
s, ,<0I <s,..
it S -
As shown in Fig. 16, if for any k <j,
GIj >8, (74)

the incident ray is shadowed and there will be no reflection.
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Combining Eqgs. (73) and (74) we find that if

01, <s, or 01 >s, , k<j ('75)
b i k

then

K

=0 . (76)
J

1

Equations (75) and (76) indicate that for the incident ray whose depression angle
satisfies Eq. (75) cannot reach the far field point by single reflection from the jth
ground section.

Even if Eq. (75) is not satisfied, there may exist cases such that the reflected
ray is obstructed by the ground and does not reach the far zone field point. Such a
situation of "ray obstruction" is depicted in Fig. 17, which shows a ray reflected
from the jth section obstructed by the kth section (k >j). This can occur if Dj >T

k

where the intercepts Dj and T, on the z-axis are as defined in Fig. 17. For a given

k
angle 6 and the ground profile, these intercepts may be obtained from the following

relations:
Tk = xktanG -2y (77)
HP, [tan(elj) +tanf]
= - H.
Dj [tan( GIJ.) +tanaj] (78)
The condition for the obstruction of the reflected ray can therefore be stated as
follows:
. N >3
if Dj Tk , k>j
(79)

then - Kj =0

When Eq. (79) is satisfied, a reflected ray may reach the far field point only after

multiple reflection. Such cases are neglected in the present investigation.
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3.3 Various Quantities of Interest

In the previous section we have discussed the method of obtaining the field
at a far zone point produced by an ATCRBS antenna in the presence of a ground of

given profile. From the knowledge of this field, various quantities of interest char-

acterizing the performance of an ATCRBS may be obtained. In the present section
we give the appropriate expressions for the desired quantities. Detailed discussions
of the derivations of these expressions have been given in 1, 2] and will not be re-
peated here.

The intensities of the P1 and P2 pulses at the far field point (R, 6) are
defined to be the magnitudes of the total electric fields produced by the directional
and omnidirectional antennas, respectively, and located at appropriate heights above
ground.

After using Eq. (71) and assuming A = 1, the following is obtained for the

SLS mode P1 pulse amplitude as a function of the elevation angle:

M+1

fd(e)+ ZKjfd(—GIj)

j=1

Pl(B)SLS = = Fd(G) (say) (80)

where the various notations used are as defined before. In the SLS mode only, the

directional antenna radiates the P1 pulse and hence, f d(G) in Eq. (21) represents

the elevation plane free space pattern of the directional antenna of ATCRBS.
Assuming that the nominal pulse ratio is KO (U.S. standards require that

K _ = 18dB), it can be shown that the P2 pulse pattern produced by the omnidirec-

0
tional antenna is given by

M+1
_ 1 - =
P2(9) = Ko fo(e){r JZI:Kij( te) FO(Q)/K0 (say) (81)

where fO(G) is the elevation plane free space pattern of the omnidirectional antenna.
In obtaining Kj and GIJ. in Eq. (81) from the expressions given in the previous sec-
tions it should be noted that the antenna height parameter H should correspond to that

of the omnidirectional antenna.
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From Eqgs. (80) and (81) the pulse ratio at the far field point is given by

pig) _ . Fd? -
P2(6) 0 Fo(e)

Instead of representing the absolute value of the pulse ratio given by Eq. (82), it is
found more convenient to use the normalized pulse ratio concept and express it in
dB, as follows:

P1(6)

p2(6) ~ 20 1%810%¢

F (6) (83)
=20 log, F,(6)

normalized P1/P2 = 20 1og10

The effective azimuth beamwidth ée i of ATCRBS is an important concept and
was discussed in [1, 2—_| Targets within ’seff will reply and those outside will not .
Assuming that the main beam killing thresshold level is a, it can be shown that for
a directional antenna having a Gaussian gype of azimuthal pattern, the effective azi-

muth beamwidth is given by

20 log, %% - a(dB) 1/
Bet = 2y 12.0735

(84)

where ;60 is the total half-power beamwidth of the azimuthal pattern of the directional
antenna,

The number of replies from the transponder is now defined as
N=f — s (85)
where fi is the interrogator pulse repetition,
Q is the angular scanning rate in deg/sec.

Typical values of f, and Q are: f = 360 pulses/sec, = 90°/sec for terminal

installation and 360/ sec for enroute installation.
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If it is assumed that the free space range R0 of ATCRBS is given as a
known parameter of the system, then it can be shown that the range as a function

of the elevation angle 6, i.e., the coverage diagram, is given by

R(6) =R_F (0)

RO d
M+1 1/2 (86)

=R 'f(6)+2_JKf( 61.)

3.4 Computation Scheme

Based on the discussions given in section 3.2 and 3.3 we develop the following
scheme for computing the various quantities characterizing the performance of
ATCRBS.

3.4.1 Given Parameters

For the present we shall consider only two antenna systems: the Hazeltine
open array and the existing (or Hog-Trough) antennas. For both the antennas the
free space elevation plane patterns of the directional and ér@@xéc}tibﬂa} antennas
match, i.e., f d(6) = fO(G). However, the phase center of the omhidirectional
antenna of each system lies above that of the directional antenna. The pattern char-
acteristics of these antennas are discussed in [1] . Here we quote only the relevant
expressions and results necessary for the present computation.

The elevation plane pattern of the Hazeltine open array antenna is obtained

from the following expression:

sin(6 -0 )

sinw ,‘ n-’I
£6) = Zf @) o (8

sin(0 - 6 ) ’
"[ 0.225 ’“j}

where 90 is the tilt angle of the antenna beam (normally 90 =0) and Bn and

f (6 ) are given in Table II.
d1 n
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TABLE III
SAMPLED VALUES OF THE PATTERN FUNCTION
FOR THE HAZELTINE OPEN ARRAY ANTENNA
0

n Gn fdl(Gn)
0 0 0.500
1 13 1.000
2 26.75 0.855
3 42.4 0.530

The analytical expression to compute the free space elevation plane pattern

of the existing antenna is given by:

_— o l:sm(e - 00) ) n‘l
(@)= )t (0) AT
d —< d, n

n=-2 1

sin(6-6) ’
”[ 0.47767 n:l

where 8 and f_ (0 ) are shown in Table IV.
n d1 n

TABLE IV
SAMPLED VALUES OF THE PATTERN FUNCTION
FOR THE EXISTING ANTENNA

0

n Gn fdl(en)
-2 -72.8 0.084
-1 -28.55 0.510
0 0 0.966
1 28.55 0.780
2 72.8 0.045

(88)

The other pertinent characteristics of the two antennas that may be of later use are

given in Table V. In addition, the free space propagation constant B, the refractive

index Nj (=\€) and the ground profile (xj, zj), j=12,...,M are also known para-

meters in a given situation.
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TABLE V

SOME CHARACTERISTICS OF THE HAZELTINE OPEN ARRAY
AND EXISTING ANTENNAS AT 1030 MHz

Hazeltine
Height of the directional antenna 33 feet
Height of the omnidirectional 37 feet
antenna
Gain (over isotropic) 23 dB
Horizontal beamwidth 2. 45°
Vertical beamwidth 29°

Field gradient (elevation pattern
roll-off) at -6 dB

Azimuth plane sidelobes

3.4.2 Computation

Existing
31.5 feet

33.0 feet

21 dB

2.35°

50°

1.14 dB/deg 0.37 dB/deg.
-25 dB

-25 dB

Once the input parameters are known the computation of the various quantities

can proceed as follows.

