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ABSTRACT

The solution to the problem of transients on lossy transmission
lines in the form of infinite series has been discussed and it has
been shown that the works of Jeffreys (1927) and Kuznetsov (1947) are
equivalent. The explicit solution for RL terminated line which had
been obtained by Kuznetsov for special combination of R and L has been
extended to any arbitréry combination of R and L. Also the GC termin-
ated line has been discussed. An approximate solution for low-loss
lines has been proposed and some numerical work has been done to com-

pare the exact and approximate solutions.



Introduction

The problem of transients on lossy transmission lines has been dis-
cussed by several authors including H. Jeffreys (1927), N. Levinson
(1934), S. Carslaw (1940), and P. Kuznetsov (1947). The solution
obtained by Levinson and Carslaw are in integral form while those of
Jeffreys and Kuznetsov are in the form of infinite series. The prin-
cipal ideas behind the methods used by Jeffreys and Kuznetsov are the
same. Jeffreys, on the other hand, has discussed an infinite line while
Kuznetsov has formulated the problem for a general linear termination.

- In his solution, Kuzn;tsov has identified the infinite series involved
as the Lommel functions of two imaginary independent arguments. As an
example, he has obtained an explicit solution for an RL terminated
line.

The approximate method we proposed here can not be justified mathe-
matically but for low loss lines it gives a very good approximation to

exact solution.

Comparison Between the Method Used by Jeffreys and the One Used by

Kuznetsov
Consider the propagation of electromagnetic waves along a semi-
infinite lossy line. The problem can be described by the following

system of equations

v . i
ﬁ- R1 + LE
9i _ ov
- 5—}2 Gv + C 3t

subject to initial and boundary conditions,

v(x,0) =0, i(x,0) =0, wv(0,t) =1 (t > 0)



where v(x,t) and i(x,t) denote the voltage and current in the wire; the
constants R, L, G, C are the line parameters. Assuming that the second
derivatives exist for v(x,t) and i(x,t) one can obtain the so called

telegrapher's equation,

2 2

3V o 1c®Y¥, rRe+16) T 4+rCv
2 2 3t

9xX at

Now if we make use of the Laplace transform, we obtain

where
vix,s) 8L [vix,t)]

" =% [(s + 20) (s + 28)] /2

= _R_. B = —q—
¢ =Ac * T 2C

The same equation holds for the current. Using the boundary conditions
we can find the solution in Laplace transform domain for a semi-infinite

line

e'UX

V(x,s) = 3

Therefore the solution in time domain can be obtained by applying
inverse Laplace transform

1 patie At-ux di

vt =y ) 2 (1)
a-jo
To obtain v(x,t) Kuznetsov uses the following transformation
= (A+20,1/2 _ u-1 _ _ (&=t 1/2
(>\+28) ’ Y - '_E:,_—l"l Y = €w, (8 - (ET,E) ) (2)

Also instead of integrating along a straight line parallel to the imag-

~inary axis, he uses a closed contour, Y, which encircles all singulari-

ties of the integrand. Moreover, since the integrand has two branch



points A, = -2a, A, = -2B8, and a pole of order one at X = 0, using the

1 2
notation used by Watson v(x,t) can be written as follows:

vix,t) = -2—11T—J.-f(°°‘)ext-ux a
)

which after applying the above transformation can be written in the

form

_ 1 (0-), _dw dw dw - g 1
vix,t) = EFTJ[ ( =t = + w-wz)eXP[ pt + 3 kz_tz (w wﬂ

where

m=\/a.+,\/8_l n=\/a_'\/-6-r p=0l+3

O=0-=-8, &=

QX

S S
! 1 me’ "2

ne
It can be shown that these integrals can be expressed in terms of
zeroth order modified Bessel function and Lommel functions of two inde-

pendent imaginary argument, where the latter is defined as
i n+2m
= w
Yoz =), & I, (2)
m=0
with In(Z) to be modified Bessel function of order n. After carrying

out the required manipulation the final expression obtained by Kuznetsov

is given by

vix,t) = e {1 (Ne2-£?) + v [n? (e-6) , NP5 2] (3)
+ ¥, [m?(t-0), oVt2-€2] + ¥, [n? (e-5) ,\E2-£2]
+ v[n?(t-5), oVe2-£21}y (e-0)

Now we discuss the solution obtained by Jeffreys briefly and show
that it is equivalent to (3). Let the path of integration in (1) as
| explained above be changed to closed path y. Making the change of var-

iable



one finds

-pt
vix,t) = gﬂj./ﬁ exp[pt - g (% - 02)1/2] g?;
Y

The integrand has p = #0 as branch points and p = p as a pole of order
one.
Let p - 02 = (2v - p)2

in other words we make the transformation

to transform the branch points into poles. By doing so one can show

that

vix,t) = s

where

vy and v, are the roots of the quadratic

equation 4v2 - 4pv + 02 =0
Applying the expansion
1 o
1/2 Z (A+3) n
e A =:§: AT I (2)

n=-o

it can be shown that

I (0\’ 2)+Z(— ’ l k vk + \)];) Ik(c tltz)} t,> 0

vix,t)

=0 otherwise (4)
This was the expression obtained by Jeffreys. Now it can be shown

“that this is in fact an alternative representation of (3).



Let

2v

|
=]

1=° +Vp? - 6% = W +vH? = n?
20y =p - Vb2 - 02 = (V& - V)2 = n

and substituting these in (4) we obtain

©

- 2 -
vix,t) = e pt{Io(o £2-£2) + > @ 5k I (o k2_¢2)

Sy T
- —~ n? [T-E.k )
+Z (a— E'*'—E) Ik(Ut—E )}
k=1
we can write
S (22, _ i A AR LES R AR
= oV Tk - & o Ve 2i+1 (oVE-E
i=
B I AR SN o
Z o Vt+e 2i+2'0
i=0

Hence
o 2

- 2 2 2 .2
gjl@- CER 1 oye2cd) = vy [nd (t-0), oVE2-£2] + ¥, [l (£-5) , VP52
and as a result we obtain

v(x,t) = e-pt{Io(odtz-Ez) + Yl[mz(t—g), thz-Ez] + Yz[mz(t—é), g t2-€2]

+ ¥ [0, qlt?-£2 + v [n? (e-0), Ve?-e?]

which is nothing but (3).
It is interesting to note that even the transformation used by
Kuznetsov is of the same nature of the one introduced by Jeffreys. To

show this it is sufficient to eliminate u in (2), i.e.



