October 1994 SIR-C/X-SAR Mission: Ancillary Data Report Raco, Michigan Site Kathleen M. Bergen M. Craig Dobson Leland E. Pierce Josef Kellndorfer Paul Siqueira October 5, 1995 Report 026511-6-T 26511-6-T = RL-2411

Abstract This report documents the ancillary measurements taken during the period September 28 - October 10 at the Raco supersite in conjunction with the October 1994 SIR-C/X-SAR mission. For this mission, data collection concentrated on measurements in the following categories: 1. Calibration: a. point targets b. distributed targets 2. Surface properties: a. Surface roughness: (i) large scale under forest canopies and in clearings (ii) small scale under agricultural canopies b. Soil moisture in both forested and agricultural land cover types by: (i) Soil cores (ii) Dielectric measurements 3. Vegetation properties: a. Leaf Area Index of forest stands and agricultural fields b. Vegetation moisture content in both forest and agricultural land cover types by: (i) Destructive sampling (ii) Dielectric measurements (forest only) 4. Meteorological Observations: a. Gross precipitation and net precipitation under forest canopies b. Temperature c. Weather radar and local weather stations observations This report provides an introduction to the site, followed by measurement methodologies for each of the ground measurement efforts, summary data tables, and more detailed data in the form of appendices. Electronic versions of the summary data tables and appendices are available on request. Requests may be sent to: dobson~eecs.umich.edu i

ii

Acknowledgments The following people contributed to the success of the SIR-C/X-SAR October experiment. We would like to thank each of them and acknowledge their hard work and dedication to this project: Project Management: M. Craig Dobson, Fawwaz T. Ulaby, Leland E. Pierce, Kamal Sarabandi Ancillary Data Measurements and Analysis: Kathleen Bergen, Tsen-Chieh Chiu, Roger DeRoo, Ron Hariikka, Josef Kellndorfer, John Kendra, Eric Li, YiCheng Lin, Adib Nashashibi, Leland Pierce, Paul Siqueira, Jim Stiles, Aziza Ulaby, Jason Wheeler iii

iv

Table of Contents 1 Introduction Page 1.1 PROJECT OBJECTIVES 1 1.2 THE SITE 2 1.2.1 Physiography 2 1.2.2 Climate 5 1.2.3 Forest Composition 5 1.2.4 Agricultural Areas and Composition 6 1.3 THE SIR-C/X-SAR OVERFLIGHT 13 1.4 GROUND TRUTH DATA COLLECTION OVERVIEW 13 2 Calibration 2.1 POINT TARGETS 15 2.2 DISTRIBUTED TARGETS 22 3 Surface Observations 3.1 ROUGHNESS 25 3.1.1 Forested Areas: Large Scale Roughness 27 3.1.2 Agricultural Fields: Small Scale Roughness 28 3.2 SOIL MOISTURE 34 3.2.1 Forest Stands and Clearings 34 3.2.2 Agricultural Fields 42 3.3 DIELECTRIC MEASUREMENTS OF FORESTED AREA SOILS 45 4 Vegetation Observations 4.1 LEAF AREA INDEX 49 4.2 VEGETATION MOISTURE MEASUREMENT BY DESTRUCTIVE 53 SAMPLING 4.2.1 Forested Areas 53 4.2.2 Agricultural Fields 56 4.3 DIELECTRIC MEASUREMENTS OF FOREST TREES 58 4.3.1 Dielectric Depth Profiles 60 4.3.2 Temporal Variance in Dielectric 60 v

5 Weather Data 63 69 6 References 7 Appendices Appendix A: Forest Large Scale Roughness Plots Appendix B: Soil Moisture in Forest Stands and Target Locations Appendix C: Tables and Plots of Vegetation Moisture Measurements by Destructive Sampling in Forest Stands Appendix D: Vegetation Dielectric Plots: e' vs. Depth Appendix E: Vegetation Dielectric Plots: e' vs. Time Appendix F: Daily Weather Data: Sault Saint. Marie Weather Station Appendix G: Daily Weatheb Data: U.S. Fish and Wildlife Service Appendix H: Michigan Daily Precipitation Maps List of Tables A1-17 B1-24 C1-12 D1-25 E1 -5 F1 -9 G1-5 H1 -8 Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: October 1994 SIR-C/X-SAR Project Objectives: Raco Supersite Forest Communities and Dominant Species Studied During the SIR-C/X-SAR Project Agricultural Fields Studied during the October SIR-C/X-SAR Mission Overview of the October 1994 SIR-C/X-SAR Ancillary Data Collection Effort Calibration: Objectives, and Methods October SIR-C/X-SAR Calibration Point Targets Surface Observations: Hypotheses, Objectives, and Methods Summary Table for Large Scale Roughness Summary Table for Small Scale Roughness Soil Moisture in Forest Stands and Clearings: Locations and Vegetation Types Summary Table for Soil Moisture in Forest Stands and Clearings Summary Table for Agricultural Fields Soil Moisture Summary Table of Forest Soil Dielectrics Vegetation Properties: Hypotheses, Objectives and Methods Summary Table of Leaf Area Index Observations Summary Table of Vegetation Moisture in Forest Stands 1 6 1 1 14 15 16 25 29 33 35 37 43 46 48 51 55 Table Table Table Table Table Table 11: 12: 13: 14: 15: 16: vi

Table 17: Table 18: Summary Table of Vegetation Moisture and Biomass in Agricultural Fields Tree Dielectric Measurements Completed During the August and October SIR-C/X-SAR Project Weather Observations: Hypotheses, Objectives, and Methods Intercepted Precipitation Precipitation (mm of water) during the October SIR-C/X-SAR Experiment 57 59 63 64 65 Table Table Table 19: 20: 21: List of Figures Figure 1: Dielectric Depth Profiles: Red Maple & Red Pine at P-band List of Maps 1. SIR-C/X-SAR Supersite: Raco, Michigan 2. Detail of Land Cover 3. SIR-C/X-SAR Test Stands and Calibration Sites 4. SIR-C/X-SAR Agricultural Test Fields Locations 5. SIR-C/X-SAR October 1994 Rifle Range Distributed and Point Targets Locations 6. SIR-C/X-SAR Precipitation Gauge Network, Raco, Michigan, October 1994 61 3 7 9 12 23 67 vii

1. Introduction 1.1 PROJECT OBJECTIVES On September 30, 1994, the SIR-C/X-SAR instruments were launched on their second 11-day mission on the NASA space shuttle Endeavor. Several supersites received frequent overflights, the Raco supersite in the upper peninsula of Michigan being among them. This site was imaged twelve times between September 30 and October 10. The purpose of the mission was to acquire SAR image data for the investigation and analysis of previously defined ecological and environmental questions particularly those related to global climate change. Specifically, eight research objectives were linked to the Raco site during the October mission: Table 1. October 1994 SIR-C/X-SAR Project Objectives: Raco Supersite Objectives 1. Above ground living vegetation biomass, density, BA, and height 2. Forest and agricultural vegetation canopy moisture content 3. Forest and agricultural soil moisture 4. Canopy leaf area index.. 5. Surface roughness conditions 6. Meteorological conditions 7. Image classification 8. Image calibration A team of 14 scientists from the University of Michigan Radiation Laboratory made a number of ancillary measurements during this period in order to meet these objectives. Data collection concentrated on time-sensitive measurements including vegetation and soil moisture, leaf area index, and weather data. It also concentrated on describing surfaces, thus measurements of large and small scale roughness were made in both forested and agricultural

land cover types. In addition, an array of point and distributed calibration targets planned specifically for the SIR-C/X-SAR mission was deployed and monitored. This report presents a summary of the ground data taken during the period September 29 - October 10 in conjunction with the space shuttle overflights. It contains a brief introduction to the site, followed by measurement methodologies for each of the ground measurement tasks, summary data tables, and more detailed data in the form of appendices. Other less time sensitive measurements such as forest composition and biomass were made during the summers 1992-94 and are not included here. Electronic versions of the summary data tables and appendices are available on request. Requests may be sent to: dobson@eecs.umich.edu 1.2 THE SITE The Raco supersite, centered on 46.3920 N. Latitude and 84.8850 W. Longitude, is located in Chippewa County in the eastern part of Michigan's Upper Peninsula. The primary area under study imaged in the SIR-C/X-SAR crossover region of ascending and descending orbits is approximately 20 km EW and 20 km N-S. Much of the study site, and all of the forest test stands used for ground truth data, are within the boundaries of the Eastem Division of the Hiawatha National Forest. Agricultural fields are located near Rudyard, MI and occupy the southeast portion of the SIR-C/X-SAR imagery. The map SIR-C/XSAR Supersite: Raco, Michigan shows the location of the test site in Michigan. 1.2.1 Physiography The site contains several distinct physiographic regions. A large area of excessively drained glacial outwash sands (the Raco Plains) dominates in the north-central. The south-central area contains an extensive poorly drained wetland area. Moderately well drained morainal features interspersed with lowlying somewhat poorly drained areas comprise the western portion. The northern edge of the site borders Lake Superior. Agricultural areas on lake plain border the northeast and southeast, and the Delirium Wildemess wetlands borders the south central. Forested areas on morainal till continue to the west. 2

SIR-C/X-SAR Supersite: Raco, Michigan I 04 06 I D E. O8oo 54 - 1-54 I1 I I 0.J 0 -0 N to i 4 C. 'II i i *...... * 0400000m Es 06 UUUIJ30 E. i Kiloiietres Miles 100 100 A 100 200 200l 400 -- 11 &%FWVU — I&L 1no 20r, --- akj jw 500 Ii

1.2.2 Climate Regional climate is characterized by a mean annual temperature of 50C, July average temperature of 24.50C, January average temperature of -140C, growing season of approximately 130 days, and mean annual precipitation of 79 cm. The SIR-C/X-SAR overflight occurred in the fall, a time of some seasonal change. At this time the vegetation canopy begins to dry and the deciduous leaves begin to undergo their fall color change. In October 1994, the deciduous leaves were still predominantly green at the beginning of the mission, and by the end of the mission most had turned. Agricultural field vegetation was fairly dry and much had been harvested. 1.2.3 Forest Composition The Raco site's situation on the ecotone between the north-temperate and boreal forest biomes, its diversity of forest communities of varying ages and densities, and its forest stands of large geographical extent made it an ideal NASA supersite. Present on the drier outwash are upland conifer communities; on the low sites lowland conifer or forested wetlands communities; on the richer sites either late successional northern hardwoods or early successional aspen communities. The map Detail of Land Cover, depicts the generalized land cover distribution for the test region. Table 2 lists the forest communities and dominant species which have been studied throughout the duration of the SIRC/X-SAR project. Over the past four years, sixty-six forest test stands representing the distribution of forest communities, ages, and densities found at the Raco site have been sampled. These have been described statistically and compiled into an extensive ground-truth database providing estimates of species composition, height, density, diameter, crown depth, LAI, and biomass [1]. While these data are documented in a separate report, the test stand locations are depicted on the map SIR-C/X-SAR Test Stands and Calibration Sites. 5

Table 2: Forest Communities and Dominant Species Studied During the SIRC/X-SAR Project Upland Conifer Jack Pine (Pinus banksiana) Red Pine (Pinus resinosa) White Pine (Pinus strobus) Lowland Conifer Black Spruce (Picea mariana) White Spruce (Picea glauca) Northern White Cedar (Thuja occidentalis) Balsam Fir (Abies balsemea) Larch (Larix laricina) Northern Hardwoods - late successional species Sugar Maple (Acer saccharum) Red Maple (Acer rubrum) Beech (Fagus grandifolia) Yellow Birch (Betula alleghaniensis) Paper Birch (Betula papyrifera) Hemlock (Tsuga canadensis) Aspen * early successional species Trembling Aspen (Populus tremuloides) Bigtooth Aspen (Populus grandidentata) Pin Cherry (Prunus Pensylvanica) 1.2.4 Agricultural Areas and Composition In the agricultural southeast portion of the study area a set of twenty-one fields were identified for study. Sixteen hayfields (Timothy hay) were selected and these ranged from very short cut hay to very tall uncut hay. Hayfields, both cut and uncut, had an undergrowth of green grass. Five pastures were identified which contained mixtures of grass and clover or grass and dandelions. A list of the fields selected for study and their composition is provided in Table 3: Agricultural Fields Studied During the October SIR-C/XSAR Project. Periodic roughness structures are likely of one of two types. Those with spacings on the order of 10-14 m are probably planned, though 6

