LFWL TR-75-02 ' 012643-2-T

™ i P Py v werw N
P 05 UNIVEIRSITY OF MICIIIGAN
COLLEES OF ENIOINmERNG

ARTIENT OF ELECTIUCAL AND COMPUTER ENGIMZERING

iciciion Laboratory

FIELD PENETRATION INTO A CYLINDRICAL CAVITY

T.B.A. Senior

sganuary 1975

?
i
TN Prepared for
/S:ff o m—— T:}\ The Dikewood Corporation
o et Albuquergue, New Mexico
e s %
N .,13/
NG

12643-2-T = RL-2259

Ann Arbor, Michigan




FIELD PENETRATION INTO A CYLINDRICAL CAVITY

T.B.A. Senior
Radiation Laboratory
Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48104

January 1975

Abstract

To test the efficacy of a direct integral equation approach to the study of
cavity-aperture interactions, the problem of an E-polarized plane electromagnetic
wave incident on a thin, perfectly conducting cylindrical shell with a slit aperture is
considered. A computer program is constructed for the solution of the appropriate
E field integral equation. Data are presented showing the behavior of the field in-
side the cavitv and in the aperture for a varietv of aperture and cavity dimensions,
and some information is obtained about the SEM singularities and their dependence
on aperture size.
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The author is indebted to Mr. E. F. Knott for developing the computer program
used in this study.



Section

II
I

' CONTENTS

INTRODUCTION
MATHEMATICAL FORMULATION
NUMERICAL RESULTS
CONCLUSIONS

APPENDIX

REFERENCES

Page

o O N

29
40



Figure

10

11

12

13

14

15

16

17

ILLUSTRATIONS

The geometry

Shell current amplitudes for ¢ = 100, a =0 and various

values of ka.,

o} .
107, o =0 and various

Shell current amplitudes for ﬁ
values of ka.

Shell current amplitudes for }5 300, « = 0 and various

values of.ka.

Shell current amplitudes for ¢ 30°, @ = 0 and various
values of ka,

Aperture field amplitudes for ¢ 10°, « = 0 and various

values of ka.

) .
107, o = 0 and various

Aperture field amplitudes for ¢
values of ka.

o) .
307, @ =0 and various

Aperture field amplitudes for ¢
values of ka.

N
Aperture field amplitudes for )250 =30 . =0 and various
values of ka.

Field amplitude at the center of the aperture for {(5 10
and 30°, and a = 0.

Aperture field amplitudes for = 10°, ka = 2.5 and
a = 0(45°)180°.

Aperture field amplitudes for ¢ , ka =2.5and
o = 0(450)180°,

0 .
107, @ =0 and various

it

Interior field amplitudes for ¢
values of ka.

Interior field amplitudes for ¢ = 100, « = 0 and various
values of ka.

Interior field amplitudes for ¢ OO, a =0 and various
values of ka,

Interior field amplitudes for ¢ 3 O, a =0 and various
values of ka.

Interior field amphtudes for ¢ 30°, ka = 2.5 and
a =0(45°)180°,

ii

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25



Illustrations, continued '

18

19

20

’

Field amplitude at the center of the cavity for ¢0= 10° and

30°, and @ = 0. 26
Field amplitude at the center of the cavity for ¢o = 10° and
30°, and @ = 0 27

T 0
First interior resonance for 0 <@ < 40", 28
RS

iii



* SECTION I
INTRODUCTION

The present study was motivated by some recent investigations of the coupling
of an electromagnetic field into a spherical cavity. In the particular case when the
cavity is bounded by a thin, perfectly conducting shell having a circular aperture, it
is not unnatural to expand the interior and exterior fields in spherical modes, and as
shown in ref. 1, it is then possible to calculate the fields inside the cavity. Unfor-
tunately, there are difficulties, most of which are attributable to the poor convergence
of the interior mode expansions in the vicinity of the boundary. These have been dis-
cussed by Senior (ref. 2) who has proposed instead an alternative formulation based
onthe E field integral equation for the total current induced in the shell. The result-
ing coupled integral equations for the tangential components of the current appear quite
amenable to solution by the moment method, and are also convenient for the numerical
determination of the complex frequency singularities of the singularity expansion
method (SEM).