_ /A + 2a
U=Vr+ 28
u-1
Yy = u+1l
therefore
A+ 20 _ (1+y)°
A+ 2B (1 - Y)2
or

2% = o(1 + y)? - 2py

If we now let A = p - p, we obtain

p = % (y + %)
Making another change of variable, y = % v one finds
02
P=Vv+s

which is the same as the transformation used by Jeffreys.

It should, however, be mentioned that Kuznetsov has treated the
problem in a more systematic and more general way. In addition, he
has formulated the problem of a lossy line with an arbitrary (linear)
termination. 1In the next section we derive the solution for RL and GC
terminations with a slightly different notation from Kuznetsov's ori-
ginal treatment. 1In particular we introduce some normalized parameters
which prove to be more convenient specially for graphical representation

of the solution.

Exact Solution for the Problem of Transients on a Lossy Transmission

Line

Here we discuss briefly the case when the line is terminated by
- the series RL and parallel GC networks. As was mentioned earlier, the
voltage and current in the line satisfy the following system of equa-

tions



v . v

-ﬁ Ri + L'a—E-
) (5)

9i _ v

7% - 6V* Cax

1 is the length of the line.
T is the normalized time.
£ is the normalized distance measured from the generator.

1

c = =

Vic

We can write the following equations by using the chain rule of differ-

entiation
v _dv 35 _ 13y
ox 98 ° 9x 1 3¢
ai _3i  3E _13i
30X = 9& ° 3x 1l 93¢
v _3v 3t _cdv
ot ~ o1 " 9t AT
3i _3i 3t _ci
ot ~ 9t * 3t 1 3T

If we substitute these in (5) the following results are obtained

ov _ . o1

- §§ = Rl i + cL 3T
(6)

91 _ Y

—‘B—E—GIV'FCC—aT

By applying Laplace transform (better say normalized Laplace trans-
form since we are using the normalized time) to (6), and assuming zero
initial conditions one finds

- Qv
dg

(R1 + cLs)I

(7)
ar
dg

(Gl + cCs)V



where V(g,s) =X[V(€,T)]

1(g,s) =2 (8,1)]

and from (7) the following equations for V and I can be obtained

2
Q_% - uz v=_~0
dg
dZI ) (8)
—j—z'-u I=20
dg

where 1y = [(s + 20) (s + 28)]1/2 (principal branch)

, - Rl g = Gl
2z ' 2Y
o o
_v-1 _ [L
%0 < Yo =Ve

The solution to (8) can be obtained and it can be written in the follow-

ing fbrm
v(g,s) = A(s) e *® + B(s) "6
1(£,8) = 57 [A(s) e'® - B(s) €"°]

c
where A and B can be found from the boundary conditions

1/2

z (s) = z_ [(s + 20) /(s + 28B)] (principal branch)

Without loss of generality we assume that the generator is a unit step
source with zero internal impedance. Let the termination (load) be

zz(s). Then the boundary conditions in s (Laplace transform variable)

domain are O
v(0,s) =< U(r) z,(s)
s 2
V(1l,s) = z,(s)I(1,s) £20 £=1

VUsing these boundary conditions, A and B can be determined and they

are
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1
A(s) =
s[1+F(s)e—2u]
-z'u
B(s) = I'(s)e :

s [1+T (s)e™?H]
Zz(s) - Zc(s)
Zz(s) + Zc(s)'

where T (s) = As a result the expressions for V and I

are
V(E,s) = e HE 4 r(g)e H(278)
s + ris)e”?H
“HE -u(2-£)
I(E,s) = %_ e I'(s)e

c s[_l + I‘(s)e-zﬂ
In order to evaluate the inverse Laplace transform of V and I, we

use the following representation

1
1+ 1"(s)e—211

N
= 2: (-re”?")* + remainder
i=0

=1 - Te 2¥ 4 r2e™4¥ _

substituting this in V and I, we obtain

-ug
V(E,s) = es + g o~H(2-8) _ g on(2+e) |
-ug ol )
I(g,s) = esz - g%‘ o~H(2-8) _ g%— ooH(24E)
C [o] c

v(¢,1) and i(£,1) can now be found by applying the inversion transform

V(EIT) = Vo(ng) + Vl(z-EIT) - V2(2+E'T) = ees
i(g,1) = i,(8,7) - 10(2-6,7) - i,(2-8,1) + ...

where

1 -
VO(E,T) = EEEJ/.eST HE ds
Y

- = 1 - -
vy (2-£,1) 2_ﬁ/Y [oSTTH(2o0) gs



-11-

: = 1 1 st-uf ds
1 = = = e —_—

. _ 1 r st-u(2-¢) ds
11(2 EIT) ZFi/C Z; e —g

It is clear from the expressions for Vo and i0 that they do not

depend on the termination and physically they correspond to the direct

waves. As we showed briefly earlier Vo and iO can be found to be
= o PT
VO(gIT) = e [IO(CO) + Yl(nlolCO) + Yz(nlolCO)

+ Yl(nzolCO) + Yz(nZO’CO)]U(T-E)

. _ B -pT o
Zoto (&) —\/;e NE To(5g) + ¥1(n1q:50) + Yp(nyq05¢)
- Yl(nzolCO) = Yz(nzolgo)]U(T-g)

where

Nip = mz(T-E), Noo = nz(T-E)

3
]

Yo + VB, n=+va - /8

p=oa + B, o=a-28

Series RL Terminated Line

To obtain v(g,T1) and i(&,T) along the line we need to know vy

Vorees and il' iz,... in addition to vy and i0 which has already been

obtained. Here we only find Vir Vo il, and i2. The rest can be obtaine
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similarily. 1In fact for a moderately lossy line higher order reflected
waves do not contribute much in the numerical results and by neglecting
them we do not commit an appreciable error. Furthermore it is sufficient
to find vl(Z-E,T) and il(Z-E,T) only, because v, and 12 can be obtained
by substituting (£) for (- &) in the expressions for v, and i..