Detail of Land Cover Centered on the Raco Supersite SIR-C/X-SAR Cross-Over Region Upland Conifer Lowland Conifer - Agriculture Wetland Wnater Airport LIII Urban Source: manually interpreted from 1979 aerial photography by the Michigan Department of Natural Resources

I

65 67 6800ooom E. F 3: 69 15 \,6~..!.:..,." a..l-. ~a.,. ~ A,,,.. *....,. ~,. Im u'x,,,'%.,.a,,, \,, 6~ X. ~,,..,.6. 66a.. ~...~ ~.. ~ ~ ~, 10.T~~',', i I! "i Lfln,11 iR Raco, McDia uest CD 0 W10 2, 12 85"I \\.W 0Y ' 660000 E. 5"7 45a 680000m E. 84 63.5 'w 69 Zone 16T Clarke 1866 (NAD 27)' SIR-C Test Stands and Calibration Sites Raco, Michigan Supersite Ki lometers 10 0 10 20 Miless 10 0 10 I 1 i 1 I I I I I I I Forest test stands EZ Calibration sites Dl SIR-C imaged swath

fairly shallow, drainage ditches. Those with spacings of 1.5-5 m are likely the result of planting or harvesting machinery and practices. Depth of the undulations ranged from approximately 15-25 cm. (deep) to 5-10 cm (medium) to very shallow depressions (shallow). The map SIR-C/X-SAR Agricultural Test Fields Locations shows their locations in the region around Rudyard Michigan. Table 3: Agricultural Fields Studied During the October SIR-C/X-SAR Mission Field Vegetation Cover Height Periodic Depth Spacing (cm) roughnes (m) - s direction A cut hay —short 10 N-S medium 12 B cut hay —short 15-20 E-W medium 14 C pasture —grass & clover 15 N-S shallow 3.2 D pasture —grass & clover 10-15 N-S medium 11 E pasture-grass & dandelions 15-20 E-W medium 12 F cut hay-very short 30 N-S deep 12 G pasture —grass & clover 35 E-W very deep 12 H pasture —grass & clover 5-15 I cut hay-medium 40 N-S medium 1.6 J cut hay —short 25-30 E-W medium 3.2 K cut hay —short 25 E-W medium 1.5 L cut hay —short 15 N-S medium 10 M cut hay —very short 15 N-S medium 4 N cut hay —very short 20-25 E-W 0 cut hay —medium short 25 N-S deep 13 P uncut hay —tall 70 N-S shallow 4 Q uncut hay-tall 70 N-S shallow R cut hay-very short 15-20 N-S shallow 5 S uncut hay —very tall 100 N-S very shallow T uncut hay —tall 20-30 N-S medium 10 U uncut hay —tall 100 N-S shallow 10 11

en.2 0 0 -J (A go IL oen 0.) Cl) I (U) cI U 4 12

1.3 THE SIR-C/X-SAR OVERFLIGHT The SIR-C/X-SAR general flight path including overlap region is also depicted on the map SIR-CIX-SAR Test Stands and Calibration Sites. The ascending path had a track angle of 520 - 530, and the descending path a track angle of 1270 - 1330. Except for the agricultural fields and precipitation gauge network, almost all ground-truth data represented in this report were collected within the approximately 20 km x 20 km path overlap region. The time of the overflights ranged form 6:41 a.m. to 3:06 p.m. local time (EDT). Information pertaining to specific overflights, such as date and time, data take number, ascending/descending, look angle, and local incidence angle, can be found in Section 2.1, Table 6: October SIR-CIX-SAR Calibration Point Targets. 1.4 GROUND DATA COLLECTION OVERVIEW Ancillary measurements made during the October SIR-C/X-SAR mission are in the general categories of 1) calibration, 2) surface observations including surface roughness and soil moisture/dielectrics, 3) vegetation observations including leaf area index and moisture/dielectrics, and 4) other efforts including precipitation measurement, ground photography, and GPS (global positioning system) location determinations. The following Table 4: Overview of the October 1994 SIR-CIX-SAR Ancillary Data Collection Effort, provides a guide to these measurements. This overview guide is followed by sections in the report corresponding to each of the measurement goals. These text sections provide 1) a table outlining the hypotheses, objectives, and methods, 2) an explanation of the methodology, and 3) results in the form of summary tables. More detailed data is found in appendices in the form of plots and tables where applicable. 13

Table 4: Overview of the October 1994 SIR-C/X-SAR Ancillary Data Collection Effort Measurement Goal Method Locations Level of Effort CAUBRATION 1. Point Targets: trihedrals, PARCS, Rifle Range, Raco Airfield, Cryderman 18 point targets SAPARCS Field 2. Distributed targets / surfaces Rifle Range 13 distributed targets/surfaces SURFACE OBSERVATIONS A. Roughness 1. Large scale roughness measured Forest test stands and clearings 12 stands: 6 red pine, 1 jack pine, 1 along transacts using surveying white pine, 2 aspen and northern methods hardwoods, 2 lowland conifer, Raco Airfield, Rifle Range, Cryderman field 2. Small scale roughness measured using both photographic and spray Agricultural fields and clearings All fields, plus Raco Airfield, Rifle paint methods Range, Cryderman field B. Soil Moisture Soil cores and temperature Forest test stands, agricultural fields, 3 clearings, variable number of and clearings locations. 10 forest stands @ 3-15 samples/stand. C. Soil Dielectrics Portable dielectric probes Forest test stands and dearings 10 forest stands and cal sites VEGETATION OBSERVATIONS A. Leaf Area Index (LAI) U-Cor LAI meter Forest test stands and agricultural 50 stands at 9-28 locations each fields 21 fields at 18 locations each B. Direct Moisture Measurement Destructive sampling —felled and Forest test stands, agricultural fields, 10 trees (one of each major species), sampled trees, and cut herbaceous Raco Airport, Cryderman field 21 agricultural fields, Cryderman field, field vegetation to arrive at wet and dry Raco airport weights and volumes C. Dielectric Measurements Depth profiles, temporal variance Forest test stands 12 stands In August, 13 stands In October for depth. 2 temporal OTHER A. Precipitation Data Network of rain guages Forest test stands and clearings 5 forest stands (one of each community type), 5 clearings near the forest stands, 11 additional locations spanning the study site B. Photography Photos of forest test stands, target Forest test stands, agricultural fields, 50 test stands, 21 fields, 3 target locations, and agricultural fields target locations locations C. Measurement Locations GPS (global positioning system) Agricultural fields, target locations, and 21 fields, 21 target locations, 21 rain precipitation guages. Stands guages _ _ previously completed

2 Calibration 2.1 POINT TARGETS Absolute image calibration and development of image calibration algorithms has been a goal throughout the duration of the SIR-C/X-SAR project. The objectives and methods used for assuring accurate calibration for the October mission imagery were as follows. Table 5: Calibration: Objectives and Methods Objective Method 1. Absolute calibration of SIR-C/X-SAR la. Deploy and monitor point targets imagery acquired at L, C, and X bands 1 b. Measure backscatter for area extended _targets with a calibrated scatterometer system. 2. Accurate calibration over the geographical 2. Place 21 targets in several locations extent of the imaged scenes__ Appropriate calibration targets needed to be distributed in open areas within the area imaged by the sensors. Both passive and active targets were deployed. Six 1.07 m trihedrals, one L-band single antenna polarimetric active radar calibrator (saparc), one C-band saparc, and four 2.4 m trihedrals were located at the Rifle Range near the Raco Airfield. Two C-band parcs were located at the Raco Airfield. Four 2.4 m trihedrals were located at Cryderman Field. In addition, three distributed targets areas were established at the Rifle Range. Details regarding point target positioning, including GPS derived coordinates, target type, and measured elevation angles and azimuths, can be found in Table 6: October SIR-C/X-SAR Calibration Point Targets. The three target locations are depicted on the map SIR-C/X-SAR Test Stands and Calibration Sites. Point targets were repositioned and/or monitored for accurate positioning before each overflight using electronic levels and Brunton compasses. 15

Table 6: October SIR-C/X-SAR Calibration Point Targets MET (dd) 0 1 MET (hh:mm:ss) 7:50:29 7:31:51 October 1994 Mission Orbit No. 6 22 Launch scheduled for 7:16 am on September 30 Data-Take No. 6.2 22 2 Local magnetic declination is 6.138" W Ascending/Descending D D North/South Looking (from Shuttle) S S AN PARCs: 1 1 Look Angle (relative to SIR-C) 30.689 20.382 -1 -1 Local Incidence Angle 31.846 21.106 SIR-C Azimuth Heading (True North) 127.508 128 131 Target Azimuth (True North) 127.862 127 862 Target Looking (N/S) N N Location Target Azimuth (Mag. North) _ 134 134 Elevation Elevation Ascending/ Max. RCS Angles (From Azimuth (from Level Temp (~C) or Angles (From Azimuth (from Level Temp ('C) or Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north _(degrees) Allen. (dB) horizontal) true north) (degrees) Allen (dB) Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC 30.0 134.0 0.0 16' 21.1 134.0 00 P2 A/D 46.3369 -84.8519 C-SAPARC 30.0 134.0 0.0 16~ 21.2 1340 00 3 dB pad T1-7 A/D 46.3360 -84.8575 Trihedral 240 29.9 134.0 0.2 29.8 134 0 0 2 T1-8 A/D 46.3453 -84.8497 Trihedral 240 30.2 135.0 0.1 29.9 134 0 0 1 T1-9 A/D 46.3368 -84.8595 Trihedral 240 29.6 134.0 0.2 30.0 135 0 01 T1-10 A/D 46.3506 -84.8500 Trihedral 240 30.3 135.0 0.3 30.1 135 0 03 T2-1 A/D 46.3337 -84.8593 Trihedral 107 29.9 135.0 0.3 29.8 134.0 01 T2-2 A/D 46.3452 -84.8512 Trihedral 107 29.8 134.0 0.0 29.9 1340 0 1 T2-3 A/D 46.3422 -84.8461 Trihedral 107 30.0 135.0 0.1 30.0 1350 01 T2-4 A/D 46.3406 -84.8457 Trihedral 107 29.7 135.0 0.2 298 1350 00 T2-5 A/D 46.3393 -84.8519 Trihedral 107 29.8 134.0 0.0 300 134 0 02 T2-6 A/D 46.3365 -84.8503 Trihedral 107 ____29.9 134.0 0.2 29.9 134 0 02 Raco Airfield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 31.8 134.0 0.4 21.1 134 02 P4 A/D 46.3508 -84.8196 C-PARC 22 __42.4 31.8 134.0 0.5 ____21.2 1340 06 _ Cryderman TI-i T1-2 T1-3 T1 -4 A/D A/D A/D A/D 46.4591 46.4562 46.4561 46.4571 -84.9070 -84.9093 -84.9130 -84.9152 Trihedral Trihedral Trihedral Trihedral 240 240 240 240 30.0 30.5 29.9 30.2 136.0 133.5 134.0 134.5 0.6 0.4 0.4 0.1 30.0? 30.57 29.97 30.27 136.07 133 57 134 07 13457 06? 047 04? 0 17 I. I I. - - I ~ ~ ~ - -.- - -. Local Day Local Date Local Time Friday 30-Sep 15:06:29 Saturday 1-Oct 14:47:51