In order to demonstrate the efficacy of this approach, we here consider the
simpler two-dimensional problem of a plane wave incident on a thin, perfectly conduct-
ing, cylindrical shell having a slit aperture. In most respects, this problem is phy-
sically and mathematically akin to the spherical one, and our original interest was to
pursue the solution only far enough to verify that there are no difficulties involved.
Nevertheless, the problem does have interest in its own right, and data have been ob-
tained for the currents, aperture and interior fields for a variety of aperture angles
and ka in the range 0.25 <ka < 4.0 where ka is the electrical circumference of the
(closed) cylinder. Selected data are presented in Section III, along with information
about the first few complex singularities and their dependence on aperture size. A

description and printout of the computer program are included as an appendix.



SECTION II
MATHEMATICAL FORMULATION

A thin, psrfectly conducting cylindrical shell of radius a having a slit aperture
of half angle ¢o is illuminated by an E-polarized plane wave incident in a plane perpen-
dicular to the z axis of the cylinder. Interms of the polar coordinates (p, @, z) the

equation of the shell is p = a, ¢0 <p< 27r-¢0 , and the incident electric field is taken

to be

plo 2 ikpcos (- a) _ (1)

(see Figure 1), where a time factor e-mt has been assumed and suppressed.

Figure 1. The Geometry

Since the shell is infinitesimally thin, it can be represented by an electric

current sheet of strength Jz(s "), where J(s') = 2 Jz(s') is the total current borne by

the shell. The scattered electric field at a point having the position vector p is then
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where ZO = l/Y0 is the intrinsic impedance of free space, HO is the Hankel function
of the first kind and R is the distance between the integration and observation points.
The integration is along the shell ('one side' only) in the plane perpendicular to the z

axis containing the observation point, and consequently s' = a@' with ¢o <pr<2m- ¢0.

The total field is obtained by adding (1) and (2), and if we now allow the observa-
tion point to lie on the shell and use the boundary condition at a perfect conductor, the

following integral equation results:

27r-¢0
-ikacos (P -) _ka 1
Y e (p-a) --f 7 @M r) ap . (3)
0 4 zZ o
750
This is merely a special case of an integral equation for resistive cheets previcusly

considered by Knott et al (ref. 3), and a computer program for its-solution is described
in the Appendix to this report. Having found the current JZ, the field at any point can
be calculated from egs. (1) and (2). We note in passing that for an H-polarized incident
plane wave, the integral equation for the total current induced in the shell is more
complicated than (3), but a rather general computer program with which its solution

can be obtained is available (ref. 4).

In contrast to the mode-matching method used by Senior and Desjardins (ref. 1)
in the solution of the corresponding problem for a sphere, the direct integral equation
approach is convenient for the calculation of the complex frequency (SEM) singularities,
and the determination of their dependence on aperture size. For the interior region

p <a, the cylindrical mode expansion has the form



and if the cavity were closed, the sfngularities would be the real resonant frequencies

corresponding to the zeros of Jn(ka), i.e.

wau c/a

where umn is the mth zero of Jn(u). In order of increasing magnitude, the first

few are
w = 2.405 c/a (m=1, n=0)
w=3.832c/a (m=1, n=1)
w =95.136 c/a (m=1, n=2)
w = 5.520 c/a (m=2, n=0)

Each has its counterpart in the case of a spherical cavity, and the first two are even
similar in magnitude to those for a sphere. If the slit is now opzned, the complex
frequencies must take on a negative imaginary part associated with the radiation
damping of the modes, and in addition it is expzcted that the real parts will decrease

with increasing aperture size.

The exterior region p > a is rather different. The cylindrical mode expan-

sion here is
Q0 .

Y et
n n

n=-o0

and for a complete perfectly conducting cylinder the complex frequencies are

w=v c/a



(1)

th
where vmn isthe m zero of H '(v). The nature of these zeros is discussed in

ref. 5 (see also ref. 6), and the zero with the smallest imaginary part is

V10 =-2.404 - i0.3405.

In addition, there is a branch point at w = 0, which has no counterpart in the case of

a finite body.