(i) Slopes
a = tan”" 2 [x
1 171
-1 4754
. = tan N S
j X, - X,
i il
aM+1 =0
(ii) Depression angles
_ H-2z,
s, =tan —
X,
]
Syt~ 0
(iii) Intercepts
HP, =H-2z, ,+x, . tana,
j j-1 -1
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(72)

(72')
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(iv) Direct field pattern
Choose an incremental angle A6, and let 8§ =nA6, n=0,1,2,3,.... For
each 6 compute f d(O) appropriate for the given antenna, i.e., use Egs. (87) and
(88).
(v) Incident ray directions

For a given 0, calculate

0. =06-20, (64)
J J
and GPJ, = G—aj . (65)

(vi) Test for "condition of no reflection"

If
01, <s, s or
) ]
(75)
> .
GIj Sj—l , Sj—2’ , s1
set Kj =0 ('76)
(vii) Test for "condition of obstruction'
For the remaining set of OI]. and j, compute
HP.L[tan( BIj) +tané |
D. = -H (78)
tan(61,) +tana,
i [tenter, i)
and T, =x.tanf-z, . (77)
J ) )
If
Tj>Dj+1 » Diyg ..,Dm (79)
set Kj =0
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(viii) Reflected field

For the remaining set of Oij and j, compute

N2 sin(6P,) - | N - 1 +sin”(6P,)
0. = ]l —L (66)
j N?sin(GPj)ﬂ[N?— 1+sin'(0P)
A, = 2HP, cos(e,) sin(6P,) (68)
J J J J
_iBAj
K. =p.e 70
i = P (70)
and f d(-Olj) (87) or (88)
(ix) Various patterns
M+1
= + Z - =
P1(9) fd(e) £ Kjfd( GI].) Fd(9)
(80)
P1(6) in dB = 20 log, F (6)
M+1
_ L E -
P2(9) = < f0(0)+ / KjFO(—BIj) —Fo(e)/Ko
0 j=1
(81)
P2() in dB = 20 logloFO(B)- K0
F (6)
normalized P1/P2 (83)

=20 log, F(6)
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20 log PUO) a (dB) 12
b =24 10 P2(0) (a=09) (84)
eff 0 12.0735 ’
¢eff
N = fi o . (85)

The computer output is digital as well as graphical. The computer program

along with the flow chart and the various symbols used are given in Appendix B.
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4, NUMERICAL RESULTS AND DISCUSSION

4.1 Introduction

The computer program developed in the previous section is used to obtain
some results to illustrate the effects of some given ground profiles on the SLS mode
performance of ATCRBS using the Hazeltine open array antenna. Pertinent pattern
characteristics of the interrogator antenna system are as discussed in Section 3.4
The ground is assumed to have a dielectric constant Er = 3.0. Section 4.2 considers
a simple ground profile consisting of two planar sections. The results for this ground
profile illustrate the power and the capabilities of the computer program and they
also identify some of the effects of simple terrain features on the ATCRBS perfor-
mance. Section 4.3 considers a more complicated ground profile consisting of a
number of planar sections; the profile is prepared such that it approximates some
typical terrain profile as seen by an aircraft during a radial flight over the NAFEC

area. The computed results are compared with those obtained by actual flight tests.

4.2 Tlustrative Examples

In this section we consider the ATCRBS to be located above a ground consisting
of two planar sections, as shown in Fig. 18, each having the same dielectric constant
€.~ 3.0. As discussed earlier the far zone fields (the P1 and P2 pulses in the far
zone are proportional to these fields) consist of the direct fields from the antenna
and the fields reflected from the two sections of the ground. In terms of the reflected
components of fields it is found convenient to divide the elevation plane of interest
into the following three zones.

Zone B: 0<6< Gc- 2a1. In this zone, the far field consists

of the direct field and a field reflected from the ground section B only.

<6 <60+2a . In this

1 1
zone the far field consists of the direct field and fields reflected from

Zone BC or Transition:Zone: Oc -2
both the ground plane sections B and A.

Zone A: 0 +20, <6< 7/2. In this zone the far field consists

of the direct field and a field reflected from the ground section A only.
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In the above definitions, the angles Gc and o, are as shown in Fig. 18 and

1
are given by

H-z
6 = ’can_1 L (89)
c X
1
a, = tan_l(z /x.) (90)
1 171 ’

Figure 19 shows the P1 and P2 pulse patterns for a ground profile having ) Y —0.50,
i.e., X, = 600°', zZ, = -5.0'. The corresponding pulse patterns when the antenna is
located above a flat ground aligned along the x-axis and also the free space pulse
patterns are shown in Fig. 19 for ready comparison.

Discontinuities in the pulse patterns (points marked C, C) for the discon-
tinuous ground case occur approximately within the transition zones corresponding
to the height of the P1 and P2 pulse radiating antennas. From this definition, the
location and extent of the transition zone varies with the height of the antenna. In
the present case for 6 lying within the transition zone, two reflected rays contribute
to the far field. As a result of this the maxima and minima are more pronounced
within this region. This is evident in Fig. 19. For the ground profile and the antenna
heights considered, the transition zones occur in 2% <0< 4°38" and 3° <6< 5°
for the P1 and P2 pulses, respectively. The results shown in Fig. 19 are in agree-
ment with the above zones. Outside the transition zone, the P1 and P2 pulse patterns
for the discontinuous ground are not changed much in amplitude but the locations of
the maxima and minima are shifted relative to the patterns for the flat ground condi-
tion. Figure 20 shows the P1 and P2 pulse patterns in the range 0 <6 < 20° for the
discontinuous ground; larger amplitude maxima and deeper minima in the patterns
within the transition zones should be noticed. For 6 > 8° the pulse patterns assume
their corresponding free space Vélues.

Figure 21 shows the normalized pulse ratio patterns for the flat and
discontinuous ground. Outside the transition zone region, the two pulse ratio pat-
terns are not changed appreciably in amplitude but they are shifted from each other

slightly. Within the transition zone, the P1/P2 pattern for the discontinuous ground
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FIG. 20: P1 and P2 pulse patterns above a discontinuous ground.

Slope of section A is ) ~ _0,5° (x1 = 600", z, = -5.0").
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shows a large amount of oscillation. This implies that both mainbeam killing and
sidelobe punch-through will be quite severe within this range of space. Figure 22
shows the pulse ratio pattern in the range 0 <6 < 20° for the discontinuous ground.

