016708-1 -L THE UNIVERSITY OF MICHIGAN RADIATION LABORATORY 016708-1-L 31 October 1979 AFWL/ELT (W. D. Prather) SUBJECT: R and D Status Report (Final) 27 November 1978 - 26 October 1979 PERIOD COVERED: CONTRACT: F29601-79-C-001 3 "Scale Model Measurements and Experimental Verification" CONTRACTING OFFICER: REPORT SUBMITTED BY: Valdis V. Liepa Principal Investigator Distribution AFLW/ELT (2) ACFMD/PKRA (1) ACO (1) File (1) 16708-1-F = RL-2292

016708-1-L This is the final progress letter on Contract F29601-79-C-0013 and summarizes the work accomplished under this program which covered the period 27 November 1978 to 26 October 1979 and a total funding of $71,750. In short, under this program measurement of surface currents and charges were made on scale model E-4B aircraft at 16 locations or test points under 7 different excitation conditions. The measured quantities were the axial surface current density component Ja, the circumferential surface current density component Jc, and the normal electric field component En. Of the 336 measurement situations a possible 96 were finally selected for measurement. The resulting data are presented in the Final Report, and the data in digital form have been delivered to Mitre Corporation on IBM cards in the form of amplitude and phase plots as a function of the full scale frequency. The attached figure shows a typical plot of the data from the final report. For this particular case the right wing of the model is illuminated downward by a horizontally polarized wave. This particular measurement was made using 1/100 scale model over frequency range of 125 to 4400 MHz which for full scale frequency reduces to 1.25 to 44 MHz. The measured value is axial current on top of the fuselage at station F1560T. Because of the presence of the HF wire antennas stretching from midpoint (STA:F1365) of the fuselage to the leading edge of the vertical stabilizer, the normal resonances of the aircraft are overwhelmed by the sharp spikes in the amplitude response believed to be caused by the response fo the HF wire that were shorted at the -1 -

016708-1-L fuselage but open circuited at the vertical stabilizer. This spiked behavior is present in the majority of the E-4B measurements. Attached is a table that summarizes the measurements that have been made and data delivered. This table is slightly different than that of the Contract Work Statement —the reason being that during the execution of this program some of the measurement stations and excitations were changed to match those of the full scale E-4B HPD and VPD simulator measurements. These changes did not appreciably alter the measurement effort; originally the program called for 89 measurements and by the end of the contract we had made 96 measurements. To our present knowledge, as of 31 October 1979, all the funds allotted to this program have been expended. -2 -

U Ib/U8- I -L g0. 20. 0 El 4 10.0 0.0 10.0 20.0 30.0 110.0 50. 0 21nn - n G LLI e UA W) a I100.0o -200. 0 -- 0. 0 E-1B. L. F 560T. I.JMi:EOlL __ __ __ _ _ __ _3 MAY 79 UM I 20. 0 30O 0 10. 0 50. 0 FfiE1QUE:NCY (MHZ) Ax-Aial Current at STA:1560T, Excitation 1, 1/100 Model. -3 -

E-4B SCALE MODEL DATA MATRIX EXCITATION 1 EXCITATIONI 2 EXCITATION 3 EXCITATION 4 Test Points =-600 e = 500 Nose-on ~ =-9O" e = 38 = 0" e = 38" [-horizontal E-vertical [-horizontal [-horizontal 3 3 E 3 3 E 3 3a J En 3 3 E a c n a c n a c n a c n 1 F156OT XUO3 O]RS,L* 02RS,L* 04SL 06SL O6ASL 2 F1N345 XE02 12S,L 13S,L 3 Fl22OT XU02 25RS,L* 26RS,L*27S,L 28SL 29SL 30SL 3OASL 3lSqL 31AS,L 32S,L 4 RWS917T XWO12 36SL 37SL 38SL 39S,L 40SL 41S,L 42S,L 43S,L 5 F130 XCO2 46SL 6 F460T XU0l 55SL 56SL 57SL 7 F590B XLO1 6]S,L 62SL 63SL 64SL 65S,L 8 F156OB XL02 6 9S,L 70S,L 9 F2200B XLO3 73SL 74SL 75SL 76SL 77SL 78SL 10 F2594B XEO4 79SL 80SL 81SL 82SL 33S,L 1] RWS917B X103 6S,L 87S,L 12 RlIS1S548T XI.035 9lS,L 92SL 93SL 94SL 95SL 13 RSTAB335 XEO3 98S,L 99SL 14 FIN595 XEOl 101SL 15 Bf11/8 16 Bl /2 *Data ideitifie~ without R are for ~ =.3Q06 9 = 500,

E-4B SCALE MODEL DATA MATRIX (CONT.) EXCITATION 5 EXCITATION 6 EXCITATION 7 Refueling Top Incidence Top Incidence Test Points Top Incidence E-par fuselage E-perp fuselage E-par fuselage J J E J 3 E J J E Ja C n a C n a c n 1 F1560T XU03 019S,L 1 OS,L 11S,L 2 FIN345 XE02 21S,L 22S,L 3 F1220T XU02 33S,L 34S,L 35S,L 4 R!!S917T XW02 44S,L 45S,L 45AS,L 5 F130 XCO2 47L,S 48L 49S,L 6 F460T XUO1 58L,S 59L 60S,L 7 F5903 XLO1 66L,S 67S,L 68S,L 3 F1560B XL02 71S,L 72S,L 9 F22003 XL03 78AS,L 78BS,L 10 F2594B XE04 34S,L 85S,L 11 RWS91 7B XW03 83L 89L 90S,L 12 RW1S1548T XW05 96S,L 97S,L 13RSTAB335 XE03 100S,L 14 FIN595 XEO1 15 BM1/8 102S,L;S. CR,L. CR 16 BM1/2 103S,L;S.CR,L.CR I I

V. V. Liepa D. M. Brown F. E. Lenning R. L. Turcotte October 1979 Interaction Application Memos Memo Measurements of Surface Fields on Scale Model E-4B Aircraft ABSTRACT Measured frequency domain data are presented for the surface current and charges induced on E-4B aircraft when illuminated by a plane electromagnetic wave in a simulated free space environment. The measurements were made on 1/200 and 1/100 scale models over frequency range 125 to 4400 MHz, simulating 0.6 to 44.0 MHz full scale coverage. The data are given for 16 test points, including the boom current for the refueling mode simulation, and seven different excitations. Excitations were chosen to complement the ATHAMAS I (HPD) and ACHILLES I (VPD) full scale measurements, and to provide data for comparison with theoretical studies. Authors are with the Radiation Laboratory, Department of Electrical and Computer Engineering, The University of Michigan, Ann Arbor, MI 48109.

PREFACE Generation of the data involved many contributors. In addition to the authors, M. Tomorski, I. LaHaie, C. Bickley, and M. Liepa were involved in the program. Ms. Wanita Rasey typed the manuscript. Their help is greatly appreciated. We are also grateful to Mr. W. Prather of AFWL/ELTI for the help provided from start to finish of this program. CONTENTS Section Page No. I INTRODUCTION 3 II MODELS 4 2.1 E-4B Models for Free Space Measurements 4 2.2 E-4B and KC-135 Models for In-Flight Refueling Measurements 7 III MEASUREMENTS AND DATA 10 3.1 Facility and Instrumentation 10 3.2 Measurements 11 3.3 Data 18

SECTION I INTRODUCTION The data presented here were obtained for the Mitre Corporation and the Air Force Weapons Laboratory to be used along with analytical calculations in the EMP analysis and also in determining the surface response extrapolation function [1] for the E-4B aircraft. The test points and excitation conditions in the scale model measurements were therefore chosen to conform to those of the full scale measurements made in the ATHAMAS I (Horizontally Polarized Dipole) and ACHILLES I (Vertically Polarized Dipole) simulators at Kirtland AFB, plus those appropriate for the in-flight refueling mode situation. The measurements are presented for 16 locations or test points on the aircraft under 7 different excitation conditions. The measured quantities are the axial surface current density component Ja' the circumferential surface current density component Jc' and the normal electric field component En* Of the 336 measurement situations possible, 92 were finally selected for measurement. The resulting data are presented in the form of amplitude and phase plots as a function of the full scale frequency, and have been furnished to the Mitre Corporation in digital form on punched cards for further processing. 1. Carl E. Baum, "Extrapolation Techniques for Interpreting the Results of Tests in EMP Simulators in Terms of EMP Criteria," AFWL Sensor and Simulation Note 222, 1977. -3 -

SECTION II MODELS 2.1 E-4B Models for Free Space Measurements For these measurements two scale models of E-4B aircraft were selected, one a 1/100 scale originally in the form of a plastic kit and the other a 1/200 scale model molded of plastic with wood filler. Both models were good replicas of 747 but some modifications were required to make them electrically equivalent to E-4B aircraft. These modifications included cutting back the nose to STA:F130 to simulate the nonmetallic radome (nose of the radome at STA:F90), adding the HF probe antennas to both wingtips on both scale models, and installing an HF wire antenna from the top of the fuselage to the leading edge of the vertical stabilizer. The two wires were shorted (see Figure 1) at the fuselage but open circuited at the vertical stabilizer. Having experienced a questionable short circuit condition in some of the previous measurements [2], we attached flush with the surface a small metal plate to which a small pin was soldered. The antenna wire was then wrapped around this pin. At the vertical stabilizer the open circuit condition was simulated by using a short nylon string section as a bridge between the wire and the model; the nylon section was 1/8 inch long for the 1/100 model and 1/16 inch long for the 1/200 model. 2. Valdis V. Liepa, "Current and Charge Measurements on Scale Model EC-130 Aircraft," The University of Michigan, Radiation Laboratory Report No. 016104-1-F; AFWL Interaction Application Memo 25, 1978. -4 -

FIN595 FIN345 43.8 percentile from fuselage (wires open) FB65 RSTAB355 Cq same distances - \.^\ ^ -- ^^" ----X-~-Bisector N RWS1548T RWS917TB -- F130 Figure 1. Location of the Wing Station and Placement of the HF Antenna. The Fuselage Stations Are Measured Along the Fuselage, as Usual.

After these modifications and smoothing the surfaces, the models were given several coats of silver paint (Dupont No. 4817) to make them conductive. To protect the "insulators" on the HF wires, the strings were masked with tape during painting. Finally, the models were very carefully measured for length and wing span to determine the scale factors to be used in translating the data from laboratory to full scale frequencies. The table below presents the scale factors. TABLE 1. MODEL SCALE FACTORS Fuselage Length Fuselage Wingspan Model w/o Radome Scale* Wingspan Scale* 1/100 68.10 cm 1/99.28 61.10 cm 1/97.61 1/200 31.10 cm 1/204.26 30.00 cm 1/198.80 * The above scale factors were obtained based on the following E-4B aircraft full scale dimensions. Fuselage length 68.63 m Fuselage w/o radome 67.61 m Maximum length (to vertical fin) 70.51 m Wingspan 59.64 m Because no model is an exact replica of the full scale aircraft, both the fuselage and the wingspan scale factors were used in reducing the data. One could take the average of the two and use it to reduce the data, but better results are obtained by using the scale factor corresponding to the structure that supports the mode which produces the measured field. For example, for the case of the axial current measured on the top of the fuselage (top incidence, -6 -

E-parallel to fuselage) the fuselage scale factor was used when reducing the data, whereas for the case of the circumferential current measured on top of the fuselage (top incidence, E-perpendicular to fuselage) the wingspan scale factor was used. For most situations it was clear which scale factor to use, but when it appeared that both the fuselage and the wings were instrumental in supporting the measured field, the fuselage scale factor was used. Figure 1 shows a sketch of the E-4B model giving locations of wing stations and attachment of HF wire antennas. 2.2 E-4B and KC-135 Models for In-Flight Refueling Measurements A new dimension added to the E-4B scale model measurements was the measuring of surface currents and charges on and near the refueling boom of an E-4B when refueled in flight from a KC-135. To simulate such conditions required a "matched pair" of models, i.e., models having the same scale. By searching through those in hobby shops and in our possession we found 1/125 scale models of both the 747 (Heller No. 856) and 707 (Heller No. 700) aircraft, and after appropriate preparation we made the first measurement of the current on the boom using a free space or external loop probe. It was expected at the onset that the combined length of the two models would determine the first resonant frequency in this case, and we hoped that it would fall within our measurement range. However, even at our lowest measurement frequency (125 MHz) we just missed the resonant peak. A pair of smaller models was therefore needed, and because we were not as lucky in finding a matched pair, we had to settle for 1/226.2 for the KC-135 and 1/204.26 for the E-4B. Since it is the combined -7 -

length of the two models that determines the resonant characteristics (at least for the lower modes), the average scale factor, 1/215.3, was used in reduction of the data. Table 2 gives pertinent numbers for refueling mode models. TABLE 2. MODEL SCALE FACTORS FOR REFUELING SIMULATION Fuselage Length Indiv. Scale Boom Scale Model Individual Models w/o Radome Factor* Diameter Used Large E-4B (1/125) 5493 m 1/123.09 0.24 cm 1/123.1 1/125 KC-135 (1/125) 1 cm /123.50 (3/32") Small E-4 (1/20) 31.10 cm 1/204.26 0.19 cm 1/215.2 1/215 KC-135 (1/225)6.20 (1/ —... 1/226.20 (1/8") * Based on fuselage length KC-135: 41.17 m E-4B: 67.61 m Figure 2 shows the dimensions of the models used for the in-flight simulationThe E-4B models were prepared the same way as before, that is, radomes removed, wing tip probes and HF wire antenna added. In fact, the small model, 1/204.26 scale, was the same as used before. The refueling booms were made of available brass stock and hence the boom diameter is only approximately to scale.* However, once the actual diameter of the beam is known, the data can easily be corrected. This technique along with the procedure used for correcting the data for probe integration is presented in Section 3.3. At time of preparation of this report we still do not know the actual diameter of the boom. -8 -

(a) 0.095" 0.095" dia 0.115" dia 115" (b) Large Small Figure 2. Modeling Used for In-Flight Refueling Simulation: (a) Geometry and Measurement Locations, (b) Size of the Current Loop (Sensor) Relative to the Refueling Boom. -9 -

SECTION III Measurements and Data 3.1 Facility and Instrumentation The measurements were made in the Radiation Laboratory's anechoic chamber, a facility especially designed, constructed and instrumented for surface field measurements. The measurement procedures were similar to those used in previous programs [2 through 7] apart from changes resulting from the continued upgrading of the facility and the measurement techniques. For these measurements, we extended the low frequency end of operation from 225 MHz to 125 MHz and added a phase-lock system to stabilize the frequencies at each incremental step in frequency. 3. Valdis V. Liepa, "Sweep Frequency Surface Field Measurements," University of Michigan Radiation Laboratory Report No. 013378-1-F; Sensor and Simulation Note. 210, 1975. 4. Valdis V. Liepa, "Surface Field Measurements on Scale Model EC-135 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-1-F; Interaction Application Memo 15, 1978. 5. Valdis V. Liepa, "Surface Field Measurements on Scale Model E-4 Aircraft," University of Michigan Radiation Laboratory Report No. 014182-2-F; Interaction Application Memo 17, 1978. 6. Valdis V. Liepa, "Surface Field Measurements on Scale Model F-111 Aircraft," University of Michigan Radiation Laboratory Report No. 014449-1-T; Interaction Application Memo 13, 1977. 7. Valdis V. Liepa, "Current and Charge Measurements on Scale Model E-3A Aircraft," University of Michigan Radiation Laboratory Report No. 015814-1-F; Interaction Application Memo. 29, 1978. -10 -

Figure 3 shows the block diagram of the facility. Note that the setup is similar to that used in the E-3A scale model measurements [7] except that now an EIP 371/17 Source Locking Counter has been incorporated into the instrumentation. In essence, after a frequency command (from the calculator) is given to the frequency generator, a command is sent to the counter to measure the frequency and then output a correction signal to the FM input of the frequency generator to adjust the frequency. Addition of this instrumentation definitely did improve our frequency stability and frequency accuracy, but had little or no effect in decreasing the spectral spread of the signal, which still is of the order of ~50 kHz. The lower frequency capability was obtained by adding a 100 MHz to 500 MHz power amplifier. We also added a series of low-pass filters to remove harmonics that were generated by the power amplifiers because both the counter and the network analyzer seemed to prefer to lock onto the second harmonic (-20 dB down) rather than the fundamental, especially below 500 MHz. 3.2 Measurements In all, charge and current measurements were made at 16 locations, including two on the refueling boom for the in-flight refueling simulation. Table 3 summarizes these stations. The top and bottom fuselage stations are located by measuring in (full scale) inches from the bulkhead (STA:F130) to the point indicated by the station number, such as F1220T. This station would then be 1090 inches from the bulkhead. The procedure for locating the wing and tail fin stations is shown in -11 -

0 I LUUL ^IANIAL I- EIP 371 POWER 10 dB FREQUENCY < SPLI —TTR - DIRECTIONAL t --- — COUNTER COUPLER Cal REFERENCE UTE I -— P-OS TEST SIGNAL I PREAMP < — PR L i -. ---- ANECi OI C r CNETWORK - CHAtBER I ANALYZER i 0.... |f(( S m! \ / ANTEINA Fcm t M i./ I: I 4' - CRT ----- DIGITAL SIGN I,, DISPLAY -—.ANALOG SIGNA z 1 * SOLID STATE 0.125-1.1 GiHz MULTIPLEXERT 0.94-4.4 GHz UL PLxER I, POST PROCESSING P 2703A -—. --- —. —> ^/D COINVERTER |. - DIGITAL I DIGITAL PLOTTER L- lHP 9830A ~ --- DATA U UNIV. OF MIC. ' DESKTOP COM.PUTER COMPUTER PUNICHt CAhDS I CONTROL & STORAGE AI ADAIIL 470 V/7 _ I _ TERMINAL -; --- --— J Figure 3. Block Diagram of the Measurement Facility. IAL -12 -

TABLE 3. MEASUREMENTS LOCATIONS ON THE TEST MODELS No. Test Point | Station Number Location,,i 1 XU03 F1560T Rear Fus Top 2 XE02 FIN345 Vert Stab, Rt Side, Mid 3 XU02 F1220T Mid Fus Top 4 XW02 RWS917T Rt Wing Top, Mid 5 XC02 F130 Fwd Bulkhead (nose) 6 XUO1 F460T Fwd Fus Top 7 XLO1 F590B Fwd Fus Bottom 8 XL02 F1560B Rear Fus Bottom 9 XL03 F2200B Rear Fus Bottom 10 XE04 F2594B Rear Fus Bottom 11 XW03 RWS917B Rt Wing Bottom, Mid 12 XW05 RWS154BT Rt Wing Tip, Top 13 XE03 RSTAB335 Rt Horiz Stab, Mid 14 XEO1 FIN595 Vert Stab, Rt Side Tip 15 BM1/8 Refueling Boom, 1/8th from E-4B 16 BM1/2 Refueling Boom, Midpoint --.