MET (dd) 4 5 MET (hh:mm:ss) 0:25:32 0:06:02 October 1994 Mission Orbit No. 66 82 Launch scheduled for 7:16 am on September 30 Data-Take No. 66.2 82.2 Local magnetic declination Is 6.1380 W Ascending/Descending A A North/South Looking (from Shuttle) S S All PARCs: 1 1 Look Angle (relative to SIR-C) 21.263 29 916 -1 -1 Local Incidence Angle 22.009 31.022 SIR-C Azimuth Heading (True North) 51.887 52.304 Target Azimuth (True North) 232.862 232.862 Target Looking (N/S) N N Location Target Azimuth (Maeg. North) __239 __239 Elevation Elevation Ascending/ Max. RCS Angles (From Azimuth (from Level Temp ('C) or Angles (From Azimuth (from Level Temp (C) or Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north) (degrees) Atten. (dB) horizontal) true north) (degrees) Allen (dO) Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC 22.2 59.5 0.1 5' 31.0 590 01 1 P2 A/D 46.3369 -84.8519 C-SAPARC 21.9 59.0 yes 5' 31.2 590 yes 4', 3 dB ped T1-7 A/D 46.3360 -84.8575 Trlhedral 240 - 180 off - 30.0 590 0 1 T1-8 A/D 46.3453 -84.8497 Trlhedral 240 - 180 off - 29.6 590 0 1 T1-9 A/D 46.3368 -84.8595 Trihedral 240 - 180 off. 29.6 59 5 0 4 T1-10 A/D 46.3506 -84.8500 Trihedral 240 - 180- off - 30.3 600 03 T2-1 A/D 46.3337 -84.8593 Trihedral 107 - 180 off. 302 595 01 T2-2 A/D 46.3452 -84.8512 Trihedral 107 - 180~ off 303 590 0 3 T2-3 A/D 46.3422 -84.8461 Trihedral 107 - 180 off 30 4 590 06 T2-4 A/D 46.3406 -84.8457 Trilhedral 107 180' off. 29.8 570 0 2 T2-5 A/D 46.3393 -84.8519 Trihedral 107 - 1680 off. 29.6 590 0 2 T2-6 A/D 46.3365 -84.8503 Trihedral 107. 180- off - 29.8 59.0 0 1 Raco Airflield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 22.0 239.0 0.8 31 0 2390 00 P4 A/D 46.3508 -84.8196 C-PARC#2 42.4 22.0 240.0 0.5 31.0 2430 0 4 _ Cryderman T1-1 A/D 46.4591 -84.9070 Trihedral 240 - 180' off 29.9 590 0 1 T1-2 A/D 46.4562 -84.9093 Trihedral 240 - 1680 off - drizzle 303 590 00 T1-3 A/D 46.4561 -84.9130 Trihedral 240. 180' off - 299 318 0 01 T1-4 A/D 46.4571 -84.9152 Trihedral 240 _____. 180' off - _ _ 30.1 319.0 0 1 i Tuesday 4-Oct 7:41:32 Wednesday 5-Oct 7:22:02

MET (dd) 5 6 MET (hh:mm:ss) 6:15:59 23-45:44 October 1994 Mission Orbit No. 86 98 Launch scheduled for 7:16 am on September 30 Data-Take No. 86.4 98.12 Local magnetic declination Is 6.1380 W Ascending/Descending D A North/South Looking (from Shuttle) N S All PARCs: I 1 Look Angle (relative to SIR-C) 24.432 36 666 -1 -1 Local Incidence Angle 25.367 38 082 SIR-C Azimuth Heading (True North) 131.411 53.149 Target Azimuth (True North) 311.862 232 862 Target Looking (N/S) S N _ ______Location Target Azimuth (Mag. North) _318 239 Elevation Elevation Ascending/ Max. ACS Angles (From Azimuth (from Level Temp (~C) or Angles (From Azimuth (from Level Temp (fC) of Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north) (degrees) Atten. (dB) horizontal) true north) (degrees) Allen.(d) Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC 25.4 318.0 0.1 12' 381 590 0 1 P2 A/D 46.3369 -84.8519 C-SAPARC 25.4 318.0 yes 140, 3 dB pad 38.1 590 yes T1-7 A/D 46.3360 -84.8575 Trihedral 240. -... T1-8 A/D 46.3453 -84.8497 Trlhedral 240. -. 10.1 590 0 2 T1-9 A/D 46.3368 -84.8595 Trlhedral 240..... T1-10 A/D 46.3506 -84.8500 Trihedral 240... 10.0 590 0 3 T2-1 A/D 46.3337 -84.8593 Trihedral 107.. 10.1 58 5 0 1 T2-2 A/D 46.3452 -84.8512 Trihedral 107.. 9.8 59.0 0 3 T2-3 A/D 46.3422 -84.8461 Trlhedral 107..... T2-4 A/D 46.3406 -84.8457 Trihedral 107... 92 590 0 4 T2-5 A/D 46.3393 -84.8519 Trlhedral 107..... T2-6 A/D 46.3365 -84.8503 Trlhedral 107 __ - -___ Raco Airfield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 25.4 318.0 0.5 38.0 239 0 0 7 P4 A/D 48.3508 -84.8196 C-PARC #2 42.4 25.4 318.0 0.4 38.1 239.0 0 6 Cryderman T1-1 A/D 46.4591 -84.9070 Trihedral 240 9.9 59.0 0.1 99 590 0 1 T1-2 A/D 46.4562 -84.9093 Trihedral 240 10.3 59.0 0.1 106? 590 0 01 T1-3 A/D 46.4561 -84.9130 Trihedral 240 29.9 318.0 0.1 29.5? 3180 01 T1-4 A/D 46.4571 -84.9152 Trdhedral 240 _ _ 30.1 319.0 0.1 ___ 33.37 322 0? 1 47 ___ r Local Day Local Date Local Time Wednesday S-Oct 13:31:59 Thursday 6-Oct 7:01:44

MET (dd) 6 7 MET (hh:mm:ss) 5:55:31 23:25:02 October 1994 Mission Orbit No. 102 114 Launch scheduled for 7:16 am on September 30 Data-Take No. 102.41 114.1 Local magnetic declination is 6.138~ W Ascending/Descending D A North/South Looking (from Shuttle) N S All PARCs: 1 1 Look Angle (relative to SIR-C) 32.5 41.976 -1 -1 Local Incidence Angle 33.818 43.656 SIR-C Azimuth Heading (True North) 131.876 53.667 Target Azimuth (True North) 311.862 232.862 ___ Target Looking (N/S) S N _____Location Target Azimuth (Maeg. North) ___316_ _239 Elevation Elevation Ascending/ Max. FCS Angles (From Azimuth (from Level Temp ("C) or Angles (From Azimuth (from Level Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north) (degrees) Atten. (dB) horizontal) true north) (degrees) _ Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC 33.3 318.0 0.0 15" 43.7 590 01 I I P2 A/D 46.3369 -84.8519 C-SAPARC 32.2 310.0 yes 20 ' 43.7 590 yes 13' T1-7 A/D 46.3360 -84.8575 Trihedral 240 29.9 318.0 0.3 - - T1-8 A/D 46.3453 -84.8497 Trihedral 240 - - 10.0 590 0 1 T1-9 A/D 46.3368 -84.8595 Trlhedral 240 29.9 317.0 0.1 - - T1-10 A/D 46.3506 -84.8500 Trlhedral 240... 10.3 565 01 T2-1 A/D 46.3337 -84.8593 Trihedral 107... 10.0 58 5 0 1 T2-2 A/D 46.3452 -84.8512 Trlhedral 107. -. 9.7 59 0 00 T2-3 A/D 46.3422 -84.8461 Trihedral 107 29.6 318.0 0.1 - T2-4 A/D 46.3406 -84.8457 Trihedral 107 - - 97 590 0 2 T2-5 A/D 46.3393 -84.8519 Trihedral 107 30.0 318.0 0.4 T2-6 A/D 46.3365 -84.8503 Trihedral 107 30.1 318.0 0.2 _____ Raco Airfield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 33.8 318.0 0.4 43 7 239.0 0 2 __P4 A/D 46.3508 -84.8196 C-PARC 2 _42.4 33.8 318.0 0.4 _ 43.8 239.0 0 2 Cryderman T1-1 A/D 46.4591 -684.9070 Trihedral 240 9.9 59.0 0.1 9.9 590 0 1 T1-2 A/D 46.4562 -84.9093 Trihedral 240 10.6? 59.0 0.1 106 590 0 1 T1-3 A/D 46.4561 -84.9130 Trihedral 240 29.5? 318.0 0.1 29.5? 318 0 0 1 T1-4 A/D 46.4571 -84.9152 Trihedral 240 33.3? 322.0? 1.4? 33.3? 322.0 1 47? - Local Day Local Date Local Time Thursday 6-Oct 13:11:31 Friday 7-Oct 6:41:02

MET (dd) 7 8 MET (hh:mm:ss) 5:34:46 5:13:40 October 1994 Mission Orbit No. 118 134 Launch scheduled for 7:16 am on September 30 Data-Take No. 118.6 134 3 Local magnetic declination is 6.1380 W Ascending/Descending D 0 North/South Looking (from Shuttle) N N All PARCs: 1 1 Look Angle (relative to SIR-C) 39.559 39.594 -1 -1 Local Incidence Angle 41.211 41.247 SIR-C Azimuth Heading (True North) 132.43 132.427 Target Azimuth (True North) 311.862 311.862 Target Looking (N/S) S S _________________ Location Target Azimuth (Mag. North).. 318,,_____ 318_____ Elevation Elevation Ascending/ Max. RCS Angles (From Azimuth (from Level Temp (~C) or Angles (From Azimuth (from Level Temp ('C) or Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north) (degrees) Attllen. (dB) horizontal) true north) (degrees) Allen (dB_ 41.2 (31.5 18' (20' 41 2 (42.7 Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC AirSAR) 318.0 0.0 AlrSAR) AlrSAR) 3180 00 12 5 3dB pad (22". 15 Sin C 41.2 (31.5 316.5 (318 2 dBpad 41.2 (427 (l5. 3dn pa P2 A/D 46.3369 -84.8519 GC-SAPARC AlrSAR) AIrSAR) yes AirSAR) AirSAR) 318.0 00 AirSAF) T1-7 A/D 46.3360 -84.8575 Trihedral 240 10.1 318.0 0.1 100 3180 00 T1-8 A/D 46.3453 -84.8497 Trihedral 240,, - 10.1 318 0 0 1 T1-9 A/D 46.3368 -84.8595 Trihedral 240 10.0 318.0 0.1 99 317.5 00 T1-10 A/D 46.3506 -84.8500 Trihedral 240, 9.9 3180 06 T2-1 A/D 46.3337 -84.8593 Trihedral 107, - 9.6 3180 00 T2-2 A/D 46.3452 -84.8512 Trihedral 107 - - - 9.5 3180 02 T2-3 A/D 46.3422 -84.8461 Trihedral 107 10.0 318.0 0.0 99 3180 00 T2-4 A/D 46.3406 -84.8457 Trihedral 107 - - 99 3180 01 T2-5 A/D 46.3393 -84.8519 Trihedral 107 9.9 318.0 0.0 99 3180 02 _______ T2-6 A/D 46.3365 -84.8503 Trihedral 107 ____10.0 318.0 0.1 _______ 9.8 3180 00 Raco Airfield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 41.2 318.0 0.5 412 3180 01 ____ P4 A/D 46.3508 -84.8196 C-PARC #2 ____ 42.4 41.2 318.0 1.2_______ 41.2 3180 07 ____7, I A.2 Cryderman T1-1 Ti-i TI -2 T1 -3 T1.A AID A/D A/D A/In 46.4591 46.4562 46.4561 A4R A471 -84.U90U -84.9093 -84.9130 -A4.9159 i nneorali Trihedral Trihedral Trihadral Z4U 240 240 940 9.9 10.6 29.5 33.3 59.U 59.0 318.0 322.0 U.1 0.1 0.1 1.4 0IU.J 100 100 10.0 J31O U 3180 3180 3180 u I 0 1 02 1 0 2 III______ L _________.1.__.__II........... II__...................... Local Day Local Date Local Time Friday 7-Oct 12:50:46 S-Oct 12:29:40 AIrSAR Data