Figures 23 and 24 show the pulse and pulse ratio patterns for the flat and
discontinuous ground, respectively, with section A having a slope of -1. 0°. Similar
results are shown in Figs. 25 and 26 when the section A has a slope of -1. 50. The
increased slope seems to increase the shift in the patterns outside the transition
zone, particularly for small 6 and within the transition region the oscillations are
not as strong as those for small slope angles. Similar comment applies to the pulse
ratio patterns.

In order to bring out the effects of the extent of the section A we keep the
slope of section A constant and increase the values of X5 2g- For example, Fig.
27 shows the pulse patterns for a discontinuous ground with X, = 800" and z, = -6. 7T
(slope -0.5°). The general behavior of the results is similar to that shown in Fig.
,Z,, the transition zones have moved

'
towards similar values of 6. For the parameters used, Gcfv 2950' and 3%8' for

19; however, due to increased values of x

P1 and P2 pulse patterns, respectively, and the corresponding transition zones are
150" <6< 4°8', The pulse ratio patterns for the flat and discontinuous ground are
shown in Fig. 28. In this case it is found that within the transition zone the pulse

ratio shows very strong amplitude oscillations.

4.3 Performance of ATCRBS at NAFEC

In this section we discuss the performance of an ATCRBS using the Hazeltine
open array antenna system and located at National Aviation Facilities Experimental
Center (NAFEC) of New Jersey. Figure 29 shows a typical terrain profile as seen
by an aircraft during a flight at constant height and along a 305° radial from the
ATCRBS. This profile has been supplied to us by FAA. The profile is shown in
terms of height in feet above sea level versus the distance in feet from the origin,
which is located 60 feet above sea level as shown in Fig. 29.

Theoretical P1 and P2 pulse amplitude patterns are shown in Fig. 30.
Corresponding patterns for the free space and x-axis oriented flat earth cases are

shown in Fig. 30 for comparison. The normalized pulse ratio patterns for the NAFEC
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profile reduces the depth of the first minimum but increases those of the minima at
larger angles. In particular, the pattern develops a large minimum at 6 ~ 3° where
the flat earth case had a maximum. Figure 31 results indicate that in the flat earth
case there exist the mainbeam killing zones at 6 ~ 0.90 and 1. 7° and in the NAFEC
profile case there exists one strong mainbeam killing zone at 6 ~~ 30. As discussed
earlier, the NAFEC profile results coincide with the free space results in the shadow
regions.

Figures 32 and 33 show the effective azimuth and the number of replies,
respectively, for the flat earth and NAFEC profile cases. The main effects of the
NAFEC profile are found to be the removal of the zero effective azimuth beamwidth
(and zero number of replies) at 6 ~ 0. 9% and 1.7° and the generation of a zone of
zero effective beamwidth (zero number of replies) at 6 ~ 3%, This may or may not
be of some advantage.

Figures 34(a) and 34(b) compare the theoretical P1 pulse and amplitude
results with the results obtained from inbound and outbound radial flight tests carried
out at the NAFEC area. The test results were obtained when the aircraft was flying
at a constant height (2000' above sea level) and along a chosen radial (3050) to and
from the ATCRBS. The flight test data were obtained as P1 pulse amplitude in dB
as a function of the slant range of the aircraft. The measured results in Figs. 34(a)
and (b) were obtained from the flight test data aftef removing the slant range depen-
dency from the results and expressing them as functions of the elevation angle. Con-
sidering the various approximations made in the theory, the agreement between the
measured and theoretical results shown in Figs. 34(a) and (b) may be considered to
be fair. In particular, the locations of some of the maxima and minima and some
finer details of the patterns are predicted very well by the theory. In the region
AA and BB (of Fig. 18), the theoretical results follow the free space curve; it is
believed that in these regions the agreement with measured results may be improved
by considering in the theory the diffraction effects of the appropriate regions of the

ground profile.
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It was mentioned earlier that during flight tests the P1 pulse amplitude data
were collected as a function of the slant range of the aircraft from the ATCRBS. It
may therefore be found convenient to compare the measured data directly with the
theoretical results if the latter are expressed as functions of the slant range rather
than the elevation angle, as was done before. Figures 35(a) and 35(b) compare the
inbound and outbound measured results with the theoretical results as functions of the
slant range for the ATCRBS using the Hazeltine open array antenna. The strong
minimum at the slant range of approximately 6.4 nautical miles predicted by the
theory appears to be missing in the measured data although it does show a minimum
at that range. Figure 36 shows similar theoretical results for the flight tests with
an ATCRBS using the existing Hog-Trough antenna. At the time of writing this re-
port, no measured data are available for this case.

On the basis of the results discussed in this section, it may be said that the
method developed to obtain the effects of terrain profile can predict the overall per-
formance of ATCRBS fairly well. It may also enable one to identify the terrain

sources producing some undesirable effects.
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5. CONCLUSIONS

Basic theoretical expressions necessary to obtain the effects of various
ground profiles on the SLS mode performance of an ATCRBS have been derived. The
theory is based on ray optics and neglects any effects of diffraction. Focussing
effects of concave cylindrical surfaces are found to be important in regions very
close to the horizon. Hence it is believed that such effects will not be of significance
for normal ATCRBS operation.

Based on these theoretical formulations a computer program has been
developed to obtain numerical results for ATCRBS using various antenna systems
located above a ground with a specified profile. It is assumed that the ground con-
sists of planar sections having arbitrary dielectric constant. The computer program
is capable of handling any given ground profile as long as it can be approximated by
planar sections. The effects of discontinuities at the junctions of the two sections
are neglected.

Some representative results have been discussed for a simple case of a
ground consisting of two planar sections. The results indicate that for such cases,
there exists a transition region in space where the pulse and pulse ratio patterns go
through strong oscillations. These oscillations may cause more severe mainbeam
killing and sidelobe punch-through problems in thg transition zone. The location and
extent of the transition zone depend on the interrogator antenna height and on the
slopes of the ground plane sections.

The performance of an ATCRBS located at NAFEC has been studied
theoretically by assuming a ground profile typical of the NAFEC area. Theoretical
results have been compared with those obtained from actual flight tests. The agree-
ment obtained between theory and experiment indicates that the computer program
can be used to assess the performance of ATCRBS located above a ground of given

profile.
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APPENDIX A
RAYS REFLECTED FROM CYLINDRICAL SURFACES

A.1 Introduction

In order to estimate quantitatively the field reflected from a concave or
convex surface, we shall take a section of this surface, with radius of curvature a,
and approximate this surface as a part of a cylinder of radius a. Therefore, in this
appendix, we shall discuss the rays reflected from convex and concave cylinders,
with particular interest in the divergence of reflected rays in the far zone, and the
location of the caustics in the case of a convex cylinder. Parts of the results, such
as the divergence factor, etc., are well known; other parts, such as the location of
the caustic of a convex surface (with arbitrary direction of incidence), cannot be
found explicitly in existing literature. The purpose of this appendix is to give a

simple and unified derivation of these results that are used in the main text.