Figure 1. To locate a station on a wing a bisector was drawn on the scale model as shown in the figure. The mid-wing stations are located at the midpoint of this bisector as measured from the fuselage to the wingtip. The wing-tip stations are also located on the bisector at a distance of one half the wing-tip width in from the wingtip edge. See the right wing in Figure 1 for details. The measurements on the models were made for 7 different illuminations each having a prescribed polarization usually referenced to the fuselage of the aircraft. In our measurements these are often referred to as orientations since in the chamber-the direction of illumination and polarization is fixed and the model is oriented to obtain appropriate excitation. Figure 4 shows the various directions of illumination and describes each one in the legend. For more details, see Figures 5 and 6 which show the aircraft orientations at the HPD and VPD simulators, respectively. With the exception of the boom current and some of the axial current measurements at stations F130, F460T, and F590B, where the external loop probe was used, the current and charge measurements were made using miniature surface-mounted probes [8]. To mount these, holes were drilled in the model through which to pass the sensor lead. When a particular hole was not in use, it was taped over with copper tape which, as far as we can ascertain, introduced no noticeable effects on the measurements. 8. Valdis V. Liepa, D. L. Sengupta, J. E. Ferris, and T.B.A. Senior, "Surface Field Measurements with Image and Ground Planes," University of Michigan Radiation Laboratory Report No. 014449-1-F; Sensor and Simulation Notes, Note 224, 1977. -14 -

E H. k H E E E H k H H H ~ ~a E-horizontal, - = -60o, 0 = 500 (HPD, Figure 4) E-vertical, Nose-on (VPD, Figure 5) E-horizontal, ~ = -90~, 0 = 380 (HPD, Figure 4) E-horizontal, c = 0~, e = 380 (HPD, Figure 4) E-parallel to fuselage, Refueling Mode, Top Incidence E-parallel to fuselage, Top Incidence E-perpendicular to fuselage, Top Incidence Figure 4. Illumination Directions (Orientations) and the Measured Current Components. -15 -I

Edge of Concrete Pad Figure 5. Notation for Aircraft Orientation at the HPD. angle of the source with respect to the center fuselage is 8) (Elevation axis of the -16 -

-- Edge of Pad Figure 6. Notation of Aircraft Orientation at the VPD. (Elevation angle of the source with respect to the center axis of the fuselage is e) X17 -

3.3 Data The data presented were measured in an anechoic chamber with the model supported by a styrofoam pedestal plus especially prepared styrofoam supports to orient the model appropriately in relation to the incident field. For each measurement situation the data were obtained for the two models over three frequency bands; the bands were then combined to provide a transfer function, as measured on the large (L) and on the small (S) scale models. Due to the different number of sampling points used in each frequency bandplus the fact that the measurement frequencies were divided by the model scale factors to obtain the full-scale data, the sampling rate is not uniform throughout the data. In addition, much of the data was resampled when the bands were combined. When the data was originally recorded, 185 points were used in Band 1 (125 - 1100 MHz), 122 in Band 2 (950 - 2200 MHz), and 144 in Band 3 (2000 - 4400 MHz). However, due to an occasional failure of the network analyzer to properly lock onto the signal at the start of a measurement, a few (perhaps a half dozen) points were sometimes omitted from a data set. In the data presented there are typically 416 data points for the transfer functions measured on large models and 347 data points for those measured on the small models. The exact number of points and the frequency range covered in the processed data are given (amongst other information) in line 5 of a data file (see Table 4). Typically, for the E-4B measurements the full scale frequency coverage obtained from the small model (1/200) is 0.63 - 20.0MHz, and that for the large model (1/100) is 1.25 - 44 MHz. -18 -

TABLE 4. TYPICAL DATA FILE 1US 2. F- E4IiRFRSiT5(,0,I,/27Ii 3;A FYCOz 3, 1 ( 4P~FL. E:E Ai.TA FO('R r% F rI.w1."i.. IN( 6 7 a 9 1 0 1.2~ 1 3 1 4 1., 1.6 1 7 1.13 20 21. ""3 2 5 216 2 8 2 9 3 0 0.975'' 0.9591 I 2':159 1.85T,9 2.1.59 2 759 3.059 3,*359 3. 6,59 3,*959 4..* 259 4,559 5.459 5). 759 6.059 6 *359 6.959 7. 259 7. 5Y'79 3.1059 29.,.15 20.9,59 291 * 25 13 9 131 3 6 113 ~3 It,,U 3,1, 3.1. V5 7 3 5,5 57 13.2530 571.299 0,757 0. 6 O!3 0.646 0.893 0,649 0, 574 0.4170 0.639 1.0412 1. I192-' 1.307 1 *7:36 2.169 1. '97a 0.643 0.*62:3 0. Y94 0. 4.32 0.895 1. 025' 0. 92.6 0.701 0. 537 0. si1: I, 0 *1 59() 0, 2 3'171 0.1 7':. 0. 49" 0 4 5 07' 0. 07.1.30.64 -'.1':'. 32 4'70,: 9:3, 1.97.13. 68.-23 41.14 49, 83 10.8:3 697,5.35 -8. 54 -581 019 -85 98a -14 8.47 1 3 I 1.0Api 31.~70 1/O 5 65 1 3 0.5:3 16. Y 1'9) 1.9 '30 I J 4' 1. I3-, )L, 11.! 3' "i'* J3 31 P R II;., 1 15 ' 509 1 0"''? 1. 6 59. 1 etl9 7 I) 3;.1 9 4.3 4 f-r'9 4.6; 9. 1.59 6.1.9 6.4 '79.7.03.9 7 959 29. 29. 13 30.458"F-:3 1 * 0513,;: 3 I 93 E 1. /.19 3 3 1....7 34 7 -2?7. I6 57,. i r5 2 * 490 2 * 00.4 1.I 2?8 7 0 * 8:6 0. 61.8 0.1382 0. 91394 0.:309 1.379 1 2:36 1.. 725P 2. 35() I * 713?5 1. *7,6? 0. 639 0.53.29 1. 0107 0. 403 0,409 0. 506.4 0 "'(.:[ (-"0 13. '.09 07 ('3 -18 i).)N ' 1.97., 0 34,189 -1.38.44 -1. 10 1.66. 92 135, 20) r5 6. 10 43. 136 70.50) 50. 02 — 9.12 "42.45.-32.09 ---.40) 7.4 ~7 — 130.41 -137. 07 -1-l1.9. 63 -11.2.2:1 -1,23.6.1 -—.1.60.30 -149,:30 -131.25 - 1.30.6,5 — 1.49. 99 -J99.11. -I 6. 696 1 61.1: P I "".62.7 3.47 1. 159 1. 459 1. * 759 2.59 2.59 3..259 3,.!55 9 3.8959 4. 1 59.4, 459 4, 759 5959 6 -.259 6. 559 6.,- 859 7. 159 7.459 7, 759 8.,359 2131.4 15 13 29. 0578 29. 350 2'9 9913( 30.29)"13 '31. 'I B 3 1 /!58 -32 "C 6513!;f.:134.71 57 '311. '5 7 7. 973 6. 991 1.*790 0.753 0.499 0. 735 0.8,47 0. 761I 0,.5)98 1,028. 1..142 0.2 13 0.390 0.4.4:3 0.-508 0.734 1.218 1 * 493 1. *530 1.839 2. 141 2.119 1.949 0.655 0. 5-5? 0.420 Oo.4,62 0.594 0.779 0. 958 0.9513I 0.3593 0 085, 0. 6""'C 0. 415- J 0. 3(~( 0. 1 45 0 "20 4 0. * 0,.47 050.1 "24. 9 9 J16.27 77.*83 1:30. 91 78.78 13/7. 43 7 1.-651 47.09 58.1.7 62. 00.43.,80 -8:3.66 — 41.89 36 -9.76 — 38. 14 — 101I.36 — 14J..3 67 -14"'.2. S4 — 1.48.1.7 -- 0,6.37 I-157 #'.)29; -1.64.06 -:151.65 -143. 40 — 1:34. 3o 1 '33. E ' —150.64 I 3 3 "" '7 I -3I9 13 7,"( J**".1* 9 9 f 96 97 '98 99 1.0 1.01 1 04 1106 1.19 113 114D -19-*

For the refueling mode measurements the frequency coverage obtained from the small model (1/215) is 0.6 - 20.5 MHz and that from the large model (1/125) is 1.0 - 35.2 MHz. Figure 4 gives the directions of excitation, the polarization relative to the aircraft, and the convention adopted in specifying the circumferential and axial surface current components, Jc and Ja9 respectively. In all cases the component Jc is perpendicular to Ja* The data presented are normalized relative to the incident field: J/H0 for the surface current data and En/E0 for the charge data. The phase is referenced to that of the incident field at the station where the measurement was made, based on the eiwt time convention. For the measurements of surface currents and charges on fuselage and wing stations, the condition that the size of the sensor is small compared to the wavelength and the local radii of curvature of the surface where the measurement is made is satisfied. However, this is not the case with the axial boom current measurements in the refueling mode configuration. As shown in Figure 2, the diameter of the loop sensor is of the same order as that of the boom, and because of integration of the field over the (equivalent) area of the loop, it is to be expected that the true (magnetic) field at the surface of the boom will exceed that which was measured. We have studied the effect of loop integration previously [9] and have developed a method for correcting surface current data. The corrections have been applied to the boom current measurements and both the measured (uncorrected) and corrected 9. V. V. Liepa, G. A. Heyboer, and F. P. Rhine, "Response of Small Loops in Non-Uniform Magnetic Field-Experimental Results and their Implication," Presented at APS International Symposium, University of Massachusetts, Amherst, Mass. 1976. -20 - I I I i I. I I i I

data are presented. When using the boom current data, further correction may need to be applied to the data. As mentioned in Section 2.2, the boom diameters on the models were not precisely scaled, mainly because the actual diameter was not known, and even if it was known the mere process of silver painting would change the diameter enough to warrant correction of the data. Since the total bulk current on the boom is mainly determined by the combined geometry of the E-4B and KC-135 models, and the measured 3I I >>~, i.e., the surface (magnetic) field is much greater than the incident field, the corrected surface current J3 is C D c cD ' where D is the actual (full scale) diameter of the boom and Dm is the diameter of the boom used on the model, multiplied by its scaling factor. Table 5 summarizes the situations for which data have been obtained and gives the figure numbers where the plots for each case can be found. The figure numbers are the same as those of the data files with the letter S (small model) or L (large model) specifying the particular model used in the measurement. The (digital) data files are also identified with the same filename given in the upper right-hand corner of the plots. Plots of the data are given in the data section. In addition to the plots the data has also been furnished to AFWL and Mitre Corporation in digital form on punched cards. At the Radiation Laboratory the data is stored on (IBM compatible) magnetic tape in format: -21 -

Line 1 FILENAME (4A4) 2 Comments (18A4) 3 Comments (18A4) 4 TITLE used in plotting (18A4) 5 FMIN, FMAX, AMPMIN, AMPMAX, PHASEMIN, PHASEMAX, NN (4F8.3, 2F8.2, 15) 6 F(1) AMP(1) PHASE(1) F(2) AMP(2) PHASE(2) F(3) AMP(3) PHASE(3) 3(2F8.3, F8.2) 1. 4-p -o............ F(NN) AMP(NN) PHASE(NN) where NN is the number of data points in the set. Table 4 is an example of a typical data file named E-4B.! -22 -

TABLE 5. E-4B SCALE MODEL DATA MATRIX EXCITATION 1 EXCITATION 2 EXCITATION 3 EXCITATION 4 Test Points =-60~ e = 50~ Nose-on 4 =-90O e = 38~ 0 = 0~ e = 38~ Test Points E-horizontal E-vertical E-horizontal E-horizontal | a c En a c n a c n a c En 1 F1560T XU03 O1RS,L* 02RS,L* 04S,L 06S,L 06AS,L 2 FIN345 XE02 12S,L 13S,L 3 F1220T XU02 25RS,L* 26RS,L*27S,L 28S,L 29S,L 30S,L 30AS,L 31S,L 31AS,L 32S,L 4 RWS917T XW02 36S,L 37S,L 38S,L 39S,L 40S,L 41S,L 42S,L 43S,L 5 F130 XC02 46S,L 6 F460T XUO1 55S,L 56S,L 57S,L 7 F590B XLO1 61S,L 62S,L 63S,L 64S,L 65S,L 8 F1560B XL02 69S,L 70S,L 9 F2200B XL03 73S,L 74S,L 75S,L 76S,L 77S,L 78S,L 10 F2594B XE04 79S,L 80S,L 81S,L 82S,L 83S,L 11 RWS917B XW03 86S,L 87S,L 12 RWS1548T XW05 91S,L 92S,L 93S,L 94S,L 95S,L 13 RSTAB335 XE03 98S,L 99S,L 14 FIN595 XEO1 101S,L 15 BM1/8 16 BM1/2 ~.... - -........... r) ^o *Data identified without R are for a= -30~, e = 50~.

TABLE 5 (CONT.). E-4B SCALE MODEL DATA MATRIX EXCITATION 5 EXCITATION 6 EXCITATION 7 Refueling Top Incidence Top Incidence Test Points Top Incidence E-par fuselage E-perp fuselage E-par fuselage Ja Jc En Ja Jc En Ja Jc E 1 F1560T XU03 09S,L 1OS, L 1lS,L 2 FIN345 XE02 21S,L 22S,L 3 F1220T XU02 33S,L 34S,L 35S,L 4 RWS917T XW02 44S,L 45S,L 45AS,L 5 F130 XC02 47L,S 48L 49S,L 6 F460T XUO1 58L,S 59L 60S,L 7 F590B XLO1 66L,S 67S,L 68S,L 8 F1560B XL02 71S,L 72S,L 9 F2200B XL03 78AS,L 78BS,L 10 F2594B XE04 84S,L 85S,L 11 RWS917[ XW03 88L 89L 90S,L 12 RWS1548T XW05 96S,L 97S,L 13RSTAB335 XE03 100S,L 14 FIN595 XEO1 15 BM1/8 102S,L;S.CR,L.CR 16 BM11/2 103S,L;S.CR,L.CR --— i — I-!,.

- - - DATA- - -

30. 0 E-ILB,S.F1580T. 1.JAeEOIS 20. a 2 a e C) us - cm E: 1Cd -4 F-3 IL I cc II TOP 10.0 I. 0. 0 10 HOT 79 UM IL 10 MAT 79 1114 10. 0 20. 0 30. 0 110.0 50. 0 200. 0 - I I. I I 10.I E-tB. S. F1560T. I. J~tEOlS 4 G uj CS uj an cc A.. 0. 0 I - 1 0 0. 0 - 1 -200. 0...( - 0 I 1I ____?IMRY 79 UM - 20. 0 s0.o0 LIO.o 50. 0 FRIEQUENCY (MHZ) 1 0. 0 Figure OlS. Axial Current at STA:F1560T, Excitation 1,* 1/200 Model. (1* done for ~ = -.3Q00 0 = 500) -26 -

tb n 1% I I u I E-I&B.L.F1560T.1.JAtE01L 20. 0 2 TOP MA 79 UM I 10.0 1 - I 0.0 I 0. 0 100. 0 r 1 0. 0 20. 0 30. 0 110. 0 5 I E-11B.L.F156OT. 1.JFAEOlL 50. 0 - - I i I I i i I 1 1 I I I G uj e LLI in M. CL. 0. 0 [ I — 100.0 ~ -200.0 1-. - 0. 0 __ _ _ _ __ _ 3 MAY 79 U N I10. 0 20. 0 30. 0 110. 0 50. 0 FREQUENCY (MHZ) (1* done for ~ = -30', 0 = 500) -27 -

30.0 EUBSF1560T,, JR.EOIRS TOP 18.0 3 12. 0 8. 0 n -n 23 JUL 79 UM! I V * V - 0.0 30.0 40.0 50. 0 200.0 G u UJ To ~c 3l: s. FREQUENCY tMHZ) Figure O1RS. Axial Current at STA:F1560T, Excitation 1, 1/200 Model. -28 -

3 0. 0 I I- i 2LI 0 I a. 0 -j 0 Z; m =3 I — Cd -4 -D 616. Cc E14B.L.F15BOT.1.J~tEOIRL I I L 79 UMH 12. 0)~. a.oL~ 0. U I. I — I -N., I 0. 0 2 00. 0 -- 30 * 0 '40. 0 50. 0 I - EL4B.L.Fl56OT.1.JRtEOlML 1 00. OK~ G uj C3 uj cn X. 4 0. 0k - I0 0. 0 K -20 0I - n I 23 JUL 79 UM. V L I I - I I 0. 0 1 0. 0 20. 0 30. 0 '40.0 50. FREQUENCY (MHZ) Figure O1RL. Axial Current at STA:F1560T, Exiain1 110Mdl. 0 -29 -

14.0 3.0 -~ 0 Ih — - 2.0o t I -— r-" -I EtUBS,F1560T,1.JCsE02S '~Alt i i i I I TOP 1.01 ______ ___ - 18 MAY 79 UN j 0. 0 1 0. 0 20. 0 30. 0 10. 0 50. 0 200. 0 1~- I —r ----- E'hB.S. F1560T.1. JCa E025 100.0 ~ G ui C3 ui VI cc a 0.0 1. -100.0 ~ I 15 MAY 79 UK 50. 0 -200. 0L 0. 0 I10. 0 20. 0 30. 0 110. 0 FfIEGUENCY (MHZI) Figure 02S. Circum~ferential Current at STA:F1560T, Excitation 1,* 1/200 Model. (1* done for ~ = -30O, 5 = O - 30 -

EtB. L. F1560T,.1.JC. EO2L 3'0 o. TOP - I ui el I — -i 9L zc ct; 0 ' — 2.0 CU 1.0 L I I I I I A 18 MAY 79 UN 1 —.4. — - 0.0 o. 0. 0 1 0. 0 20. 0 30. 0 '10. 0 50. 0 200. 0 1 00. 0 Ln 0. 0 - 1 00. 0 E14S.BL. F1560T,.1.JC: EO2L -200. 0 L.0. 0 15 MAY 79 UN I 50. 0 1 0. 0 20. 0 30. 0 10. 0 FRIEQUENCYT(MHIZ) Figure 02L. Circumferential Current at STA:F1560T, Excitation 1, 1/100 Model. (1* done for p = -30', 6 = 500) -31 -

a6.0' -I -ri ELAB.L.F1580T. 1.JCtEO2IiL E<I f4. 0 TOP a: 4 =! 0 Au C3 li 1-O -j F —3 a2c cc 2. Ok.. - -L- ~ - - - — I - - --- - 2 1 J L7 9 i I II um i 0- f) V. W. I -A- -4 0. 0 1 0. 0 20. 0 30. 0 'A 0. 0 50. 0 200. 0 1 00. 04 I ELLB.L.FI56OT.I.JCsEO2ML G ui S uj 4n cc Cl 0. 0 1i -10 0. 0 *1 -2 00. 0I - - 4 -0.0 1 0. 0 21 JUL 79 UM '1.0 0.00 - - - - -1 — - 20. 0 3 0. 0 FREQUENCY (MHZ) Figure 02IRL. Circumferential Current at STA:F1560T, Excitation 1, 1/100 Model.

6.0 -I T Tr EI&B.S.Fl560T. 1.JCuE02RS 4.0 -i 0 C) 2. 0 n-f TOP 21 JUL 79 UM W. -, 0. 0 I10. 0 20. 0 30 * 0 40. 0 50. 0 200. 0 -r E4B.5.F15BOT. 1.JCtEO2EiS I I G ul e LLI cn cc IL 10. 0. 0 -1 00. 0 I I I I1 I - 123 JUL 79 UM -e-vu. I I I I I V L - - L- I - I 0.0o I10. 0 20. 0 30. 0 FREQUENCY (MHZ) 40. 0 50. 0 Figure 02RS. Circumferential Current at STA:F1560T,. Excitation 1, 1/200 Model. -33 -

50. Q.0 I I I I I40. 0 [ 30. 0 -4 0 6.4 20. 0 E-%&B.S. FIS60T.2. JR EO'4S E i& MAT 79 UM 10.0 o.o L 0..0 1 0. 0 20. 0 30. 0 I4 0. 0 50. 0 200. 0 100. 0 - 0. 0 -10. -200.0o 1 0. 0 1 0. 0 20. 0 3 0.0 LI0. 0 5 FFIEQUENCY (MHZ) Figure O04S. Axial Current at STA:F1560T, Excitation 2,, 1/200 Model. 50. 0 -34 -

50. a r E-I&5. L. F1580 T. 2. JR s E0OLL 30. 0 Ow 0 1r 0. 0 1 0.0 20. 0 30. 0 &0. 0 50. 0 200. 0 -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ E-115.L.F156 T,2.JRIE IlL 1 00. 0 - 0.0 -1 00. 0 -.200. 0 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 M AT 79 UM 0. 0 1 0. 0 20. 0 30. 0 10. 0 50. 0 FREQUENCY (MH-I) Figure O04L. Axial Current at STA:F1560T, Excitation 2, 1/100 Model.

50. 0 I I I I '40. 0 -2 30. 0 -2 0 20. E-Z4B.S. F1560T. 3. JAgEO6S -. ~4 RY 79 UM 10.0 ~ 0. 0 10.0 20.0 30.0 '10.0 50.0 E1&B.S.FI560T,3.JAtEBSS 100.0 [ Z; "i C3 Ui gn cc CL 0.0 [ -1I00. 0 1 - -20 0. 01L. '4 KR 79 UM I 0. 0 1 0. 0 20. 0 30. 0 '&o.o0 50. 0 FRIEQUENCY 1MHZ) Figure 06S. Axial Current at STA:F1560T, Excitation 3, 1/200 Model. - 36 -

50. 0 E-4H. L. F1560T. 3. JR.EO6L 4 0.0 [ g 30. 0: 0 cti 20. 0 JA 79 UM 10.0 ~ 0.0 1 0. 0 10. 0 20. 0 30. 0 410. 0 50. 0 200. 0 1 00. 0 -! 0. 0 -1 0 0. 0 -200. 0 [1 ~J. LJ 0o. 20. 0 30. 0 40.0 5 FREQUENCY 1MH7) Figure 06L. Axial Current at STA:F1560T, Excitation 3, 1/100 Model. -31 -

IL.1.I-, I I E4 B. S, F1560T, S. JCs E06RS S.0o - 0 tt) 2. 0 18 MAY 79 UN 1.0 0.0 o 0. L J.. — -. 0 I10. 0 20. 0 30. 0 '40. 0 50. 0 '200. 0 1 00. 0 E! 0. 0 -100. EILB. S.F15S0T.3. JCa EO6AS ____ 18 MAY 79 UN 20.0 30.0 '40.0 50.0 FRiEQUENCY (MH-Z) -200. 10. 0 Figure 06AS. Circumferential Current at STA:F1560T,. Excitation 3, 1/200 Model. -38 -

I I E49LB*L*F1 560T,*3.JCemEO6RL 2.01 1.0 0.0 Y___ _79___ LUH.. 0.0 10.0 20.0 30.0 '10. 0 50. 0 E'4B.L.FiSeoT. 3. JCu EO6RL 100II 0.] 2 H' -100 J Moel -39 -

80. 0 E-AB. S. F1560T. 6. JA:EO9S 60. 0 Il 0 P- -, 0.0 20. 0 0. 0 ti RY 79UM 0. 0 10. 0 20. 0 30. 0 IL0.O 50. 0 200. 0 __ _ _ _ _ _ _ _ _ _ _ _ _ _ E-Zi8.S. F1560T. 6.JR: EO9S 1 00. 0 E! 0.0 -1 00. 0 -200.0 MR79U 0.0 1 0.0 20.0 30.0 LIO. 0 50.0 FREQUENCYT(MHZ) Figure 09S. Axial Current at STA:F1560T, Excitation 6, 1/200 Model. -40 -

60.0O I I 60. 0 ~ &-0 20. 0 E-'1B.*L. Fl560T. 6.JA: EO9L' czrnz 0. OI. 0.0 200. 0 r 10. 0 20. 0 30. 0 '10. 0 50. 0 E-'B. L. F1560T. 6. JAs EO9L 100.0 [ G ui ki cr. IL 0. 0 -1 00. 0 j -200. 0 0. '1 MAY 79 UM 0 10. 0 20. 0 30. 0 '10. 0 50. 0 FfiE0UENICTM&H71 STA:F1560T, Excitation 6,5 1/100 Model. Figure 09L. Axial Current at -41 -

25. 0 20. 0 I oL 0 5. OL. 0. 0 200. 0 1200. 0 -0. 0 Fiurn lS E-4~B. S. F560T. 6.0: EOS 29JUN 79 UM 1 0. 0 20. 0 30.0 'IO. 0 50. 0 FflEQUENCY (MHZ) Normal Electric Field at STA:F1560T, Excitation 6, 1/200 Model. L.42 -

25.0 20. 1T; 0 L. I 0.0 ri 0...N 79 UM 0.0 10.0 20.0 0.040. 50.0 200.00 ' E4B L.F1560T 6.Q:EIOL 1o0.0oi o. ~ -200.0..._. _I__ 29 JUN 79 UM 0.0 10.0 20.0 30.0 40.0 50.0 FREQUENCY (MHZ) Figure 10L. Normal Electric Field at STA:F1560T, Excitation 6, 1/100 Model. -43 -

S. 0 11 - I -, - r I I I I 6.0 ELIB. S. F1560T. 7. JCs ElI IS T- -: 0 lr1 C3 11. 0 L 2. 0 [.4 ~- I 50. 0 0.0o L0. 0 ____ ___ _ __ __ ____ -_ _ _ _ 15 M A Y 19 U 1 0. 0 20. 0 30. 0 210. 0 200. 0. ---- --- ---. -- i II E4B.S.FI560T.7.JCvEIIS II i II I 7 I 100.0 i I I I i V I G ui Ca ki WI cc VA 0. 0 -100.0 ~4 -20 0. 0 - 0. 0 10. 0 20. 0 30. 0 FREQUENCY (210HZ) ___ 15 MAY 79 110. 0 50. 0 Figure u1S. Circumfferential Current at STA:F1560T, S xcitation 7, 1/200 Model.