MET (dd) 9 10 MET (hh:mm:ss) 4:51:57 4:30:20 October 1994 Mission Orbit No. 150 166 Launch scheduled for 7:16 am on September 30 Data-Take No. 150.2 166 1 Local magnetic declination is 6.138" W Ascending/Descending D D North/South Looking (from Shuttle) N N AM PARCs: 1 1 Look Angle (relative to SIR-C) 39.596 39.596 -1 -1 Local Incidence Angle 41.248 41.248 SIR-C Azimuth Heading (True North) 132.424 132.424 Target Azimuth (True North) 311.862 311.862 Target Looking (N/S) S S Location Target Azimuth (Mag. North) 318 318 Elevation Elevation Ascending/ Max PCS Angles (From Azimuth (from Level Temp (C) or Angles (From Azimuth (from Level Temp ('C) o Site Target Name Descending Latitude Longitude Target Type Size (cm) (dBm^2) horizontal) true north) (degrees) Atten. (dB) horizontal) true north) (degrees) Alien (dB) 5'. 3 dB pad Rifle Range P1 A/D 46.3481 -84.8487 L-SAPARC 41.2 318.0 0.0 4.5' 41.2 3180 0 0 XMVT 5'. 3 do pad P2 A/D 46.3369 -84.8519 C-SAPARC 41.2 318.0 0.1 5 41 2 3180 00 RCV T1-7 A/D 46.3360 -84.8575 Trihedral 240 12.4 321.5 0.3 10.3 3180 0 1 T1-8 A/D 46.3453 -84.8497 Trihedr 240 9.9 317.5 0.0 9.9 318 0 0 0 T1-9 A/D 46.3368 -84.8595 Trihedral 240 9.9 317.5 0.1 10.1 317.5 0 0 T1-10 A/D 46.3506 -84.8500 Trihedral 240 10.2 316.0 0.1 106 318.0 0 2 T2-1 A/D 46.3337 -84.8593 Trihedral 107 10.0 318.0 0.1 100 3185 0 1 T2-2 A/D 46.3452 -84.8512 Trihedral 107 10.0 317.5 0.1 9.9 3175 0 1 T2-3 A/D 46.3422 -84.8461 Trihedral 107 10.0 318.0 0.0 10.0 318 0 0 1 T2-4 A/D 46.3406 -84.8457 Trihedral 107 9.9 318.0 02 100 3180 0 1 T2-5 A/D 46.3393 -84.8519 Trihedral 107 9.9 318.0 0.2 9.9 3180 00 T2-6 A/D 46.3365 -84.8503 Trihedral 107 9.8 318.0 0. 1 _ _ 99 318.0 0 0 Raco Airfield P3 A/D 46.3568 -84.8048 C-PARC #1 44.5 41.2 318.0 0.4 41.2 3180 0 5 P4 A/D 46.3508 -84.8196 C-PARC# 2 42.4 41.2 318.0 0.9 41.2 3180 0 3 __ Cryderman T1t-1 A/D 46.4591 -84.9070 Trihedral 240 10.0 318.0 0.2 10.1 318.0 0 1 T1-2 A/D 46.4562 -84.9093 Trihedral 240 10.1 318.0 0.1 10 2 3180 0 1 T1-3 A/D 46.4561 -84.9130 Trihedral 240 10.0 318.0 0.1 99 3180 0 1 _ _ T1-4 A/D 46.4571 -84.9152 Trihedral 240 __10.0 318.0 0.1 10.1 3180 0 0 I Local Day Local Date Local Time Sunday 9-Oct 12:07:57 AlrSAR Data Monday 10-Oct 11:46:20

2.2 DISTRIBUTED TARGETS During the 11-day mission, a polarimetric scatterometer was used to collect data at L, C, and X-bands in conjunction with each SIR-C/X-SAR overpass. This data is used to define the average Mueller matrix of distributed targets. Three distributed targets, or surfaces, were defined and located at the rifle range. These were approximately 100 m X 100 m. Each plot (S1 to S3) had a distinctive surface roughness with RMS roughness ranging from 2 to 6 cm. (Tables 8 and 9). The locations of the distributed targets are documented on the map SIR-C/X-SAR October 1994 Rifle Range Distributed and Point Target Locations. Scatterometer analysis is not included in this report but is documented elsewhere. 22

ILI-,"SIR-C/X-SAR October 1994 a''Rifle Range Distributed and Point Target Locations w~IL 1 *. 4 9 ge ___ Sb~die /- -~Plc - Ol- or %, e -I.? N\ '00 O-, If.-*, - 0O4F 00 ele DULUTH - - -- —,t - - I I I OLUT I ' — IL I I t I II 'I N 4 II I.-. I * I'' 'I. "I , I, J, I I I I, I 4' ii a,, SD I',, ji - - - Z-. jw — - - -. - - 9 N x F- O-WV.. I. -T lk,-I - -- IR - - I _x - -. - - - - —. 11 -90ft. TloI0 0// %o / A'A. /1 1 5' -~1000 100 V.i 14',906 &.' SCALE 1:24 000 0 2000 3000 4( 2000 300 V.5 0 — 4 (J4 L= K. 23

3 Surface Observations For the October mission, surface observations included surface roughness, both small and large scale as appropriate, and soil moisture characterization. These were based on the hypotheses and methods presented in the following table. Table 7: Surface Observations: Hypotheses, Objectives, and Methods Hypothesis Objective Method 1. There are large scale 1. Take measurements 1. Surveying methods variations in surface height which will capture the using meter tape, transit in the forest test stands large scale surface rms and Philadelphia rod. and clearings. height 2. There are small scale 2. Take measurements 1. Use spray paint variations in surface height which will capture the small method, supplemented in the agricultural fields scale surface rms height by photographic method. and clearings. 3. Soil moisture content 3a. Measure soil moisture 3a. Take soil cores at will be unique to the and bulk density in forest several locations in each mission period and will stands, clearings, and of 13 forest stands, 21 vary by soil type agricultural fields. Select agricultural fields, and supporting different these to provide a cross- cleanngs representative of vegetation. section of the forest the test site. Do for each communities and ages, site several times during and herbaceous the mission. vegetation cover at the site. 3b. Obtain soil dielectric 3b. Use portable dielectric properties for selected probe. 10 stands plus cal forest stands and cal sites sites. 3.1 ROUGHNESS In contrast to the April SIR-C mission where snow covered the ground, the October time frame presented a variety of exposed ground or soil surfaces of varying degrees of roughness. To more completely describe and quantify the surface term with respect to radar backscatter, surface roughness must be measured in addition to soil moisture conditions as proposed in the preceding table. 25

Surface roughness is a relative term, as it is the degree of surface roughness relative to wavelength and incidence angle that influences radar backscatter. For example, a useful first-order estimation for whether a surface looks "smooth" to an incident radar beam is often given by the Rayleigh Criterion (1) 0< 8cos8 where a is the rms surface height, AG is the transmitted wavelength, and 0 is the angle of incidence and the surface is considered smooth if the left-hand side of the equation is less than the right-hand. (Also used is the Fraunhofer criterion which is more stringent, with 32 substituting for 8 in the right-hand denominator). A general rule of thumb is to sample roughness at a spatial scale of A/10. In order to decide at what spatial frequency (small to large scale) to take ground measurements, the following should be considered: a) the transmitted wavelengths, especially those most likely to be important in reaching the surface underneath agricultural and forest canopies, and b) the surface under scrutiny and the presence and size of any regular or even periodic undulations. Longer wavelengths would be expected to have a higher probability in reaching a forest floor, and thus measurements in forested areas concentrated on large scale roughness with consideration also given to the size of apparent local structure. Small scale measurements were also not made in the forested areas because of difficulties in exhuming the undisturbed mineral soil surface. Short wavelengths would be expected to be important in surfaces such as pasture which were at the same time less likely to have large scale undulations due to level lake plain substrate and agricultural management. Therefore, small scale roughness measurements were emphasized in agricultural fields. The two parameters used for characterizing surface roughness are rms height (U), the standard deviation of the surface height, and the surface correlation length (h). The rms height is given by, n 2 (2) a = R.M.S.Height = - z ni=1 26

where Zi is the displacement of the ith height from the height at meter 0.0. As a further refinement to the rms height, the data is generally leveled, or detrended, to arrive at a detrended rms height (0 d) which reflects the measured roughness independently of any general trend in slope. Detrending is accomplished by computing the coefficients of the regression of Zj (cm above or below the first measurement on the transect) on j (measurement point distance in meters from meter 0.0), finding the residuals Z' j = Z7-. and then recomputing the rms height based on Zj The normalized autocorrelation function of a surface profile z(x) gives a measure of the similarity between height Z at point X as a function of displacement in X. The correlation function is given by: N+l-j EZiZj+i-, (3) p(X')= i=1 N 2 LZi i=1 where X '(j-1AX, AX is the horizontal displacement andj is an integer > 1. The surface correlation length / is defined as the displacement X' for which /(X 9= lie. [2] 3.1.1 Forested Areas: Large Scale Roughness For the SIR-C/X-SAR mission large scale roughness measurements were made in 12 forest stands and at two calibration target areas covered with herbaceous vegetation: the Rifle Range and Cryderman Field. Large scale roughness measurements capture larger or low frequency surface undulations which may or may not be periodic. In unmanaged forest stands, roughness is unlikely to be periodic. However, in managed forest stands, forestry practices of preparing the substrate for planting can introduce periodic structure. The frequency of measurement points was determined based on visual observation of the general frequency of surface undulations. In the two non-forested areas, transects were 50 m. in length. The number of observations along each transect was 26, 51, or 101 depending on the surface. In the forested areas, transect length varied from 10 to 50 m and number of observations per transect from 26 27

to 101, also depending on the surface. These criteria are given for each location in Table 8: Summary table for Large Scale Roughness. In both cases, measurements were made using a transit/tripod in conjunction with a fiberglass tape and Philadelphia rod. Measurements of height above the surface in feet were taken by moving the rod at regular intervals down the transect, beginning with meter 0.0 and continuing for the predetermined length of the measurement transect. The mean height in cm, rms height, and detrended rms height were calculated, and are also given for each location in Table 8: Summary table for Large Scale Roughness. In addition to the results in Table 8, plots of the surface roughness for each location are given in Appendix A. 3.1.2 Agricultural Fields Small Scale Roughness The agricultural fields measured during the SIR-C/X-SAR mission consisted of pasture and hayfields. These are less likely to present pronounced periodic patterns typically found in row-tilled cropland. Therefore, the agricultural fields measured can be fairly reliably characterized by small scale roughness as the original mean surface (lake plain) is quite flat, any possible large scale undulations have largely been removed by agricultural management practices, and new large periodic structures have not been introduced. Again, the desired outcome of the small scale roughness measurements is rms surface height (cm) and correlation length. Surface Profile Measurement: To characterize the surface profile of the agricultural fields, two methods were implemented:(1) a spray paint technique, and (2) a photographic technique. The photographic technique is much faster to implement in the field. Both techniques were used on the same transects in order to evaluate the intercomparability of the two methods. What follows is a brief description of the two methods and the associated results of surface rms height and correlation length. 28