1 1
As we showed earlier

- -1 st-u(2-£) ds
vl(2 £E,T) = iﬁi/; I'(s)e =

. A:- __1 f[ri(s) st-u(2-¢) ds
11(2 E,T) = ZTIJ'_/Z—C-(_S—)— e Y

Y

where
Zz(s) - Zc(s)

I'(s) = Zz(s) + Zc(s)
Z,(s) =R, +s T L,
Using the transformations
s + 2a _u-1
YSYs+ 28 YT u+F1
one finds that
L (o) L 2y (Y2=1) (1+7)

1
v, (2-£,1) = =— [- = + + = + ]
1 ' 2m] LA G 6 R e (Y-Yl)(Y-YZ)(Y3+aly2+a2Y—l)

.exp[-pt + % y(t+2-g) + % % (t-2+&) 1dy

where

V]

i
D‘l >
Q

v}
]

2_(r-1) - (2P
1 = (el - (24
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= - 2 2p
a, —3 ho (r+l) + (E—+1)
_ 5
r=g
0
ho= 2
L
Now let
2a3 a.,a a a2
_ __l _ 12 2 2 _ _l 3
A=(=55-3 D"+ 4(5 - )

be the discreminant of the 3rd order algebraic equation

3 2 _
YT +a; vt tayy-1s= 0

with Yar Yyr and Yg as its roots. Two cases exist:

(i) A £ 0, all roots are real.

(ii) A > 0, one root is real and the other two are complex.
Kuznetsov ﬁas discussed only the first case. We have investigated the
second case as well. We will give the solution in case (ii) and also
its numerical results.

Since a; and a, are related to the line parameters and termination,
i.e. R2 and L2, limiting ourselves to case (i) puts some limitations on
R2 and L2 which is not desirable.

In case (i) let

_ _[2-& -1
Y = &w, € =72 - £+ T
then
(0-) 5 b dw
vi(2-E,7) = o f (- 4 dw . dw 5 . S (10)
1 27J W W-W wW=W wW-W.

.exp[-pT + %\ﬂZ-E)Z—TZ(w—%)]
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ao(Yi-l)(l+Yk) j= .
where b, = o roo =jr=l (Yk"Yj) k #3

Finally vl(Z-E,T) can be obtained which reads

- = e PT ’
Vl(s EIT) e [IO(Cl) + Yl(nlllcl) + Yz(ﬂllrcl)

+ Yl(ﬂzl'Cl) + Yz(n21lcl)

k=5
+ -
k‘::l bk[Yl(nkl,cl) + Yz(nkl,;l)] U(T-2+E)

where = %— (1-2+¢&)

n
kl Kk

2 2
&y =0\A - (2-¢)
For case (ii) let Y3 be the real root and Y4 and Yg the complex

roots. Since al and a2 are real we have

*
Yg =Yg = Y.+ IV

where * stands for conjugate.

Y, and Y; are real numbers.

j = /T
Then it can be shown that (10) still holds except that bk's are defined

as follows

2
L 2D ()

k d k=1, 2, 3

2 2 2. 3
where dk = (Yk 2YrYk + Yr + Yi)g=1(Yk -v.)

. * .
and b, =bg =b_+ b,
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2
29 (g1 (v,

b_ = Rel

r u,
ao(Yi—l)(l+Y4)
bi = Im[ u ]
4
where
m=5

u4 =mI=Il (‘Y4—‘Ym) , m# 4

Also let

9 (t-2+8), k=1, 2, 3
Tx1_

k1

= * (T-2+%) = eje
M41 = Ns51 Ne

Then it can be shown that
- = o PT
vl(2 E,1) e {Io(cl) + Yl(nll,cl) + Yz(nll,cl)

k=3
+

+2[b¥ (n_,8,5) +b;¥,(n_,8,5))1}U(1-2+E)

where
[o o]

Yr(nc,e,«;l) = Eng cos nb In(;l)
n=1

_ n .
Yi(ncleyCl) = Zlnc sin nb In(cl)
n=

il(2-£,T) can be found in a similar way. The results are as follows:

For A < 0

i (2- =<8 &7PT [@



3

+
™M

U(T-2+E)
where
a
o 0 2
o a0 2

a
=2 0 (2. - =
o -\[;dk Z-D@-v), k=1,2,3

'dk and u, are as defined previously.

Parallel GC Terminated Line

The solution in this case is quite similar to that of RL termina-
tion. Again depends on the discreminant of the following 3rd order

algebraic equation we distinguish two different cases.

y3 + a yz +a,y +1=0 (11)
1 2
where a; and a, are different from before and they are given by

= 2 (- -2

a4 = ko9l + 1 o
=2 -2

a = ko(g+1) . o

a, = 4

0 xg

5= 2
Yo
c

k = —=
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As before we define the discreminant as follows

2

a,a a a
3% 3 302 2 313
A=10Q 3t 37 ) tAl5 -3

(i) A< 0 : all three roots of (11), i.e. Y3r Y40 Yg are real.
Then it can be shown that
k=5

+ Xb (¥ (nyp02q) + Y, (ny,2;) 1U(T-24€)

k=1

i (2- = B &7PT [
zoll(z EIT) = 'J; e LJE Io(cl) + Yl(nlerl) + Yz(nlerl)

= Yl(HZl’Cl) - YZ(HZl’Cl)

k=5
k=1
where
a
=0 (2 _
by =5 (=D - D
a
o 0 3
°x =V G; (1 Yk)
T Y,k #
= oy, = v:), 1
uk i=1 k i
=9 (;-
N1 Y (T-2+8)



-18~

(ii) A > 0 : (11) has one real root which we call Y3 and two
complex roots denoted by Y4 and Y- Since a; and a, are

real it is obvious that

*
Yy = Y5 = Y. I

The solution for vl(Z-E,T) and il(Z-E,T) are

,- . -pT
- k=1

+2[brYr(nc,e.cl) + biYi(nc,e,cl)l}U(r—2+g)

i(2-g,1) = -Jg e“”r\[-‘g_i I, (z) + Y (nyye8y) + Y,(nq87)
= Y (y0080) = Yy(ngg08y)

+-§§%k[Yl(nkl,cl) + ¥o(neq08q)]

+2[c ¥ (n_,0,5;) +c.(n_,8,3,)]1}U(T-2+E)

where

k=1, 2, 3
S0 (1o y)3
% _J;dk Y

a = (y2 -2 +y2 4 2)mE3( -y_), k#m
K Y YoYe P Y.t Yy n=1 Y ~Ym! v
a
- _0 (2 _ -
br = Re[u4 (Y4 l)(Y4 1)1
a
_ 0 2 _ _
bi = Im[E‘ (Y4 l)(Y4 1)]



-19-

- a 0 _ 3

¢, = Rel. g 1—1:1" (1 Yk) ]
a

= a 0 - 3

o = i 52 - )
m=5

= - 4

u, m1=11 (v, Ym), m #

Approximate Solution for the Problem of Transients on a Lossy Trans-

mission Line

Recall V(&,s) aﬁd I(¢,s) from the previous section

-ug (0= -
V(g,s) = gg__ + g e w(2-g) _ g e (2+8) _ ..o
(12)
-ug _
I(g,s) = esz - E%— eTH(278) gg— e7H(2H8)
c c c

Assuming that the losses of the line (R and G) are small we want to

try some approximations on u and z, so that v(£,t) and i(t,§) can be
found from (12) by simply using the tables of Laplace transform without
applying the inversion theorem. It should be noted that we cannot
justify this approach rigorously since we are applying perturbation in
Laplace transform domain which could lead to errors. However, heurist-
ically this approach is not unreasonable and we will show numerically
that as for low-loss lines the solution obtained by the approximate
method will approach the exact one. 1In fact, when the losses go to

zero the present method (approximate) is exact.