6. 0 i I ELIB.L. Fl560T. 7.JCtEl IL 6. 0 uj Q.m F.- -, 4. 0, -j O CL F-:) 2r. cr 2. OL 16 JUL 79 UM 0 n. u I I I I I - 0. 0 I10. 0 20. 0 30. 0 40o. 0 50. 0 200. 0 ELIB.L.F1560T.7.JC:EIIL 100.0 [ G C2 LLI in cr X: A -1 00. 0 -200. 0 0. 0 I I i I I iII 1 0. 0 20. 0 30. 0 FREQUENCY (MJIZJ 15 MAY 79 UM 10. 0 50. 0 Figure ilL. Circumferential Current at STA:F1560T,5 1/100 Model. Excitation 7, -45 -

5. 0 E4B. S. FlN345.1. J~u El2S I --- ",A 4. 0 To0P - 0 Ct, 3. 0 2. OV 0. 0 1 0. 0 20. 0 3 JUL 79 UM I I I 30. 0 4 0. 0 50. 0 2 0 0. 0,, I E4BSFIN3U5,l.JRsEl2S i I I I i i I 1 4 I. 1. - --- -- - ----. - I I i i i -4 I100. 1; ui In uj WI cr rk - 100a. 0 -i ______ 3JUL 9 U 10.020.030.040.050. FREQUNCY t~hZ - 2 00. 01 0. 0 Figure 12S. Axial Current at STA: FIN3145, Excitation 1, 1/200 Model. -46 -

5. 0 ELIB.L.FIN3LA5.1.JFI:El2LI A AE- I7 2 T4 Ur O sn = -j Cd a- F2r. ) cr. I 2. TO0P I. o. I3 JUL 79 UM U. v I 0. 0 10. 0 20. 0 30. 0 40. 0 50. 0 2OD.o — ' 1 I- - 1 EL4B.L.F1N3L45,I.'RcEl2L 00f. 0 0. 0' 1; uj p tu cn 7. a -100.0 4 40. 0 5 0. 0 -2 00. OVLA 0. 0 1 0. 0 20 ~.0 30. 0 FRiEQUENCY (MHZ) Figure 12L. AIxial Current at STA:FIN3)45, Excitation 1, 1/100 Model.. I I 1 i I

5..0 4. E4B.S.FIN345.1.JCtEl3S T-0 P -j 0 uj:114 im — '=3 I- U -1 F-D CL 21. 3. 0 2. 0~ 1.0o -4 50. 0 3 JUL 79 UM 0. n I I iu i I - -.- I........... 0. 0 1 0. 0 20. 0 3 0. 0 40. 0 I 200. 0................. r - -- - - I -- - --- - - - - I EL1B.S.FIN3SU.1.JC:El3S G uj e uj cn a - 1I — tI I i I I -1 I I 0. 0 — _ __ _ 4 __ __ __3 JUL. 79 UM I 0. 0 20. 0 30. 0 40. 0 50. 0 FRlEQUENCY (M1HZ) Figure 13S. Circumferential Current at STA:FIN345, Excitation 1 1/200 Model.' 1 -48 -i I i i

EUB.L.FIN345.1.JCxE13L 14. 0.A T 0 I 2 -j 0 ;i =19-"" — t — U -j F-D Svc 2. 0 111t II i i I I. 0 i 0.0 ~ 4~ ____ _________ - 3 J UL 79 UM 0.0 1 0.0 20. 0 30. 0 40. 0 50. 0 E'4B.L.FIN3145.1.JCsEl3L 10 0 -4 w uj en uj WI cr a I I II 0. 0 I tI 1 I I -4 i i - I00. 0 - -200. C 1 -. 0. 0 -4 50. 0 3 JUL 79 UM I I I I 1 0. 0 20. 0 3 0. 0 FI9EQUENCT CMHZ] 4 0. 0 Figure 13L. Circumferential Current at STA:FIN345, Excitation 1, 1/100 Model.

8.0 I — I- - I I -- ELLB.,F.INS45.8.JAE21S I. It_ z1z4 - 0 I~- --- 2., 3 JUL 79 UM 40o. 0 50. 0 V.VL I 0. 0 10. 0 20. 0 30. 0 200. 0 -T - I__ _ _ _ _ _ _ _ _ _ _ _ __ ELLB5.FINSLL5.6.J~vE21SI G e uj in cc a - - -~ ___-~ —.-~-. ---~ —~___ JUL 79 Uim 0.0 10.0 20.2 30.0 40.0 50.0 FREQUENCY (MHZ) Figure 21S. Axial Current at STA:FIN345, Excitation 6, 1/200 Model. -~50 -

6. 0 r ~ i EIIB. L.FIN3'45.6.JRxE21L 4j 0 - 2.Ok 71.!-4 uj 0 1= m:3 ll -j Cd &- F-.) M.. cc I I I i I I II 3 JUL 79 UM 0. 0 --- I I --- 1 0. 0 1 0. 0 20. 0 30. 0 110. 0 50. 0 200. 0 -- -- -ELLSB LFIN34~ 5. JAE21L -200. ____- ___3 JUL 79 UM. 0.0 1 0. 0 20. 0 30.0 40. 0 50.0 FMEQUENCT CMH2) Figure 21L. Axial Current at STA:FIN345, Excitation 6, 1/100 Model. -51 -

ILB I15.0 --10 5r11.0h~ 0.0 10. 0 20. 0.S.*F.IN34A5 *6. 9:E22S I -1 I.It,, I 'R i -1 I 30. 0 3 JUL 79 UM '10. 0 50. 0 20 0. 0 I I I 00. 0 I I i I I 1! 1! II I 0. 0 i1 I I a uj e uj gn 7. 9L E4B. S. FIN34~5. 6.0:E22S __ __ JUL~ 79 UM 20.0 3 0.0 Li0.0 5 0.0 -1 00. 0 -200.0oL - 0. 0 1 0. 0 FfiEQUENCT (MHZfI Figure 22S. Normal Electric Field at STA:FIN3145, Excitation 6, 1/2'00 Model. i!~-52 -

20. 0 15. 0~ E49. L.FIM345.6B. QuE22L {AI~IAI79 UN.5.0o 0.1 - -j to. 0 20. 0 30. 0 40. 0 50. 0 I.)nn n I ievu. v I. I I i i 00. 0, I i i A1, EWS~. I 545.6 Ci E 22 L G Lki R uj cn cr X., CL. 0I0 — 4i!i i i I I I I -1 II I I I I i I I p I I I 11 50. o -1I00. 0, 3 JUL 79 UM - U:U. I ______- -- -L. L I I 0. 0 I10. 0 20. 0 30. 0 F MEQ UEN CY (MHIY) 4 0. 0 Figure 22L. Normal Electric Field at STA:FIN345, Excitation 6, 1/100 M:Yaei.. -53 -

10. 0 E-'LB.S.F1220T,1.JA:E25S 8. 0 TOP I.7! ki 0 C3 m =2 I- ' — -j Cd a3r F-D cc 6.0.~ t1. 0 2. 0 [ 0'.0 L 0. Lj MAY 79 UM I 0 10.0 20.0 30.0 4. 50. 0 200. 0 I I I E-41B.S.F1220T.1.JP:E25S 100.0 [ G e 'nuj cc IL. 0.0 k.10 0. 0 2o. 00 L0. 0 Figure 25S. ____ ____ __ _ ____ ____ ____ _ 1 M A T 7 9 UM 10. 0 20. 0 S0. 0 BEDDEOENCTVKHZINZ 110.0 50. 0 AxPIial Current at STA:F1220T, Excitation (1* done for ~ =..3Q00 e = 500) 1, 1/200 Model. -54 -

10. 0 8. 0 4 I I E-48.L.Fl22DT.l.JArE25L &E K TOP -A0 LL - 6.0 L 2. 0 [ 4 MPY 79 UM 0.0 L 0. 0 10. 0 20. 0 30. 0 '40. 0 50. 0 200. 0 100. 0 0. 0 E-'LB.L.FI220T.I.JA:E25L 6 mi C3 uj W) cc T. CL. -1 00. 0 -200. 0 L.. 0. 0 Figure 25L. 1 0.0 20. 0 30. 0 FR9EOUENCT (MH-Z) l O. 0 50. 0 Axial Current at STA:1220T, Excitation 1. 1/100 Model. (1* done for ~ =..3Q00 0 = 5O0) K-55

8.0 I I I E4B.S.F1220T. 1.JR.E25FM5 TOP 2. 0.0 -200.~. I23 JUL 79 UM 0. 0 10.0 20. 0 30. 0 40. 0 50. 0 Figure 2ES. Axil Curren at STAF1220T, Excitaton12120 odl 100 560

8.0 E'AB.L.F1220T. 1.JRzE25RL. o k T 0 Z., 0 cr3 2. 0. 0.0O 0 I 23 JUL 79 UM I I I I I i. 0 I10. 0 20. 0 30 * 0 '10. 0 50. 0 200. 0 I 1 00. o iL ELIB.L.F1220T. 1.JAsE25IiL G uj C3 LLJ W) CL. 0. oL -1I0 0.0 L. -200.01. I__ _ ____ ___ I 0. 0 1 0. 0 20. 0 30. 0 FM~EQUENCY (MHIiz Figure 25RL. Axial Current at STA:F1220T, Excitation 23 JUL 79 UM '10. 0 50. 0 1, 1/100 Model. -57 -

11.0,1 EtLB.S.F1220T. 1.JCsE26S 13.0 L TOP =!0 = 2... U 1.0 ~ 15 MAY 79 UN 0.0 0. a 0 I10. 0. 20. 0 30. 0 LI0. 0 50. 0 200. 0 III 100.0 L! G ui p uj ull cc 9L 0. 0 -1 00. 0 -200. 0L 0.1 15 MAY 79 UM 0 1 0. 0 20. 0 30. 0 110. 0 50. 0 Figure 26S. FflEQUENCY (MHZ) Circumferential Current at STA:F1220T, Excitation 1,* 1/200 Model. (1* done for ~ = -3005 0 = 500) -58 -

4. O. T i I f I I iI I I I 1 3. o L i I I I I I i I EL4B.L.Fl220;I..JCtE26L it- -7/ TO I A-;-r t- -- 2.0 S.) 1.0 r 0. 0 0. 0 2 00. 0 _____ UI 5 0. 0 I10. 0 2 0. 0 3 0. 0 15 MAY 79 LLO0. 0 E4LB.L.F1220T.I.JCtE26L 1 00. 0 - I -1 G w C3 LU (n cc 3: a I i i 0. 0 Lt i i I I i - I 0 0. 0 I i I i I II I -- 2 0 0. 0 L.. 0. 0 I I i I I I i I I i I 7 i i I i f 15 MRY 79 UM. I --- ---- LL 0. 0 50. 0 I10. 0 2 0. 0 3 0 0 FFIEQUENCY (MHZ).Figure 26L. Circum,.ferential Current atSTA:Fl220T, Excitation 1 1/100 Model. (1* done for ~ = -3Q0, e 500 ) - 9 -

6. 0 -. E413.S,Fl220T.2.JCtE26M5 LIj. 0.. Z..'0 11 LII k r ).i., a (I. 25JU' 79 UM 3 0.0 4 0. 0 5 0. 0 I I I. I; li'l,.,;I I i I i I. I i 0. 0 i- - - 0. 0 -- -L -- - - - - II 0.0 20.0 20 0. 0 -— T EL5. S. Fl220T. 1.JCa E2SRS. — - -- - I i i 1' I il I I:1 II 1 I i: i I I I I I i G ui a:V,'iC, M-7 - -1I0 0. 0-i I20C 0. i I I I i i i I I i i i I I I 25 JUL 79 UM -- --- 4 0. 0 5 0. 0:o-.-L 30-.0 - FflEQUEINCY tMHZI Figure 6S Circurnf erentijal 1/200 Model. Current at STA:F'1220T, Excit-ation 11,

6.0T E45B.L.F1220T.I.JCtE2BRL i I i 4. 0 - 71 i i LU C3 C, 1 =3 I -j r ) CL- i cv- F-D r i 1 2. 0 I I i 1 1 i < 0A~ I I\ \I I i i T 0 p I I I I I I I I. 23 JUL A 5 0. 0 7 a o. oL0.0 10 —.0 - I __-______ __A _ _______ -- 2 0. 0 3 0.0 L)Q.Q0 2 0 0.0 r E4~B.L.Fl220T.I.JCiE26Rll -T1, I 0. 0 I I i I I I I 0. 0 - I I f-I 1 , I I I I i 'II i I i! I I 4 I I I y I I i DO. 0 i i -1I) -200. o L-.0.0 5 0. 0 ~-.- -.. I10.0 20.0 - - ____ ___25 JUL 3 0.0 40. 0 FREQUENCY (MHZ) irc262RL. Ci rcumf erent ial 1/100 Mlodel. Current at STA:1220TI, Excitation 1,5 - (-5 1 -

4. 0r3.0 - -- -. 1 *- -- - - - ELI.S.5.F1220T. 1, iE27S 'A T OP u C3 I —]-] I. — - j -4 1-1. -1 cr 1 2. 0 1 I I I I I i I 1. 0 - I I I 0. 0 L — 0. 0 10.0I 2 0.0 3 0. 0 5 JUL 7 9 UM 4 0.0 5 0. 0 2 00. 0 i r I i I 0 0. 0 1, I i i I i 0. 0 L I 1 1 i i.I 0 0. 0.I I I I Ili I I II I ~4\~ ~ E B.S.F1220T.l1.QtE273 1 0.0 2 0.0 3 0. 0 - - - I i i iI i -i I I I I I i I I I I I I i i i I I 5 JUL 79 UM I -.-. -- --- __j 4 0. 0 5 0. 0 -2 0 0. 0L — 0. 0 F BE Q UE4CY (MHHZ)I Figure 27S. Normal Electric Field at STA:F12-20T, Excitation 1, 1/200 Model. -:32

2 -, 0 LLJ - -,I, I a. 2, a.' 4. 0 - I I I I I I i 3. 0 i I I I I 2. 0 1 f- I i i I i. o, I I I i I 0. 0 0. 0 -. - -- T AK A T O P E4B. L. Ft220T 1. 0.E27L t - -- - ~ --. I 5 JUL 79 UM 20. 0 3 0.0 4 0. 0 5 0. 0 'iZ; C, Li crcr) ci - 2 00. 0 __ 1 00. 0 0 0~ I0.0 10. JB. L.F1220T. I.QGsE27L ---- ---- ---- -.r --- --- -i -1 5 JUL79 W 40.0 50. 20. 0 3 0. 0 FfiE-QUENCY (MHZ) Figure 27L, Normal Electric Field at 'STA:F1220TI, Excitation 1,5 1/100 Model. - 6,3 -

6. 0 __ — 1- ~ I E-IAB,.3.F1220T. 2. J~gE283 E4 4LL0 ~ () cc 2. 0 I I 5 0. 0 0.0 0. 0 - 0.0 2 0.0 3 0. 0 10 MAY 79 110. 0 2 0 0. 0 -.-. i I I I i I I i I 0 0. 0 i E-LAB. S. F1220T. 2. JR: E28S I I i i I I I I I I I i 0. 0 -1I0 0. 0 I I i I i i i 1 1 i LA MAY 79 UM 110. 0 50. 0 - -2 00.0 K0. 0 1 0. 0 20. 0 3 0.0 FREQUENCY 1MHZ] Figure 28S. Axial Current at STA:F1220T,. Excitation 2, 1/200 Model. - (3 -

6. 0 _ _ _I _ _ _ _ _ _ _ _ _ _ E-U81.L.F1220T.2.J~ttE28L --- I i I 1 4. 0 - i i fE. 2. 0 ~ 0. 0 O _ _ - - _ _ _ 0. 0 1 0. 0 210 0.0 - ---- 0.0 00.0 2 0. 0 10 MAY 79 UM. 3 0. 0 '10.0 s0. 0 E —'1B.L.Fl220T.2.JAtE28L '1 MAT 79 UM 20. 0 3 0.o0 0~.o0 50. 0 FMEQUEN'CTY(MHZ) Figure 28L. Axial Current at STA:F1220T, Excitation 2, 1/100 Model.

5.0 i, I I t4. 0 k i i E4BS. F1220T. 2.Q0:E2OS T (-) a ~ a1o 2. 0 i 1. 0 i I i o. o L o. 0 1 0. 0 5 JUL '79 UM 20. 0 3 0.0 q0.0 50. 0 2 0 0. 0 F, II I I I i 00.'o! r II E LkS. S. F 12 2 0T. 2. 0t E 293 2 E E 'ou ct.T-. CL, 0. 10. IH -H i I I 1 -200. OL --- 0. 0 -I 6 J~t. 79 U 40.0 50. 10.0I 20. 0 3 0. 0 FREQUENCY (MHZ) Figure 29S. Nor-mal Electric Field at STA:F1220T, Excitation 2, 1/200 Model. - L; -

5 -0 E'4B.L.F1220T.a-.QaEa9L — I i I i i I t I I 2 -j 0 E C- FT] t — a - F, -1 Ir. 41: 2. 0 I-o L 0.01.. --- 0. 0 5 JUL 79 UWi_ IG. 0 20. 0 a30.0 40. 0 5 0. 0 2 0 0.0 E4IB. L *F 1220T. 2 *QaE29L -- — T —, - - I I I 00. 0I I I I I I i 0. 0 — i I 1; t1i Cl w cx 7 -Q I*.1 -1I0 0. 01 6 JUL 79 UM 4 G.0 5 0. 0 - 2 00. 0 --- 0.0 I 0. 0 2 0.0 3 0. 0 FRiEQUENCY (MHZ) Figure 29L.. Normal Electric Field at STA:F12-20T,. Excitation 2, 1/100 Model. -~,7 -

1 2. 0 I 9. 0::: 0 6.0M E-14B.S.F 1220T.3. JAm E3S 10 MAT 79 UM 3.0 L 0.0 L 0.1 0 10.0 20.0 30.0 4. 5 0. 0 200. 0 E-LB. S. F1220T. 3.JR. E3SO I 00.0o G w C3 ui (A cr 7. CL. 0.0 ~ I I I 79 UM _j 50. 0 -1 00. 0 ~ -200. 0 1 0. 0 I10. 0 20. 0 3 0. 0 FRAEQUENCY (MHZ) Li MAT '1 0.0 Figure 30S. AilCurrent at STA:F1220TI, Excitation 3, 1/200 Model. -68 -

1 2. 0__ E-4B. L. F 2201.3. JAt E30L -e E 9. 0 L 0 UJ 6.0 c:); 3. 0 r 0. 0 10 MAY 79 UiM 1 0.0 2 0. 0 3 0.0 4 0. 0 5 0. 0 2 0 0. 0 r — i I I i II I i I I loo.o L i ELIB.L.F1220T.3.JA:E30L i I I I i 0. o II i i I I i I loo. o L I -200. 0 L..0. 0 10.0 — A 20. 0 30.0J 4MAY 79 UiM '10. 0 50. 0 FREQUENCY 1MH?) Figure 30L. Axial Current at STA:F1220TI Excitation 3, 1/100 Model. - 69 -

3. 0 E4B. S. F1220T. 3.JCt E30RS i I i i 1 2. 0 L i fI I i i I i k -j C A-). — — I I I i I II I t i i I I i i i i I I I i. I If I i I I UM I - 1 50. 0 I1.I I II I I I I Ii I I O. O I — - 0. 0 2 0. 0 30. 17 MAY 79 410. 0 I10.0 2 00. 0 - G ul e uj (n CL 2. a i I I 0 0. 0.i I I I II 0. 0 L i f I I I - 1 0 0. 0, I I II I I i i I I i. I l I It i w,!,'I 1, I I I I i I i i I I I; I I I i I I I i I. I I I i I I i i I I I i 1 0 0 I 1! I I I i i j l i E4B. S. F1220T. 3. JO: E3RS 11.1I i i I I t I iJ I 20. 30. FI9EUNYM 17-1" MAY 7 9 I! j 2; 4 0.0 5 0. 0 -200.0o L 0. 0 Figure 3OAS. Circ-umferential Current at STA:F1220T,, Exctiation 3, 1/200 Model. -:0