Table 8: Summary Table for Large Scale Roughness Transect RMS Height Location or Tr ct Number of Mean Height RMS Height RS Date Forest Stan Tree Type Transect # Length O (cm (Detrended) (m) _cm) Rifle Range 8/17/94 Surface 11 50 26 -8.09 5.64 1.81 2 50 26 1.90 2.76 1.71 Rifle Range 8/17/94 Surface 2 1 50 51 8.79 7.19 6.58 2 50 51 -14.16 10.76 4.63 Rifle Range 8/18/94 Surface 3 1 50 26 12.71 8.76 4.95 2 50 26 -0.13 4.88 4.58 Cryderman 8/18/94 Field 1 50 26 9.92 4.80 4.75 __2 50 26 -34.72 17.61 5.89 Rifle Range 10/3/94 Clearcut 1 50 101 -10.07 7.02 6.89 2 50 101 4.05 9.72 7.64 Sapling/Pole Red Pine 8/19/94 22 (Plantation) 1 50 26 -13.78 5.51 5.09 2 50 26 -15.19 10.33 2.77 Mature Red & White Pine 10/10/94 23 (Plantation) 1 25 101 13.76 11.35 9.96 Pole Jack Pine 8/19/94 24 (Plantation) 1 50 26 28.48 12.41 6.42 2 50 26 7.76 15.06 9.04 Pole Northern 8/18/94 31 Hardwood 1 50 26 -18.90 9.77 6.96 2 50 26 -13.22 5.85 5.66 8/18/94 32 Mature Northern 1 50 26 3.35 5.79 5.35 8/19/94 __ White-Cedar 2 50 26 42.99 59.30 56.44

Location or Transect Number of Mean Height RMS Height RMS Height Date Forest Stand TreeType Transect Len Observations (cm) (cm) (Detrended) _(m)__ ____ (cm) 8/18/94 33 Aspen Saplings 1 50 26 -21.11 13.26 9.51 _2 50 26 31.18 25.89 12.42 Mature Red Pine 10/11/94 43 (Plantation) 1 20 101 -10.67 10.05 9.40 8/18/94 44 Black Spruce 1 50 26 -6.66 9.57 9.34 8/19/94 __ _ 2 50 26 85.92 46.94 10.84 Sapling Red Pine 10/10/94 51 (Plantation) 1 10 101 -21.35 13.39 6.80 Mature White 10/11/94 75 Pine (Plantation) 1 19.2 97 -7.52 12.35 10.50 Seedling Red 10/10/94 78 Pine (Plantation) 1 10 101 7.41 11.07 10.04 SeedlingRed 10/10/94 80 Pine (Plantation) 1 10 101 -5.53 11.49 7.60

Both the spray paint technique and photographic technique require that a long, thin (1.2 m. long X 0.46 m. high X 0.0032 m. thick) aluminum plate be driven into the soil without disturbing the surface in front. To accomplish this task a number of steps must be taken to prepare the testing site. The first step is to clear the nearby area of large vegetative growth using shears. Once the majority is removed, any remaining stubble which may interfere with the measurement of the soil surface profile is burned away with a propane torch. Finally, the plate may be inserted into the ground and hammered into a level position. The main problem with both techniques is that the insertion of the panel into the ground can cause deformation of the surface to be measured. Spray Paint Technique: The spray paint technique consists of wrapping a section of graph paper from a scroll around the metallic plate which is then driven into the ground. Once the plate is situated so that the lower edge of the graph paper is below the soil surface, the profile is contrasted onto the graph paper by spraying the soil-plate interface with a light coating of dark spray paint. After drying the plate is removed from the ground and the graph paper stored and returned to the laboratory for further processing. This further processing consists of tracing the shadowed soil profile left on the graph paper using a digitizing table. Difficulties that may occur with this method are 1.) spray paint maybe applied too weakly or too strongly (causing dripping) in different areas, 2.) shadowing may occur if there are unremoved intervening obstacles between the spray paint can and the surface profile, 3.) digitization of the profile is a time consuming process, and 4.) the one-dimensional profile is all that remains of the characterization. Photographic Technique: A photograph is taken of the entire plate (which has been previously calibrated with a scale). Best results have been obtained by using a 50mm lens at a distance of about 3 meters with a low angle of incidence. Care should be taken to remove all intervening debris between the lens and the surface being measured, with additional attention being given to contrast between the paper background and the soil surface (the sun situated behind the camera worked best). A large, flimsy, piece of sheet metal was used to mat down any tall grasses that may have intervened between the camera and the surface profile. Once the photographs have been processed, they are digitized into a gray-scale image. The digitization resolution is found by first determining the 31

spatial resolution desired in the plot and then converting this resolution into units of pixels per photograph inch. For instance, using a 3.5" x 5" photographic print of the 1.2 meter wide plate, and assuming we want at least 1 mm resolution, the number of pixels per inch (ppi) is calculated by: = 1.2m. (4) ppi" = *5.in 240 pixels / in. (I mm. *5.0 in.) Digitized representation of the scene should be stored in a.TIFF file format which can be read by the 'xv' and 'matlab' programs in UNIX. To reduce file size, it may be desirable to separate the image into components of just the soil/plate interface and the ruled portion of the plate. The surface edge is detected by first convolving the image with a sobel vertical edge detection mask and then implementing a search algorithm to determine the location of greatest change in the convolved image. This method works very well although there are often difficulties that occur when spurious pieces of grass or shadows caused by the graph paper are mistaken for the soil surface. These corrections can be made on-line by low pass filtering the data or direct editing of the surface points. Finally, the ruled portion of the photograph may then be used to warp the image to remove any scaling inconsistencies due to photographic distortion. Possible difficulties that may occur with this method are: 1.) poor contrast between the soil surface and the plate background, 2.) overabundance of intervening grasses between the camera and the surface profile being measured, 3.) excessive warping due to the camera position and lens distortion, and 4.) poor resolution due to the negative and lens quality. Once the soil profile has been obtained via either one of the above two methods, the parameters that characterize the surface can then be calculated. The following Table 9: Summary Table for Small Scale Roughness contains the derived measures of rms height and correlation length obtained from both the photographic and spray-paint methods. For the profiles measured in common by the two techniques the results are correlated with r2 = 0.78 and s = 0.11 1 cm for 0 and r2 = 0.98 and s = 0.396 cm for I. Hence, the photographic technique is found to be a suitable substitute for the more traditional "spray paint" method. 32

Table 9: Summary Table for Small Scale Roughness Location RMS Height (cm) Correlation Length Slope (cm) (%) Spray Photo Spray Photo Spray Paint/ Method Paint/ Method Paint/ Digitizing Digitizing Digitizin Method Method g Method Cryderman S-1 1.565 12.555 0.325 Cryderman S-2 0.668 6.474 0.334 Field A 0.597 7.651 Field C 0.644 18.39 Field G 0.711 0.811 8.941 9.987 0.282 Field 1.293 1.31 9 11.382 12.78 0.315 Field J 1.24 18.4 Field K 0.902 0.948 16.4 0.336 Field M 0.808 0.702 11.249 12.45 0.302 Field N 0.802 20.04 Field 0 1.243 1.074 4.377 5.832 0.660 Field Q 1.025 1.018 10.864 11.57 0.393 Field S 1.005 0.867 7.216 7.81 0.324 Field T 0.5728 12.39 Field Z 0.563 4.747 0.402 Rifle Range S1-1 0.720 14.834 0.282 Rifle Range S1-2 1.373 23.306 0.187 Rifle Range S1-3 4.343 25.690 0.261 Rifle Range S2-1 1.075 23.145 0.254 Rifle Range S2-2 3.476 23.941 0.243 Rifle Range S2-3 7.348 25.522 0.377 Rifle Range S3-1 3.256 14.105 0.363 Rifle Range S3-2 0.746 9.501 0.271 Rifle Range S3-3 3.732 14.283 0.365 33

3.2 SOIL MOISTURE 3.2.1 Forested Stands and Clearings Soil properties identified for study during the October SIR-C/X-SAR project and expected to have implications for radar backscatter include moisture and bulk density. Since there is a very close association between soil type and forest community type, soil properties could be subsampled by measurement of the forest stands and clearings used by other measurements. The locations, vegetation cover types, and age classes examined, are listed in Table 10: Soil Moisture in Forest Stands and Clearings: Locations and Vegetation Types. Thirteen locations were examined. The notation for example TR1-1, refers to trihedral locations at Cryderman field, and S2 refers to extended surfaces at the Rifle Range. For each forest stand or clearing examined, measurements were repeated on different days whenever possible to track any change in soil moisture at a location over the time of the mission. Several samples were taken at each site. In the forests, typically one or two samples were taken at each of 3 previously established plots along an established transect, netting either 3 or 6 samples per forest stand per measurement day. In the clearings, samples were taken at trihedral locations or from the corners of the extended-target plots (s1,s2,s3). The 0-5 cm layer of the mineral soil was sampled at each location using an oakfield soil tube with radius = 0.96 cm. Typically, three cores were taken at a given location and combined as a single sample. All mineral soil samples were taken on a gravimetric basis, and most were also taken on a volumetric basis (i.e. the total volume of the soil sample is known). The organic horizons were sampled at a selection of the locations. Organic horizon samples were taken on a gravimetric basis. The type of sampling done at each location can be determined by consulting Table 11: Summary Table for Soil Moisture in Forest Stands and Clearings. All of the soil samples collected were weighed immediately after collection. Next, the samples were baked to equilibrium weight in an oven at 1100 C to remove the moisture, then re-weighed. In this way water mass fraction and, for the volumetric samples, volumetric water content were computed for the soil samples. 34

Table 10: Soil Moisture Vegetation Types in Forest Stands and Clearings: Locations and Location Vegetation Type Dates of Observation Cryderman field (TR1-1) Short grass - (Hayfield) 9/30, 10/1, 10/9, 10/10 Cryderman field (TR1-2) Short grass - (Hayfield) 9/30, 10/1, 10/4, 10/5, 10/6, 10/7. 10/8, 10/10 Cryderman field (TR1-3) Short grass - (Hayfield) 9/30, 10/1, 10/4, 10/5. 10/6, 10/7, 10/8. 10/9, 10/10 Cryderman field (TR1-23) Short grass - (Hayfield) 10/4, 10/5. 10/6, 10/7, 1_0/8, 10/9 Raco Airfield Short shrub/grass < 1 m (Clearcut) 9/30, 10/1, 10/4, 10/5, 10/6, 10/7, 10/8, 10/9, 10/10 Rifle Range (S1) Shon grass 9/30, 10/1, 10/4, 10/5, 10/6, 10/7, 10/8, 10/9, 10/10 Rifle Range (S2) Short grass 9/30, 10/1, 10/4, 10/5, 10/6, 10/7, 10/8, 10/9, 10/10 Rifle Range (S3) Short grass 9/30, 10/1, 10/4, 10/5, 10/6, 10/7, 10/8, 10/9, 10/10 Stand 22 Red Pine plantation - pole 9/30, 10/5, 10/7, 10/9 Stand 24 Jack Pine - mature 10/4, 10/6, 10/8, 10/10 Stand 31 Northern Hardwoods - 9/30, 10/5, 10/7, 10/9 pole/mature Stand 32 Northern White-cedar - mature 10/1 Stand 33 Aspen -sapling 10/4, 10/6, 10/8 Stand 34 Aspen - overmature 9/30, 10/5, 10/7, 10/9 Stand 37 Jack Pine - seedling 10/4, 10/6, 10/8, 10/9, 10/10 Stand 38 Jack Pine - sapling 10/4, 10/6, 10/9, 10/10 Stand 43 Red Pine - mature 10/1, 10/5, 10/7, 10/9 'Stand 44 Black Spruce - mature 10/1 35

Table 11: Summary Table for Soil Moisture in Forest Stands and Clearings also provides the summary results for each stand or clearing. Included are the sample location wet wt. (g), dry wt. (g), gravimetric moisture (dry wt. g/g), bulk density (g/cm3), and volumetric moisture (cm3/cm3) where available. Appendix B contains a more detailed record of the soil moisture measurements, any comments/notes recorded in the field, along with a key to the abbreviations. Calculation of the soil moisture parameters were as follows: Average soil bulk density (g/cm3) (5) Db = -— l -r2*Ci where n = the number of sample points, MDi = soil sample dry wt. (g), / = length of soil core (cm), r = radius of soil core (cm), and Ci = n of cores in sample Average soil gravimetric moisture (dry wt. g/g) 1 M IMWi - MD (6) M =l MDi ] where MWi = soil sample wet wt. (g), and n = the number of sample points Soil water volume fraction (cm3/cm3) (7) 1[9 IW* r2* I C 36