SECTION III
NUMERICAL RESULTS

With the aid of the computer program described in the appendix, the integral
equation (2) has been solved to give data for the fields inside the cavity and in the
aperture, as well as some information about the complex frequency singularities.

No difficulties have been experienced in any of the more than 100 individual runs that
have been madzs so far. Although many of these runs have been directed at the complex
frequency singularities, with the program interrupted following the computation of the
determinant, it is evident that only a small selection of the data can be presented here.
For the data which follow, the number of sampling points used was increased almost
linearly with ka, from a minimum of 12 for ka < 1.0 to a maximum of 48 for ka > 3.5.
The largest ka considered was 4.0, and most attention was directed at cavities having
aperture half-angles 5250 = 100 and 30° with the plane wave at symmetrical incidence,

ie. a=0.

The amplitudes of the total currents JZ (@) induced in the shell are illustrated
in Figures 2 through 5. Since «a = 0, the currents are symmetrical about ¢ = 1800,
and only the ranges ¢o < ¢ < 180o are displayed. As expected, the currents are
infinite at § = ¢0. The curves become increasingly complex as ka increases; note
the enhanced values of JZ for ;bo = 30° when ka = 2.3, i.e., close to the first
resonant frequency of the cavity. The amplitudes of the corresponding aperture fields
are shown in Figures 6 through 9. The fields are zero at §§ = + ¢0 in accordance with
the edge condition, and in contrast to the shell currents, the apsrture fields are rather
simply behaved. This is in line with the observation in ref. 1 , though we note that
even for ¢0 = 30O and ka = 4.0, the aperture is still only 0. 67A in width. The fields
are a maximum at the first resonant frequency of the cavity, but very small at the next

(ka = 3. 83), and the variation with frequency is brought out in Figure 10, where the



amplitude at the center of the aperture is plotted as a function of ka for ¢o = 10° and
¢0 = 300. Not surprisingly the fields are larger for the larger aperture, but the general
behavior is remarkably close to that found in ref. 1 for a circular aperture into a

spherical cavity. The effect of oblique incidence is illustrated in Figures 11 and 12.

The program was also designed to compute the fields inside the cavity at
sampled points along the line § = 0 from the center of thevcavity to the aperture, and
some data for the amplitudes as a function of position are presented in Figures 13 through
16. The curves are all for o =0, and the strong excitation when ¢0 =30 and ka =2.3
is very clear. Increasing o decreases the excitation, and this is shown in Figure 17
in which the amplitudes for « = 0(450)1800 and ka = 2.5 are plotted. To bring out the
resonance effect, the field amplitude at the center of the cavity is plotted as a function
of ka for ¢o = lO0 and ¢o = 30O in Figure 18. As expzscted, opz2ning up the aperture
detunes the cavity and shifts its resonance to a lower frequency. This is more evident
at the first resonance than at the second, and because of the sharpness of the first
resonance. particularlv for the smaller aperture, we nave repiotied the daia of Figure

18 on a logarithmic scale in Figure 19.

In line with our original objective of investigating the integral equation approach
in all phases of its operation, we have also given some attention to the complex fre-
quency singularities of SEM. To locate a singularity, the program was rua at each of
a set of complex frequencies surrounding the expected value, with the program (in general)
interrupted once the determinant had been computed. From an examination of the results,
a new set of frequencies was selected, and so on until the zero of the determinant was

found to the accuracy desired. No attempt was made to mechanize the procedure.

A plot of the first interior resonance as a function of the aperture half-angle ¢o
is shown in Figure 20. Although any opening of the cavity must shift the frequency into
the lower half of the complex w plane and decrease its real part, the effect is very

small for a 10° angle, but increases rapidly with increasing ¢o' The computed values



are listed in Table 1, along with isclated data for other resonances. For the second