3. 0 FI I I I I I i 2. 0 I i i I uj 0 1 In 114 1 -7 I — ---- i i C.) a - 'S. fa: I i I I I. 0 i I I I I I 0. 0 L . 0. ( - -1 - -— T -, ELIB.L.F1220T.3.JCtESORL 0e - __ ______15 MAY 79 10.0 20.0 30.0 40O.0 5 0. 0 2 00. 0 -10 I 0. i -10. N I i i i i;i 11 11 1i I I I ii i 11 I p $ j t f I i II I I E4SB.L.Fl220T.3.JCtE30RL _____17 MAY i i i I I i -2 00. 0 L0. 0 1 0. 0 I -— I 79 UMI 50. 0 20. 0 FFiEQUEtNCY (MHZ) p 0.0 1L0. 0 Figure 3OAL. Circumferential Current at STA:F1220T,. Excitation 3, 1/100 Model. -1 I' -

'4. Lt.. I i I iI 3. 0 rlI I i 1 2 -j 0 L C:) —] i -D --- 2. 0 I — -1 - M, 111 W.' m I i 1. 0 i I i i I i i 0. 0 11 - —. 0. 0 Et4B.S. F1220T, 3. QtE31S 5 JUL 7 9 UM I10. 0 2 0.0 3 0.0 140. 0 5 0. 0 G ui E! LLJ 4n 0: zCL E-4B. S *F 1220 T.*3. 0&~E 3 1 2 0.0 3 0.0 i i i i -4 i i i - I I 1 1 -1 I I -1 I I i 1 50. 0. - - - -, - 5 JUL 79 UM 4 0. 0 FREQUENCY (MH1Z) Figure 31S INormal Electric Field at STA:F1220T,5 Excitation 3, 1/200 Model. - 72 -

4. 0 - - I i II i I I 1 3. ok I I I I I: 2. OL I I E48.L.Fl220T.3.QtE31L -LFil1 crH I i. o L 0.0oL I10.0 2 0. 0 3 0. 0 7ThUMt 5 0. 0 2 0 0. 0. I i I i I O O. O I t — ii t i I I 0. O G3 m 'nuj cl: 2: a -1I00. 0~ -200. 0L ---. 0.0 FR~EQUENCY (MHZ) Figure 31L. N~ormral Electric Field at STA:F1220T,. Excitation 3, 1/100 Model. -:3 -

2. 0 I i i i I i i I II i 1 2 1 i LU 0 rll " --- 1. 0.. -, d aj ) X. CL I I I -1 I, 0. 0 --- - 0. 0 - --- - T -- ---- E'46.S.F1220T. 4 J. 'AE31R 6 JUL 79 UM - 4 0.0 5 0. 0 __________ I — ~1... I10.0 2 0. 0 30.0 2 00. 0 S * Fl 220T. 4. JR. ES IRS -r I i i i I i J ii I i I I I I i i i I- I I I I JUL 79 um 5 0. 0 - 1 0 0. 0 -..-..20. 0 3 0.0 1 6 4 0. 0 FRiEQUENCY CM H.7 Figure 31AS. Figre lASAial Curn tSAF20,Excitation, 1/200 Model. - 1!4 -

2.3. - -i 1. -; I* -T 1 V -- -p Et4B.LF1220T.4.JA:E31AL E ---- -l/ —.- --- I I I I i i I 'j- i I i I I ~AP Jvyi 6 JUL79 U - 4 - - - -. - -~. - - L ~ ~ ~ - - -. - I 10.020.030.040.050. 0. 0 L0.0 G C3 LU cn cx 7-. la. 2 00. 0F- 1 00 -200.0o0. 0 V ---- -. - E4IB. L *Fl220T. 4. JR E3I AL 20.0 -~6 -3 0.0 40. 0 JUL '7 U 5 0. 0 FREQUENCY- (MMZ] Figure 3lAL. Axial Current at STA:F1220T, Excitation 4, 1/100 Model. -7/5 -

6. 0 I -T --- - -F -- - -- I E-4t~3 *S.FL 220 T.*4 *J C.E328 E cz~ I ui 0 -J U 2. Of. o.Jj.L I I10. 0 20. 0 30. 0 8 JUL 79 UM. 40. 0 50. 0 200. 0 1 00. 0 - - T- - -I - - - - E-L&B.3. Ft220T. 4.JCu E323 -1 G ui L-3 ul tn cr..T., a 0. 0 - I0 0.0 50. 0 -7 0. 0 I0. 2910.0 80.0 FRiEQUENCY' (MHiZ) Li b. 0 8 JUL 79 UM Figure 32S. Ci rcunf e rent ial 1/200 Model. Current at STA:F1220T, Excitation 4, - 76 -

6.0 4. 0:2 0 U IE4I. L *F 1220T 1.4.JCu ES2L I E 2. 0k 0.0L I I ___ 6 JUL. 79 UM -.1 0.0 I 0.0 20. 0 30. 0 110. 0 50. 0 2 00. 0 I I I 0-0. 0 1 1 ELAB. LF1220T.tL.JCxES2L I G LLJ E2 LLJ tn cr W. a 0.0 OL -LOO. 0k. 6 JUL 79 UM 4i0.0 50. 0 -200. oL0. 0.1 - --- - - I - - - - - 1 0. 0 20. 0 3 0. 0 FHEQUENCY (MHZ) Figure 32L. Circumferential Current at 1/100 Model. S"TA:F1220T,. Excitation 41, - 77 -

12. 0 -T - -— r- -- I...... I 9.0 h 2 = 0 mi m en =3-.,_ I — Cd -i Fa-) cc 6.01. E-LB. S.F 1220T.6. JR: E33S 10 MAT 79 UM ~3. 0 0. 0 0. 0 1 0. 0 20. 0 s0. 0 'O. 0 50. 0 20 0. 0 - ----- __ E-'&B. S. F220T. 6. J~mE33S 1 00. 0 -! 0.0~ IQ MAT 79 UM U200. 0 0.0 1 0. 0 20.0 SO. 0 '40. 0 5 0. 0 FREFQUENCYIMHIZ) Figure 33S. Axial Current at STA:F1220T, Excitation 6, 1/200 Model. - 78 -

1 2. 0 9. 0 E-AB. L. F1220T. 6. JR.E33L1 2 -i 0 A-U::o cg, — I.- Cd -i -D CL N. cr 6). 0 3. 0 ~ 10 MAY 79 UN 0.0 L 0. 0 1 0. 0 20. 0 s0. 0 '10. 0 5 0. 0 200. 0 r E-'D. L. F1220T. 6.JR. E33LI 100.0O G uj C:3 ui to cr 7. CL 0. 0 -100.0 1~ - 20 0.0oL- - 0. 0 10. 0 20. 0 30. 0 FfiEQUENCY (MHZ) ' --- — -4 NAY 79 UN '140.0 5 0. 0 Figure 33L. Axial Current at STA: F1220T, Excitation 6, 1/100 Model. - 79 -

6. ~E4SB.S.F1220T.6.Q2:E34~3 4I/ 6.0 k -;0 W.F~ 2 0 1'( tL.0o 0. 0~ 0.0 1 0.0 20. 0 6 JUL 79 UM I 30. 0 4 0. 0 50. 0 -- -—, '' - - -- — r- - --- - E4.. F1220T.6,QtE3 20. 0 3 0. 0 I j *1 5 0. 0 0.0 1 0. 0 6 JUL 79 UM 4 0. 0 F REQ UENC Y rl1MZ) Figure 324S. Normal Electric Field at'STA:F1220T, Excitation 61, 1/200 Model. -80 -

S. 0 I I -- 8. 0.. tul 0 14. 0 a- i Ait B. L. F I220T. 8,Qm ESIIL.. 79 UM 2. 0 k 0.gL 20. 0 3 0.0 410. 0 50. 0 200. 0 "?B,,L. F1I220 T. 8'. 9. ESN'L. — - — I I I i iII i t i I i I -i i i I I -1 I 1 1. I 50. 0 6 JUL 79 UM 0 FH9EQUENCY (MHZ) Figure 314L. Normal Electric Field at STA:F1220T, Excitation 6, 1/100 Model. -81 -

8. 0 6. 0 -2 0 ki 13 cA~ v, E40. S. F1220T.7. JC% E3S5 2.0 1 - o. o ____ — __ _-__ 0. 0 10. 0 20. 0 - - -- 15 MAY 79 UM S0. 0 It 0. 0 50. 0 ELAB.5. F1220T. 7.JC. E3SS 100.0 ~ G uj I e O. OI uj WI cc I a- I -100.0 t 1 15 MAY 79 UMI '10.0 5 0.0 -20 0. 0 1 -0. 0 10. 0 20. 0 3 0. 0 FfiEQUENCY 1MHZt) Figure 35S. Circumferential Current at STA:F1220TI, Excitation 7, 1/200 Model. -82 -

8. 0 I --. -- -— ' - -- I- - - - - - E48.L.F1220T.7.JCE35L ftt: 6. 0 -. 0 0. 0 L _ _ _ _ __ _ _ _ - _ _ - _ _- 16 MA T 79 014 ] 0. 0 1 0. 0 20. 0 3 0.0 10. 0 50. 0 Z; ILJ R LLJ ww cr a 1 00. 0 L — 0. I20 0. 0 0. 0 E118. L. F 1220T * 7. JC a E35L - I lB MAT-y,?9- -m110.0 5 0. 0 1 0.0a 20. 0 3 0. 0 FRE9UENCY (MHZ) Figure 35L. Circumferential Current at STA:F1220T, 1/100 Model. Excitation 7, -83 -

15.0 E4-. S. AWS9 17T,.1.JR: ES6S 1 2.0Or TOEE- \\I.. -. - -1 I II I I i I I i II I -i i I I i I I i 9. 0-: 0:2 M 11 uj --- MI Z). d i I- F-.) ". I -j f ON: Ix 6. 0 <I o~i 0. 22 JUN 79 UM i 30. 0 4 0.0 50. 0 I1a. 0 20 * 0 2 00. 0 -- 1T, - -"!-1 E48. S.MWiS9 17TI.,JA: E36S -- I 1 00. 0 - 0. 0.. G uj P cnt" CL: X: &L -1I0 0. 0 - -2 00. 01 0.0 I 0. 0 2 0.0 3 0. 0 FREQUENCY (MHZ) 22 JUN 79 UM.1 I 0. 0 5 0. 0 Figure 36S. Ax-ial Current at STA:RWS917TT Excitation 11, 1/200 Model. -84 -

1 5. 0 ' r-, i I II I 1 12. O I i I I I 9. 0 — I -r TII " EL1b.L.MH3S917T.1.JR:E3BL I A L /" 1 E.Iv/ /.7 - T -K':Ir W., -i. - 0 LLI C, - -4 b. — ---- cli ai- -,) W: CL 6.0L I., I.0 0. - I UI 5 0. 0 -A.0 2 0. 0 SC0. 0 - 22 JUN 79 Li0.0 2 00C. 0 - E45S.L.MW3917T.1.J~tE36L I 0 0. 0 - (i G ku p W) cr a. -1 -100.Q0. -2 00. 0 0.0 *22 JUNII 79 UM; 4 0. 0 50.0D I0. 2.0I 30.01 F.9ECUENCY CMHZIo Figure 36L. -Axial Current at STA:RWS917TT, Excitation 1, 1/100 Model. -185 -

2, LA-i n -3 t -. i: i N: i 3. 0 A1 2.I 0 1. 1 - E-IB. S. RWS917T. 1,,JCu E37S lkE' \ / 7 E /,* 17 TOP — I -I UN 0. 0 0.0l 200. -F- T — V — - - 2 0. 0 I- - A- - 1 -. 3 0.0 22 JUN 79 4 0. 0 E-4B.S.S4WS917T.l.JCtE37S. -- 100. OL. i 1; P 0. 0. uj (n I cr 0X-. i I I -I 00. o t-1 22 JUN 79 UMN '10.0 50. 0 -2 00.01 -- - 0.0 10 —.0 20..-I --- -- 3 0.0 FREQUENCY IMHZ) Figure 37'S. Circumferential Current at 1/200 Model. STA:RWS917T,. Excitation 1, -66 -

3. 0 I-T EL4B.L.RWS917T.1.JC:E37L - 7 T0F 2 oK0~L 0 c ) 1 I-V 200.0 L — 0. 20. I0. 0.0 - O00 1 0. 0 2 0.0 3 0. 0 22 JUN 79 UM L IQ.Q 50 EL4B.L.RW{S917T.l.JCcE37L iI V /A\ -2 0 0. 0 ___ 0.0 1 0. 0 2 0.0 — A3 0.0 22 JUN '79 UM. 4 0. 5 0. 0 FREQUENCY (MMZ) Figure 37L. Circumferential Current at 1/100 Model. STA:RWS9l7T, Excitation 11, - 8 7 -

3 0 r - -- - * 1 -i, E48.".flN3917T.l'.JRtE38S E 2. 0 - -j uj u C3 , =1 -i Cd M- F-D cr. I.0 0. 0 vp %J L — - 28 JUN 79__UMJ. 3 0.0 '40. 0 5 0. 0 0. 0 1 0. 0 20. 0 '4 00. 0 I ELqB.S.RNS917T.2.J~tE38S iO.~ I\I ~ G LLJ 9 LAJ tn M. ft 2 00.0, 1 0 0.I 0. 0 0.0 28 JUN 79 UMI 11 0.0 5 0. 0 --- - - - 10.0 2 0. 0 3 0.0 FREQUENCY IMHZ) Figure 38S. Axial Current at STA:RWS917TT Excitation 2, 1/200 Model. -88 -

3. 0 E14B.L.FiNS917T.2,JR:E3BL T zE- - 1 2. 0 0 LLJ C3 - =3 --- d i; ft- -D W. cr I.ov 28 JUN 79 UM} 1 50. 0 0.0[. 0.1 I _ _I 0 10. 0 2 0. 0 3 0. 0 40. 0 3 0Gc. 0 m~I EI4B.L.FRN5917T,2.JR:E38L -I -1 El w M 'nuj cr:r Q i I I i I 1 200. 0 I I i I I I i I 0 0. 0 - I II 0. 0 0. 0 -1 UM 50.0 10.0 -L 2 0.0 3 0.0 FRlEQUENCY (MMZ) 28 JUN 79 4 0. 0 Figure 38L. Axial Current at STA:IRWS917T!, Excitation 2,1 1/100 Model. - U1 9 -

3. 0 ____-.-, 2.0. ---- -T - - - - - - -- --- - - — r --- --— I I E-4S.S.MNS917T,2.JCtE39S I + E I R 1 ---+ =~0 C-) 1. 0 28 JUN 79 UM 5 0. 0 u. u I I - -- I I 0. 0 I10. 0 20. 0 3 0. 0 40. 0 4 0 0. 0 F _ __ _ __ _ K - E-BS.A9 4917T. 2. JC:E39S 30 0.0 K 2 00. 0 10 0. 0 i 28 JUN 79 UM i 5 0. 0 o. oLo0.0 10. 2 0. 0 3 0. 0 FHEQUENCY (MHZ) 4 0. 0 Figure 39S. Circumferential Current at STA:RWS9l7T,, Exiain2 1/200 Model. - 90 -

i E'B.L.FiWS917T.2.JCtE39L 2. 0 K zo U3 --- C V I (J 1. 0 K I q 0. C'L 0.0 28 JUN 79 UM I10. 0 2 0. 0 3 0. 0 40. 0 5 0. 0 4 0 0. 0 - ---- - - i 3 0 0. 0 1 I I i - F ~ - -T ELSB.L.FiJS9 17T.2. JCsE39L I4 I1 20. I0. 2 V t II I 0. 0 1 0.0 I10.0 2 0.0 3 0.0 FRlEQUENCY (MHZ) 28 JUN 79 UM 4 0.0 50. 0 Figure 39)L. Circumferential Current at STA:EWS9l7T, Excitation 2, 1/100 Model. - 91I

1 0. 0 I I E'4B.S. RWS9 17T. 3. JR E140S i; _ l - 8. O! 6. 0 0. 0 -. I. ______ L __ -1.-~.~__ 2J1 JUN '79 UMI I10.0 2 0.-0 3 0. 4 0 l. 0 5 0. 0 2 00. 0 ___ Et4B. S.I9WS917T.3.JRtE140S I i 1 1 i 1 0 0. 0 i i I I 0. 0 - i I I i - 1 0 0. 0 1 G 'nuj m 3'.' M. 5 0. 0 I 1 28 JUN 79 -200. O I 0.0 1 0. 0 2 0. 0 3 0.0 FREQUENCY (MH7) 4O.. 0 Figure ~40S. Axial Current at STA:IRWS9l7T, Excitation 3, 1/200 Model. - 9 2 -

1 0. 0. 8.o E~4B, L.19NS917T 3. JR iELS0L 2 C4ui ='i I-, a-. W: cr.0o! 0 4. 0 ~-. 2. 0k~ u. L) I I ---- I I 1 28 JUN -79 UM 2 0.0 3 0.0 4 0.0 50. 0 0. 0 1 0.0 E43. L.RFiS917T. 3. JRs E4LL I I i I 00. or I i I II j 1 I 0. 0. I G uj r-I L'i (n CY. r CL i I i i I - 1 0 0. 0 i I -2 00. 0 - 0.0 1 0. 0 FRlEQUENCY (MHZ) 28 JUN 79 UMI 4 0. 0 5 0. 0 Figure t4OL. Axial Current at STA:RWS917T, Excitation 3, 1/100 Model. -93 -

5. 0 E4B. 3, fWS9 17T * 3*JCt E41I -e 2. 0H =Z 0 ~-0 1. 0 V", I I I I i I I i I I I 29 JUN 79 UM I 0. 0 L. —. —L - - - -— I I 0. 0 1 0. 0 20. 0 3 D. 0 4 0. 0 5 0. 0 2 00. 0 ___ _______ _____ EI4B.S.RN3917T.3.JC ELUIS iv 0~ i I 7I Z; uj m tj U') cr Q 0.0 1 0.0 20.0 3 0.0 4 0.0 FREQUENCY CMHZ) Figure hiS. Circiumferential Current at STA:RWS917T,) Excil 29 JUN 79 UMI 5 0. 0 tation 3, 1/200 Model. -904 -

3.0C ' - -- -- -I- -- - --- -- ----— T T ~ ~ 1*~*~* -.__ I E48B.L.RWS917T.3.JCtE4J1L 0E =!0 U. ) 0.0 10. 2 0. 0 3 0. 0 29 JUN~ 79 9UMj 4 0. 0 50. 0 2 00. 0 T - - EFUR I RWS917T.3r.JCUE41 I iI I 100. 0I I i I I 0. 0I I I I I I I -. -.. I. - " , I I I. ,. - I- i - 1 4 l-. -i G C3 'nU.j cc a ~, yr I I I I I i -2100. 0 4-. - 00. 0L~ -- __ U - IL_ ____ 29 JUN 79 UM 1 0. 0 2 0. 0 3 0. 0 4 0. 0 5 0. 0 FREQOUENCY (MHZ) Figure 41L. Circumferential Current at STA:RWS91'T,, Excitation 3, 1/100 Model. - 95 -

I 5. 0 12. OV -- - -- - -- I —. - — l.-.. *1- - - -. I - r E4'3. 3,.HWS9 I7T. IL. JR i E1423 -...-, — -, - -- E 9. i WI UA 8. 3. 0 0. 0K 2 00. 0 I 1 0. 0 20. 0 30 * 0 -129 JUN 79 UMI 110. 0 5 0. 0 I I IF EILB. 3,MWS9 17T. L *JR. EL2S 100 o. 02. E., w E! LLI Ln cr 27 CL. I 0. 0 -I -100. O2. -1 i.o. 2 JUN 79 UM50.0 - 2 00. oK 0.0 -- *- - - I -.1 0. 0 20. 0 3 0. 0 FREQUENCY (MHZ) Figure ~42S. Axial Current at STA:RWS917TT, Excitation 4, 1/200 Model. -96 -

-I1 12. 0F E'49.L.AN5917T.'L.J~tE42L E;rl 9.0 0 w M S. OL~ 0. 0 9'Q Allm I Q I I M I I10. 0 2 0. 0 -I- —. 3 0. 0 I e- 'J J U N I 'I U M L 0. 0 5 0. 0 2 00. 0 ---------- - - - -~__ 1 00.0 o V G w r3 U.j (n cr 7. IL. I I I I I I I I I t II I I I I I 0. 0 -1I0 0. 0 L. 29 JUN 79 UM I 50..0 -200. o L0. 0,-. I - I I 10a. 0 20. 0 3 0. 0 FREQOUENCY (MHZI 40. 0 Figure ~42L. -Axial Current at STA:RWS917T,. Excitation 4, 1/100 Model. - 97 -

3. 0 1 -I t I i i t i i 1 2. 0 I 12 I -: 0 I. 11 C3 - U -, 1 —) a_ V; m I I. o i I i 0. 0 o. 0 E-4.S.MW3917T.4S.JC:Ef435 E................................................................................ 29 JUN 79_UM 1 50. 0 I I I I I10. 0 2 0. 0 3 0. 0 4 0. 0 4 00. 0 I E-BS. RWS917T4..JC E43SS 300o.0 1; LU M w Ln X. 0. 0 1 0. 0 1 29 JUN_79 UM 2 0. 0 30. 0 40. 0 50. 0 FRlEQUENCY (MHZ) Figure 43S. Circumferential Current at STA:RWS917TT, Excitation 41, 1/200 Model. -98 -