Table 1 1: Summary Table for Soil Moisture In Forest Stands and Clearings H~umeu/Or ICL"W________ Mbier SoI _______ Stand Dab Mean Depth (cm) Use ormbIrc Oruvhneftl Moisure (gig) Sulk Denit~y (gfam3) VkwrcMlf ______ Mean Stdev Mean Stdvv Mean Sidev Crydsrmnan Sept.30 0.33 0.09 1.22 0.19 0.4 0.11 OCt.1 0.34 0.13 1.15 0.09 0.30 0.14 Oct. 4 0.27 0.06 1.24 0.02 0.33 0.06 Oct. 5 0.28 o.ot 1.25 o.oa 0.35 0.04 Oct. 6 0.28 0 1.24 0.09 0.35 0.03 Oct. 7 0.28 0.02 1.08 0.18 0.31 0.07 Oct. 8 0.3 0 1.18 0.11 0.35 0.04 Oc. 9 0.31 0.04 1.23 0.04 0.39 0.07 Oct. 10 0.37 0.05 1.07 0.07 0.39 0.03 Iban 9il.311 1.18 OS0..u OLD? Sdw 9.ns OLN Saw aes L0 O Raco Ak Sept.30 0.16 0.04 1.54 0.04 0.25 0.06 O 10.2 0.03 1.42 0.06 0.28 0.04 Oct. 4 0.19 0.02 1.44 0.06 0.27 0.03 Oct. 8 0.16 0.04 1.34 0.11 0.24 0.04 Oct. 6 0.17 0.06 1.31 0.1 0.23 0.06 OcL 7 0.1, 0.06 1.37 0.05 0.25 0.06 Oct. 8 0.17 0.03 1.46 0.08 0.24 0.04 Oct. 9 0.23 0.07 1.34 0.13 0.3 0.06 _____Oct. 10 _______0.24 0.04 1.4 026 0.33 0.03 Aboi etaf aee 1.. 9.te0 9.2? OW BMWv 9.9$ 9.1 9.97 9.0? 9.03 9.08 RRS81 Sept.30 0.11 0.04 1.38 0.15 0.15 0.04 Oct, 1 0.13 0.06 1."4 0.11 0.18 0.06 OcL 4 0.1 0.01 1.32 0.06 0.13 0.01 Oct. 8 0.12 0.02 1.25 0.12 0.15 0.04 Oct.a 0.11 0.02 1.22 0.02 0.14 0.02 OcL 7 0.13 0.03 1.21 0D08 0.16 0.02 Oct. 8 0.15 0.01 1.18 0.02 0.17 0.02 OCt.9 0.28 0.1 1.06 0.11 0.27 0.07 O_____ L 10 ______________ 02 0.03 1.12 Ob6 0.22 0.02 Alm 9.15 9.03 1.24 9.95 O.1? Ito3 sowv D___ _____ _____.9" 9.0 912 9.95 9.04 9.02

Table 1 1: Summary Table for Soil Moisture In Forest Stands and Clearings Humu_____t L! wkiald Soil _______ Stan~d Dab Mean Dapth (cm) M~N arsvklrc Oravhifrtc Momatu (gig) Buui Density (g/cm3l) V (cmirii~c Maku ___ ___ M Iskw I(a/atm3 Mean Stdov Mean Stdav Mean Stdav RR S2 Sept 30 0.1 0.04 1.38 024 0.14 0.04 Oct.I 0.08 0.03 1.29 0.04 0.1 0.03 Oct. 4 0.1 0.02 1.1 0.12 0.11 0.02 Oct. 5 0.018 0.01 1.14 0.07 0.09 0.02 Oct. 6 0.12 0.03 1.2 0.06 0.18 0.04 Oct. 7 0.1 0.01 1.17 0.13 0.12 0.01 Oct. a 0.12 0.01 1.08 0.08 0.13 0.01 Oct. 9 0.17 0.02 1.15 0.11 0.19 0.02 ~.10 _______0.18 0.02 1.16 0.08 0.2 0.03 Atom 0.12 OL21.19 ~10 ~1I4 ~02 81*ov __ _ _ _ __ _ _ _.0 ~01I 0.04 ~04I ~04 ~01l RRS83 Sept. 30 0.15 0.02 1.04 0.13 0.16 0.01 Oc.I0.14 0.01 1.17 0.08 0.16 0.01 Oct. 4 0.1 0.01 1.17 0.05 0.12 0.01 Oct. 6 0.09 0.04 0.99 0.06 0.09 0.04 Oct. 6 0.1 0.04 1.06 0.15 0.1 0.04 Oct. 7 0.12 0.06 1.09 0.2 0.13 0.06 Oct. 8 0.13 0.08 1.06 0.15 0.13 0.04 Oct. 9 0.22 0.13 1.08 0.2 0.22 0.08 Oc. 10 0.16 0.07 1.14 0. 0.2 0.04 Ibwi 0.14 ~05 1.os 0.14 015S ~04O BMWie v~ 0.04 0 0 0.04 ~04O 0.02 Stand 22 Sept. 30 1 0.46 0.18 0.04 1.32 0.14 0.24 0.07 Oct.1i Oct. 4 Oct. 6 0.13 0.07 1.32 0.1 0.17 0.08 Oct. 6 Oc. 7 0.12 0.07 1.36 0.07 0.15 0.06 Oct. 6 Oct. 9 4 1.61 0.16 0.11 1.4 0.06 0.24 0.14 _ _ _ _ Oct. 10 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Atom S 1.04 0.15 ~07 1.35 ~L10 0.20 ~04 am"v 2 Ul8 0.031 ~05 ~04O ~02 ~05 ~913

B a U-, 25 ii I 8 0 a Cs a CD 0 a C6 a d C2 Cs a o; a Cy I o; I 41 11 1 0: 4d c a a B S; CS4d4 c; 8 8 8 d d J 5 C a~oa n a C 1C.-T. d0 Il I IC S C a 0 v 0 0 3 AL 0 3 a I. I i I A g*,-09,0 II II II I I 39

Table I11: Summery Table for Soil Moisture In Forest Stands and Clearings ____ Humu eIOfgmaLni___________ kwrd SoI _______ Sutad Deb Mean Dith (cm) Mg (jakmf Orawevinlef Moisture (gig) Bulk Dnety (glem3) VkmrcMitr ____ _____Mean Stdsv Mean Stdev Mean Sidev Stand 33 Sept. 30 Oct.I Oc. 4 0.22 0.02 1.02 0.05 0.22 0.02 Oct. 6 Oct.6a 3 1.09 0.21 0.1 1.13 0.19 0.22 0.07 Oc. 7 Oct. a 2 0.91 0.16 0.1 1.24 0.19 0.17 0.06 Oc. 9 Oc. 10 2 1.52 0.21 0.06 1.21 0.07 0.25 0.06 mom 2 1.17 9190 0.97 1.15 9.13s 0.22O 906 BMW I 1i O31 9.93#04 01 WLO 9.03 0.03 Stand 34 Sept. 30 4 1.33 0.21 0.07 1.36 0 0.27 0.13 OcL I Oct. 4 Oct. S 3 0.7 0.16 0.04 1.13 0.11 0.2 0.03 Oc. S Oc.74 1.24 0.23 0.16 1.16 0.29 0.24 0.09 Oc. a Oc. 9 0.18 0 1.32 0 0.24 0 Oc. 10 ______ mm" 4 1.06 9020 9.07 1.24 9. 19 0.24 9.06 &dMW 1 0.34 9.0 9.07 9.11 914 0.03 9.04 Stand 37 Sept. 30 Oct 4 0.17 0 1.06 0.06 0.17 0.02 Oc. 5 Oct. 6 0.14 0.02 1.13 0.11 0.16 0.02 Oct. 7 OC. a 0.15 0.04 1.03 0.15 0.15 0.02 Oct. 9.0.25 0.09 1.07 0.18 0.26 0.06 _____Oct. 10 _____ _ _______ 0.25 0.06 1.06 0.14 0.26 0.03 Atom 0.18 9.04 1.07 9.13s 9. 9.03LD BMW OAS___ ______ 99 9.04 9.04 9.04 9.03 9.02

Table I11: Summary Table for Soil Moisture In Forest Stands and Clearings Hkmus/~rganieLW akWIral SoIl Stand Dos Mean Deth (cm) Mom GrgkIc Oravbineti Moldurs (gig) Bult Dewwly (glemS)VofetkMsh ________ Man Stdsv Mean Stdsv Mean Stcdav Stand 36 Sept. 30 Oct. 4 0.06 0.04 1.21 001 0.1 0.06 Oct. 5 Oct. a 0.06 0.03 1.32 0.05 0.06 0.06 Oct. 7 Oct. 6 Oc. 9 0.14 0.04 1.25 0.05 0.18 0.06 Oct. 10 _______ 0.16 0.06 1.12 023 0.17 0.06 Ibw 9.11.06S 1.2 ~0R ~13S ~06 ardw #-O__.0 ~~w 0.n ~10 ~06 L Stand 43 Sep. 30 Oct. 1 0.26 0.13 1.04 0.19 0.25 0.07 Oct. 4 OC. 5 0.19 0.03 1.13 0.17 0.21 0.01 Oct.. Ot7 3 0.69 0.14 0.02 1.23 0.1 0.17 0.01 Oct. a Oct.9 0.2 0.06 1.19 0.17 0.23 0.04 O____ t. 10 MM. $ ~69 Om2 0.06 1.15 I ~19 WJ ~03 Show 9.05 ~05S ~06 ~L04 ~03 ~02 Stand 44 Sept. 30 Oc. 1 6 2.72 0.51 0.42 0.79 0.44 0.26 0.17 Oct. 4 Oct. 5 Oct. 6 Oct. 7 Oct. S OC. 9 Oc. 10 ______ hAto 5 ~72 0.51 ~L42 ~.79 ~L44 ~29O ~1? SW" __

3.2.2 Agricultural Fields As with the forest stands and clearings, for each agricultural field examined, measurements were repeated on successive days whenever possible to track any change in soil moisture at a location over the time of the mission. In the agricultural fields, three soil cores were taken at each of three locations randomly chosen in a field, netting nine cores per field per day. All samples were taken on both gravimetric and volumetric bases as can be seen in Table 12: Summary Table for Agricultural Fields Soil Moisture. All of the soil samples collected were weighed immediately after collection. Next, the samples were baked to equilibrium weight in an oven at 1100 C to remove the moisture, then re-weighed. In this way water mass fraction and the volumetric water content were computed for the soil samples. Table 12: Summary Table for Agricultural Fields Soil Moisture provides a summary of the results for each field Included are the sample location gravimetric moisture (dry wt. g/g), bulk density (g/cm3), and volumetric moisture (cm3/cm3). Calculations of the soil moisture parameters were identical to those in equations 5-7 in the previous section. 42