Table 1
SEM SINGULARITIES
we/a Interior Exterior
¢o’ deg® first second first

0 2.405 3.832 -2.404 -1 0. 341
10 2.400 -10.001
20 2.359-10.015
30 2.302 -i0.067 3.827 -1 0,003 -2.38 -10.39
40 2.25¢ - 10. 160

interior resonance, even 5250 = 30° gives only a small shift in frequency comparable

to that produced by ?5 = lU at tne I1rst resondnce. 10e LSt exXverior resonaice
(6

proved more difficult to locate: the initial (sparse) sampling of the complex frequency

plane pointed inexorably to the logarithmic singularity at w = 0, and only after a more

detailed search was the zero found. As regards the determinants considered, it is

believed that the data for the interior resonances given in Table 1 have at most an

uncertainty of unity in the third decimal, but no statement of absolute accuracy is pos-

sible without a more detailed investigation of the effect that the number N of sampling

points has,



. SECTION IV
CONCLUSIONS

The results obtained leave little doubt that the E-field integral equation is an
effective approach to the analysis of the thin-shell cavity problem, and provide en-

couragement for a study of a spherical cavity using the formulation given in ref. 2.

However, the data for a circular cylinder are also of interest themselves,
and it would seem desirable to pursue the present calculations further to locate more
of the SEM singularities, including their complete dependence on ¢o’ and their

excitation coefficients.
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APPENDIX
SLOTTED CYLINDER COMPUTER PROGRAM

INTRODUCTION

We here describe the essential features of the computer program that solves
the two-dimensional integral equation (3) for the total current induced in the wall of
a perfectly conducting cylindrical shell having a longitudinal slot. The electrical size
of the cylinder and thle angular size of the slot are the only body variables subject to
control by the user of the program, but there is no limit to the number of angles of
incidence that may be specified.

The program is named RAMP and is written in FORTRAN for MTS (Michigan
Terminal Service) at the University of Michigan, where the basic machine is an IBM
360 computer. Because some features of the MTS system differ from those of other
computer facilities, minor alterations would have to be made if RAMP were run
elsewhere. The program is patterned after others developed at the Radiation Labor-
atory that soive similar two-dimensional preblems but involving more general nrofilec
However, little attempt has been made to exploit the specific symmetry of the slotted
circular cylinder, so that the program is not as efficient as it might be. The matrix
for this geometry is, for example, symmetric, and the running time could be reduced

somewhat were this symmetry to be used.

MATHEMATICAL FORMULATION

The program solves the E field integral equation (3) for any complex number
k whose real part is the free space propagation constant. The contour C extends
from one edgze of the slot to the other along the cylindrical shell, and is subdivided
into M cells, where M is an integer specified on input. Thus, each cell has an
angular width

A¢=2(7r-¢0)/M

29



where ¢o is the half angle subtended by the slot. The width chosen reflects the
judgement of the user, since small widths tend to improve accuracy but also to increase
machine running time. Much recent data generated by RAMP were obtained using cell

widths of A/12or less, implying

M > 12 ka.

The linearlization of eq. (3) produces M simultaneous equations for the unknown
currents JZ, assumed coﬁstant over each cell. Program RAMP creates an M x M
matrix of compiex numbers associated with this system of equations, inverts the
matrix and then multiplies the resultant matrix by the incident field to obtain the sur-
face currents. The currents, now being known, may be used to calculate the scattered
electric field at any point in space from eq. (2). In the actual computation, of course,

the program approximates the integral by a discrete sum of M contributions.

Aithough eq. (2) ailows the neids to be calcuiated anvwhere. the pragram is
very specific and computes them only over the slot aparture (at constant radius a) and
along a radius that terminates at the midpoint of the slot. Moreover, it is the total
field that is computed, so that once the integration required by eq. (2) is performed,

the program then adds the incident field (1) to obtain the total field.
PROGRAM DESCRIPTION

Program RAMP is an outgrowth of a previous, more efficient version in which
the wavenumber k was a pure real number. In general, however, the interior
resonances occur at complex wavenumbers, especially for aperture half angles greater
than about 10 degrees, hence the generalization to complex k was necessary. In order
to achieve this, two modifications were made: a) the provision of a complex number
(KFAC in the program) which is chosen by the user, specified on input and subsequently
multiplied by the (real) free space wavenumber to generate complex k, and b) the
development of a subroutine to generate Hankel functions for complex arguments. It is

mainly this latter provision that makes RAMP less efficient than its predecessor.