.3.0 E4E3, L.RIWS917T.LL.JCiE43LI I E 2.O0. 2:: 0 U.J , C3 =2 I --- I —.-, C.) -j F-D CL 3r cx 1.0K n - f) u. v I 29 JUN 79 UMN ~.0 50. 0 0.0 I10. 0 20. 0 3 0. 0 410 40 0. 0 - -T-.-, - - --— r I -- I I I E4SL.MWS917T.4.JCtEU3L I I I I i i I I II 3 0 0. 0 r- -1 I i I I i i Z.)' LAJ p uj tn cr 7: 9L i 1 20 0. 0 1 I i N 11 I I I I 00. 0 I I -1 0. 0 0. 0 1 0. 0 I0. 0 30. I n. JUN 79 UN '10. 0 1i0. 0 FREQUENCY (MHZ) Figure ~43L. Circumferential Current at STA:RWS91YTI, Excitation 41, 1/100 Model. -99 -

El.S.RHS917T.6.J~AE44IS I s. oL i I I iL2 zziz/-J 2 =! 0. uj ol C3 =7 -', I — - Cd _j F-3 aM cc 6. o 4.OL~ 2. 0 k 29 JUN 79 U i I I m -—.i 5 0. 0 0. oL 0.1 0 I10. 0 20. 0 3 0 0 Q0. 0 2 00. 0 1 0 0. 0 I T lB. 3.AW59 17T. 6. JA: E44SI -I 0. 0 -1 00. oi~ - - — l- 29 JUN 79 U.M I 3 0.0 LI0.-0 5 0. 0 (MHz) -- 20 o.oi1 — 0. 0 - -. 1- -- - I10.0 20. 0 FHE),UENCY Figure ~44S. Axial Current at STA:~44S,. Excitation 6, 1/200 Model. -1 00 -

I 0. 0 — i I i I S. 0 8. 0 =~0 tU (:I3 ELI5.L.RN3917T.6.J~oEtUIL cz * 2. OL o.o L0. 0 I 1 29 JUN 79 UM I 0. 0 20. 0 3 0. 0:10. 0 50. 0 2 00. 0 i I I 100. 0I EIIBL.FWS917T.6.JA:E4LLL -i -1 G uj M uj In cr M.' CL 0. 0 -10 0.0 k I I 1 29 JUN 79 UK 20. 0 30. 0 10. 0 50. 0 FREQUENCY 1MM71 -e-vu.Ul - I 0. 0 1 0. 0 Figure 44IL. Axial Current at STA:RWS917T, Excitation 6,5 1/100 Model. — I01 -

3. 0 E'4B.S.FIWS917T.7.JCuE45AS 2.0t. I- C 11 11 I 29 JUN 79 UM '4 0. 0 5 0. 0 U. U - _____ ---- I I -J ----. - 0. 0 I10.0 20 * 0 3 0. 0 '40 0. 0 E'4B. S. fiWS9 17T. 7. JC EL45AS I T i I I i i i I II 300. OL. G 2 ILJ W) cr:r W. 2 0 0. 0 ~ I100. 0' I1 29 JU 79 U 40.0 50. 0. oL. — -- 0. 0 1 0. 0 I 20. 0 30 FREQUENCY (MHZ) . 0 Figure 45AS. C ir cumf erent ial 1/200 Model. Current at STA:RWS9l7T,, Excitation 7,

S. 0I EU5.LRH3917T.7.JCsE45RL 2. 0 -j 0 a- ( 1. 0 k 0. C 'N I I ) I I I --.I 129 JUN 79 UM. 40. 0 50. 0 0. 0 10. 0 20. 0 30. 0 3 00. 0 E4~3.L.FiH5917T.7.JCtEU5AL G Cl PAJ en cc a 2 0 0. oV~ 100o.0 L 0.C 0 -11 j I I I 29 JUN 79 UM 4 0.0 5 0. 0. 0 1I0. 0 20. 0 3 0. 0 FRiEQUENCY IMHZ) Figure ~45AL. Ci rcuimferential 1/100 Model. Current at STA:RWS917T,. Excitation 7, -1I03 -

1 5. 0 I i I i I I 1 2. 0 L I i E4B5.9.HWS917T.7.J~sE145S. --- --- - I I 'R I I 9.04 -j 0 I. (Ti I.0 3. 0 L. 0. 0 -- I - I LI.____ 29__JUN 79 UMI 30. 0 L0. 0 50. 0 I10. 0 20. 0 1 00. Ot — I EUS.S,MW39l7T.7.JF~mEU5S -- I F o. 0. G C3 uj,n cc 71 a I I I I -i I i I I I I I -i -1I0 0.0 L -2 00. O 0.0 10. 0 29 JUN 79 9Umj 50. 0 20. 0 3 0. 0 FREQUENCY (MHZ) 4 0. 0 Figure 45S. Axial Current at STA:IRWS917T,, Excitation 7, 1/200 Model. — 104 -

A j. v ".I i I i 1 12. 01 t Et4B.L.I9NS917T.7.JM.EI145L Ok 9. 3r 0.::1 ~V M. T 1 ' ' — - ' - '- - - - - I L2 9 J~U N 79 UM ~.0 50. 0 e. o L U. U I I I I 0.0 I10. 0 20. 0 3 0. 0 '40 2 00. 0 I Ti ELIB.*L * ES91 -- =- - - -'T - 17T. 7. JR i E145L - I I I II ii I10 0. 0 1 - I* a.0 K - 100a. oL..1 29 JU 79 U 20.030.0'40. 50. FREQENCY(MHI -2 00. oL1. 0. 0 1 0. 0 Figure )45L. -Axial Current at STA:IRWS917T, Excitation 7, 1/100 Model. -1 05 -

4 0. 0 -_ _ I ~~EIJ. S. F i3so. 1. 9i ELL6S - r 'kE K~ I 30 * 0 T 0P -j o m pq =3 20. 0.-S -i i Ck- N cc I 0. 0 Li' 0. 0 --- 0. 0 19 JUL 78 UM 4 0.0 50.0 - 1 -.. 20. 0 30. 0 I 0. 0 200. 0 E45. S.F130. I. GoE46S 100. OK I i i I I i I I 1; W E? LLJ cn cc TI. CL O.0Ok. -I100. 0K~ 0. 0 10I 20. 0 3 0. 0 FREQUENCY (MHZI-I 1JUL 79 UMj 4 0. 0 5 0. 0 Figure 46S. Normal Electric Field at STA:F130, Excitation 1, 1/200' Model. -106 -

ELLB.L.F130.1.Q;E4L6L uJ O 0!r 4E j~ TOP \\ c-~1 ~ ---20. 0 -4 I.... _ _ 7 I~ 0.20030.0 '10.0 50.0 0. 0L 200. 0 ELIB.L.FP130. 1. 0;E8LB 10 0. 0 Lb uj LLS cm cc CL O.0K ~ -1I00.0 K r 19JUL7 U '10. 0 50. 0 -200.CoL......... — 0.0 10.0 20.0 30.0 FMiEQUENCT (MHi Figure )46L. Normal Electric Field at S~rA:F13O, Excitation 11, 1/100 Model. -1 01 -

50. 0 - 10. 0L 140. 0. — - V,! - - - - — IEBFSFI3O. 5. JR.47 -____ — 21 JUL 79 UM.030.0 'L0. 0 50.0 ELLB. RFS.F 130.5. JR. EL7S 21 JUL 79 U.0 30.0 '10.0 50. 0 4 0 0. 0 - --- I I I G uj L' 2 0 0. ( uj W cr 21. a O. O I 0.0 I10.0 20 FME:QUENCY (MHZ) Figure 473. Ax\,-ial Current at STA:F130, Excitation 5, 1/215 Model. (Refueling Mode) -108 -

6 0. 0 IE4IB. F. F130.5 *JAg EL7L so. OL I t~ I&0. 0 k n, la1 C3 =3 -1 aX cr 0 ~v0 2 0.0 1 0. 0 I - -I.. ----,- I I 21 JUL 7 m. 50. 0 1 0.0 20. 0 3 0. 0 4 0.c K- EIB. RF.FI30. 5.JAs E47LI 30. I - I i G w R uj al cr. 71. S..2 00. 0oL 100. oI~ 0. 0 1 0.0 20. 0 30. 0 FMEQUENCY (MHIZI 21 JUL 79 UM I 40.0. s0. 0 Figure 47L. -Axial Current at STA:F130, Excitation 5, (Ref~ueling Mode) 1/125 Model. -1 09 -

*-110 -

16.0 __ - __ _ II -- - - - I ~EIII. RF. Fl30.5.Q3 E48L 1 2. 0K -J 0 ct-.O1 _ _ _ _ _- _ _ _ _ _ U 2003. '005. 0.0 1 -100.0 - -200Ot..-.~. —. —. —.- — 25 JUL 79 UM 0.0 10. 0 20.0 3 0. 0 4 0.0 5 0. 0 FMEQUENCY (MHZ) Figure )48L. Normal Electric Field at STA:130, Excitation 5,1/1205 Model. (Refueling Mode) -111 -

IELJB3.S. FISO,86. QE49S I7 140. 0 30. 0 I 0 20 * 0 [. 1 0. 0 - V119 JUL. 79 UM 0. 0 o.0. 0 1 0.0 20. 0 30. 0 10. 0 50. 0 200. 0 -_ _ E48B. S. FISO0 6. Qi E49S 1 00. 0 i G LLJ uj cn cr.:r CL. -100.0 i -2 00. 0 1 0.0 C 19 JUL 79 UN 4 0.0 50. 0 1.0.A -1-.. I..,-................-.. I20. 0 30. 0 FREQUEN~CY (MHZ) Figure ~49S. Normal Electric Field at STA:F1301, Exiain6, /0 Mdl -11 2 -

50 * 0 I EISE L. FI30 B. Ot EII9L 1 0. 0.,. 4 -= LU C3 -1 I.-1 GM: cc 30. 0 pqr rr 0 ' I 20..*.*.. - - 20.0 0.0 4.0 5.0 200 * 0 -- -Tt,ELB. L.FISO.6. QiEIQL I i 1-1) U-i e 11) cr 71 CL. I I 00. 0 It-, I i i I I I I 1 1 0. 0' i i I Iq -1 0 0. 0 L I i II. It 0.0 0. 0 I I. i I II I I il i I I — i i I i I 4 0. 0 A.. I10. 0 "lo0.0 3 0. 0 FREFQUENCY (MHZ) 19 JUL '79 3MM 4 0. 0.50 Figure ~49L. Normal Electric Field at STA:F130, Excitation 6, 1/100 M'odel. -11 3 -

I E4~B.S.FL460T. 1.QtE55S 11a.oL. E 7 T 0 -i 0 cF'1 at: 12. oL o. 0L 4. 0 0. -___.L... ~19 JUL 79 UMI 3 0.0 &0. 0 50. 0 0. 0 200. 0 i I. --- — I EqB.3.F4B0T.l.QtE55S i I i i i -1 1; mi CM ui en cr M. CA. I - ___ ~.. - I19 JUL 79 U I10. 0 20. 0 30. 0 4 0. 0 50. 0 FflEQUENCY (MHZ) Figure 55S. Normal Electric Field at. STA:F~460T, Excitation 1, 1/200 Model. -114 -

2 0. 0 T' E48.L.FL46OT. 1.QtE55L I I 2 1 2. 0 1 1 =! 0 1.1 i i.4 3r I cr. I TOP 4. 0 o4. o " 0. 200. 0 r — I i II I i --- i G en w cn cr IL. *1 79 UK 50. 0 20. 0 FHEQUENCY (MHZ) Figure 55L. Normal Electric Field at STA:F460T, Excitation 1,5 1/100 Model. -1I1 5 -

EI4B. S. FZ460T. 2. Q: E56S 1 2. 0 6. 0k o~oL ~ 19 JUL 7S UM. 0. 0 1 0. 0 20. 0 3 0.0 I0. 0 5 0. 0 2 00. 0__ _ __ _ _ E'4S.,S. FL40T. 2. QiE58S 100.0; - 0 -100a. OL-20001 L.~. ___19 JUL 79 UM 0.0 10. 0 20. 0 30.0 40. 0 5 0. 0 rMEQUENCY (MHZI Figure 56S. Normal Electric Field at STA:F4-6OT, Excitation 2, 1/200 Model. -11 6 -

15. -O — EIB. L.F4~60T.2.QtE56L iE 1 2. 0-R17 p -j 0 Z; pq gn —,1- 511.4 Prq -j IL r. cc 9.0o 8. a. 0k I~~ I - 79 U 50. '0. 0 1 0. 0 -— I 20. 0 30 * 0 200. 0 - -- - ' I E'B.L.F'46OT,2.QsE56L 1; en LU on iL. I I I 00. 0 , i i I I I 0. 0 1- - I II I I -4 I i -1 i I i i -200. 0 0.-0 OM 5 0. 0 I0. 0 20. 0 ). FREQUENCY (MHZ) I0.I010 J UL. 7I0 Figure 56L. Normal Electric Field at STA: F460T. Excitation 2,5 1/100 Model. -11 7 -

EqB.3. F460T. 5.G9:E57S ie.oL. 0 usC-1,I I I I I I 18JUL 79 UM 3 0. 0 40. 0 so0. [I 4. 0L 2 00. 0 E4B.S. F460T. 5.Qa.E57S i I 00. 0 LI j i I i G uj PI U.j W) cc Z. IL. 0. 0 - --- -- --- -, i I i I I i I -l, i I i I I I I i -4 i I -1 I I I 19 JUL 79 UM. 40. 0 50. 0 iI I II i - I 0 0. 0 ri I I I i i I I -200. 0 L.-.-. -.. 1 0. 0 20. 0.1-.... -I. 3 0. 0 FHEQUENCY (MMI Figure 578. Normal Electric Field at STA:F1460TI, Excitation 3, 1/200 Model. -118 -

20. 0 -18. 0 -r 2.0.- t - -, I. 1~ - - EtLW. L.FL460 T. 3. t - -, - -..- 1.. -I ~ - -.. E57L S.0o i I I II 4. o L L 79 UKi 20. 0 30. 0 4 0. 0 50. 0 200. 0 I I I i I I I f -T -- ' --- - ' --- -'-T --- --- -- - - -- - ELAB.L.F460T.B.Gom G ui E? ui cm cr T. IL 1 00. 0 L. 0I 0. 0 t I I i I i I I II II I I I I I 1, II I 11 I I f I i II II I I i i II I u m 11 I 50. 0 I10.0a 2. 1) tO1 JUL 79 40. FMEQGUE-NCY (MHZI Figure 571. Normal Electric Field at STA:F)460T,, Excitation 3, 1/100 Model. -11 9 -

5o.0.0 E'd3.RFF.F460T.5.JAsE5aL FT7 -i 'L. 0 P. 30. 0: 0 3r. cc5 20. 0 k I1O. O L'. ~1 21J JUL 7 9 U M I 410. 0 50. 0 o.oL 0.0 -i 0 I10. 0 20. 0 30. 0 200. 0 10 0.0 I ~ -- - -T E4LB. RF.F480T. 5. JR.E58L I I I -i G LLJ Ca "i V) cc CL I I i 0. 0 I I I I I -2I0 0.01 0. 21 JUL 70 Ull 4 0.0 5 0. 0 1 0. 0 - --- - I.... - - 2 0. 0 3 0.0 FRIEGUENCY (MHZi) Figure 58L. -A-xial Current at (Refueling Mode) STA:.V1460T, Excitation 5, 1/125 Model. -1 20 -

18.0 EL)B. HF.F460OT. 5.9Os E59L qf::= 1 2. 0 3r. I 4 -j 0 ; w C3 —, I — r, a. 0 -j rxi 3r. I cc 0.I I. 0 25 JUL 79 UM L -j 40. 0 50. 0 5. JUL. *1 O uH 10. 0 0. 0 2 0. 0- -- - - - - ELIS. hF. FLI60T. 5.1 ii I 0 0. 0 i 1, I G uj P ui in 0: IL. I Ii I I i I i I I i I I i I I i I I I i I I I V\ I I I 1%0... 0 30. 0. FREQUENCY (MHZ) -100. 0 ~. -20. 0 10. Figure 59L. Normal Electric Field at S3TA:F460T,3 Model. (Refueling Mode) Excitation 5-, 1/125 -121 -

20. 0.' rI i I I. 1 2. -I 4H ' cl — E4B.*S.*F4~60T. 6 *Q&E60S 19JUL 7 U 20.0 30.0 40O.0 50.0 a8. 0. 0. 0 2 0 0. 0 r — I i I t I i I II I 0 0. 0 - 1* - EL4B. S.F460T. 6. E60S -tl 1; 94i M uj 4A CZ 7-. CL 0. 0 R I3 IJ \ iv I I00. 0 10. 20. 0 3 0. 0 FREQUENCY (MH1!) IsJul- 79 UMI L&0. 0 50. 0 Figure 6QS. Normal Electric Field at STA:F1460TI, Excitation 6, 1/200 Model. — 1 22 -

20. 0 -- E'4E.L.FLA6OT.6.QiE60LI I 6. 0-4 X, ~1 2 o 41 I L79 UM 0.0 10.0 20.0 3 0. 0 40. 0 50. 0 E14B.L.F146OT.B.QiE60L 1.00. 0..A Uj\ e 0.o- ft0 -200.L.. ~K.L- — 19 JUL 79 UiM 0.0 10.0 20.0 30.0 140.0 50.0 FMRQUE:NCY (MH11) Figure 60L. Normal Electric Field at STA:F)460T, Excitation 6, 1/100 Model. -1 23 -

I10. 0 E4B.S.FS9OB. 1.JPE615 /-7.- p~r~:K_ ror (: 0 co -- w; i a; WI 50. II " \r - \. vf\,l I 11 v 19 JUL 79 0. 0 --- --...... 0.0 10.0 2C.0 30.0 40.0 E48,.S. F5905~.1.jF~sEG6IS ~2O0O~i~19 JUL 79 1 200.O L- ------------—. 0.0 10.0 20.0 30.0 40.0 - - -— T i I i I I im i.1.- A 50. 0 FMEQUENCY (MHZ) Figure 6iS. Axial Current at STA:F590B, Excitation 1, 11/200 Model. -12?4 -

I o. A E4B. L.FSOB. I..JF~uE6IL 11-7 6 o~ 60 4. 0 2. 0!.-.~JL...........~.JUL 79 UK 0.0 10.0 200 3 0.0 140. 0 50. 0 * ~~ELB. L.F590B. I JR; E61L l0 0. j E! 0. 0 I U -200. 0 I...... U.. i/i / '.1 —_..-0.00 10.0 20.0 30.0 o0o 5010 FREQUENCY CMfiI) Figure 61L. Figre lL.Axial Current at STA:F590B, Excitation 1, 1/100 Model.