A.2 Reflection from a Cylinder

The reflection of rays from an antenna T by a cylinder is illustrated in
Fig. A-1. Since we are interested in rays in a plane perpendicular to the axis of
the cylinder, Fig. A-1 shows the plane passing through the transmitter and perpen-
dicular to the cylinder. In this plane, we can denote any position by a complex num-

ber and any direction by a complex number with modulus unity. As illustrated in

FIG. A-1: Reflection of rays from a cylinder.
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Fig. A-1, we choose the axis of the cylinder O as the origin, and the transmitter
jm

is located at Re ° . A ray in the direction

§ =¢
i
is reflected at a point ang on the cylinder. It is obvious that 6 and { are related
by
tané = _asin€_ (A-1)
R+acos ¢ B

For computational purposes we shall denote

dé R + +
5 éd_g : 2( c20s§ a) _ a(Rcc;sC R) (A-2)
R +a +2aRcos¢{ R1
where
R1 = J;z+a2+2aRcos§ (A-3)

is the distance from the source T to the point of reflection. From the figure, we
also see that the angle of incidence (the angle between the incident ray and the tangent

plane at the point of reflection) is
6i=§—7r/2—6. (A-4)
Moreover,

' T
+ = - le=—) = = i !
(a+Rcos§) Rlcos(ei 5 ) R1 sin Gi

Thus, we may also write Eq. (A-2) as

-asinei
= ———— . (A-5)

Ry
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The direction of the reflected ray is given by
S =e (A-6)

where

0 =20'+6=28-1-6. (A-T7)
r i

Thus, if we denote t as the distance measured along the reflected ray from the point

of reflection, any point on the reflected ray may be expressed in the parametric form

j6

€ te T=aelb 1?80 (A-8)

xt+jy = ae

jé+dé

Now let us consider an adjacent ray in the direction e , and reflected

J(E+dg)

from the point ae , then, any point on this reflected ray may be expressed in

the parametric form

gty = 2l ST 7 J28-) j(2d8-d6)

‘o sde L H9E_8) W9E_8) (D&
— 5 ol8 98 _7H(28-0) i(28-0) j(2-5 )d§ (A-9)
where 1 is the distance measured along the adjacent reflected ray from its point of
reflection. The values of t and © at the point of intersection of the two adjacent
reflected rays may be obtained by equating Eqs. (A-8) and (A-9). To the first power
of df, we have

-j(¢-6)

T-t =jd¢ l:ae -(2- es')’E] . (A-10)

Since both t and T must be real, we conclude from Eq. (A-10) that as d¢—>0 (the

two adjacent reflected rays are very close to each other),
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acos(§-4)

t ¥ = =5 (A-11)
Introducing Eq.s (A-4) and (A-5) into (A-11) yields
aR1 sin Gi
t=- 2R, +asin, (4-12)

From Eq. (A-12), we see that t is negative, indicating that the rays form a "virtual

image' at a distance
aR, sinf!
1 i

2R, +asinf,
1 i

f=|t]|= (A-13)
behind the point of reflection.

In terms of f, it is easy to deduce the conventionally ‘'used "divergence
factor" by referring to Fig. A-2. In A-2(a), it is seen that the two adjacent rays
reflected from a convex cylindrical surface intersect a distance f behind the point
of reflection. In Fig.A-2(b), it is seen that for the same incident rays, the adjacent
reflected rays from the tangent plane intersect at a distance R ) behind the point of
reflection. Thus, the the same amount of incident power, the reflected rays from
the cylinder have an angular spread Atpc while the angular spread of rays reflected
from the tangent plane is Al//p and

Yot
ch Rl

(A-14)

Therefore, the magnitude of the field reflected by a convex cylindrical surface of
radius of curvature a may be obtained from the field reflected from the tangent plane

multiplied by the divergence factor

% n asinei
D= N /R_l = || 2R, *asine; (A-15)
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(a) reflection from cylinder

______ — _ _ _ _ _ tangent plane
cylinder

(b) reflection from tangent plane

7 Ay cylinder

FIG. A-2: Reflections from convex surfaces.
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A.3 Reflection from Concave Cylindrical Surfaces

The reflection of rays from a concave cylindrical surface can be analyzed

in the same procedure as used for the case of the convex cylinder. As illustrated

M

I— R _— /er

FIG. A-3: Reflection from a concave cylindrical surface.

in ‘Fig. A-3, an incident ray in the direction

éi = 0 (A-16)

it

is reflected from a point ae The relation between 6 and ¢ is

__asin¢ . _
tan 6 —R+acos§ ; (A-17)
therefore,
+ +
o 2 g_% 2a(azllicosf) _ aa I;COSC) (A-18)
R +a +2aRcos¢ R1
where
2 2 ‘
R1 = \/R +a +2aRcos ¢ (A-19)
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is the distance from the transmitter T to the point of reflection. The "angle of

incidence" is given by
9 = lr._§+5 (A-20)
i 2

since

a+Rcosf =R, cosO' =R, sinf!
1 i 1 i

Equation (A-18) may also be written as

asin(-)i
[ — -
6 R (A-21)
1
The direction of the reflected ray is
3,
S =e (A-22)
r
where
Gr = (1 -2¢+6) . (A-23)

Therefore any point on the reflected ray may be represented in the parametric form

it teﬂzf-é)

xtjy=ae - (A-24)

where t is the distance measured along the reflected fay from the point of reflection.

(6 +
Similarly, from an adjacent ray with incident direction eJ((‘3 ds)

aeﬂ§+d0

, reflected at a point
, any point on this adjacent reflected ray may be expressed in the para=-

metric form

j(€+dg) Tej(2§- 8) ej(z -8")y

x+tjy = ae ¢ (A-25)

where T is the distance measured along the adjacent reflected ray from its point of
reflection. The values of t and { at the point of intersection of the two adjacent
rays may be obtained by equating Eqs. (A-24) and (A-25). To the first power of d{

we have
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i(¢-¢)

t-t=[ae -t(2- 81 Jja¢ . (A-26)

Since t and t are both real, we concl ude that for d§¢ — 0,

3 1
¢ =T = acos(¢-6) _ Rlasmei (A-27)
2-6 2R1—asin6:!l )

For the reflection of rays from . concave surfaces, we therefore have two

cases, depending on the sign of t in Eq. (A-27). Again let us define
£=t] , (A-28)

then for the case t<0, the reflected ray diverges, as illustrated in Fig. A-4(a).

For this case, it is obvious that the divergence factor introduced in Section A.2, i.e.,
D= f/ R1 (A-29)

can be applied. On the other hand, when t >0, the reflected rays converge to a
caustic as illustrated in Fig. A-4(b). For this case the field strength at and near
the caustic becomes very large, and in general cannot be predicted by ray theory.
However, if we assume that for the far field our observation point is very far from
the reflection point f, then again the rays are divergent, and the use of the diver-
gence factor defined by Eq. (A-29) is appropriate.