Table 12: Summary Table for Agricultural Fields Soil Moisture Avg. Avg. vg. Avg. Av Avg. Bulk Gravimetric Volumetric Avg. Bulk Gravimetric Volumetric Density Moisture (dr) Moisture Density Moisture (dr) Moisture Field Date (g/cm3) wt. g/g) (cm3/cm3) Field Date (g/cm3) wt. g/g) (cm3/cm3) A 5-Oct 1.37 0.15 021 L 5-Oct 1.55 0.07 0.11 6-Oct 1.30 0.12 0.16 6-Oct 1.21 027 0.32 7-Oct 128 0.17 021 7-Oct 121 029 0.35 8-Oct 1.39 0.14 0.19 8-Oct 1.17 029 0.34 9-Oct 1.30 025 0.32 9-Oct 122 0.38 0.47 10-Oct 129 028 0.36 10-Oct 125 0.40 0.50 Mean 1.32 0.19 0.24 Mean 1.27 0.28 0.35 Stdev 0.04 0.07 0.08 Stdev 0.14.0.12 0.14 B 5-ct 129 0.18 023 M 5-Oct 0.98 0.35 0.34 6-Oct 1.33 0.17 022 6-Oct 124 024 0.29 7-Oct 127 0.18 023 7-Oct 1.14 0.34 0.38 8-ct 1.37 0.18 025 8-Oct 1.11 0.36 0.39 9-Oct 127 025 0.32 9-Oct 1.15 0.38 0.43 10-Oct 126 025 0.32 10-Oct 1.16 0.44 0.49 Man 1.30 0.20 0.26 Men 1.13 0.35 0.39 Stdev 0.04 0.04 0.04 Stdev 0.08 0.07 0.07 C 5-Oct 127 0.30 0.38 N 5-Oct 121 027 0.32 6-Oct 1.39 026 0.35 6-Oct 1.38 024 0.32 7-Oct 1.30 023 0.30 7-Oct 1.35 024 0.33 8-Oct 1.37 022 0.30 8-Oct 1.36 024 0.33 9-Oct 1.33 029 0.39 9-Oct 1.39 0.32 0.45 10Oct 1.31 0.30 0.39 10-Oct 1.32 0.35 0.46 Men 1.33 0.27 0.35 Man 1.34 0.28 0.37 Stdev 0.05 0.04 0.04 Stdev 0.06 0.05 0.07 D 5-Oct 1.58 023 0.36 0 5-Oct 1.40 025 0.35 6-Oct 1.46 025 0.37 6-Oct 121 025 0.30 7-Oct 1.60 022 0.35 7-Oct 129 024 0.31 8-Oct 1.45 022 0.32 8-Oct 129 025 0.32 9-Oct 1.45 028 0.41 9-Oct 1.32 0.35 0.46 10-Oct 1.37 0.30 0.41 10-Oct 125 0.37 0.47 Afan 1.48 0.25 0.37 Mln 1.29 0.28 0.37 Stdev 0.09 0.03 0.03 Stdev 0.06 0.06 0.08 E 5-Oct 0.99 029 029 P 5-Oct 0.88 0.45 0.39 6-Oct 1.19 0.31 0.37 6-Oct 1.10 0.34 0.37 7-Oct 129 028 0.36 7-Oct 1.07 0.36 0.38 8-Oct 129 0.30 0.39 8-Oct 1.09 0.35 0.38 9-Oct 129 0.32 0.41 9-Oct 1.05 0.44 0.46 10-Oct 1.17 0.37 0.43 10-Oct 1.06 0.43 0.46 Mean 1.20 0.31 0.37 Man 1.04 0.39 0.41 Stdev 0.12 0.03 0.05 Stdev 0.08 0.05 0.04 F 5-Oct 1.38 028 0.38 5-Oc 121 0.32 0.38 6-Oct 1.39 027 0.37 6-Oct 1.17 029 0.33 7-ct 1.32 029 0.38 7-Oct 122 027 0.33 8-Oct 126 029 0.36 8-Oct 1.37 025 0.34 9-Oct 1.34 0.34 0.46 9-Oct 129 0.34 0.44 10-Oct 127 0.35 0.45 10-Oct 123 0.35 0.43 Mean 1.33 0.30 0.40 Mean 1.25 0.30 0.38 Stdov 0.05 0.04 0.04 Stdev 0.07 0.04 0.05 G 5-Oct 1.38 025 0.35 R 5-Oct 1.14 0.31 0.35 6-Oct 1.31 029 0.38 6-Oct 122 0.30 0.37 7-Oct 1.45 024 0.35 7-Oct 126 0.31 0.39 8-Oct 1.39 025 0.35 8-Oct 127 029 0.37 9-Oct 1.43 0.30 0.42 9-Oct 126 0.34 0.42 10-Oct 1.34 029 0.39 10-Oct 123 0.42 0.51 Mien 1.38 0.27 0.37 Mean 1.23 0.33 0.40 Stdev 0.05 0.02 0.03 Stdev 0.05 0.05 0.06 43

Table 12: Summary Table for Agricultural Fields Soil Moisture Avg. Avg. Avg. Avg. Avg. Bulk Gravimetric Volumetric Avg. Bulk Gravimetric Volumetric Density Moisture (dr) Moisture Density Moisture (dr Moisture Field Date (g/cm3) wt. q/g) (cm3/cm3) Field Date (g/cm3) wt. q/q) (cm3/cm3) H 5-Oct 1.35 024 0.32 S 5-Oct 124 0.32 040 6-Ocl 1.05 0.34 0.35 6-Oct 1.34 0.33 045 7-Oct 1.35 025 0.34 7-Oct 1.14 0.34 0.38 8-Oct 1.31 028 0.37 8-Oct 1.00 0.36 0.36 9-Oct 129 0.38 0.49 9-0ct 0.94 0.46 042 10-Oct 1.32 0.30 0.39 10-Oct 1.07 0.45 0.48 Mean 1.28 0.30 0.38 Mean 1.12 0.38 0.41 Stdev O0.11 0. 05 0.06 Stdev 0. 15 0.06 0.04 1 5-Oct 1.30 0.17 022 T 5-Oct 0.94 0.38 0.36 6-Oct 1.38 022 0.31 6-Oct 0.93 0.35 0.32 7-Oct 1.33 024 0.32 7-Oct 1.16 0.30 0.35 8-Oct 1.35 025 0.33 8-Oct 1.11 0.30 0.33 9-Oct 1.40 0.30 0.42 9-Oct 1.17 0.36 0.42 10-Oct 1.30 0.32 0.41 10-Oct 125 0.41 0.51 Mean 1.34 0.25 0.34 Mean 1.09 0.35 0.38 Stdev 0.04 0.06 0.08 Stdev 0.13 0.04 0.07 J 5-Oct 1.46 022 0.32 U 5-Oct 1.11 0.35 0.39 6-Oct 126 022 027 6-Oct 1.09 0.30 0.33 7-Oct 1.48 0.19 028 7-Oct 127 0.31 0.39 8-Oct 1.44 0.18 026 8-Oct 1.19 0.33 0.38 9-Oct 1.36 029 0.39 9-Oct 121 0.40 0.48 10-Oct 128 0.30 0.39 10-Oct 124 0.40 0.50 Mean 1.38 0.23 0.32 Men 1.18 0.35 0.41 Stdev 0.10 0.05 0.06 Stdev 0.07 0.04 0.06 K 5-Oct 120 0.34 0.41 6-Oct 1.22 0.32 0.39 7-Oct 128 0.31 0.39 8-Oct 9-Oct 1.39 0.31 0.43 10-Oct 126 0.34 0.43 Men 1.27 0.32 0.41 Stdev 0.08 0. 02 0.02_ AA

3.3 DIELECTRIC MEASUREMENTS OF FORESTED AREA SOILS Soil dielectric measurements were taken in forest stands in concert with soil moisture core sampling. In situ dielectric measurements were made with portable dielectric probes (Applied Microwave Corp. PDP) using 0.25 in diameter coaxial probe tips inserted no more than 1 cm into the mineral soil. In forest stands, typically three dielectric measurements were taken at each of five sample locations per stand, netting 15 dielectric measurements. Sampling at the Rifle Range was done at locations on the distributed calibration surfaces (si,s2, and s3), at the Raco Airport in the large grassy area, and at Cryderman Field at the Trihedral locations. Again a total of 15 samples were taken per plot. The means and standard deviations of the real and imaginary parts of the dielectric constant were calculated by stand or plot on a daily basis. Forest stands were sampled from 1 to 4 times over the mission period, with most stands being sampled at least twice. Sampling at the Rifle Range, the Raco Airport, and Cryderman Field was slightly more intensive, and was done on Oct. 1, and each day from Oct. 5 through Oct. 9. All of the above was done using the P-band probe (P-148). Additionally, Cryderman Field, the Raco Airport and two forest stands were sampled on Sept. 30 at L-band. These were the only L-band soil dielectric measurements made. Results of dielectric measurements for each stand or clearing for each day are presented in Table 13: Summary Table of Forest Soil Dielectrics. Measurements presented are those described in the previous paragraph. 45

Table 13: Summary Table of Forest Soil Dielectrics Location Date Time P-band _*' mean *'- stdev " - mean *" - stdev 22 5-Oct 10.49 22.43 15.31 1.77 3.91 7-Oct 11.01 6.65 4.15 0.50 2.04 24 6-Oct 10.43 25.24 13.18 2.47 3.63 Oct 8 4.46 28.91 10.72 3.20 3.27 31 5-Oct 14.05 31.44 10.24 3.20 3.20 7-Oct 12.34 26.03 14.43 2.47 3.80 9-Oct 10.43 31.33 11.62 1.11 3.41 32 1 -Oct 12.12 47.67 28.93 3.95 5.38 33 6-Oct 13.11 17.31 9.87 2.47 3.14 8-Oct 2.42 14.19 12.88 0.50 3.59 34 5-Oct 15.20 26.53 18.55 3.20 4.31 7-Oct 12.09 22.74 18.50 2.47 4.30 9-Oct 11.01 34.23 13.47 1.77 3.67 37 6-Oct 12.16 7.54 6.91 0.50 2.63 9-Oct 13.15 26.20 14.08 2.47 3.75 38 6-Oct 11.49 4.53 2.45 0.00 1.57 9-Oct 13.36 10.42 9.02 0.50 3.00 43 1-Oct 16.59 30.96 12.01 2.47 3.47 5-Oct 16.04 16.58 7.70 1.77 2.77 7-Oct 11.31 13.38 13.50 1.11 3.67 9-Oct 11.31 27.57 14.43 1.11 3.80 44 1-Oct 10.38 34.73 17.28 3.95 4.16 Cryderman 1-Oct 12.55 25.71 11.46 3.95 3.39 5-Oct 11.43 31.31 14.75 3.95 3.84 6-Oct 14.48 25.48 13.05 3.20 3.61 7-Oct 13.06 22.76 16.12 3.20 4.02 8-Oct 1.32 33.63 11.35 3.95 3.37 9-Oct 9.31 36.29 8.39 2.47 2.90 Raco Airport 1-Oct 14.31 11.82 6.50 1.11 2.55 5-Oct 10.22 25.29 9.16 1.77 3.03 6-Oct 10.12 21.97 8.77 3.20 2.96 7-Oct 10.45 15.94 12.25 1.77 3.50 8-Oct 4.23 22.41 6.01 2.47 2.45 9-Oct 12.38 30.96 5.75 3.20 2.40 AA

Table 13: Summary Table of Forest Soil Dielectrics Rifle Range S1 1-Oct 15.07 6.03 6.93 0.50 2.63 5-Oct 9.56 9.45 10.06 0.50 3.17 6-Oct 9.15 4.09 4.58 0.50 2.14 7-Oct 9.21 3.80 2.59 0.00 1.61 8-Oct 3.27 16.55 8.70 1.11 2.95 9-Oct 11.59 21.51 10.09 1.11 3.18 Rifle Range S2 1-Oct 15.38 3.56 4.07 0.50 2.02 5-Oct 9.35 8.23 8.49 0.50 2.91 6-Oct 9.33 6.03 5.33 0.00 2.31 7-Oct 9.42 4.12 4.42 0.00 2.10 8-Oct 3.37 10.71 10.22 1.11 3.20 9-Oct 12.10 19.20 13.67 1.11 3.70 Rifle Range S3 1-Oct 16.12 6.81 5.59 0.50 2.36 5-Oct 9.18 6.33 4.86 0.50 2.20 6-Oct 9.48 5.95 6.93 0.50 2.63 7-Oct 10.05 3.53 2.42 0.50 1.56 8-Oct 3.54 19.35 21.64 1.11 4.65 9-Oct 12.24 23.13 11.52 1.11 3.39 Location Date Time L-band e'- mean e' - stdev e" mean e" - stdev i - 31 30-Sep 11.37 18.48 14.03 2.45 3.75 34 30-Sep 13.30 19.25 8.41 4.08 2.90 Cryderman 30-Sep 12.55 18.61 10.48 4.89 3.24 Raco Airport 30-Sep 16.08 14.03 8.78 4.08 2.96 A P7