S. 0 - E4B.S.F590B.1.JCsE82S I I I ii i i 1 14. 0 II I WI I -4 ui u I r.3 rl ZJ I p - ---.. c ) 1 -4 a,- F -j I 3p; cr. i I E E~I '0L A19 JUL '79 UM '40.0 5C. 0 0. 20. 0 30. 0 0.0 2oo. c - -— I EUB.S.F590B.I.JCtr-62S I I I i I I I I I I I I I i I i: I I I I I I100. I II -I I I II 1; LLS e LLJ cm M. 21. a 0. 0 -1I0 0. 0 -20 0.01 L 0. 0 419 JUL 79 UMN '40.0a 50. 0....-., - -- --- ---- 10. 0 20. 0 3 0. 0 FMEQUENCY CMHZ) Figure 62S. Circumf-erential Current at STA:F590B, Excitation 1, 1/200 Model. -126 -

6.0 EL L. F590B. I. JCs EB2L K / // 'T u~CTOP \ 4. 0T U 2. 0 0.0 10.0 20.0 30.0 '0.0 50. 0 200. 0 E48.L.F5906.1 JC5EB2L 100.0.1 al - 0 iii 0.0 10.0 20.0 30.0 40.0 50.( FRiEQUENCY (MH!) Figure 62L. Circumferential Current at STA:F590BI, Excitation 11, 1/100 Mo~del. -127 -

6. 0 i I i - - V - T -1-'' E'LB.S.F590B.2.JRsE63S F < i I I -1 ul (.) 1, C. '4 Z-), I — -I -11w a- Fx.) cx I i 2. 0i I t I. I i1 oio I 0.0 ~ 19 JUL 79 U. 1 0.0 20.0 390.0 t0. 0 5. Et4B.S.*F59OB. 2.JAi,E63S 1 00. 0 -1 00 0 L G C:2 LAJ V) m 1L. I4 I i II i II i -200. 0,- I —... —. — 0. 0 1 a. 0 *.-. —... ~. - 2 0 JUL 719 UM I 20. 0 3 0.0 0. 0 50. 0 FREQUENCY tMH2Z) Figure 63S. Axial Current at STA:F590B, Excitation 2, 1/200 Model. -128 -

6. 0 r- -- -- IE 'AB. L. F5905. 2. JR i E6SL Lia -— 4 -1 0 c; cx I. I I I i i I I iI iI i I -i I I I I I um i...... I 50. 0 2. 0 I. o. oL. 0.0 I -. -. I.. 20 * 0 3.0 A 20 JUL 79 '10. 0 ELIB. L.F5905. 2. JRiE63L 0 0. 0 C) ti, E! L, in cx a CL: I i -41 i i f I I i - I 0 0. 0 UI 50. 0 I20.L 0. 1.0A 20. 0 3 0. 0 20 JUL 79 410. 0 FRFQUENCY CMI-I) Figure 63L. Axial Current at STA:F590B, Excitation 2, 1/100 Model. -129 -

EU3. S. F5808. S.JA:E6LIS 0.0 'L 0 2I 1.....__ __ ~. ~20 JUL 79 UM 0.0 10.0 20. 0 3.0 tLO.0 50.0 200.0 -~ --- -*~ E4B. S.F5908. S.J~v54 100. 0~ E 1 00.0! ~ - - 0 JUL '79 UM 0.0 10.0 20.0 30.0 Z40.0 50.0 FMiEGUENCY (MHz) Figure 64-S. Axial Current at STA:F590B, Excitation 3, 1/200 Model. -1 30 -

10. 0 -- - — T iL.F5908. 3.JAsE64LL I ---- ",-,T- --- Z- 0 W. I *.) 8. 0! ti I 8. o .I I i iI 4. 0 i i I i 2. 0 rl. i I I I I i i i I i,; I', E la-"' -- -. I -4I i I II I i II -I i I I -ii i I 1.0 0. 0- 30. 0 tVi&O. L 7 0. (L 0.0 50. 0 G ui 9 ui In CL: VA.. 2 00.0. 1 00. 0 ~ 0 0r -10 0. 0 0. 0 E48. L * FS9OB. 5.[Ri E6LW jA 1 V I' 9 11!.; / fi 'A) -, - — I i II I i I. i i i i i I i -i I I I I I I I i '72 UM i... -... 1 5 0. 0 -.-4 -1 0. 0 *. 1-. 20. 0 - -1L —.. 30. 0 ~20 JUL7 FREQUENCY (MH1Z) Figure 64L. Axial Current at STA:F590B, Excitation 3, 1/100 Model. -1 31 -

10. 0 i i i e. 0 E4B. S.F9SBO.13. JC: E6b,-r - -, 40 E zz — I iiK a * 0 k 2. 0.0 I002. -I -i 20JUL79 U 40.0 50. 3.0...- - 4 0 0. 0 I I I I I I! 11 I. I i I I 3 0 0. 0, I -1 - I -. - II I LU M 141 4n CL 7: it.; i" 1 2 ID 0. 0 L. v: it i I I I i II 100. 0I II i I I i II 0. 0 L.... o. 0 - -- - - --- — rU -- "-" 13. 5. F5908.13. S JCg E6 SS 30. - --- -1 —, - - - - - 20 JUL 79 4 0. 0 I -1 I i i II I i I I-1 i II i I I I i um: 50. 0 1 0. 0 20. 0 FI9EOUE?iCY (MHZI Figure 65S. Circumferential Current at STA:F590B, Excitation'3 1/200 Model. -1I'32 -

I 0. 0 -.- -T- - -—. --.. - - - --- - iiK 2. 0.00 E4B. L. F5908. B. JICuE65L L 7 1U 20.o0 3. '0 0 5. U.) uj p mi In cc X-. CL 4 0 0. 0 t — I Soo. 0 — i i I iI 2 00. 0. I I I f I I I 00. 0 — i I I -T I I i I I il i I 1 i 11 I 'i I I t, 1 i I; %I, I I I 11 I-I i I " i i! l I I qI i i i1. , 4 I 1! 1; li I li I i 1 1%1 I I IVM -- I - - -. - T - - - E4B. L.F590B. 5..JCg E85L UHM 5 0. 0 U. OI -- 0.0 1.0- -. 20. 030 - 20 JUL 79 'so. 0 F ME GU ENC Y (M 14 z I Figure 65L. Circumf erential 1/100 Model. Current at STA:F590B, Excitation 3, -1 33 -

40. 0L 30. 0k2 0. 0 I O. 1 25 JUL 79 U 0. 0 _ _- _ _ _ _ _ _ _ _ _ _ _ 0.0 10.0 20.0 30.0 40.0 50.0 2 0 0. 0... — - -................. I EUB.RFS.F590B.5.JAtE68S Ioo 0 0 Uj1 -1 00. -200.1 ___ _ 25_JUL 79,UM 0. 0 1 0.0 20. 0 3 0. 0 4 0.0 5o. 0 FREQUENCY (MHZ) Figure 66S. Axial Current at STA: F590B, Excitation 5, 1/215 Model. (Re~,fuel pIi ng Mo de ) -1 34 -

5 0. 0 'r — -- --- --- TI I- IT 7 ELAB, FiFF5G05. 5 *J~iuE8BL I -. - - - - V., -j ui m:J I --- -i IL. Jr. CL g0. 0 0 WxI K — 20. 0 I10. 0 i I I I I I - I 1 — 25 JUL 79 UM --- - - 0.0 10.0 20.0 30.0 40.0 50.0 200. 0 r- - 1 0 0.0 L - - ---- -- F jF590S.5. JA EBBL Z; W Ei L'i 4n cr IL..i-10. -20. 0. 0 -- -I -,, --- - -- -- - -,I i I II I I I II i i I I I I.I i I.j i I I I 1 25 JUL 79 UM I - -1 --- - - ---- - 4 0. 0 50. 0 2 0.0 3 0.0 FMEQUENCY (MHZ) Figure 66L. Axial Current at STA:F590BI, Excitation 5, 1/125 Model. (Refueling Mode) -1 35 -

8.0 T —.. T' - 7-.- ---- -, -- - I --- E'45. S. F5908. 6B. JR s E67S I0 =. IA T i I 4. 0 1 1 i t I I I I I I I, I. I I I 1. 1I 2. 0 61 -1 I i! j 1: I I I 0. 0 0.0 C0. 0 - -200.Os. 0. 0 I 1 0.0 20. 0 - v-i-EUB. + [-1 /1 - - -- -20 JUL 72 UM 30. 0 4 0.0 50. 0 S, F59 0B6. 6*JR E87S GI w R mi V) cr 71. a I I I -1 I i I 20 JUL 79 UMI 40 (.0( 50. 0 -.... - - - -... - -.. - - -- I -- - I10. 0 20. 0 3 0. 0 FREQ~UENCY (M1HZ) Figure 67S. Axial Current at STA:F590B, Excitation 6,5 1/200 Model. -1 36 -

03 i -- cWJ C& ELIB. L *F5905.5, JAg E67L. 2.0 00L ~20 JUL 79 UN 0.0 1 0. 0 20. 0 3 0.0 '10.0 5 0. 0 G w cl w on cr 7-. r. - I200.0o 0. 0.I * ELIS. L. F' I i! 1 i I i I I I i I i I i I iI I. 1.I I i I I i y. 59065. S iI i I I I i i A I i I i I I I I I i i II I I I N - - - " - -- T - '' -- I- - " -, -,,,T I 0 II i I 1I -4 I1 I I i I II II 7 I. II III II I i I I I -0. g um I 50. 0 1. I. I10. 0 20. 0..- I.. - -. — 1 30. 0 V2..0 J UL 10. 0 FRiEQUENCY fMHZ) Figure 67L. Axial Current at STA:F590B, Excitation 6, 1/100 Model.

14. 0 1 11 i I I I i I i a. 0 I E4B. S. F5S0B.7, Jr-s E688.I 0 c () I.0O 20 JUL 79 UM I '140.0 50. 0 0.01 L 0. 0.. —I --- - —.I.... - L - -- I 0. 0 20. 0 30. 0 ,w n n n e v I IC0 E4IB. S.F5905.7,JC#E68S 0. 0'. G us 5! cc Mr IL. I I I -100. 04-i II I I i I I i - 2 0 0. 0 I- - - I.- - 0. 0 I I I I II I 1 20 JUL 79 UM: - I - - -1- - --.. - - II 4 0. 0 50. 0 1 0. 0.. 1........ -. - - - 20. 0 3 0. 0 FMiE9UENCY (MHEI Figure 68s. Circumferential Current at 1/200 Model. STA:F590B,. Excitation 7, -1 38 -

E4SB.L.F5908. 7.JCoE6SL 0 ~:-~2. 0 I1 i, I I.II i I I!. 0: I i j IV, il I 11 r4; I, I i 1 I. -i u M 50. 0 0. oL. - --. 0. 0 1 0. 0 20. 0 30. 0 - 120 JUL 79 140. 0 ELLB.L.F590B.7.JCsE68L uii -I100. 0 I. I I...20 JUL 79 111 41 I40.0 50. 0 -200.0o. — 0.0 10. 0...- -.. -- 20. 0 3 0. 0 FREQUENCY fMfII) Figure 68L. Circumferential Current at STA:F590BI, Excitation 7, 1/100 Model. -1 39 -

IS. 0 I - T ' F- TI-_ E4B.3S.F15608. 1. JR.E6" 12. 0~ WIC.) a:: 0 O xi6. I w "IN I — T 0 P IJ. 0~ n - n. - ~ ~ -- I8 JUL 79 UM W.V. - 0. 0 I10. 0 120. 0 30. 0 4A0. 0 50. 0 20 0. 0 10.I.1...... E48 G In uj an cc AL. 0. 0 I -I —.3 JUL79 U 30.0'&0. 50. -1 00.0' -2 00.0L I10. 0 20. 0. FMiEQUENCY (MH!) Figure 69S. A.xial Current at STA:F71560BI, Excitation 1, 1/200 Model. -140 -

I B. 0 r E'J5.L.F1560B.1.J~t1E6GL / ~1. 1 2. 0f - a 0 n —.. 0 0. L 9 U 20 0. 0 ~T - 10O.0~ ELAB.L.F15606.1.JA&E69LK' -2000 ____ ___13 JUL 79 UM 0.0 -- 10. 0 20. 0 3 0. 0 40. 0 50. 0 FI9EQUENCY (MHZ) Figure 69L. Axial Current at STA:T'1560B, Excitation 1, 1/100 Model. -141 -

8. 0 I I -7 I EqB. S. F1SBB. 1. JC. E70S *E K. 0 ~ T OP =!0 4.0 C) 2. 0L 0.0o L0. 0 200. 0 -- I 13 JUL -79 UM I 40. 0 50. 0 10. 0 20. 0 30. 0 E4B. S. FIS60B.1. JC. E70S 1 00. 0L G uj en LLJ 4n cc M. $6. 0. 0 - -100. 01 - 13 JUL 79 UM -200. 0 L0. 0 3 0.0 LI0. 0 50. 0 FREQUENCY (MHZ) Figure 70S. Circumf erential 1/200 Model. Current at STA:F1560B,. Excitation 1, -1 42 -

8.0 - 8. 0 E'4B.L.FISBOB. 1.JC.E70L 4 T 0P P (p4. 0 2. 0 79 UM! 0. 0 L-. 0. 0 200. 0 I100. 0, -T — -- -- I I E4IB.L.F1560B,1.JC.E70L G uj n L16i en cr a 0. 0 1 I0 0.0 -200. - - _______13 JUL 79 UP!] 10. 0 20. 0 30. 0 4 0. 0 50. 0 0. 0 FRIEGUENCT (MHZ) Fi~gur'e 70OL. Circumferential Current at STA:F1560B,. Excitation 1, i/lao Model. -143 -

40,J 4.a. 0 0 ___ _ __ 13 JUL 79 UNH O. 0.0.0 10.0 20.0 30.0 410.0 50,0 EUB,S. F1560B.6.JR,E7 1S 10 I I0.0 00 1 0.0 20.0 30.0 40.0 50.0 -200.0 -_ -is JUL 79 UH 0.0 10.0 20.0 30.0 10.0 50.0 FREQUENCY CMHZ] Figure 71S. Axial Current at STA:F1560B, Excitation 6, 1/200 Model. -144 -

12. 0 E4Bm LvFjS~80 1~ - "I (o:1Il 4. 0 I I I I 7 9 UM I - -4 5 C, - 0 200. 0 I II I.78 I I I I I G uj 5 w cc IL I / Figu re 71L..Ax"ial Current at STA: F1560B. Excitation 6, l/' oe -145 -

6.0I i 1 1 1 1 E48. S.F1568O.7.JC.E72S 4i.0 k -A "I (-) 4=1: I " =2 I — ---- W I- 3r cc 2. oL -1 1s JUL 79 -UM 0. VL.- I I 0. 0 I10. 0 20. 0 30. 0 40. 0 50. 0 200. 0 I I T — I- - -,- i - - G "i C3 FAJ M cr -T-. AL 1 00. 0 -0.4 -100. 0i -200. 0. E4B. S. FISOOB. 7. JC.E72S I___ I 1lSJUL 79 UM 0. 0 1 0. 0 20. 0 30. 0 FREQUENCY (MH!) 4.0. 0 50. 0 Figure 72S. Ci rcunf e rent ial 1/200 Model. Current at S.TA:F1560B,1 Excitation 7, -146 -

S. 0 I Eg8. L.F1580B.7.JC.E72L ti. 0 c" I Il c j) a- K 2. 0k 19 JUL79U 50. 0 0. 30. 0 4 0. 0 0. 0 2 00. 0, - - - - E'4B.L.F1560B.7.JC.E72LI Itoo0. o ~ 4z W C3 "i VI cr W. 0. 0 -too. o -20 0. 0 0 4i0.0 50. 0 FREQUENCY (MHZ) Fi gur'e 72 L. Circumferential Current at 1/100 Model. STA:F1560BI, Excitation 7, -1 47 -

I 0. U;. - - E4B.3.F2200B. 1.JRsE73S 1 2. 0::-~ 0 C3.Ii a.0ok -- - I1I JUL?9 UM 40.0 50. 0 I. 0. 0 L I 0.0 1 0.0a 20. 0 -4 -30. 0 200. 0 17 -— i E4B.5.F2200B. 1.JRsE73S I 100. 0k' 1; W F "i in cc W., 9 o. o -1I0 0.0 L -2n n - n i,e.vu. v i I I -. — -. —L- I 13 JUL79U I I ~ 50. 0 0. 0 I10. 0 20. 0 30. 0 40. 0 FREQUENCY (MHZ) Figure 73S. CA~xial Current at STA:F2200B, Excitation 11, 1/200 Model. -148 -

0 00 - 0. 0010.0 20.0 30.0 '10.0 50.0 Figure 3L. Axal Currnt atETA:FL.2200B, xitJatinE, /10odl — 149 -

4. 0 I I T,S.F2200B. 1.JCsE7US E-/7 3. 0 TOP =!0 u:4 -3r a: ~. I.40 I I 13 JUL 70 UM 0.01 0.1 I I I I13 JU 79- UN 0 1 0.0a 20. 0 -30 0 40. 0 50. 0 200. 0 I -- -- Y-1TEIAB.S.F2200B.I1.JCsE7L4S 10 0.0 L a "A uj WI cc 21. a o.OL ~ -1I0 0. 0.. -e-UU. V L I I - I, — 3 JUL 79- UN J-. 0 50. 0 0.0 1 0. 0 20. 0 30. 0 FREQUENCY (MHZ) 4 0 Figure 74S. Ci rcumferentilal 1/200 Model. Current'at STA:F2200B,. Excitation 1,

I.0.,r E4B.L.F2200B. 1.JCsE74LL TOf'; 0.0?. -A 1. 0 7 9 0.I 40. 0 200. 0 I 1 0 0. 0 ~ G LLJ CM uj *I cr 116. 0.0 1 - -I I F - - E4B.L.F2200B. 1.JCiE74L] I IUM 13 JULI.0 300 40. 50. -1I0 0. 0 - -200 - -r-WW. W, 0. 0 I10. 0 20 FfIEQUENCY CMHI!) Figure 74L. Circumferential Current at 1/100 Model. STA:F2200B,. Excitation 1, -1 51 -

10. 0 II i E'&8.S.F22008. 1.Q.E755 B. 0.- K] TOP: o0 2 ri ____ ___ _ 1 JUL 79 UN 0.OL L - 0. 0 1 0. 0 20. 0 30. 0 40.0 50. 0 2 00. 0 -_ _ _ E14B. S.F22005,, 1.QE7SS 1 00. 01.. -1 0 0. -2 -- -- -._ _ __ __ _ __ _ __ _ 13 JUL 79 UN 1 0. 0 1 0. 0 20. 0 30. 0 '10.0 50. 0 FRiEQUENCY (MH!) Figure 7T5S. Normal Electric Field at'STA:F2200BI, Excitation 21, Ii1/200 Model. -1 52 -

10. 0 I0.0 -T ----1 I - F I S. 0 -j 0 "; r"I a.0oL E4B.L.F22000. 1.QsE7SL TOP I -- - I 13~~ ISJUL 79 UN 4. 0 2. 0k n - a W. V L — 0. 0 I10. 0 20. 0 30. 0 40. 0 50. 0 2 0 0. 0 ____________ ____I_ - I -- E49.L.F2200B. 1.Q;E75L 1 00. 0 (1 G w C3 ui In cr X1. IL. 0. 0 k -1 00. 0 '-. -200. 0 L - - __ __ ____ ___ _I__ _I__13 JUL 79 UM I 0.0 10.0 20.0 30.0 40.0 50.0 FMiEQUENCY (M"Z) Figure 75L. Normal Electric Field at STA: F2200B,. Excitation 11, 1/100 Model. -'I53 -

ti. 0 I. 1 — I~ EIB. S.F2200B.2.JAsE76S tE L2 I1 I 1 0 ~, W I1.Z. o L. I. 0 I13 JUL 79 U n - o I U. I v I Hm - 50. 0 0. 0 I10. 0 20. 0 3 0. 0 '10. 0 200. 0 F -, -- -t — 3. S.F2200B.2.JRE765 100.0 1 - -4 G IAJ cn "i WI cr. T-. 4 - I - N., file rN14A t I1 0. 0 -100. 0 - J N -~13 JUL 79 UN 0. 0 1 0. 0 20. 0 30. 0 140. 0 5 0. 0 - FREQUENCY (MHlE) Figure 76S. Axial Current at STA:F2200B,. Excitation 21, 1/200 Model. -.154 -

14. 0I I I i I EhB. L.F2200B. 2. JAs E7BL ZLJ74 a]. oi.. 0 0. 0 __ _ _ _ _ 1i _ _ - 0.0 10.0 20.0 30.0 13 JUL. 79 -UN too. 050. 0 200. 0 ~ -T IFI.E45. L.FP22005.2. JAgE78L.- —.-T ---- - - -- 1 00. 0 - I I I I I I I II -4 II I G uj gn "i on cr I 0. 0 -1 00. 0 -2000 ____ _____1 ______JUL 793 UN 001 0. 0 20. 0 30. 0 40. 0 50. 0 FREQUENCY (MHZ) Figure 76L. Axial Current at STA: F2200B, Excitation 2, 1/100 Model. — 1 55 -

6. 0_ _ _ - - -.r i i i 1 6. 0 EI4B. S.*F2200B *2 * 0:E77S LEZT, i. 0 Ill. 4. 0 0. 0 L 4 - _ _ _ ~ v_ _ _ _ _ _ _ _ _ _ _ _ _ _ 0. 002. 00'005. 400. C) r-, I I 1 3 0 0. 0 i I i C., ui E! 2 0 0. 0 w to cr 7.Q ELIB. S.F2200B. 2.Os E77S I I1 100o. 0. ___ — - 29 JUL 79 UM 20.0 30.0 40.0 50.0 o. o KL0.0 I0.0 FfiEQUENCY (MHZ) Figure 77S. Normal Electric 1/200 Model. Field at STA:F2200BI, Excitation 21, -] 156 -

8. 0 11 I 1-T — - -, E4B. L.F2200B.2.Qg E77L LE~z~ a. o - F1 9 - 4.01. I Itl 2. 0 .. i I i I I o.oL I I I I 29JUL7 U 1 ~ 50. 0 0. 0 I10. 0 20. 0 30. 0 140. 0 400. 0r ---— 1 --- IEUB. LF22005. 2.QoiE77L 30.I G UA 9= UA an W A. 200. 0 100.0 0. g 29 JUL 79 UN I 40. 0 50. 0 I10.0a 20. 0 30. 0.- FRiEQUENCY (MHZ) Figure 77L. Normal Electric 1/100 Model. Field at STA:F2200B,. Excitation 2, -1 57 -

10. ol i --- I.- I - - --- - - -- - -- I E49.5.F22005.3.0.E78S I I i 40 E I I 8. 0 Ti lu ri. I.J rl I.2 I — 6..-I v I A. w 39: cr. 4.0~ 2.0k0. 0 10.0 20. 0 30. 0 29 JUN 9U I I&0. 0 50. 0 2 00. 0 1 00. 0 0. 0 17.) M LLJ cm cr 3'. VA. r- - --- -- I. - I I t I i I 1: I,1 i I I I i i i v I i i I I I i - I I I I I I j ELIB.5. F2200B. 3.Q. E783 -1I0 0. 0 1i - 2 00. 0 0. 0 I 0.0 2 0.0 I 1 29 JUN~ 79 UM 3 0. 0 LiO0. 0 5 0.0 FREQUENCT (MHY) Figure 78S. Normal Electric Field at STA:F2200B, Excitation 3, 1/200 Model. -158 -

I10. 0 6. 0 -. 6.0o 0 ri. E4B.L.F22008.3.QtE78L - - ___13 JUL 79 UM 0I10.0 20.0 30.0 4 0. 0 5 0.0 4. 01 i I i I 1 2. 0 [i I p I I I 0. 0 L 0. 2,0 0.0 EL4B. L.F2200B. 3. Q;E78L 1 00. O I I i I I 0. 0 r Ii I 1; e 4n Tcr r. J ul I1 j I~7_N 50I I0 0.0 k J1 - 2 0 0. 0 L -_ _ _ _ _ _ _I_ _ _ _ __I_ 0.0 1 0. 0 2 0. 0. FBiEOUENCY (MHF) ). 0 4 0. 0 Figure 78L. Normal Electric Field at STA:F2200B, Excitation 3, 1/100 Model. -159 -