Series RL Terminated Line

If R and G are small then a and B are small and aB is negligible.

Using normalized parameters we can write
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U = vV (s+2a) (s+2B) = /sz+2(a+8)s = s(l+g§§) = s+p

_ s+20 _ a=B, _ g
Also Zc = Z s¥28 ° Z0(1+—§—) = Zo(l+s)

where o, B, p, and ¢ are as introduced before.

Since we are considering the direct wave and two reflected waves

only, it is desirable to write g and E%— (12) in the following forms
c
r-1 g
r_ 1 2y, = %o _1 s2+ " 5w __ 1, 14a 1-a
s s2Z;t+12 s g2 , r+l s + 2 s s-s; s-s,
h h
2 Elg_¢
r . 1 s+ h h _ l_[ 1 + 1+a 1 + l-a 1
sZc Zo(s+c) SZ + r;l s + % Z0 s+0 l+hs2 S-S l+hsl

where r, h, and o were defined previously.

s =, L2 o
1,2 2h 2h h
a = r-1 1
h $;-S,
Therefore V(£,s) and I(§,s) read
—pE eS8 p(2-8), 1 . 1+a | 1-a . -s(2-E)
V(E,s) = e - + e [- = + ]l e
s s $-s, s-s,

_ e-p(2+£)[_ 1,1l-a ,  1-a ] e—s(2+g)
] s-s

g

-s
~ a-PE e "7 -p(2-8) .1 l+a 1 l-a 1 -s(2-¢)
ZOI(E'S) =€ sto _ °© [s+0 t* Tihs. s-s 1+hs, s-s le
2 1 1 2
_ -p(2+8) . 1 l+a 1 l-a 1 -s(2+E)
€ [s+c + 1+hs2 s-sl + l+hsl s-sl] €

Now v(g,7) and i(&,t) can readily be found and they are given by

(T=2+£) S, (t-2+)
1 + (l-a)e 2 ]

S
v(g, 1) = e Pey (1-8) + e P28 L1 (14a)e

U(t-2+¢&)

+...
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—a P (248) -1 + (l+a)esl(r—2-i)+ (l-a)esz(T—z—g)]U(T-z-g) o
Zoi(g,r) = e_ZBE‘UTU(T_g) - e'p(Z-E)[e-o(r—2+g)+ I%%g; Sl(T'2+E)
+ I%%gz esz(T—2+E)]U(T—2+g)—e' (2+€)[e-p(r-2-5)+ I%%EE esl(r-z—g)
+ I%igz 2 g
+ ...

Parallel GC Terminated Line

This case is quite similar to the previous one. Here we have

_ s+28 _g
Yo = Yo\s720 = Yol - 3
Then
r _1_ l+al ) l-a
s S S-S s-s
g-1.,6 -
ro,o_ 1 sPBESE 1, Mo g
sZ Zo(s+c) g2 g;l _% £, sto ~ l-ks, s-s, l--ks1 s-s,
where
a, = -1
1 k(sl-sz)
_ 4
a, =1 +53552
g, k, and o are the same as before.
Substituting g, E%—, U and Zc in (12) one finds
c
_ ' -s§ _ _ l+a 1-a _ _
v(gls) =ep€§ +ep(2 E)[_:_L__ 1_ l] es(z E)
s s $-S; s-s,
l+a 1-a
—e~ (248) 1 _ 1 _ 1, -s(2+8)

S S"Sl S“Sz = eee



-22-

-s§ a 1+a 1-a
_ ~pf e -p(2-¢) 2 1 1 1 1 -5 (2-¢)
ZOI(E'S) =€ s+0 te [s+o + l-ks., s-s + 1-ks, s-s ] e
2 1 1 2
L opl2be) P2, T 1=a; 1 _g(2+g)
e [ + + ] e +....
s+0 l-ks2 s-sl l—ksl s-s,

and after taking the inverse Laplace transform we obtain

_ _ _ S, (T-2+¢&) S, (T=2+E)
v(g, 1) = e Pu(r-g) + e ¥ neae - (1-aj)e ]
U(t=-2+¢&)
_ s, (1-2-£) S, (1-2-8) ——F) -
- e p(2+£)[1-(l+al)e 1 - (l-aj)e 2 10(t-2-¢) -...
- _ _ _ _ _ l+a S, (T=2+E£)
Zgi(6,1) = e 288 Ty(r-g) + TP (278 [q 7O (TTRHE), I:EE% e !
l-a, s,(1=2+%) _ - -
+ 1-ksl e 2 JU(Tt=2+E) + e p(2"{)[a2e o(1-2-¢)
1
. l+a s, (1-2-£) l-a S, (T-2-£)
1 1 1 2 :
+ I-Ks, e + T-ks, e 1U(t-2-8) +...

Numerical Results

We have obtained and plotted the nﬁmerical results for the trans-
ient current at the beginning of the line (£=0) for several different
cases with the aid of a computer. Lommel functions have been written in
the form of a subroutine using the existing subroutine for modified
Bessel functions. The results for the exact solutionhave been obtained
using double precision because as the time increases the Lommel functions
involved in the formulation of the problem become very large and the
expressions like Yl(nll,gl) - Yl(nZl,cl) cannot be calculated accurately
unless a double precision is used. Even with double precision sometimes

"we encountered difficulties. Therefore some of the numerical results
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have been obtained by changing the formulation of the problem to a form
which gives a more accurate numerical result rather than finding the
Lommel functions explicitly from the subroutine.

Figures 1 to 12 show the transient current at the beginning of
the line (generator), i(0,1), considering only the direct wave and two
reflected waves (up to 1=4) for different values of the losses, length,
and terminations. Results based on both the exact and the approximate
methods are shown. In the following we give a brief explanation of
those plots.