To test whether it is appropriate to use the divergence factor and ray theory
in computing the reflected field at any point, it would be necessary to find the location
of the caustic and make sure that the point of interest is far away from the caustic.

To find the location of the caustic, let us denote the direction of the incident ray by
-j0 i0

e = 1 and that of the reflected ray by e’ ; then, corresponding to a given Gi, the

lIocation of the caustic region is given by

x =R, cosf +fcosb : (A-30)
c 1 i

=H- i + i -
zc H Rlsmei fsin@ (A-31)
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FIG. A-4(a): Divergent rays reflected from concave cylinder.

~~ caustic curve

FIG. A-4(a): Convergent rays reflected from concave cylinder.
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where H is the height of the antenna. Thus, for our purpose, if the fields are to be
computed at points with z >> Z then ray theory can be used to compute the field

pattern.



APPENDIX B
COMPUTER PROGRAM
FOR CALCULATING THE GROUND PROFILE EFFECTS

READ AP, FI, PHIO, OMEGA, START, H(1), H(2).
PTHETA, M, MM, N(1)...N(M+1), X(1)...X(M); Z(1)...Z(M)

Y

[CALCULATE: ALPHA(J), S(J), TALPHA(J), TANGS(J) |

MM = 1

|CALCULATE: THETAR, THETAD l«

|CALCULATE: T(J), THETAI{J), THETAP(J)|

DO CHECKING OF: THETAI(J) VS. S(J),

D(J) VS. T(J+1)...T(M)
CALCULATE: K(J)

[MM = MM+1] 13 = 13+1]

CALCULATE: FREE SPACE PATTERNS
FD ABOV(J), FD BELO(J)

CALCULATE: TOTAL (13,d)
DB (13, J)

'——-‘—, NO
MM = 400}

YES

YES

4
[CALCULATE: P1P2, PHII, PHIEFF, NUMB|

PRINT: THETAD, FDABOV, FDBELO, TOTALA(1, ) TOTALA(2, )
DB(1, ), DB(2, ), P1P2, PHIEFF, NUMB

’

[ExD)

FIG. A-1: Flow chart for main program.
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List of Symbols for Main Program

ALPHA(M+1) = o
ALPHA(J) = aj

m+l

CABS = absolute value (complex)
DB(1,1) = 20log 10 TOTALA(L,I)
DB(2,1) = 201log10 TOTALA(2,1)
DELTA(J) = Aj

D(J) = Dj

FDABOV = Fd(6)

FDBELO = Fd(-6)

HP(J) = HP].

mm=§

NUM = number of replies

P(J) = 2

PHIEFF = effective beamwidth
P1P2 = normalized P1/P2

S(J) = Sj

SQRT = square root

THETAX(J) = SIj

THETAP(J) = 9Pj

THETAD = 0 in degrees
THETAR = 0 in radians
THETAM = -6

T(J) = Tj

TOTALA(1,1) = P1(6) SLS
TOTALA(2,1) = P2(6) SLS

84



Main Program
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Z(7) VERTTCZL DISTANCT 10 POINT I

o % Sk % 2 v gk ¥x ol o e oh ool ool ok i ok ok I K T o R 3 b e R ook K % o ol o ok o i i o ok K OO AR O s ook e ok o ok e xe

INTAGFT AP

TERL OV (2))

CCYPLEY AFG23,K,SUN,TOTAL

DITINSTIN Y (20),7.(27) ,FLOEA (20),7F T“na(zﬂ),:h:rat(zo
HP(20),THPTEP (20) ,TRNG 5(20),5(20), T (20) , DAL TR (20) ,K
D (29) ,7 (2 ),P“(L,Lﬁﬁ),THE’HD(JOO)

L FLAROY (800) ,FOETLA (L00),

TC?ARA(?,u”&)

HETT? (£, 117)

¥2D IN THET DRTR

FLAD(5,100) AP,FI,PHID
v]:V+1

r":ﬁ(% 101,590=1) (
SEED (5,101 "“ﬁzv) (% {
2%AD (r 101,718D=3) (7

i(1) ,H(2) ,B"TA,DTHRTY, M, MM

LOCT FOL DOING THIL DIRICTIONAL BND DMNIDIFDCTIONAL ANTINNAS
(P1 FAND P2 PULSIZ,FOTH TN DR AND AASCLUTE VALTR)

DC £a I3=1,?
1C
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CxxkxtT 00D FOT COMPUOTING TER RLPHA'S,TALDHA'S  HP'S5,TANGS'S,S5!'S

~
v,

LTPHA (M+1)=0.0
D (F+ 1) =H(T3) =7 (%)
S (M+1)=0.0
D09 J=1,r
TP O(J JNTL 1) GO Do E
TRILPHR(J) =7 (J) /X (J)
ALPHA (J) =ATAN2(Z (J) , X (J))
1D (J) =H (I3)
50 ™0 7
" OTALPH2 (J) = (ZA{J) =7 (I-1)) /(X (T) =X (I-1))
?*“Ha(J)—i'“vv(Z(J) 7 (3-1) ,X(J) =X (JT=1))
HP(})-H(TB)-Z(J~1)+Y(J=1)*TPLPHF(J)
TOOANGS ()= (M (T3) -7 (J)) /X (J)
S(J)=2TAN2 (H{I)-2Z(J) ,X(J))
SOXTINTZ

)

A PUp-

CxkxxxT COP TOT LUNNING THITA F2OY X T7C Y DIEGRIIS

-)r- L’.C "—"'?»
CExxwxxCONVEDT TC PADILYNS
THT™A F= (m- ATTHDTHRT u-[):;«';.‘]'_;15*3255/130.(\
THEFTAT(T)=THNTHE The STAKT
WRITP (9, 102) TEFTAD (T),THDTAE

CHFHRETO0P FORX COMDUTING ILL THF TY'S,THTTAIS,TRETID'S

D019 J=1,%1

TI)=X () (TAN(TRETAR)) -2 ()

THETEI(3) =THETAE-2, DX ALPHA ()
15 DHTTLE(J) ="HITAR~ALPHA (J)

<
Cxrke=] OCP FOF IVALOATING THFY K'S

no 22 J=1,¥1
CHExIEPTFST CHECK: COYPARTECN OF THETET J) WITH THF S'3;
c IF THTTAT(J) < S(J) CF IF TH2TAI(WJ)> S(J~1N...5(1)
C 37T K(J)y=Cy OTLEIRWISE CONTINUL 70O YEXT CHECK
CrskexFTR8T CAT7 IS SPTUCIAL: IF THETRI (1) < S (1) 577 K (1) =0;
C OTHELWIST CONTINUT ™0 NEX™ CHICK