30



RAMP consists of a MAIN pregram and two subroutines, FLIP and HANK,
MAIN reads all input, prints all output, fills the matrix elements, computes the field
distributions from the current distribution and indexes through the desired range of
incidence angles. FLIP performs two functions; it inverts the original matrix and
multiplies the inverted matrix by the incident field to obtain the surface currents.
The bulk of FLIP is virtually a copy of IBM's matrix inversion routine, but modified
for complex elements, with a handful of statements added at the end to perform the
matrix multiplication 'operation. The MAIN program prudently calls for the inversion
from FLIP only once, and thereafter expzacts FLIP to merely supply new current
distributions for new angles of incidence.

Subroutine HANK is based on the ascending series representation for the Bessel
functions of the first and second kinds of order zero. The program decides how many

terms of the series to use from the criterion
n=6+135w |,

where n is the number of terms used and W is the complex argument. Although the
criterion was selected so as to provide absolute precision of better than 10-5, internal
round-off errors tend to be worse than this for complex arguments having large
imaginary parts. For real W the accuracy is better than 10"5 for arguments as large
as 10.0, Since HANK uses double precision arithmic on the IBM 360, it would have to
be modified for, say, the CDC-6600 system.

Briefly, the program RAMP operates as follows: input data for a single fre-
quency and aperture half angle are read from two consecutive cards from the input
stream, as described below. The first entry on the first card is the integer M (the
number of sampling points on the cylinder profile) and is also used as a key to shut down
the program; i.e., if M = 0 — which can be synthesized with a blank card — the program

terminates. The MAIN program then fills the matrix, calling on subroutine HANK for
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the appropriate Hankel functions. The incident field structure is computed for the first
angle of incidence, and MAIN then calls FLIP to invert the matrix and supply the current
at each cell on the profile.

The currents are weighted and summed according to eq. (2) to obtain the total
electric field distribution at N discrete points over the aperture and at L discrete
points along a radius. N and L are controlled by the user as input data. Since the
weighting function is a Hankel fuanction, much of the machine time is spent carrying out
operations in subroutine HANK. After the fields over the aparture and along a radius
have been computed and printed on the output record, MAIN indexes to the next angle
of incidence by adding an increment (specified as input data). Subroutine FLIP is
called, but since the matrix has already been inverted, FLIP merely supplies new
values for the surface currents, which MAIN then uses to compute new field distribu-
tions. If the new angle of incidence exceeds the limit specified by the user, the program
returns to the input stream and reads the first of a pair of cards required to specify a

new geometry, As mentioned earlier, a blank card will shut down the program.
INPUT DATA FORMAT

The two input data cards required for a single geometry should contain the
following information:
Card 1: FORMAT (315)
M the number of sampling points on the profile
N the number of field points in the aperture

L the number of field points along the radius

Card 2: FORMAT ( 8F10.5)
A the radius of the cylinder in inches
HANG the aperture half-angle in degrees
WAVE the incident wavelength in inches

KFAC a complex number whose real part (always 1.0) and imaginary
part constitute the fourth and fifth entries on the card,
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FIRST the first angle'of incidence in degrees
LAST the last angle of incidence in degrees

INK  the increment to be used in indexing through the incidence angles

In hindsight, the variables A, WAVE and KFAC could have been incorporated
in a single complex variable (say KA) making the input structure a little less complicated,
but at the time the program was being prepared the variations to be studied were not
known precisely. This is because the previous version of RAMP (for real ka only)
was modified by the inclusion of the factor KFAC to permit complex values for ka.
Consequently the user must decide beforehand what value of (complex) ka is of interest,

then calculate A, WAVE and KFAC to be read in as input in order to generate this value.
PROGRAM LISTING

A listing of the main program and the two subroutines are given on pages 34
through 37. The entire program occupies 39584 32-bit bytes of storage as listed;
the required storage wiii change, of course, il the arrays are re-dimensioned so as to
accommodate other cylinders (i.e., different surface field sampling points). The

program is presently limited to 50 sampling points.
OUTPUT SAMPLE

Pages 38 and 39 contain a sample of output to illustrate the format The first
page lists the current distribution over the cylinder surface and the second lists the

total field distributions over the aperture and along a radius.
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10