We consider a line with the following parameters as our standard
line and later when we change the values of some of the parameters for
comparison. Also, whenever we say "transient" from now on we mean
Zoi(O,T).

3

R = 0.736 9Q/km, L = 23.8 x 10

6

h/km

9

G = .05 x 10 11.3 x 10 °  £/km

8/km, C
Length = 400 km

Figure 1 shows the transient in the standard line terminated by a

series RL network with

R2 = 0 ohm, L2 = 1 henry
It is seen that the agreement between the exact and the approximate
solutions is reasonably good.

As we mentioned earlier we anticipate that our approximate solu-
tion gets closer to the exact solution as the losses are decreased.
Figure 2 shows that this is in fact true. There we decreased the losses
by a factor of 10 and kept the other parameters constant. The agreement
between the two solutions is very good.

Now if we decrease the losses even more, it is obvious that the

two solutions will be closer. But since we do not want to deviate from
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the realistic and practical situations we do not decrease the losses by
decreasing R and G. Rather we decrease the total loss of the line by
decreasing its length. It should be noted that by doing so the shape of
the transients will change. But it is not of our concern for the time
being. In Figure 3 and Figure 4 the losses are decreased by a factor of
10. Lengths are also decreased to 40 kilometers and 4 kilometers,
respectively. The agreement between the two solutions is too good to
require distinct plots. )

In Figure 5 we decreased the losses to zero. In this case it is
easy to show analytically that the two solutions are the same.

So far the examples we had were dealing with the case A < 0. 1In
Figure 6 and Figure 7 we used

R2 = 10 ohms, L2 = 1000 henries

which correspond to A > 0. Although L, = 1000 henries is not a realistic
value for self-inductance, we chose it merely for theoretical interest.
It should be possible to find other combinations of R2 and L2 which give
rise to A > 0. Figure 6 corresponds to the line with a length of 400
kilometers and Figure 7 to a 40 kilometer long line. 1In both cases R,
L, G, and C are the same as the standard line. In the latter case the
agreement between the two solutions is very good.

The rest of the Figures pertain to parallel GC terminated lines
and all of them correspond to the case A > 0. Figure 8 is for the stand-
ard line with

G .001 mho, C, = 10 uf

2 © 2
as termination. The agreement between the solutions is poor. 1In Figure
9 the length of the line is decreased to 40 kilometers. The agreement is

improved but the approximate solution is not yet acceptable.
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In Figures 10, 11, and 12 losses are decreased from that of the
standard line by a factor of 10; they correspond to the lengths of 400
km, 200 km, and 40 km, respectively. Also

G2 = .001 mho, C2 = 100 pf

has been used as termination. The agreement between the exact and the

approximate solutions for the case Length = 40 km is quite good.

Conclusion

In this work we have discussed the solution to the problem of the
transients on a lossy transmission line. We have shown that the work
done by Kuznetsov is principally the same as the work done by Jeffreys
some twenty years earlier. We have also formulated the solution of a
line terminated by a parallel GC network.

The limitation on the values of R and L in the solution of the
problem obtained by Kuznetsov has been removed.

An approximate method to solve the problem has been proposed and
the exact and approximate solutions have been compared numerically. It
is observed that if the losses (R and G) are small the two solutions are
in very good agreement. We are unable to establish an exact criterion
for the approximate solution. It appears that the agreement between the
two solutions is generally better for RL terminated lines than for GC
terminated lines. The reason is not yet clear to us. Other approximate
methods might exist which give better results and can be the subject of

further studies.
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Fig. 1 RL Terminated Lossy Line

(A < 0)
Exact Solution

Approximate Solution

Normalized time (T)

R =736 x 107° Q/m
L = 23.8 x 10°° h/m
G =50 x 10.-12 s/m
c=11.3x 10  f/m
Length = 400 km

\ R =0 Q

2
L, = 1 h
1 e} 1 3

g %



3
zi(0,71)
Fig. 2 RL Terminated Lossv Line
(A < 0)
Exact Solution
Approximate Solution ------
R=73.6x10° o/m
2 L=23.8x10° h/m
G=5x 1012 5/m
c=11.3 x 107*% £/m
Length = 400 km
Rz = 0 Q
L2 =1 h
1
0
-1 L . ' ‘ |
1 3 a — -
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Zi(OIT)
Fig.-3 RL Terminated -Lossy Line
(A < 0)
2 .
» Exact & Approx. Solutions
R=73.6x10° a/m
L=23.8x10°% h/m
G=15x 1012 S /m
Cc=11.3x 10°*%  #/m
Length = 40 km
R, = Q
L, = h
1
O =3
-1 \ ] I L |
0 1 4 5 6 7

Normalized +ime (1)
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Normalized time (T)

zoi(O,T)
Fig. 4 RL Terminated Lossy Line
(A < 0)
Exact & Approximate Solutions
R = 73.6 x 10°° /m
L = 23.8 x 107° h/m
- G=15x 10712 5./m
C=11.3 x 100*  f£/m
Length = 4 km
R, = 0 Q
L, = 1 h
1 1 1
0 2 3 4 5



Zoi(O,T)
Fig. 5 RL Terminated Line
R=0 . Q/m
L=23.8x10"° h/m
G =20 U/m
-12
C=11.3 x 10 f/m
Length = 400 km
2 ps
R2 =0 Q
L, = 1 h
1
ol
-1 ] ] 1 ] 1

0 1 2 3 4 ‘Normalized Time (T)
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. 6 RL Terminated Lossy Line (A > 0)

R = 736 x 107° Q/m
L =23.8 x 107° h/m
G =50 x 10712 5/m
c=11.3x 102  f£/m
Length = 400 km
R2 = 10 kQ
L, = 1000 h

Exact Solution

Approximate Solution ----------

L

J

5

Normalized Time

7
()



Zoi(O,T)
. Fig. 7 RL terminated Lossy Line
(A > 0)
R =736 x 10°° Q/m
L = 23.8 x 107° h/m
G =50 x 10712 5/m
c=11.3 x 10712 £/m
Length = 40 km
R2 = 10 kQ
L2 = 1000 h
Exact Solution
Approximate Solution -=-===—=----
|
!
1 1 | | . |
1 2 3 2

Normalized time

(T

J
7
]
)
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2.4

2.2

1.8

1.6

1.4

1.2

zoi(O,r)

GC - terminated line

(A > 0F
R = 736 x 1070
L = 23.8 x 10°°
G = 50 x 1012
Cc =11.3 x 10 12
Length of the line =
G, = .001
c, = 10