It .57, 1) 60 Tn 22
IE(THITYT () IT.S(J)) GO TH 28
GO Tno2¢ '
22 LF (TEFTAIW) JLI. S(I)) GO TO 2%
JJ=J-1
24 TF (THETATI(J) .GT. S(JJ)) GO TO 28
TF(JJ LE0. 1) G0 TO 2%
JJI=JJ-1
Gn T 2L
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Cx¥*=*NEXT CHTCK: FVALUATF D{J) AND CCYPERT IT WITH T (J#1)...T(¥):
c IF IT IS GRFATTR THAN 2LL JF THTSH T'S; SET K(J)=0;
C OTHRRWISE, COMPUTE [TLTA(J) AND E(J) 2KD US® THI3E 7¢
C COYPUTT K (J).
s TP J IS GRYATER THIY OF ZQUAL O ¥, pON'T
o CHTCK; JUST IVALURTE K.
2 DASHD (J) % (TAN (THZTAI (J)) +TAY (THITAT))
N2=TAN(THIIAI (J)) +T ALBHA (J)
N (d)=D1/02-1 (I3)
JJ=J+1
TF(J.GTLH) G0 T 22
79 33 TT=30,%
TE((T) LGT. T(TI)) 50 TO 30
32 DEITA (J) =204 HP (J)*COS (RLPHA (J)) ¥ STH(THITAP (J))
D1=N (J) £ #2%STH (THT VLD (J))
P2=S0OFT (N (T) *%2=1,0+ (SIN(THFTAD(J)) ) **2)
P(J) = (P1=E2) /(P 14P2)
AEG1=DTLTL (J) ¥RETA¥ (=1.,0)
ARG2R=CYPLY (0. 0,1?31)
K(J)=P(J) *CTIP(ARG2T)
GC TN 30
3% CONTINGT
29 % (J)=CMPLY (".0,0.0)
30 WPITT(%,103)J,THETLI (J) ,J,K (J)
24 CONTTNUT

Cxxx%x CALCULA™TON OF FFTF SPACT DPOINTE
c
D1=0.0
SUN=CPDPLY (0.7,0.0)
C****‘CAICWLA”’ FREYH SPACT PATTTERNS FOL ABOVE AND BTLOW THT HOXTIZON
TF(I3.70.2) G0 T0 40 '
TH~Tﬁ”' THETER
IL F3F (FDI 3OV
(AIT FSF (FDRTLO
IF (FLRTLC(T)

(<) THETAR)
(1), THFTAM)
.17, ~?n.0) FDRZLO (T) =~35.0

C

Cxkxxx=] CCP FCOT CMLCULATING FRFF SDACE PATTEFERN FOP -THETAI'S THLT BAVS
C CCERFSPONDING WON=-ZTF0 K'S

~ ,

59 De L9 L=1,'1

TF ’“"(K(L)) .T
THITAS==THTTI T (I

CALL FSP(FD1,2D,T1
ﬂ“-ql’+“F1*K(L)
O”HI—FDﬂ'AV(-)+quv

TOTLLE=PIRL (TOTAT)

TOTALI=AIFAC (TOTLL)

TOTATA(T3,I)=CABS (I0OTAIL)

DP(T3,I) =20, 7*2L0G10(INT2LA (T3,1))~(13-1.0) 13,0

N0 ~TONTT N(lt‘

0. 0.0 JAND. AIFAG(K(L)) .E0. 0.7) GO T0 43
) .

1772 8)
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Cx¥*kk%CALCULATION OF P1/P2 PULST (SL3),EFFECTIVE BEAMWIDTH, AND
C**¥*x%xTHE NUMBER OF REPLIES

c
DO 69 I=1,M¥
P1E2=TB (1,I)=-DB (2,I)=18.0
PHI1= (DB (1,1)-DB(2,1)-9.0)/12.073%
TF (PHI1 .LE. 0.0) 50 TO 65
PHIFFF=2,0*PEIN*SQOR T (PHI1)
GC TC £7
65 DHIEFF=0,0
67 NUMB=FT®DHIZFF/QXEGA
C
C#%xkx NOF PRINT OUT EVERYTHIEG ONTO ONF UNIT
c
£9 WRITF (£,110)THE™AD(I),FPRBOV (I),FDRELO (I),TOTALA (1,I),TOTALA (2,1
*,CE(1,I),DB(2,I),P1D2,PHIEFF, NUNE
CHkkkkATHL FORMAT STATENENTS
Cc

100 FOFMAT(T12,8F12.6,2T4)

101 TOPEAT(5F12.6)

102 FORMAT(' FOR THETA=',F8.4,F12.6)

103 FOEMAT{(T1,' ',T720,'THETAI(',I2,') =',P12.6,75C,'K(',I2,
%1)=1,2F12,F)

10R FCEMAT ('1')

110 FOEKAT(F8.L,8 (F14.4),3%,I3)

115 PCRMAT('1 TEFTA',5Y,'ABOVE HOR,',4¥,'BELOW HOR.  P1 PULST SLS!,
*' P2 PULSE® SLS',3X,'P1 SLS DB',5X,'P2 SLS DB',4X,'P1P2 SLS DB!
x,U4X,"EFF, FIRM NO OF REP'//)

7ND

SUBEOUTINE FSP (ANSWZR,2P, ANGLE)

INTEGEE AP

DIMENSION A (7),C(15,7)

DATA A /,4,3738,1.7039,0.45564,1,1086,0.2644,0.6366,0.8108/

DATA C/-6U.8%,-135.06,13.02,-64.65,-151.88,-47.04,-91.27,8%0.0,
¥3.084,0.080,0.500,1.000,0.800,0.860,0,799,0.860,0.9560,0.549,
¥0.230,0.12C,0.060,2%0.0, |
*0,500,1.000,0.885,0.530,11%0.0,
%(,084,0,51,0,965,0.780,0.045,10%0,0,
*1,01,0.09%,0.535,0.92,0,53,0.542,0.515,0.515,0.43,0.465,0.L37,
x0,327,0.302,0.217,0.153,
*0.01,.939,.561,.995,.482,.45,.435,.42,.355,.617,.342,.35,.334
*,.26,.12,
*0,079,0,072,0.03,0,53,0.915,0.945,0.845,0.945,0,315,0.034,3%0,0

PT=3, 146159265 '

DR=N, (17453292

GO 70 (1,2,3,4%,5,5,5) ,AP
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C#k¥*x*SET P CON3STANTS AND THF NUNBEF OF ITERATIONS FOR THE
CH*x %k ANTENNAS

c

1 NS=7
B=2,0%6,U%x1030.0/11808,0
50 ™ 8

2 NS=13
K 1=3
STN1=0,0784F
GO TO 8

3 NS=4
K1=1
STN1=0,22L )5
GO T 8

4 N§=%
K1=3
SIN1=C.L77C7
GO TO 3

5 NS=15
K 1=3
SIN1=0.0583
GO 10 8

£ N¥5=10
K 1=4

SIF1=0.11942

8 SINPNG=SIN (ANGLE)
ANSWFE=0.0
IF(AP ,F0. 1) GO TO 11

C*x%¥*FRFE SPACE PATTERN FP)HR ALL FXCEPT WESTINGHOUSE ANTENNA

ARGG=SINANG/SINI
De 10 K=1,XNS
ARG=PI* (ARGG=K+K1)
IF(ABES(ARG) .LE. 0.7349) GO T0 9
ANSWER=ANSWEP +C (K,AP) *SIN (AFG) /ARG
GO TO 10