15

25

40

45

590
55

60
62

IMPLICIT COMPLEX (K)
COMPLEX AA(50,51) ,KJ(55),PINK (50),SUM,B
REAL LAST,INK
DIMENSION FEE(50) ,FEATH5()
DATA RED,DIG,/5.0174532¢,57.29578/
READ 12C, M,¥,L
IF (M.E0.0) GO TO 95
READ 20C, A,HANG,WAVE,KFAC,FIRST,LAST,INK
K=6. 283185*KrAC/WAVE
KA=K*A
KTA=2.0%KA
DFEFEE=2.C% (18).0~HANG) /N
DEFEAT=RFD*DEEFEE
ADFER=RA*DEFFAT/ WA VE
KDA=0,25*KA*DEFEAT
DO 15 I=1,%
FEF(I) =HANG+DEZFEEX (I-0,5)
FEAT (I)=RED*FEE (I)
DO 35 I=1,M
DO 35 J=1,M
IF (I.3Z0.J) GO TO 25
ANG=ABS (FEAT (I) -FEAT (J)) *0.5
SANG=SI! (ANG)
KR=K TAXSANG
CALL HAYNK (KK, KH)
AA (I,J)=KDA*KH
GO TO 35
AA{I,J)=ADFLEXCMDPLY (1.577794,0,32879R374A10G(
CONY INGH
DEL=2.)%HANG/Y
TETA=FIRST- INK
TETA=TETA+INK
IF (TFTA.GT.LAST) GC TO 19
THE=RED*TETA
DO 45 I=1,H
KANG=KA*COS (TE-FEAT (I)) *CHPLX (9.0,-1.0)
PINK (I)=CFEXP (KANG)
IF (TETA.EQ.FIRST) GO TO 56
CALL FLIP(AA,M,PINK,KJ,SUM,ANG,2)
GO TO 62
CALL FLIP (%A,M,PINX,KJ,3,DMAG,1)
PRINT 400, XA,HANG,TETA,DMAG
PRINT 3<C
DO 60 I=1,M
AMP=CABS (KJ (I))
FASE= DI”*ATAN2(AIb\b(KJ(I)),FEAL(KJ(I)))
PRINT 500, I,FZE{I),AH4P,FASE,I
PRINT 700, KA,HANG,TETA
PRINT 900
DO 75 J=1,N
SUM=CMPLX (0.0,0.0)
ANGLE=DEL* (J-0.5) -HANG
ANG=RED*ANGLE
DO 7¢ I=1,M
SANG=SIN (0.5%ABS (ANG-FEAT (I)))
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KR=KTA%SANG
CALL HANK (KR,KH)
70 SUH=SUY-KJ (I) *XH4
SUN=KDA*SUX
KANG=KA%COS (THE-ANG) *C¥PLX (0.C,=1.0)
SUM=SUM+CEXD (KA NG)
AMP=CABS (SU¥)
PASE=DIG*ATAN2 (AIMAG (SU¥),REAL(SUM))
75 PRINT 600, AYGLY,SUM,A4P,FAST
IF (L+Y.LT.47) GO TO 82
PRINT 700, KA,FANG,TETA
82 PRINT 800

DIP=A/L

L=L+1
DO 90 J=1,LL
R=DIP* (J-1)
RA=R/A
SOM=CEPLY (2.0,2.0)
DC 85 I=1,M

KR= KA*SORT(1 Q+RA% (RA-2. L*COS(FEAT(I))))
CALL HANK(KR,KH)
85 SU4=SUM-KJ (I) %K'
SUM=KDAXSUN
YANG=LRUHCOS (T T *CUD
SUS=SUA+CEXP (KANG)
AMP=CABS (SUHY)
FASH-DT”*‘“AW2(!THBG(SUﬂ),TzAL(SUM))
99 PRINT 6(%, R,SUM,AME,FASE
GO TO 40 :
95 CALL SYSTEM
100 FORMAT (3I5)
250 FCRMAT (8F1).5)
300 FORMAT (' CELL NUYBER ANGLE CURKENT AMPLITUDE ',
§'CURRENT PHASE CELL NUMBEE'/) : S
400 FORKAT ('1',27X,'SLOTTZD CYLINDER'/20X,'KA',14X,2F8.3/23K,
§'APERTURE HALF-ANGLE',F13.3/2C%X, 'INCIDENT FIELD DIRECTION',
6§F8.3/20X, 'DETERNHINANT',E21.5//) S
500 FORMAT (I7,F15.2,F17.5,F16.2,112)
600 FORMAT (F9.2,F17.5,F12.5,F16.5,F14.2)
700 FORMAT ('1',27%,*SLCTTED CYLINDER'/20X,'KA',14X,2F8.3/27%,
§'APERTURE HALF-ANGLE',F13.3/2C%,'ISCIDENT FIELD DIRECTION',F8.3/)
800 FORMAT ('0 DISTANCE',8X,'FIELDS ALONG A RADIUS', 7X,'AMPLITUDL' .
£8X,' PHASE'/) , -
900 FORMAT ('C  ANGLE',12X,'APERTURE FIELDS',10X 'AMPLITUDE'
£8X,'PHASE"/)
END