Exact solution

Approximate solution

1 1

400

Q/m

J

5

Normalized Time

(1)

5
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zoi(O,r)

Fig. 9. GC - terminated Line

(A > 0)
R = 736 x 106 Q/m
L = 23.8 x 10°° h/m
G =50 x 10712 5./m
c=11.3 x 10712 £/m

Length of the line = 40 k/m

Ca

10 f

Ekéct Solution

2.2

1.6

1.4

1.2

Approximate Solution

J

|

Normalized Time

7
(1)



2.9

2.6

2.2

1.8+

1.6

1.40

1.2

Zoi(O,T)

Fig. 10 GC - Terminated Line

(A > 0)
L =23.8 x107° h/m
c=11.3 x 1012 £/m
G2 = .001 u
c, = 100 uf

Length of the line = 400 km

Exact R=173.6x10°¢
Approximate -=----- G=5x10% o
Lossless __ .~ __ R=0 Q
G=0 U
3
!
!
1 1 L. ]
4 5 7

T (Normalized time)



2.8

2.6

2.2

2.0

1.8

1.6

1.4

1.2

Zol(O,T)

Fig. 11 GC - terminated Line

~ (A > 0)
L =23.8x10° h/m
c=11.3 x 1012 £/m
G, = .001 3
C2 = 100 uf
R = 73.6 x 10°° Q/m
G=5x 102 5/m
Length of the line = 200 km

e 1 ! 1 ]
4 5 7

Normalized +ima

(’!“\
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zi(0,t) |\ TTT== -~
. o Fig. 12 GC - terminated Line
(A > 0)
L =23.8 x 1078 h/m
) ¢ c=11.3 x 10712 £/m
i R = 73.6 x 10°° Q/m
G=5x 10 12 5./m
Length of the line = 40 km
2.4;
G, = .001 s
C2 = 100 pf
2.% Exact Solution
Approximate Solution -------
-
1.4
1.4
1.4
1.3
1 ] ] €1 | J
0 1 3 4 5 7

Normalized time (1)
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APPENDIX A

Transients on Lossless Terminated Transmission Lines

Chen-To Tai
Radiation Laboratory
The University of Michigan
Ann Arbor, Michigan

Abstract

This work contains a general exposition of the methods which
are available in analyzing the transients on a lossless terminated
line. After reviewing the well known method based on the T-series
expansion we present two alternative methods, one in the form of
a Volterra integral equation and another corresponding to the so-
called singularity expansion method. For a resistively.terminated
line we have proved the identity between the l'-series solution
and the one obtained by the singularity expansion method. The
' application of these methods to more complicated terminations is
illustrated by the case of a series R-L termination. Weber's
solution for é short-circuited line is compared with our solution.
The importance of injecting the causality condition in our formu-
lation for this class of problems is emphasized. The application
of these methods to the treatment of the input current response
of thin biconical antenna is briefly outlined.



Introduction

Transient on transmission lines is a classical problem in
linear system analysis. Many authors have contributed sigrnifi-
cantly to the study of this problem. We would like to mention particu-
larly the work of Levinson [1], Bewley [2], Weber [3], Kuznetsov
and Stratonovich [4]. Although the formulation for lossy lines
terminated by an arbitrary load is known,a general solution seems
to be not available because of the difficulty in evaluating some
of the inverse Laplace transforms. For a lossy line terminated
by a series R-L load, the exact solution was found by Kuznetsov
[4] with the aid of Lommel functions. When the line is lossless
the analysis is considerably simpler.. Even then, no 'detailed
treatment seems to be available for arbitrary termindtions except
for the case of a resistive load which is discussed in many
standard books. It is therefore desirable to present a general
treatment by which one can solve the problem for arbitrary
termination in a systematic way. The work reported here is
partly motivated by our desire to investigate the transient
phenomena on biconical antennas which can be interpreted as a
pair of biconical transmission lines terminated by a distributed
load admittance [5,6]. Whatever method we may use for the trans-
mission line problem is then equally applicable to analyze the
transient response of biconical antenna. Before the general
methods are presented, a review of the conventional
treatment for a pair of lossless lines terminated by a resistive
load is in order.

Conventional Method of Treating a Lossless Line Terminated by a
Resistive Load ‘

We consider a pair of lossless lines terminated by an impedance
load 2. The lines are assumed to be excited by a unit step voltage
at the input end.

For convenience we introduce several normalized variables

defined as follows:

& = x/% = normalized distance; 1

1v
vy
v
o

T = tc/% = normalized time



length of the line

¢ = velocity of propagation on the lossless line, being
equal to l/(L'C')l/2

inductive and capacitive constants per unit length of the line

of/c = normalized Laplace transform variable

where 2

L' 'co

0 = the ordinary or conventional Laplace transform variable
being equal to jw where w denotes the complex angular
frequency

In terms of these normalized variables we denote

v(§,T) = 1instantaneous line voltage
| i(¢ 1) = instantaneous line current
V(§,s) = Laplace transform 6f“§f§;Tf
@®
= Plivig,1l = J v(g,)e Tt
)
I(§,s) = Laplace transform of i(§,T)

= Qlig, 1] = [i(g,1e % ar
0o

For a unit step voltage applied at the input end we have

v(0,1) = U(t - 0)
hence
- ]
V(0,s) = S U(t -0)e S gt = 1
0 S

In terms of normalized variables £,s, the line voltage and the

line current in the Laplace transform domain can be written in

the form
-&s -(2 - ¢)s
vig,s) = & llsle (1)
s[1 + T(s)e “%] ‘
-Es -(2 - &)s
2 I(g,s) = £ - I(sle - (2)

s[l + P(s)e-zs]

where T (s) denotes the voltage reflection coefficient defined
in the s-domain at the output end of the line, £ = 1, and Z,

denotes the characteristic impedance of the line, being equal
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to (L'/C')l/z. For convenience, we assume Zc to be equal to
unity in the subsequent analysis.