9 ANSWER=ANSWER4C (K,RD)

10 CCNTINUE
GO TO0 200

Caxkxx FRFT SPACE PATTTRN FOR THZ WESTINGHOUSE ANTENKA

11 COSANG=COS (2NGLF)
ARG2=PI*COSANG/2.0
APG3=PI*SINING/2.0
ANS1=SIN (AFG2) *COS(AFG3) /COSANG
ANSWEE=S,U201%ANS 1
N0 12 K=1,¥S
ARGU=K*PI*B*SINANG
ANSWER=ANSWER42,0%A NS 1%A (K) *COS(ARGU+DE*C(K,LP))

12 CONTINUE
ANSWRE=ANSWFF/15.6836

200 RETUFN

TRD
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Program for Graphical Output. SPLOT

:**;*******;;**;;#***********;;#*************************************
GPAPHIC REPITSENTATION OF THE VALUIS COMPUTED IN THE EFFECTS
OF GROUND PROFILES ON THE ATCFBS PERFOEMANCE PROGRAM

(2 02 vl )

SRRV TP EY RO NP

THE OUTPUT FROM THAT PROGRAM IS USED AS INPUT FOR THIS

PROGRAM

BFMLVL (T)
BRMN EW (I)
H

NUMLVL (T)
NUMNEW (T)
NUNPLT

N1

P1(7)
P1FRE (I)
P1TREE (I)
P1LEVL (T)
PINFW (I)

P12LVL (7)
P1P2 (I)
P2FRET (I)
P2LIVL (I)
P2NEW (I)
0

P(I)
THETAD (I)

FFFECTIVE BEAMWIDTH ON LEVEL GROUND
EFFFCTIVE BEAMWIDTH CN THE ACTUAL GROUND
THE HEIGHT OF THE AIRCRAFT

NUKBER OF REPLIES ON LEVEL GROUND

NUMBER OF REPLIES ON THE ACTUAL GROUND
NUMBER OF PLOTS THAT YOU WANT PLOTTED
THE PLOT NUM3ZR

P1 PULSE FOR WORKING WITH R(I)

FPEE SPACE PATTERN FOR P1 FOR WORKING WITH R (I)
FREE SPACE PATTERN FOR P1 PULSE

P1 PULSE CN LEVEL GEKOUND

P1 PULST ON THE ACTUAL GROUND

NORMALIZED P1/P2 FATTERN ON LFVEL GROUND
NCRMALIZED P1/P2 PATTERN CN THE ACTUAL GROUND
FREE SPACZ PATTERN FOR P2 PULSE

P2 PULSE ON LEVEL GROUND

P2 PULSE CN THE ACTUAL GROUND

THE ANSWER TO QUIERFRIES (YES,NO)

SLANT LTUNGTH (IN NAUTICAL MILES)

ANGLE FRCM HOFIZON (IN DEGREES)

NOTR:THIS PROGRAM USES A MTS ROUTINE (FREAD) TO READ IN DATA FROM
THE TERMTNAL UNFORNATED, THEST CALLS TO FKEAD WILL HAVE TO BE
RIPLACED BY FORMATED READ STATEMENTS IN ORDER TO RUN CN OTHER
COMPUTER INSTALLATIONS THAT DO NOT HAVE THIS CAPABILITY,

3k v 3 ok ok v ok 3 i 3 ok ok ke s sk ok 2%k v ok ki k3 kK ok Ak 3 ok e ki ok sk ke sk ok ok ok ok ok ok Sk o ok 3k K 3k ok ok 3k oK 3K ok 3k 3 Ak 3 A Kok ok ok Xk
TNTEGER*Y4 Q,Y,N,B
PTAL NUMLVL (400),NUMNEW (400)
DIMTNSION T1(10),T2(10),T3(10),Tt (10) ,XPRINT (10) ,YPRNT1(10)
DIMENSION YPRNT2(10) ,THETAD (400),P1FREE (400) ,P2FREE (400) ,P1P2 (400)
DIMPNSION P1LT™VL (400) ,BEMLVL (400) ,P2LEVL (400) ,P1NEW (400) ,P2NEW (40J)
DIMENSTON P12LVL (400),BEMNEW(400) ,YPRNT3(10) ,YPRNTY (10)
DIMENSION P1FRE (151) ,XPRNT1(10),P1(151) ,R (151)
DATA Y/ 'YV /,N/VNY/,B/Y Ny

oo NN e o N o R o R P P O P e P o K e RN N S|

¥%xxkxETAD IN THE DATR

o 0OnN

92 po 10 I=1,400
READ(5,100) DUMMY,DUXMY,DUMMY1,DUNMY2,DUMNY3, PILEVL(I),
*P2LEVL(T),P121VL(I) ,BFMLVL (I) ,NUM1

10 NUMLVL (I)=FLCAT (NUM1)
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20 DO 30 I=T,%00

3¢

40
C
C % %%

C

100
103
105
106
107
108
109
110

115
C
C % % %k

C

60

READ(5,100) ”HETAP(I) P1°Rv (I),DUMMY3,DUMMYY,DUMNYS5,PINEW(I),
*P2NEW(I),P1P2 (1), BVNNVW(I),NUMZ
P1FREF(I) 20, O*ALOG10(°1FREE(I))
P2FREE (I)=P1FREE(I)=18.0

NUMNEW (I)=FLCAT (NUM2)

WRITZ(7,115)

CALL FREAD(7,'R:',H)

DO 40 I=1,151

R(I)=0.9+40,1%T
THETA1=ARSIN (H/ (R (I)*6076))
mH1=THFTA1%180.0/3. 14159265
J=TH1/(THETAD(2)=THETAD (1))
P1FRE(I)=P1FREE (J)=20.0*%ALOG10 (R (I))
P1(I)=PINEW (J)=20.0*AL0OG10 (R(I))

*RFAD IN THE TITLES

READ{8,103) (T1(I),I=1,10)

READ(8,103) (T2(I),I=1,10)

RFAD(8,103) (T3 (I),I=1,10)

READ(8,103) (T4 (I),I=1,10)

READ (8,103) (XPRINT(I),I=1,10)

READ (R, 103) (¥PRNT1(I),I=1,10)

READ(R,103) (YPRNT1(I),I=1,10)

°FAD(8,103) (YPRNT2(I),I=1,10)

READ(8,103) (YPRNT3(I),I=1,10)

RFAD(8,103) (YPENT4 (I),I=1,10)

FORMAT (F€.4,8 (E14.4) ,3X,I3)

FORMAT (10A4)

FORMAT (' HOW MANY PLOTS DO YOU WANT?2')

FORMAT (' ENTER PLCT NUMBER')

FORMAT (* DO YOU WANT LEVZL GROUND INCLUDED2(Y,N)')

FORKAT (' DO YOU WANT FRFE SPACE PATTTZRN INCLUDED? (Y,N)')

FORMAT (* INCORRECT PLOT NUMBER, TRY AGAIN')

FORMAT (* PLOT NUMBERS:',/,8X,'1 P1 VS. THETA',/,8X%,
%12 P2 VS. THETA',/,8X,'3 NORMALIZZD P1/P2 V5. THETA',
x/,8% 4 FFFECTIVE BEAMWIDTH VS. THFTA',/,8X,

%15 NUMBE® OF FEPLTES V3, THETA',/,8X,
*16 P1 VS. R(SLANT LENGTH)')
FOPMAT (' WHAT IS ™HE HEIGHT OF THE AIRCRAPT?')