A4
PN

::: -1c-]

N\
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SUBROUTINE FLIP (A,N,X,Y,D,DMAG,IAT)
COMPLEX A(57,51),X(55),Y(52),D,BIGA,HOLD
DIMENSION L (50),M(5()
IF (IAT.GT.1) GO TO 150
D=CMPLX (1.0,0.0)
DO 80 k=1,N
L (K) =K
M (K) =K
BIGA=A (K,K)
DO 20 J=K,N
DO 20 I=K,N
10 IF (CABS(BIGA).GE.CABS (A (I,Jd))) GO TO 29
BIGA=A (I,J)
L (K) =1
M (K)=J
20 CONTINUE
J=L (K)
IF (J.LF.K) GO TO 35
DO 30 I=1,N
HCLD=-2A (X, I)
A (X, I)=2(J,I)
30 A (J,I)=HCLD
35 I=Y(K)
IF (I.LE.K) GO TO 45
DC 49 J=1,¥
HOLD=-1 (J,K)
A(J,K)=A(J,I
40 A (J,I)=HOLD
45 TIF (CABS(BIGL) . 4E.0.0) GO TO 5O
D=CHPLY (C.C,5.7)
RETURN
50 DO 55 I=1,N
IF (I.Z0.K) GO TO 55
A(I,K)=-A(I,X)/BIGA
55 CONTINUE
DO 65 T=1,N
DO 65 J=1,
IF (I.£0.K.CR.J.EQ.K) GO TO 65
A (I,J)=A(I,R)*A (K,J)+A(I,Jd)
65 CCNTINUE
DO 75 J=1,N
IF (J.EQ.K) GO TO 75
A (K,J)=A (K,J) /BIGA
75 CONTINUE
D=D* BIGA
80 A(K,K)=1.0/BIGA
BN=FLOAT (Y)
DMAG=CABS (D) * (2.0 **BN)
K=N
100 K=K-1
IF (K.LE.0) GO TO 150
I=L (K)
IF (I.LE.K) GO TO 120
DO 110 J=1,¥
HOLD=A (J,X)
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110
120

130

150

200

10

30

A(J,K)=-A (J,I)

A (J,I)=HOLD

J=H (K)

IF (J.LE.K) GO TO 100
DO 130 I=1,N
HOLD=A (K, I)
A(K,I)=-2(J,I)

A (J, I)=HOLD

GO TO 100

DC 200 I=1,N

Y (I)=CHPLX (9.0,3.0)
DO 2CC J=1,N

Y (I)=A(T,J)*X (J) +Y ()
RETURN

END

SUBROUTINE HANK (Z,H)
COMPLEX Z,01
COMPLEX*16 J,Y,22,DUM
RERL*8 2,B,T
A=DBLE(EZAL (Z))
B=DBLE (AIYMAS(Z))
272==3.25%DCAPLY (A*A-B*3, 2. kA *R)
F=CDABS({Z7)

X=SNGL (F)

=6 +171K {1.35%%)
F=1,0

MF¥=¥M-1

DO 10 K=2,HHM
B=1.0/DFLCAT (K)