The conventional method of determining v(§,t) or i(§,T1) is
to express (1) or (2) in a series using the expression

1l
1 +'I'(s)e—Zs

n

= T [-T(s)e”25)
n=0

(3)

Substituting (3) into (2), with Zc = 1, we have

I(E,s) = fle ®5-r(s)e”?"¥5) | [-r(s)e”?5" (4)
- n=o0o

For a resistive load T'(s) is a real constant which will »e
denoted by T and its value is given by

where r denotes the normalized terminal resistance. The inverse
Laplace transform of (4) with I'(s) = T yields

n+l

i(g,1) = ] [(-D)"u(t-2n-£) + (-7 U(1-2n-2+E)] o (s)

n=o

where U(r—rn) denotes a unit step function commencing at t = T
Although (5) is known to be a valid solution by physical
reasoning its derivation is considered to be unsatisfactory from
the mathematical point of view because expansion (3) holds true
only if lF(R)e-ZSI < 1, and in executing the inverse Laplace .
transform the contour of integration lies in the left-half plane
where lF(s)e-zsl could exceed unity. This presentation is found
in many books without justification. One way of removing this
weak step is to expand the same function in terms of a finite

sum with a remainder instead of as an infinite series. Thus, we
write



N
1 ) [_F(s)e-ZS]n + [-T(s)e (6)

i.+I‘(s)e—25 =0 1+I‘(s)e-25

when substituting (6) into (2) the remainder would yield a term
of the form

(-r()1™2  _-s[20w2)-E]

(7)
s[l+F(s)e-2s]

Because of the shifting theorem and the causality condition the
inverse Laplace transform of (7) vanishes when 1t < 2(N+2)-§. 1In
other words, if one evaluates the series (5) up to 1t < 2(N+2)-§

the remaining terms vanish identically. The importance of this
remark is that (6) applies not only to resistive termination but

to any termination. From now on we will designate the solution
based on (6) as the I'-series solution. In addition to the TI'-series

method there are two alternative methods for treating the transients
in an arbitrary terminated line. The discussion of these two
methods is the main objective of this paper.

Volterra Integral Equation Method

We consider the general case where T(s) is a function of s.
If (2), with Zc = 1, is multiplied by 1 + I‘(s)e-2s the following
equation results

I(E,5) + T(s)e™2%1(g,s) = gle™*% -r(s)e”®¥)5) (g

By taking the inverse Laplace transform of (8) we obtain

i, = i (g0 +Z (e B1(s)] (9)
where
16,1 = i (5,1 + i (E,1) . ao
with
, -1, &8
ie) = L2~ =u(-8) (11)




. _ -1._TI(s) -(2-8)s
ipEn = £7- e ] (12)

iof(E,t) represents the initial forward current wave propazating
on the line and iob(E,T) represents the first reflected waw or
backward wave from the termination. For a given T(s) we asmume
(12) can be evaluated, thus iob(E,T) is considered to be a
known function. On account of the convolution theorem in Iaplace
transform (9) can be written in the form

i(g,7) = i (E,7) + [ k(t-t')i(E,T")at’ (13)
where

k(1) = £ ti-ris)e %5 (14)

Equation (13) with i(§,1) as the unknown function correspoads
to the Volterra integral equation of the second kind. 1Its

solution is given by Picards' series [7], namely

i(g,t) = z in(gr'r) (15)
n=o

where io(E,r) is given by (10) and
: = T S ] ' [
i, = fo k(t=-t")i _;(E,7')dt

forn=1,2,... (16)

In the case T(s) is a real constant, previously denoted T, we
obtain from (12)

iob(g,r) = =TU(t-2+%)

hence

i (E,1) = U(1-§) - TU(1-2+8) (17) -

and from (14) we have

k(1) -I'é(t-2) (18)
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where.S(r—Z) denotes the delta function defined at 1t = 2.
Substituting (17) and (18) into (16) we obtain the same ex-
pression given by (5). Of course, for a resistively terminated
live it is entirely unnecessary to formulate the problem by this
integral equation method as the method of T'-series is much |
simpler. The integral equation method, however, is much more
efficient and convenient for more complicated termination. As
an illustration we consider a series R-L termination. In this

case, we have

z(s) - 1

[s) = Zo +1
where
2(s) = == R+ s($)L]
Z %
c
= r + as
_ _ cL _ L
r = R/zc e = Z %2 ~ L"%
c
L' = inductive line constant

The coefficient @ is a measure of the load inductance in terms
of the total line inductance . The reflection coefficient T (s)
can now be written in the form

ChER
T(s) = s (19)
1
where sg = - £§£ )e sp = - Egl )
thus
1l-p
rs) _ 1,585, _ 24220 (20)
s = 35! -5, ) = s s-sp
s
where p = U
s r+l
1
using (12) and (14) one finds
sl(T-2+£)

1pE, 1) = =U(t-2+48) [p + (1-p)e ] (21)



51(1-2)
k(t) = =-6(t-2) - U(T-Z)(l-p)sle (22)
iob(g,r) and k(1) we can find 11(5,1) using (16). The s qur
rives spic
’ sl(T-z-g)
i, (g,1) = -U(1-2-8)[p + (1-p)e ]
+U(t-4+8) {p” + [1-0p"+(1-p) s, (T-4+E)]e H@3)
| by Baum
essive terms of 1n(£,t) for n > 2 can be found accardingly. ring of
the I'-series method were used the process is more #edious lied to
one has to expand [F(s)]n/s in partial fraction that is 1 case
volved as a result of the multiplicity of the poles n ®eber's
d in [F(s)]n. Another advantage of the Volterra we will

equation method is that once the first reflected wave he analytic

the successive waves can be found based on this imfor-

ard the
lone. This is due.to the fact that the kernel k (1} nsider
in the integral equation is related to the derivative - o
irst reflected wave. Since \
1, (E,s) = - IT(s)e” (2788
(24)
K(s) = Llk(1)] = -T(s)e™28
’ the
K(s) = sIob(o,s)
1s that
i . (o, 1) (25)
k(1) = __92____
0T -
the roots
interpret the derivative in a generalized sense that
continuous unit step function
(26)
BU(T-Tn)
= 6(t—rn)
9T

le, from (21) one finds (27)
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for T < 0, and

s, = % (LnT + jnm), n = #1, #3, . . . (28)

for ' > 0. Without loss of generality we assume I to be
negative and not equal to -1 in the following discussion. The
case of T = -1 requires a special treatment as going to be
discussed later. :

The expansion for I(o, s) as given by (25) can now be expanded into a
residue series in terms of the poles of that function by means of Mittzg
. Leffler theorem [10]. According to this theorem the function under expan-

i sion must be bounded at infinity and be analytic at the origin. We comsider

| the function (1 + I'e-zs)"l which satisfies the criteria, then its ex;znsion

'is givenby "
e +oo0
— g = =+ D Flg ) (29)
1+Te 1+T n=0 n n
hence
1 1 2 1
— e = + 2 —_— €30)
s(l+Te ) (1+T) s n=0 an(s-sn)

Substituting (30) into (25), we have

+

_ 1 o -2s 1 S 1
Le,s) = §-2e Tlqmrys * 1 zsqesy ! OO
n=0 n n
The inverse Laplace transform of (31) yields
i(o,7) = U(1-0)-2TU(1=-2)[ 5=+ | =— e ] (32)
1+T _ 2s
n=0 n :
If = i
we let S, e+ j Bn
where a = 1 Ln|p|
2
By = nm, n=20, t1, 2, . . .

then (32) can be written in the form
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1(0,7) = U(t-0)-2TU(1-2) [ I%T
® 2=8§ & cos B (1t-2) + B_ sin B (1-2)
o
pe 272 (5D . —1 (33
n_o P a +B
n

here 60 denotes the Kronecker delta.