1 6.0 f, - - -— __7 —, IE4IB. S.F2200B. 6. JR. E78AS 12. I u I c, i I.1 i 7. a: 0 II,, 0- ti. v 4. 0 - I I i 0. 0 0. 0 002 0. 0 30. 0. —113 JUL 79 UM 4 0. 0 50. 0 2 0 0. 0 --- I I I I 1 0 0. 0 1 1 i I I i I i i O. O' i I I I - -- -I I I -F- - E'4B.S.F2200B. 6.JR.-E78RS I —, - — I II I 1 -4 G n LLj v) M x-. a. I 1 0 0.1 - 20.I___ _- -- _ _ _ 1 13 JU L 79 UM _ 0.0 10.0 20.0 30.0 40.0 50.0 FREQUENCY (MHIZ) Figure 78AS. Axial Current at STA:F2200B,. Excitation 6, 1/200 Model. -160 -

1 6. 0 E4B. L.,F2200B. 6. JR.E78RL 'I,.I.- - - - - - - 1 2. 0[ (3.0k - L4. 0 i I I 0. 0 L --— IL 7 1 0.o 1 0 0 20. 0 3 0. 0 4 0.0 50. 0 Z; w R tnu'j Tcr 9L. 2 00.0, 0. 0 1 0.4 E4B.,.F2200B.6. -. — - F, ---.4 I ___ _ 1 3 JUL 79 UM 0 2 0.0 30. 0 4 0. 0 50. 0 FR~EQUENCY (MHZ) Figure 78AL. AilCurrent at STA:F2200BI, Excitation6 6, 1/100 Model. -1 61 -

10. 0 FF — I --- F- E4B. S. F22000. 6.9;E78BS-_ __ 8. 0 2- o: 2l *l fr 6.0 K 4. 0 2.40.0L 0.0 I 1 ~3 JUL 79 UM 3 0.0 40. 0 5 0. 0 0. 10. 2 0. 0 2 0 0 0 1 00o. 0 0. 0.0 E4IB. S.F2200B. 6. QE78BS I I II 13 JUL 79 UN 4 0. 0 5 0. 0 --- I ---- I 1 0. 0 20. 0 3 0. 0 FFHEQUENCY (MHZ) Figure 78BS,. Normal Electric Field at 1/200 Model. STA:F2200B,. Excitation 6,

E4B. L *F2200B. 6 *QiE7SBLI 8.0k 77 Z2 0 l F cl I] 1 6. 0 4. 0 -1 I 79 U 50I 2.0K~ 0. o L0.0 I -. 2 0. 0 3 0. 0 2 0 0. 0 - i iI I I I 0 0. 0 i i I I I I I 0. 0 rL I I i I I - 1 0 0. 0 - I i I Ii -200. (; -- ___+ — 0. 0 T 6. Qs E78BL I I-i ~iI - ___ L.L ____ - LI3 UL 7 U I 10.020.030.040.050. FMiEQUENCY (MHIZ) Figure 78BL. Normal Electric Field at STA:F2200B,. Excitation 6, 1/100 Model. -1 63 -

1 2. 0 -. i I I I -- - - - -- — 1 --- - __ -- -- --- ----- E'4B. S. F259L4B.1. JR jE79S *'E- K, I -1 w 0 ri P-A:3.1 01 I --- 4, I- as Z., ) cr 9 -.0 L I.0 TOE'F 0. 0 - - 0. 0 — 4 --- — 20. 0 3 0.0 13 JUL -79 UIMI 40. 0 5 0.0 I10.0 2 0 0.0 r I 00 0= 3 t 00 E4IB.S. F259'45 * 2.J~sE79S 13 JUL 78 UM 1 0.0 20. 0 3 0.0 Li0.0 5 00 FREQUENCY (MHZ) Figure 7'9S. Axial Current at STA:F2594B, Excitation 1, 1/200 Model. -164 -

1 2.0 -— I_ 9. 0 i; 0 6 0W 0.0 -4 0-, 6. 0.0. E4B5.L.F259L4B.1.JRE79L TOP -I 79 UM 5 0. 0 02 0.0 3 0.0 4 0. 0 200.0 i PT-" - 1 00.0 K 0.ti R r.3 1 w In 3-. a. I i I -l t i I I I I i i iI — I I 13 JUL. 79 UM. ------ I, 4 0. 0 5 0. 0 -10 0. 0 -200. 0 L — 0. 0 1 0. 0 20. 0 3 0. 0 FF9EQUENCY (MHZ) Figure 79L. Axial Current at STA:F25914B,5 Excitation 1, 1/100 Model. -1 65 -

0.0 1 6. 0[ i 1. Et4B.S.F259~B. 1.0 EO -1 2 16 JUL 79 UM 0 4 0. 0 5 0. 0 8. 0.0 2 0 0. 0 T — I I I I I v I I 0 0. 0 1 1 1 I Et4B. S. F259'4B. 1. Q: EBOS 1; uj Cs ui cn cr CA o. 0~ -1I0 0. 0 k i1 16 JU 79 U _ _ _ _ _ _ - 20.030.040.050. FREQENCY(MHI -2 00. 01 __ — ~ 0.0 1 0.0 Figure 8os. Normal Electric Field at STA:F259)4B, Excitation 1,5 1/200 Model. -166 -

2 0. 0. I__ _ - F- ~ -E'4B.L.*F259'4B.1. Qg E6OL 17 0 0 '1 2.0 ~ 0. 0 - _ __ —Li L]J 0.0 10.0 20.0 30.0 40O.0 50.0 EL4B.L. 259148. 1.Q:E80L 1 00. 0 j P 1 0 -1 0.0 10.0 20.0 30.0 '40.0 50.0 FREQUENCY (MM7) Figure 80L. Normal Electric Field at STA:F2594-B,, Excitation 1, 1/100 Model. -1 67 -

'4.0 __ — - -_ - --— i - E485..F259'4.2.J Ag E 8 I15;~- 0 cx,~. i2. 0. i 0.0 10. IE L -. I16 JUL 79 UM 1 '40. 0 5 0. 0 20. 0 3 0.0 2 0 0. 0 T --- -- I I I i i * TE'4B. S. F259L4.2. J~ E81S I 00. 0 L. 1 I i i I i i 1; uj E2 I 0. 0uj 2 1 X: a- I I i - 100. 0 i i I I I I -Ii i I I -2 00. 0 L I 0.0 1 0.0 2 0. 0 3 0. 0 16 Jul 79 UM 4 0.0 50. 0 FRIEQUENCY (MHZ) Figure 8is. Axial Current at'STA:L42594B, Excitation 2, 1/200 Mo-del. -168 -

4I. 0 E4~B.L.F259L4B.2.JREB1L E 3.0 O V ic 0 *L' [ 2. 0 1V I.0 k 16 JUL 79 UM i 4 0. 0 5 0. 0 0.0 o L 0.0 I0.0 20. 0 3 0.0 2_00. 0 _ 100. Oy E4~B.L.F259c4B.2.JAiE81L lh~~~~/ -4 G w Ca LL I (n cr 7: IL. -20 0. 0 F - - - - 0010.0 20.0 30.0 FMiEGUENCY (MMIZI - i 16 JUL 79 UM 4 0. 0 5 0. 0 Figure 81L. Axial Current at STA:F259)4B. Excitation 21, 1/100 Model. -1 69 -

5. 0 F IT- — I -- - I ELIB..F259LLB.2.0;E82S I.~7 rx -/ i I- ^N,-+ 'Id,.4 2 -1 ~I vi t~y H, 3. 0j 2. 0 I I i I -4 1 1. 0 0. 01 -- _________-.- I___. _________ 16 JUL 79 0.0 10.0 20.0 30.0 4. 5 0. 0 3 00. T ~ ~ ~ -t I - F -~ ELIB. S. F259416. 2.Qs E825 G LLJ Cl "i An cc X. 0 - 200. v I 1 00). 0 - - I_ _ _ 16 JUL 79 UM 2 0. 0 3 0.0 '10. 0 5 0. 0 0.0 1 0. 0 FMEQUENC( (M HZ) Figure 82S. Normal Electric Field at STA:F2594B B, Excitation 2, 1/200 Model. -170 -

5. 0 ___ _____ T- ---— T-I --- I - -- ELSB. L.*F2594B. 2 *Q;E82L E K - 3. 0 2; 0 Z; F' 1 2. 0 -.1 I -1 i i i i -i I i 1.4) 0. 0. 0 3 00. 0 I, 20. I 1 16 JUL 79 UM 10.0 20.0 30.0 40.0 50.0 E4IB.L.F25914B.2.QIE82L -I 1; e W in cc X-. a -4 I i i I I 0 0. 0 - I 41 0.0o L. 0.0 I10. 0 2 0. 0 3 0. 0 FREQUENCY (MHZ) 16 JUL 79 UM 4 0.0 50. 0 Figure 82L. Normal Electric Field at STA:F259)4B, Excitation 2, 1/iQO Model. -1 71 -

z i — i 20. 0 2 0. 0 *. S. F2594~B. 3. 0; E6B35 -~ ____ __ _ _ _ 16 JUL 79 3 0.0 4 0. 0 - -—.I I I I i I -i I i i -I I I - i um I 5 0. 0 2 00. 0 I.1* 100o.0o 1; e cn 7-cc CL 0. 0 V. ELLB.S. F2594B. 3.Q0:E835 2 0. 0 3 0.0.I i Ii I -i -100.0 V.. I t I I i I i I I I I i tj m;.1 5 0. 0 0.0 1 I0. 0 16 JUL 79 4 0. 0 FREQUENCY (MtIZ) Figure 83S. Normal Electric 1/200 Model. Field at STA:F25914B, Excitation 3, -1 72 -

w Cl zi 31: EL 20. 0 r 16.OL ~ 0 ['11 0. 0 E4B.L.F259L45.3.0,E83L - I I K 100 -Yt0 --- — ~'~~'JL 79.1 50. 0 2 0 0. 0, I I I I I I i 100.0 il I EL4B. L.*F25948. 3.9: E83L G w PI LO (n CL a 0.OL~, 16 JUL 79 UM 4 0.0 5 0.0 -1I0 0.0 V 0.0 1 0.0 2 0.0 3 0.0 FHE9UE~NCY (MhZ) Figure 83L, Normal Electric Field at STA:F2594B,. Excitation 3, 1/100 Model. -1 73 -

1 2. 0 ________ __ _ _-. -- - I -1- - - - -i - I..- --- [ E14B.S. F25g94B. 5,JRsE. 4o - -, 0 6.0 ii 3. 0 -I 0.0 1 0.0 --— i 3 0. 0 16 JUL 79 UMI I&0. 0 50. 0 2 00. 0 1 00. 0 t — hI 1i I E4IB.S. F2591B. 6. JR.E84IS I I i I i -i i I I I I I I JUL 79 UM 5 0. 0 -1I0 0.0 V - 2-0 0 - 0. 0 1 0. 0 2 0.0 3 0.0 FREQUENCY (MHZ) I 1 6 q, 0 Figure 84-s. Axial Current at STA:F259)4B,1 Excitation 6, 1/200 Model. -1 74 -

1 2. 0 r' I i I i: i 5.0K 0.0 E4~B. L.F2594~B.B. J~gE84LL 4I 0.20030.0 40.0 50.0 2 00. 0 I I I E4~B. L *F259L4B. 6.*JR. E84L I 00. 0 L I I I I I i I 0. 0 I I 1; ui cl L'i (n a: T. 4 - I-I I i i i I -i I I I.1 i i I I i I um - i 5 0. 0 - I00a. 0 ~ -200. 0 L — 0.0 1 0.0 2 0.0 30. 0 FRiF.QUENCY (MHZ) 16 JUL 79 4 0. 0 Figure 84L. AilCurrent at STA:2594B,. Excitation 6, 1/100 Model. -1 75 -

2 0. 0 1 -I II I II i 1 6. 0 1 r-I E4B. S. F259~B. 6. 5E65S 1 2. 0:1 8. I' LLOL0 0. 0 L-. 0.0 30.0I --- —-- 16 JUL '79 4 0. 0 s0. 0) 1 0. 0 2 0.0 2 00. 0 ___-t - E4B. S.F25914B. 6.0. E853 Z; LU U-1 Ln (x T-. a_ 1 00. 0 r K 0.01L - 10 0.0 ~ - I Figure 85s. I10.0 2 0. 0 3 0. 0 FRFQUENCY (MHZ) Normal Electric Field at STA:F259)4B,, 1/200 Model. 116 JUL 79 40. 0 5 0. 0 Excitation 6,5 -1 76 -

2 0. 0 1 6.0 I 8. - -— T-r FI -r EL4B. L.* F259'4B 6. Qs E85L t i I i I i i I 4. 0 - -i I i I I 1%., I L -79 UM _I o. oL — i - 0.0 10.0 20.0 30.0 40.0 50.0 200. 0 r 1 00. r - G ea ul tn cr 21 a i i I i I -i i I I I -1 i I I i i i I I II i um! I 50. 0 -100. 0 ~ -200.0[ -- 0.0 1 0.0 20. 0 3 0.0 16 JUL 79 4 0. 0 FMEQUENCY (HHZ) Figure 85L. Normal E lectric Field at STA:F2594B, Excitation 6, 1/100 Model. -1 77 -

L: C - ", I C.) ZI) ----... 0;LI I -.) Tr cc 1LB 2. 0 70. ~ EB 0). 0 1 0.0 20030. 0 2..1 0 JUL 79 4 0. 0 G mi F: Wuj cr. a -100. 0-I -21.00. 0L - 0.0 1 0.0 I, i I i ii i i III i I I I I i I i i - -- -~ --— ~ 1 - - E4B,.3.FWS817B. 1 JR1EBSS I um: 50.V -. -..I I I f i II I m i i I II II I I i I-1 i I I I ii i i t UM I 50. 0 - -. 1. 20. 0 FR~EQUENCY 30. 0 20 JUL 79 -.1 -.- - -.- 1 110. 0 Figure 86s. Axial Current at STA:RWS9l7B,. Excitation 1, 1/200 Model. -178 -

EI4B,. LAWS9 179. 1 *JAgE8BL '-7 AE~,K sT OF.7. -j to 0 tj r-4:;) r -4 —,, a. 0 -.. 4 -1 d a. I Ir 1 4z 1 1 1 f j a. 0 - II I I 0. 0 -.. - 0. 0 1 0. 0 20. 0 30. 0 0 5.0 200. 0.I iI i i 100. 0i I i tI 0. 0 II I I )I I,, re, mi Ca LLJ 4n cr Z, it. 20 -1 00. 0 $-200 0. 9 U I~. 20. 0 so FMEQUENCY Cl1KZ3 3.0 '10. 0 Figure 86L. A-Lxial Current at STA:RWS917B,, Excitation 11, 1/100 Model. -1 79 -

IE.4B.S.MFI'S9 170,. 1JCs E07S e. 0 8. 0 4.4 2.O 0.-. 0. 0 1 0. 0 20. 0 TOP L 20 JUL 79 UM 30.0 4 0.0 50. 0 70. 1 JCv E873 20 JUL 79 UM 30. 0 40. 0 50. 0 N t$1) 2 0 0. 0 1 i i I I 00. 0 1 1 1 1 i I I i i 0. 0, I -— I. - - W 91 LI) $at Ca ILJ W) cc XI 4 - -1 00.0o -200.0o 0. 0 1 0. 0 20. 0 FREQUENCY (I Figure 87S. Circumferential Current at 1/200 Model. STA:RWS917'B, Excitation 1, -180 -

I 0. 0 1 - 0 IL f 03 E'UB.L.RW3g179.1.JC.E87L TOP 'y 0. 0.0 50.00. 0. 4. 200.0. — I r' T ---- — I h I 0.o I G i I" e o-oL to an aI i i J i I I - I 01). 0 I I i I I I 1 -200. 0 1-.-. 0. 0 I II$ il I 1.1i li '' I II I I 11 I I I i I I II I iI I I i t I II I 11 I i I I i II I I i I I.1 I lili E45.LRHSO 17B. 1 I j i I i i -4 I i I i I i i i I um; 50. 0 / - - i1 20. 0 SO.0 20 JUL 79 '10I.0 FREQUENCY CMM71? Figure 87L. Ci rcumferentijal 1/100 Model. Current at ST: RWS917B,, Excitation 1,

24. 0 20.0 k 16. 0 k =3 t1-1 ft2. cr 0 — Cl2. 0 E4B. RF. RNS91 7r *5. J~s E8L _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - ___ 25 JU L. 79 U M 10.0 20.0 30.0 40.0 5c 4. 0 0. Io0l. 0. 0 ). 0 200. 0 E4B.RF.RHS917T.5.JRiE88LI 1 00. 0t-. G ui C2 LLJ Ws cc a o. oV -100. 0L~ -2 0 0 I_ _ _ _ __ _ _ _ _ _ _ _ 25 JUL 79 UN 0.0 10.0 20.0 30.0 40.0 50.0 FMEQUENCY (MMZ) Figure 88L. IA.xial Current at STA:RWS917'T, Excitation 5, 1/125 Model. (Refueling Mode) -182 -

16.0 12. 0J 0 'U! w 0 ~ ELAB. RF. RHSOI7T. 5.l2.EBSL It —i ____ _______ ____25 JUL 79 UM.0 10.0 20.0 50.0 40.0 50.0 14. 01 — t -1 - - - - - - _ _ _ _ - ELAB. fF. RWS917T. 5.0: E89L I I 0 0. 0 I I i I I II 0. 0 i I I I G LLA Li LLJ W) cl: -1 00. -200. 0 0. 0 Figure 89L. - ~. - ~L. 1.. ~ 25 JUL 79 UM~ 10.0 20.0 30.0 40.0 50.0 FREQUENCY (MHZ) Normal Electric Field at STA:RWS917T, Excitation 5 1/125 Model. (Refueling Mode) -1 83 -

E'4B. S. IWS9 17B. 6. J~sEGOS 20.40 Io -.;.I I II I I I I I II I. I I I i i -i i I i 0.0 1 0. 0 20. 0 30. 0 I II II i II 20 JUL 79 UM,..., 4 0. 0 5 0. 1200. 0 -I. — E-4a. s. IsG 17/B. 6. j~EGOS.t i 11 I II I II I I I I 00. 0. i I I 0. 0 i I I i I I I I — I 0 0. 01 iI I -20O.OL --- 0. 0 I I I tI -i i I II I I II i -— i II II i i i i i I i I I II I i I I 20 JUL 79 UM,...- All. —, 40. 0 53. 0 I -. - - -.-I-. - --- 1 0. 0 20. 0 S0. 0 F!9F.QUENCY (1MHZ) Figure 90S. Axial Current at STA:RWS917B. Excitation 6,3 1/200 Model. -1 84 -

I E48..L,RW5917B.6. JAsE9OL 2-0. o I. a: I i 11 I I i itI i.. - - I - ' - - - - --- — '- -- - --- -"I i It. - I I -R I i 0 --- I i I I I I I I F -1 0.0 1 0.0 20. 0 30. 0 LI0. 0 5o. 0 200. 0 1r E!t3.L'.RWSg9.7B.8.JAsEQ0L -,T, --- - - - --, -"-I I I I I Li "i ell u VI cc:r fl.. i I i Io 0. D!t.I i i I i I I 0. o i-. I II I I i I II -100. C) " r I f — I i I II II I -1 i II I I I II I -1I i I II i I II 7g UN:..... -- I 4 5 0. 0 -200. 0 L. — 0. 0 *.-..-. -~-. -L 1 0. 0 I -....,.J ---.-A20. 0 30. 0 F'9F.fIJUNCY (MMlE) Figure 90L. Axial Current at STA:1fRIS917B. Excitation 6, 1/100 Model. -1 85 -

IELAB. S.MNS 15487. 1 JAs E9I5 *'E K 6.O0L TOP -c1 1- --- 4 I16 JUL 79 UM o.oL 0.1 0 I10. 0 20. 0 0. 0 4 0. 0 50. 0 200. 0 r - -I - _ _ _ _ I_ _ IE4IB. S. WS 15487.1. J~m E913 1 00. 0 G ui p LLJ cm cr IL 0. 0 -2 00. 16 JUL 79 UM ----.. I. 0 3 0. 0 F9F.QUF.NCY (MH!) 4 0. 0 5 0. 0 Figure 91S. Axial Current at STA:RWS1548T, Excitation 1, 1/200 Model. -186 -

8. 0,I I E'4B.L.MWS15'&8T. 1.J~sE9IL &E K 6.0L. TOP~ m.J cd 4.0L. 2. O 16I JUL 79 UM O._ __O_ _I_ _ _ _II 0.0 10.0 20.0 30.0 4 0. 0 50. 0 2 00. 0 — r --- — I ELB. L.MFWS 15407.1. JR, E91IL 10 0. 0 G U R IAJ 0 Cc a o.4~ i -1I0 0. 0 ~. I 16 JUL 79 UM] '10. 0 50. 0 -200. n I U I -- I I I 0.0 I10. 0 20. 0 30. 0 FREQUENCY (MHZ) Figure 91L. Axial Current at STA:RWSl548T,, Excitation 1, 1/100 Model. -187 -