F=F+8
B=1.9/DFLCAT (K+1)
A=DFLOAT (K*K)
DUK=2Z/A

J=1.0+DUY

Y=F+ (F+B) *¥DUM

DO 30 I=1,%H

K=M¥-1+1
B=1.)/DFLCAT (K)
A=DFLOAT (K*K)
DUOM=2Z/A

F=F-B

Y=F+DOM*Y

J=1.04DUM*J
Y=(0.57721566490153+CLOG (G.5%2) ) *J-Y
Y=0.6366198%*Y

A=DREAL (J)-DIMAG(Y)
B=DIMAG (J) +DREAL (Y)
H=CMPLX (SNGL (&) ,SNGL (B))
RETURN

END
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CELL NUMBER

OO E WD =

WA RN BB BN PO R BN b cd cd cd cd cd cd d d b
OWLCONITNEWN OOV ONOUVMEWNaO

KA 2,300 -0.200
APERTURE HALF-ANGLE 30.000
INCIDENT FIELD DIRECTION 0.¢
DETERMINANT 0.47255E-14
ANGLEF CURRENT AMPLITUDE CURRENT PHASE
35.00 8.97951 -122.16
45 .60 3.05661 =114, 21
55.C0 1.77597 -114.87
65.00C €C.85976 =-123.67
75.00 0.49555 178.16
85 .00 . 0.93305 143.93
95.C0C 1.41335 146,67
105.C¢ 1.74348 152. 3D
115.0C 1.89528 161.23
125.00 1.88554 169,21
135.C0 1.76117 174.67
145.00 1.58776 176.52
155.09 1.43204 174.62
165.00 1.33522 17C.74
175.00 1.29643 167.79
185.00 1.29644 167.78
195.CC 1.33520 17C.74
205.¢0 1.432°5 174,62
215,08 1.58773 176.50
225.(C 1.76118 174.67
235.00G 1.88556 169.21
245,070 1.89525 161.23
255.0°2 1.74348 152,31
265.,CG 1.41337 144,67
275,00 0.8337%6 143.93
285,00 C.U49554 178.16
295.00 €.85976 -123.67
3C5.0¢ 1.77595 -114.87
315.C6 3.05662 -114.21
325.C0 8.97952 =-122.16

SLOTTED CYLINDER
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‘ SLOTTED CYLINDER
KA 2.300 -0.290
APERTURE HALF-ANGLE 30.C0C

ANGLE

~28.00
=24.,CC
=22.0¢C
-16.00
-12.02
-8.C0C
-4.00
0.0
4,00
8.00
12.00
16.00
20.0¢
24,00
28.00

DISTANCZ

OF
00
00

C.
1.
2.
3.
u,
5
6.C0
7.00
8. 00
9.0
0.0

10. 09

INCIDENT FIELD DIRECTION 0.¢C

APERTURE FIELDS

-0.98021
-1.36937
-1.66183
-1.86785
-2.05832
-2.1783%6
-2.24926
-2.27291
=2.24927
-2.17806
-2.05832
-1.88784
-1.6€179
-1.369C6
-0.9802¢

FIELDS ALONG

2.32772

I" ’)f\l'"’l

-l e v

0.04669
-0. 14866
-0.378614
-C.64144
-0.93482
-1.25537
-1.59489
=1.9409¢
-2.27291

0.64451
0.94723
1.17919
1. 36086
1.49933
1.59731
1.65587
1.67536
1.65587
1.59731
1.49932
1.36(35
1.17918
0.94721
C.84452

A RATIUS

2.

3.76825
3.31551
2.95761
2.75355
2.56475
2.3535%9
2.13142
1.9C48y
1.67536
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AMPLITUDE

1.17312
1.66u481
2.03766
2.32721
2.54659
2.70C99
2.793%4
2.82364
2.79325
2.70099
2.54649
2.32729
2.C03765
1.66479
1.17310

AMPLITUDE

-
/

N9 ]

.

0\ (€3]
0

5")(‘)

4
E6 1
1917
©3216
2.82727
2.72481
2.66741
2.66207
2.71947
2.82364

<8
F
~6

('7

3
3.
3.
3.
2.

PHASE

146.67
145,32
144, 64
144,21
143.93
143,74
143, 54
143,61
143,54
143,74
143,93
144, 21
144,64
145,32
146.67

PHASZ

83.74
86.15
89.13
92.82
97.42
103,11
113.23
118.07
126.81
135.54
143,61
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