According to the T'-series method, for £ = o, (5) reduces to
i(0,1) = U(1-0) - 2TU(1-2) + 2T2U(7-4) + . . . (34)

Equations (33) and (34) would be equivalent only if the series
contained in the summation sign of (33) is proportional to
e-a(r—Z) with the constant of proportionality determined by

the time interval in which the series represents. The proof

of the identity between (33) and (34) is shown as follows:

we recognize that cos Bn(T-Z) and sin Bn(r—2) are two orthogonal
sets of functions with a periodicity equal to 2, thus we let

—aXT-Z) s

e = ) [a

Lo cos Bn(T-2) + bn sin Bn(T-Z)]

n

for 2(m+1l) > T > 2m. One finds

2-8, (1+47) a

an = ‘.( 2 ) (—F)m 0,2-!-831

p oo o By

m 2,,2
(-T) ¢l +Bn

hence,

ngo éz-so) a cos Bn(T-Z)-FBn sin %#T—Z) _ (=)™ e-a(r-z)
2 2 o2 T

for 2(m+l) > T > 2m (35)
In view of (35), we can write (33) in the form

. . ' -y m
1(0,1) = U(1-0) - 2ru(r-2)1 25CT



2(m+l) > T >2m . . . (36)

If we let m take the successive values 1,2,3 ,..(36) indeed
is identical to (34). Of course, it is not easy to recognize
that the series obtained by the singularity expansion method as
given by (33) is an alternative representation of the I'-series
solution without such a detailed analysis. For a non-resistive
termination the poles are more complicately distributed. 1In
fact for most of the cases there is no closed form solution
for these poles the proof of the identity between the TI'-series
solution and the one obtained by the singularity expansion
method would be extremely difficult. Based on what we have
discussed for the resistively terminated case, we have the confi-
dence that these alternative representations must be equivalent.
Finally, we like to comment on the treatment given by Weber
[9] for a short-circuited line (T = =1). The function which
Weber analyzed corresponds to the voltage distribution along
the line for a step input vdltage excitation. 1In Laplace-
transform domain, the function which he considered is
£s_g-(2-8)s

V(E,s) = & @31
s(1-e~2%5)

The residue series representation of (37) was obtained by
Weber without following the discipline as demanded by Mittag-
Leffler theorem. Although his result is correct the procedure
which leads to his solution is,strictly speaking, not justified
for many irrational functions. The final solution which Weber
obtained is of the form

= _ S 2 sin nn§ T sin nrw(t-§)
v(E, 1) Ul(r 0)[n£l ———EE___..+n£l =
+ z sin nm(t+£) ] (38)

nmw
n=1
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The solution clearly represents D'Alembert's solution for the
one dimensional wave equation. From the point of view of
transient analysis it does not explicitly exhibit the causality
condition: v(g,t) = 0 for v < §. Actually (38) is a Fourier
series expansion of the periodic wave shown in Fig.l. The
function indeed is vanishing for £ > 1 > 0. In contrast to
Weber's presentation we treat (37) és consisting of two terms,
i.e., we let

V(g,s) = Vl(E,S) + V,(&,s) (39)
where - -
vy (E,s) = —e—ii:z—s—
s(l-e )
-(2-8)s
V,(E,8) = - S ——n .
2 s(l-e 23

By applying Mittag-Leffler theorem to the function

1-e~%5 25

which has no pole at the origin, a condition required by that
theorem, we obtain

£2s - . % [1+ s:g ]
l-e 2s n=t1 n
where
s, = jnm
hence
+00
1 1l 1 1 - 1
—— = [+ — ]
s(l-e 25) 2 g2 s n=t+1 sn(s—sn)

As a result of the shifting theorem we obtain
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L]

v (£,1) = U(t=g) [ 3+ 73 (1=€) + 1 L sin nn(t-£)]... (43)
VZ(E-T) = U(t-24E&) [ % + %(T-2+E) + ] sin nm(t-2+£)] (44)

n=1

Except for the negative sign Vz(E,T) is merely a delayed repro-
duction of vl(E,T). It is observed that because of the step
function U(t-£) contained in vl(E,t) the causality condition

is automatically met. It can be shown that our solution is
actually equivalent to Weber's because the function f(r) = l-71,
2 >t >0 has a Fourier series representation given by

s o2 .
l1-1t = ] = sinnmrt (45)
n=1 BT
Egs. (43) and (44) are shown in Fig.2. The sum of the two

functions yields again the periodic square wave shown in Fig.l.

Conclusion _

In this paper we have examined several distinct methods of
analyzing transients on lossless transmission lines with arbitrary
terminations. It appears that the integral equation method is -
potentially more appealing because from the information of the
first reflected wave it is possible to construct the kernal of the
intergral equation and subsequently to find the complete solution based
on quadrature. The singularity-expansion method , on the other
hand, does furnish the complete solution without iteration,
provided that the singularities of the response function are
available. Unfortunately, even for a simple series R-L termination
it is necessary to solve a transcendental equation to determine
the numerical values of these singularities. For a resistively
terminated load we have shown that the solutions obtained by
these different methods are analytically equivalent. This
establishes the foundation that for an arbitrarily terminated
line all these methods are equivalent. The methods discussed
here are equally applicable to the transient analysis of small-
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angle biconical antennas. The only difference is that the
: ternilnal impedance or admittance function involves exponential
integral functions hence the determination of the singularities

becomes more laborious. This work will be reported else-
where in a separate article.
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Fig. 1: v(&,1) for a short-circuit termination.

vl(E,ﬂ

2-§ 28 4-F #E  6-§ 64

0§

c— T

v2(§ ,7)

Fig. 2: vl(E,T) and vz(E,T) for a short-circuit

termination.