20.0 12.0t..0 0.0 0.0 200.0 100.0 0.0 -100.0 -200.0 - - 0.0 Figure 92. -200. 0 0. 0 Figure 92S. - -- -, -- - -7 - E4B.S.RNS1548T,1Q,.E923 16 JUL 79 UM 10.0 20.0 30.0.FREQUENCY (MHZ) O. 0 50. 0 Normal Electric Field at STA:RWS1548T, Excitation 1, 1/200 Model. -188 -

1 2. 0 0 j PE r=l 2 00. 0 1 00. 0 G uj cm uj in cc S., Is o.oL -100. OL 1 JUL 79 UMJ ~.0 5 0. 0 -200. O-.. 0. 0 I10. 0 20. 0 30. 0 FREQUENCY (MHZ) '&0 Figure 92L. Normal Electric Field at STA:RWSl548T,, Ex.citation 1,5 1/100 Model. -189 -

8.0 I I1 ELIB. S.HiS 151487.2. 0.E9SS II. 0 I — ~ -.1L) I16 JUL 78 UM 2.OL) 0.01 0.1 I -1 - - I 0 1 0.0a 2 2 00. 0 G uj P uj O a-?0. 0 30. 0 '40. 0 50. 0 ELAB.S. RNS15487. 2.G. E935 I 16 JUL 79 UN?0.0 30.0 140.0 5 0. 0 FREQUENCY (MHZ) Field at STA:RWS1548T, Excitation 2, 0. 0 Figure 93S. Normal Electric 1/200 Model. -1 90 -

o 6. 0 r 6.0 - - I. I E485.L.RIWS154eT.2.QsE93L I 1~E L2 4. 0k. 0 Z F C3x 2.0k~ 0. 0 L1- ~ 0.0 1 0. 0 20. 0 ___IS JUL 79 UM 30. 0 L 0. 0 S~;0. 0 200. 0 I. — -r ELqB.L.fiWS15IQ8T.2.Q:E9SL I100.0O 1; "i 93 uj V) cr. X-. IL-.1 I 0.0k~ -1I0 0. 0 L. 50. 0 0. 0 1 0. 0 I I I16 JUL 79 U 20. 0 30. 0. FREQUENCY (MH!) 4 0.0 Figure 93L. Normal Electric 1/100 Model. Field at. STA:RWS15)48T, Excitation 2,

15. 0 1 2. 0 S. 0 -~ 0,- Ctd 6.0 ELUB.S.fiW-S154L8T.3.JRtE91hS I I 116 JUL 79 UM n nl 0.0u v I I I I 110. 0 20. 0 30. 0 4 0. 0 50. 0 evv. U r i I -- IIr ELAB. S. NS 1548T. 3.JA E9LAS BALK 1 0 0. 0 G I" C LLJ in AL 0.0k~ -1I0 0. 0 V 16 JUL 79 UM 40. 0 0 -200. 0 L. 0. 0 1 0. 0 20. 0 3 0. 0 FREQUENCY (MH!) Figure 94S. -Axial Current at STA:RWS15)48T, Excitation 3, 1/200 Model. -1 92 -

15. 0 9. 0 0i 200.0V 5 0. 0 I I — EL4B.L.RWS15L48T.3.JRtE9I4L 100. 0~ 0. 01 -F — i1 JUL 79 U I0. -1I0 0.0 ~ -200.0o 0.1 I -- I I 0 I10. 0 2 0. 0 30. 0 FREQUENCY (MHZ) LAO Figur'e 94L. Axkfial Current at STA:RWSl548T, Excitation 3, 1/100 Model. -1 93 -

24.0. 20. 16. L —h 0 0 O 12.0 '1 c: 100.0 0.0, 0.0 200.0 _ 100.0 0.0 Figure 95S. X. -200. 0. 0. 0 Figure 95S. FREQUENCY (MHZ) Normal Electric 1/200 Model. Field at STA:RWS1548T, Excitation 3, -194 -

214. 0 E145. L.RHI151518T.S. Qa E95L 20. 0 1 a8. 0 4. 0 0. L0. 0 2 00. 0 -T - I I- - E4B.L.HWS1548T.3.QtE95L 1 00. 0 50. 0 - t IM 50.0 G "i ea ui In cr a 0. 0 -1I00. 0 -200. 0 FME.QUENCY (MHZ) Figure 95L. Normal Electric Field at STA:RWS1548T,, Excitation 3, 1/100 Model. -1 95 -

6. 0 __ __ __I_ _ E LB *S. iWS15t48T. 6. JRs E9BS 4. L. 2w0 -j 2. O I16 JUL ~79 UM 0. o L-' 0.0 - —. -- -l - - - I - - I - -- -- I - - - - - - - -..-,, - I10. 0 20. 0 30. 0 '40. 0 50. 0 200.-0 - _ _ _ _ _ _ _ _I _I__ _ - - I ELAB. S.RFIS154LT. 6. JR.E98S 100 o. 0 L G mi C2 ui in cr X. IL. 0. 0 -1I0 0.0 ~. -20. 01. ___ _______II _I 16 JUL 79 UM 0.0 10.0 20.0 30.0 '40.0 50.0 FHiEQUENCY (MHZ) Figure 96S. Axial Current at STA:RSW1548T, Excitation 6, 1/200 Model. -196 -

6.0 E148.L.RWS15LA8T.6. J~iE96L:; 0 I — -**-i C 0. 0. 0 0 1 00. Ofr-. I_ - - II E4B.L.RN515QBT.6.J~tE96L G uj F? ui in cc X1. a 0.01-. -1 00. O1~ 1-. -00.0OL -~l16 JUL 79 UM.1 4 0. 0 50. 0 10.0 2 0. 0 30. 0 FMEQUENCY (MMZ) Figure 96L. Figre 6L.Axial Current at STA:RWS1)458T,, Excitation 6,5 1/100 Model.

16. 0. — - - - lr- --- I I 0.I 120. 0 10.0r E48. 3. WS1548T. 6. CmE973 - -T- - I16 JUL 79 UM I I - I - — L - - - - - - -- - 1 0. 0 20. 0 30. 0 40. 0 5 0. 0 F I - ~-F --- E4B. S.MRS 15486T.*6.QsmE973 G ui C3 uj 4n cc 21. 0.0 ~ -1I0 0.0 16 JUL 79 UM. 0 50. 0 -200. oL - A ___ ___ __ I 0.0 1 0. 0 2 0. 0 FRI 3 0. 0 EFQUENCY (MHz) 4 0 Figure 97S. Normal Electric Field at STA:IRWSl548T,, Excitation 6,5 1/200 Model.

I ~~~ELB. L.RNS15LA8T. 6.03 E97L --- ~ I i I II I I 1 2. 01 ri i I I i; W 0 C3r I — -,,, a. 0 -i &. l F Ir w cc I 1 4. 01 I 0. 0 0. 0 - I10. 0 20. 0 L79 UM 30. 0 '10. 0 50. 0 2 00. 0 7 -i I ELAB *L. FiS1548T *6 * 03E97L — '- — T-' i i I o o. o t — ii G uj C3 LLJ in cc 3-. a o.o L -1 00. 0 L -2 0 0. 0L — 0. 0 I B6 JUL 79 UMN L 0. 0 5 0. 0 20. 0 3 0 FREQUENCY (MHTI! Figure 97L. Normal Electric 1/100 Model. Field at STA:RWS15)48T. Excitation 6, -1 99 -

I10. 0 I I I r ~;0 Z W, 6.0 14. 0 2. 0 0.0 20 0. 0 100w. 0, EL4B.S.RSTRB3S5. 1.JRoE98S 16 JUL 79 UM 0 02.03 0.0 40. 0 50. 0 ELLB. S.ISTRB3S5. I *J~sE98S G "i C3 LLJ 4n X. a 0. 0 -10 0. oL~ -2 0 0I__ _ _ _ _ _ _ _ _ I_ _ ~ _ _ 16 JU L 79 U 0.0 1 0. 0 20. 0 30. 0 4 0.0 5 0. 0 FREQUENCY (MHZ) Figure 98S. Axial Current at STA:RSTAB335, Excitation 1, 1/200 Model. -200 -

10. 0 T - T- - I - -I — I E'4B.L.R3TRB335. 1.JA:E98L El K 8.0 TOP' 0 j- co I 2-.1. 0. 0 -~ _ _ __ _-__ ___16.JUL 79 UM 1 0. 0 20. 0 30. 0 410. 0 0 2 00. 0 E4B. V. JSTABSS5. 1. J~mE98L I ---- -' 1 00. 0 iL 0. 0 -1I0 0.0 k -2 00. oL — -._ 0. 0 1 0. 0 20. 0 30 FREQUENCY (MHZ) -4 — ). 0 18 JUL 79 UWI. 4 0. 0 5 0. 0 - Figure 98L. Axial Current at STA:RSTAB335, Excitation 1, 1/100 Model. -201 -

1 6. 0 T- IF — I E4B.S.19STR83S5. 1.QtEBSS I/ - t l2OL i 0 Z: W Ft] L I ---;.J - - 04 -1 [Y) a 7p, cr. - - - F i I iI a. 0. i I i 4. 0 h,: I II I I I I O. O L- -.- ------ 0. 0 1 0. 0 20. 0 ~7K TO0P \\ 17 JUL 79 UM 3 0. 0 40. 0 5 0. 0 2 0 0. 0 7 --- II i I vl 100. 0 ~ G ui p "i X.cl, G.. 0. 0..L....17 JUL 79 UM 20. 0 3 0.0 &0. 0 50. 0 FR9EQUENCY (MHZ] 1 0. 0 Figure 99S. Normal Electric Field at STA:IRSTAB335, Excitation 1,5 1/200 Model. - 202 -

16. 0 ' - P. I I -i 0 1 L-" F4 C3 --- 1 —3 r is. O -i fq i IL: S. I cc E4B.L.RSTR53S5.l1.Q&E99L,A TOP 10.0 20.0 30.0 40.0 50.0 Li. o II O. OL. 0. 0 20 0. 0 I Io~o - -—..- ' ---T — - - - - EtJB.L.RSTAB3355l.GsE99L I G LLJ T 0. 0 U.j tn cr I I T., 4 I I - I 0 0. 0 t -200o.0 Lo.I 0.0 Figure 99L. I. 1 1 10.0 20.0 30.0 '10.0 FREQUENCY (MtM!) L UM 50. 0 Normal Electric Field at STA:RSTAB335, Excitation 1, 1/100 Model. -203 -

6.0 — i E4B.5.RSTRB3S5.6.J~eEIOOS 4.0o ~L 7r. -i uj 0 C3 =2 O.- -,,,j -1 a- d ir -D cr 2. 0 v ___ - - - - -- ~ L- 17 JUL 79 UM i 1 0. 0 20. 0 3 0.0 40. 0 50. 0 oio 0.0OL200.0 E14B.,S.flSTRB3S5.6.JRtE100SI i I i i O O. 0: ri I Ii I I i i i i U. v - II i i I I I G LU F uj in cc x 1. a - -1I0 0. 0 F-200. 0L V 0.0 10. 0 20. 0 30. 0 -. FR9EQUENCY (MHIII -— 17 JUL 79 G-U.M I 40O..0 5 0. 0 Figure' 1003. Axial Current at STA:RSTAB335, Excitation 6, 1/200 Model. -204 -

8.0 v.- I I.II E4B.L.R5TAB3S5.6.JAiElOOL It- - I i i 4. 0 -! 0 Li c 2. 0 k O.0O 0.0 17 JUL 79 UM 20. 0 30. 0 40. 0 50. 0 200. 0 —. ELIB.L.FISTRB3S5.6.J~AE100L I I I i I I 0. 0 I I 1; LLJ C3 ui in cr. 71. K. -1 00. 0 -200. 0 L~. 0.0 I10. 0 20. 0 30. 0 FR9EQUE.NCY (MIIz) 17JUL 79 UM_. 40. 0 50. 0 Figure lOOL. Axial Current at STA:RSTAB335, Excitation 6, 1/100 Model. -205 -

204. 0 L0 I I 12. 2 0 0 0.0 0. EUB.5. F1N595. 1.G0. EIOS A(-E ~ ~zz7-( -- _ __ ___. ---17 JUL 79 01 0. 0 20. 0 30. 0 40. 0 50. 0!>nn n I evu. u r-, - i I I, I I I I I I I.1 0 0. 0. i I I I i I I i I I I i 0. ok. I r I. I I ELIB. S.F 1N595. 1.Gt:ElOISI I 11 -1 0 0. 0 1 rI I 0. 0 - -____ ~17 JUL 79 UM 10.0 20.0 30.0 40.0 50.0 FMEQUENCY fMHZ) Figure l0iS. Normal Electric Field at STA:FIN595, Excitation 1, 1/200 Model. - 206 -

2L1. 0 ' E4B.L,FIN595.1,OuE1O1L 20. 0 k E K / TOF' 16S.0o 2f1 t-;!,;7i 2. 0k 0. 0 UI 50. 0 200. 0 _ _ — I - 'I EA.LF INI 9,.tl 100. 0 I" Z') LLS R W in cx Z,. a 0. 0 I -100. 0k -200o. 0 L L0.0 1 0. 0 17JUL 79 UM 20. 0 30. 0 4 0. 0 50. 0 FM9EQUENCY (MHZ) Figure l0lL. Normal Electric 1/100 Model. Field at STA:FIN595, Excitation 1, -207 -

I 500. 0 r-. — i I I, I -- -, -,1 - - - ~-1.- -— T - - - - E4AB. RFS. OM I1/B.5. JR g El 02ZS - ---- 200%j. 0F 0 I:: l UJ IC% =1 I3r. CL; i - I -- --- - 2L AUG 79 30. 0 Li0. 0 --- i I I I I II I I I i I I I I i i I um- -.1 50. 0 I 00. 0 0. 0 20 0. 0 -T - _ _ _ - - — I E14E3.HFS.BM1/8.5.JAsEI02S a ui VI uj 4n.r.m a I. -1 00. 0V- C200. 0r --- 0. 0 I I II 50. 0 1 0. 0 20. 0 FMiEQUENCT 30. 0 (MHZ) 211 AUG 79 4 0. 0 Figure 1O02S. A.Xial Boom Current at STA:BMl/8, Excitation 5, 1/215 Model. Uncorrected data. -208 -

300. 0 FI T ---, —, I I I I EIIB.RF.BM1/8.JAiEI02L It lk7 200. 0 " I 00. 0 H A-, I oL 0.0 — - 1 — -- -- --- I I I I I I I I LrI i -4 i I I i I I I.-I I i II I I - 'N = P- -r-cL -,yT ------ I10. 0 20. 0 30. 0 2U A~UG 78 40..0 5 0. 0 1; Cw kli 4n cl: 7 -ct - 2 0 0. 0 -- -- I I I i II I 0 0. 0L.- -I II i I 0. 0. r i I 1.1 i -100. 0I I ii I -2 0 0. 0 1 0. 0 -- - -I - - — ' -.- - -- EIAB.RF.BMI/8.JR;E1O2L i i I I I I I 1 0. 0 20. 0 30. 0 PFHEQUENCY (MHZ) 214 AUG 19 UN -- 1. - ------ -.. 40. 0 5 0. 0 Figure 102L. -A-xial Boom Current at STA:BMl/8,. Excitation 5, 1/125 Model. Uncorrected Data. - 209 -

800. 0r rIiE4B. iFS.BM11/8.5. JAm E02 S.CR *1 E -2 ---:: I U — AM. El -1 i- - I x cc II II I 6 00. 0 II I r 0 I -4 " I -1 I- i CO i -D 4 0 0. 0 I.. I I I: 7 a. 00. iI V I i I 0. 0 t --- 0. 0 I I I i I I I I I um I.. -'-j 50. 0 0.0 50. 0 2U AUG 79 40.0 -~ 2 00. 0 -—.T-___ ELIB. IIFS. aBM1/8. 5. JR i El 02 S G P kn cc CL i o o. o L I i I I I i I I i!. I (. 0 i I I i I -- I 0 0. 0 I I I f I II -200.. --- 0. 0 10. 0 -i 20. 0 3 0. 0 FRIEQUENCY (MHZI - 2 AUG 79 UM 40O.0 50. 0 Figure 102S. CR. A.xial Boom Cur-rent Corrected Data. at STA:BM1/8, Excitation 5, 1/215 Model. - 210 -

80 0. 0 I - - - -- -—, II I I I i I 1 6(0. OL I i I -I,- - ", - - — r ---- -. --- -- - ---— I —* -- - ELAB. F. SM I/B.JR iE 1 2 L.CR -1 uj I. i. M., CL '00. 2i0 0. 0. I 0.01 0... - I i I Ii I i i II I -1 i II iII I ii I -1 I I i i I.1i I i i 30. 0 * 214 AUG 79 UM '10. 0 50. 0 2 00. 0 r II -, - - - - -, - - - - - - -1 - -,- - ELIB.BF. BM I/8.JR iE1O02 LCR I i I i I I 00. 0 II i I I I I i I I -- I i I I i -41 G P W 4n m I: a. -20. 0 0. I.1 i i.11 f I I f II i I AUG -119 um I 5 0. 0 -- —. --- -1 I10. 0 I —. 20. 0' -- -.1 - 3 0. 0 241 '10.0. F ME 2U KNCY (MIIY) Figure 102L.CR. Ax-ial Boom Current at STA:BMl/8,. Excitation 5, 1/125 Model. Corrected Data. -211 -

300. 0 I I I i I i j.E4B.RFSBMI/2.5.JRsElO3 S It -- ---..I --- - --: r Z.., II UJ" r-I; a!.I. I a. 3r 0: (i 200. 0~1 0.01 0.0, I I I i I I 0 1 ii 24~ RUG '79 UM 4 0. 0 50. 0 I10. 0 2 0. 0 3 0. 0 200. 0 r I O. 0 t-. E148.HfFS.SM1/2.5. J~gEI03 S I I G ui M Vw a: 2'. It. II 0. 0 1 l I 1 1 iI I II f. - i i I I I I.1 i II I I i -i I II I I. ':'4 A U G 7 S U M ' 1 4 0. 0 5 0. 0 -1I0 0. 0 -20 0. 0 0.-0 10.0 I - -i - - - - 2 0. 0 3 0. 0 FR9EQUENCY (Mt1Y) Figure 103 S. Ax.ial Boom Current at.STA:BMl/2, Excitation-5, 1/215 Model. Uncorrected Data.. -21 2 -

300. 0;_ V T - - T - - - ELIF. FF. BMI/2. 5. JRi EOSL It 71:2 14i cl 111 A W W'. - w 200. 0 H I 0.0 I I I i I -i II II i ri t I I I II I — I I.i I 24 AUG 79 UM I.r7 - - - - - I.. - - - -. II q 0. 0 50. 0 1 0. 0 3 0. 0 200. 0 II A 3 ItEIOSL G) ui e on a: Z: AL 0. 0~ -10 0. 0 -200.0O 0.0 -1 i II I I i -4 i zII i I i i.. 6 11 1 i I II 24 AUG 79 UM I. --- -. — I - - --- - - - -.- - - - -.I 4 0. 0 5 0. 0 --- -- 1- I -- - - - -- - - --- -1 20. 0 3 0. 0 FMEQUENCY (MHZ) Figure 103L Axial Boom Current at STA:BMl/2, Excitation 5, 1/125 Model. Uncorrected Data. - 21 3 -

800. 0.1- ---- -r - r - -— T --- E11B, lE. BM 1/2,5, J~sElOS S. CR m 2:. 1.: F-D,1:7.1 i i. 31 CL i~ 200. 0 i Ii~ 0.0 4 - - - I*1 211 RU 79 U 40.0 50. 210. 0 3 0. 0 2 00. 0 EFLB. AF3. BM 1/2. 5.JR sEl 03 S. CH I I I i I I 0 0. 0 1 I I I I I I I I. I 11 I I I I I 0. 0;.-. I I I i; I i I, I I i i I II I'l I - 11 00. 0 - I I I I I i G w w fl) ix 7: 9L i i i I Ii I i I I I I I I I i i 1 i I j I v - - - I - --- --- I 0. 0 'l I II i I I I I i I I ki i I.I I i I i i i iI -1I I I I fI - 4I I -200.01 0.0 20. 0 3 0. 0 241 40. 0 AUG 79 UIM.5 0. 0 Ft9F.QU~tthy cm,4,-') Figure 103S.CR. Axial Boom Current at STA:BM1/2,. Excitation 5, 1/215 Model. Corrected Data. -214 -

8 00. 0 - IT V - - - - - - - -- -— I." - -- E4B, RF.SM 1/2. 5. JR s E I OL.CR 4~ I. r < -70- -_ - -q I<f ----- ---z,;,-t-: --- —-:: -n 6 0 0. F I I 0 i li It 2, - I (d I:'I j I i Ua I..ILI i,;:. 4((.([.1 i W r I CL i I. I I I 2 0 0. 0 -; i, I: I i I i I I t 0. 0 I —, --. —.!.= - - 0. 0 1 0. 0 20. 0 3 0. 0 211 AUG 78 UM --- -1.-. 4 0.0 5 0. 0 2 00. 0 1 - T -1 -, - -- 1- T - -, - - ELIB. RF, BM1i'2. 5. JR i ElO [3LCR 1; L'i t uj WI M. X. a. 3 o. 0L -10I -0.1 I iI I I i I I! t I I i II I I I! ) I I I, I I i I J 11, I.I. — 1 1 0. 0 20. 0 30. 0 FREQUENCY CMJ1Z) 2'l AUG 79 UN 4 0. 0 5 0. 0 Figure 103L. CR. -A-xial Boom Current at STA:BMl/2, 1/125 Model. Corrected Data. Excitation 5, -21 5 -