*PLCT THE GPAPHS

WRITF (7,105)
CALL FREAD(7,'I:',NUMPLT)
WRITZ (7, 110)
DO 200 I=1,NUMPLT
WRITE (7, 106)
CALL FREAD(7,'I:',N1) :
IF (N1 .LT.1 .OR. N1 .GT. 6 ) GO TO 80
IF (N1 .7Q. 6) GO TC 150
WPITE(7,107)
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’

Q=8 B ,
CALL FRFAD(? 'q ',Q 1)
IF (0 .EQ. N) N1=N145
IF (N1 .LE. 5) GO TO 75
WRITE(7, 108)
Q=3
CALL FRZAD(7,'S:',0,1)
IF (Q .EQ. Y) GO TO 70
NO=0
GO T0 75
70 NO=400
75 GO TO (45,46,47,48,49,50,51,52,53,54) N1
80 WRITE(7,109)
GO T0 60
45 CALL PL™ {("HETAD(1),P1LEVL(1),400, THETAD (1) ,PINEW (1), 400, THETAD (1),
*D1FRET (1) ,400,XPRINT (1), YPENT1(1) ,m1(1),T2(1),T3 (1), 1)
GO T0 200
4L CALIL PLT (THETAD(1),P2LFVL(1),400,THETAD(1) ,P2NEW (1) ,400,THETAD(1),
xP2FREE (1) ,400,XPRINT (1), YPRNT1 (1) ,71(1) ,T2(1) ,T3 (1), 1)
GO TO 200
47 CALL PLT (THETAD(1),P12LVL(1),400,THETAD(1) ,P1P2(1),400,0.0,0.0,0,
*XPRINT (1), ¥PRNT2(1) ,™1 (1), T2(1), T4 (1), 2)
GO T0 20¢C
UR CALL PLT(THETAD(1) ,BEMLVL(1),400,THETAD(1) ,BEMNEW (1) ,400,0.0,0.0,
x0, XPRINT (1), YPRET3 (1) ,T1(1),72(1),T3(1),3)
GO T0 200
49 CALL PLT(THETAD({1) ,NUMLVL(1),400,THETAD(1) ,NUMNEW(1),400,0.0,0.0,
*0,XPRINT (1) , YPRNTS (1) ,T1(1),T2(1),T3(1),4)
GO TO 200
50 CALL PLT (THETAD (1) ,P1NEW (1) ,400,0.0,0.0,0, THETAD (1) ,P1FREE (1), NO,
*XPRINT (1) ,YPRNT1 (1) ,71(1),72(1).73 (1), 1)
GO TO 200
51 CALL PLT (THETAD (1) ,P2NZW (1) ,400,0.0,0.0,0, THETAD (1) ,P2FREE (1) ,NO,
£XPRINT (1), YPENT1(1) ,T1 (1) ,T2(1) , T3 (1) , 1)
GO TO 200
52 CALL PLT (THZTAD(1),P1P2(1),400,0.0,0.0,0,0.0,0.0,0,XPRINT (1),
XYPRNT2 (1), T1(1),™2(1) ,T4 (1),2)
GO 70 200
53 CALL PL™ (THETAD (1) ,BEMNEW (1),400,0.0,0.0,0,0.0,0.0,0,XPRINT (1),
®YPRNT3 (1) ,T1(1),72(1),T3(1),3)
GO T0 200
54 CALL PLT (THETAD(1),NUKNEW (1) ,400,0.0,0.0,0,0.0,0.0,0,XPRINT (1),
XYPRNTU (1),T1(1) ,T2(1) ,73(1),4)
GO T0 200 a
150 CALL PLT(R(1),P1(1),151,0.0,0.0,0,F (1) ,P1FRE(1),151,XPRNT1(1),
*YPRNT1 (1),71(1),72(1),T3 (1), 1)
200 CONTINUT®
FND
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[€4]

SUBROUTINE PLT (X1,Y1,N1,X2,Y2,N2,X3,Y3,N3,XPRINT,YPRINT,T1,T2,T3,MH)

DIMENSICN X1(400),X2(400),X3(400),DY1(6),YMINT(6)
DIMENSION Y1(400),Y2 (400),Y3 (400)

DIMENSION ¥XPRINT(10),YPRINT (10),T1(10),T2(10),T3 (10)
CALL PLTXMX (10.90)

CALL PSCALE(5.0,1.0,%XMIN,DX,X1,%1,1,X2,N2,1,%3,83,1)
IF (MM.NE.2) GO TO 5

CALL PSCALE(€.0,1.0,YMIN,DY,Y1,N1,1,Y2,N2,1,Y3,N3,1)
YMINT (2) =YMIN ~
DY1(1) =8.0

DY1(2)=5.0

DY1(3)=1.0

DY1(4)=8.0

YMINT(3) =0.0

CYMINT (4)=0.0

YMINT(1) ==36.0

CALL PLTOFS (XMIN,DX,YMINT (MM),DY1(¥M),3.0,3.0)

CALL PAXIS(3.0,3.0,XPRINT,-30,5.0,0.0,XMIN,DX,1.0)

CALL PAXIS(3.0,3.0,YPRINT,30,6.0,90.0,YMINT (¥M),DY1(MM),1.0)
CALL PLTRFC

CALL PLINE(X1,Y1,¥1,1,0,0,1.0)

IF (N2.FQ.0) GO TO 15

CALL PDSHLY (X2,Y2,N¥2,1,0.1,1.0)

TF(N3.50.0) GO TO 2

CALL PLINE(X3,Y3,N3,1,0,0,1.0)
CL=PSYNLN(0.15,30)

CALL PSYMB(5.25-CL/2.,2.0,0.15,71,0.0,40)
CALL PSYMB(5.25-CL/2.,1.8,0.15,T2,0.0,40)
CALL PSYMB(5.25-CL/2.,1.6,0.15,73,0.0,40)
CALL PLTEND

RETURN

FND



APPENDIX C
REPORT OF INVENTIONS

A diligent review of the work performed under this contract has revealed

no new innovation, discovery, improvement or invention.
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