4 Vegetation Observations Ancillary data for several sets of canopy properties were required for the SIR-C/X-SAR experiment: 1) those related to the quantity of biomass, 2) those related to moisture status and temperature, and 3) those related to leaf and herbaceous vegetation phenology. The biomass quantities were considered static within the October SIR-C/X-SAR mission and biomass data had been collected during summers 1992-94. Those properties related to moisture, temperature, and phenology are unique to any mission period and may be expected to vary over the period. Therefore, in order to describe the status of the vegetation canopy, measurements were taken during the October SIR-C/XSAR mission as set forth in the following table. Table 14: Vegetation Properties: Hypotheses, Objectives, and Methods Hypothesis Objective Method 1. Vegetation canopy Determine the canopy Use LI-COR leaf area index coverage shows phenological coverage during October meter which calculates variation from season to 1994 mission in forest stands m2/m2 of leaf area in stands season and fields and fields 2. Vegetation moisture Determine the wet & dry Do destructive sampling. content will be unique to the moisture and volume of Take cuttings of herbaceous mission perod and will vary by woody tree species and vegetation and tree foliage. cover type or species. herbaceous vegetation of Fell one tree of each species Agricultural biomass will vary interest. Quantify current of interest & sample the bole by season biomass of agricultural veg. and branches 3. Vegetation Dielectric properties related to moisture conditions will be unique to the mission period and will vary by: a: species and a. Determine the dielectric a. Complete detailed meteorological conditions properties for all tree species dielectric profiles using of interest at the time of the dielectric probes. Do this for mission. at least one tree each of the nine tree species of interest. Record air and tree temperature. Attach dielectric probes to b. on a diurnal basis b. Track e' over at least the trees and program them to time range of the overflights take continuous measureand over a 24-hour period if ments over part or all of the possible. diurnal cycle. 48

4.1 LEAF AREA INDEX Leaf area index (LAI) is a measure of the net single-sided leaf area per unit area of ground in m2/m2. LAI can be measured a number of ways including leaf counts, litter traps or using optical transmittance of the canopy. The LI-COR 2000 instrument uses the latter approach at a wavelength of 490 gm, a chlorophyll absorption band. Measurements made below the canopy are ratioed to those made above the canopy to determine transmittance as a function of zenith angle. This function is used to estimate LAI assuming (1) green foliage has transmissivity = 0.0 at 490 im, (2) the foliage is randomly distributed, (3) the foliage elements are small compared to the view area of each detector ring (five rings, each covering a zenith angle of approximately 130), and (4) the foliage is randomly oriented in azimuth. The LI-COR 2000 was used to obtain estimates of LAI for both the forest stands within the Raco Supersite and also for 21 agricultural fields located southeast of the Raco Supersite in the vicinity of Rudyard, Ml. A 50% view restrictor was used on the instruments during all measurements. The forest stands were measured during two periods: (1) from August 16-19 and (2) from October 1-6, 1994. The agricultural fields were all sampled on October 6, 1994. All locations sampled plus date and time are listed as part of Table 15: Summary Table of Leaf Area Index Observations. The agricultural fields were sampled at three locations within a field (generally 16 ha in size). Six replicates of above and below canopy readings were made at each location. Hence, the reported LAI values are based upon a sample size of 18. The pre-established forest sampling grid of 5 transects with 8 locations per transect was subsampled for LAI estimation. Typically, two to four transects were sampled with below canopy readings being obtained with three replicates per location. This makes the sample size three times the number of independent sample locations given in the table. Measurements made beneath the forest canopy are compared to those made (within +/- 7 seconds) by an independent, but cross-calibrated LI-COR 2000 located above the canopy or in a nearby clearing. The mean LAI and standard deviations about the mean LAI are given in Table 15. However, these values do not account for two factors: (1) extinction 49

caused by woody stems and (2) the non-random orientation of conifer needles on shoots. These effects are approximately corrected by the following: (8) L4Icorrected = LAIc + LAId (9) LAIc = RcC(LAIraw- W) (10) LAd = (-C)(LAIraw- W) where the subscripts c and d denote coniferous and deciduous, Rc is a conifer needle correction factor, C is the percent of net basal area that is coniferous, and W is a woody stem correction factor. Rc is given by the ratio of projected needle area (quantity of interest) to the average projected shoot area (quantity measured by LI-COR 2000). This value has been found to range from 1.5 to 1.7 depending upon species.[3] A value of 1.67 is assumed appropriate for all conifer species in this study. The woody stem correction factor is determined for LI-COR measurements of deciduous stems (C < 5%) during leafless winter conditions. Measurements obtained at the Raco supersite have been used to generate an empirical dependence of W on basal area (Ba). (11) W = 0.1344Ba 0.5522 (R2=0.865) Assuming that the woody stem correction factor for coniferous species is approximately that determined for deciduous species, Eq. 4 can be substituted into Eq. 2 and Eq. 3 yielding: (12) LAIcorrected = (LAIraw-0. 1 344Ba~5522)(.0 + 0.67 C) This equation is used to calculated the corrected LAI values in Table 15: Summary Table of Leaf Area Index Observations using basal area values measured for each stand. No corrections are needed for the data collected in the agricultural fields. 50

Table 15: Summary Table of Leaf Area Index Observations Forest Stands Start Stop No. LAI Mean LAI Mean Tip Total Bal Conifer Basal Wood CorecedLA and Dominant Spcis Moth Time TIme Location (Uncorrected). Angle Area Area % Conifer Correction Dev. (mA2/mA2) (mA2/m^2) Factor m2m2) R22 red pine Aug9 17 17:48 18:17 26 3.45 0.59 51.2 20.00 20.00 100% 0.70 4.59 R23 red & white pine Oct 5 12:34 13:06 27 2.86 0.30 55.2 38.70 35.67 92% 1.01 2.99 R25 red & white pine Oct 5 _ 13:30 13:56 25 2.74 0.44 51.0 33.06 31.06 94% 0.93 2.95 R27 lack pine Oct 5 15:56 16:19 24 2.42 0.41 57.0 25.08 24.24 97% 0.80 2.67 R28 beech Oct 2 _ 11:06 11:50 26 3.87 0.37 39.9 40.33 4.08 10% 1.04 3.03 R29 red maple Oct 2 12:10 12:50 25 3.76 0.43 40.0 35.34 2.72 8% 0.96 2.94 R31 red maple Oct 1 11:04 11:42 24 3.77 0.32 44.2 27.33 0.02 0% 0.83 2.93 R32 white-cedar Oct 3 13:21 13:51 23 3.41 0.50 50.1 59.30 58.13 98% 1.28 3.52 R33 trembling aspen Oct 11 12:16 13:12 16 4.13 0.79 42.8 24.54 0.00 0% 0.79 3 34 R34 bigtooth aspen / red maple Oct 1_ 13:33 14:08 24 4.11 0.30 41.9 29.03 0.18 1 % 0.86 3.26 R35 lack pine Aug 18 17:02 17:21 21 1.87 0.64 52.1 11.32 11.22 99% 0.51 2.26 R36 lack pine Aug 19 i11:18 11:47 22 1.94 1.74 43.6 6.27 6.11 98% 0.37 2.59 R38 lack pine Aug 1 9 18:47 19:04 22 1.84 0.43 53.4 6.18 6.18 100% 0.37 2.45 R39 lack pine Aug 16 15:50 16:26 19 0.90 0.35 0.05 0.04 97% 0.02 1 44 R41 red pine Aug 1 9 15:30 15:57 20 2.56 0.64 45.0 8.40 7.47 89% 0.44 3.40 R42 Jack pine Aug 1 9 14:22 14:49 23 2.72 1.10 47.8 7.32 6.31 86% 0.40 3.65 R43 red pine Aug 1 7 11:55 12:35 27 3.58 0.48 48.6 34.19 33.10 97% 0.94 4.35 R45 trembling aspen Oct 1 14:55 16:10 16 1.47 0.49 58.9 9.63 0.30 3% 0.47 1.02 R46 red maple Oct 3 11:46 12:14 24 4.25 0.43 40.8 43.30 8.77 20% 1.08 3.61 R47 trembling aspen Oct 2 16:41 17:19 24 3.50 0.89 49.1 24.04 1.81 8% 0.78 2.86 R48 trembling aspen/red maple Oct 2 15:47 16:13 24 3.53 0.51 44.6 28.17 5.37 19% 0.85 3.02 R49 trembling aspen Oct 1 16:54 17:30 1 4 2.91 0.47 53.0 15.21 0.00 0% 0.60 2.31 R50 red pine Oct!1 18:04 18:34 112 _ 3.33 0.70 52.5 26.75 19.76 74% 0.83 3.74 R51 red pine Aug 1 9 17:15 17:35 23 3.01 0.55 47.0 17.29 16.19 94% 0.65 3.84 R52 red pine Aug 18 14:55 15:19 23 2.60 0.41 50.3 21.27 21.27 100% 0.73 3 13 R54 lack pine Oct 3 14:54 15:10 2 3 1.15 0.32 62.7 4.99 4.99 100% 0.33 1.38 R55 lack pine Aug 1 9 18:16 18:35 22 1.80 0.47 61.8 6.53 6.53 100% 0.38 2.37 R56 lack pine Aug 118 16:16 16:37 25 _ 2.77 0.64 45.4 5.70 5.70 100% 0.35 4.04 R58 lack pine Aug 18 14:26 14:49 23 1.17 0.72 40.9 6.67 6.67 100% 0.38 1.31 R59 jack pine Aug 1 7 13:23 13:48 1 9 1_1.27 0.52 50.2 4.56 4.56 100% 0.31 1.61 R60 Jack pine Aug 1 7 16:57 17:27 23 _ 1.49 0.81 45.8 6.59 6.56 100% 0.38 1 85 R61 lack pine Aug 17 14:54 15:28 25 _ 2.64 0.54 47.6 18.86 18.86 100% 0.68 3.27 R62 lack pine Aug 1 7 15:41 16:37 25 2.57 0.57 53.4 16.43 16.42 100% 0.63 3.24 R63 lack pine Aug 1 7 13:58 14:35 25 _ 2.12 0.42 43.2 9.94 9.94 100% 0.48 2.74 R64 lack pine Aug 1 8 13:04 13:31 22 2.03 0.66 48.4 11.44 11.44 100% 0.52 2.53 R65 lack pine Aug 18 15:37 16:03 24 2.99 0.43 52.6 16.71 16.71 100% 0.64 393 R66 lack pine Oct 3 15:34 15:55 114 1.78 0.21 56.4 1.52 1.52 100% 0.17 2 68 R67 Jack pine Aug 116 13:35 14:17 28 0.77 10.29 ___ 22.52 122.51 100% 0.75 0.04

Table 15: Summary Table of Leaf Area Index Observations Forest Stands Start Stop No. LAI Mean LAI Total Basal Conifer Base Wood Stand Dominant Species Month Day Stand Mean Tip Area Area % Conifer Correction (m r2e A 2 Time Time Locations (Uncorrected) Dev. Angle (mA2ImA2) (mA2ImA2) Factor R68 red pine Aug 18 a 13:45 14:08 21 2.40 0.35 54.4 28.62 28.62 100% 0.86 2.58 R71 red pine Oct 6 11:00 11:18 13 1.12 0.29 51.7 10.09 10.09 100% 0.48 1.06 R72 red pine Oct 6 10:21 10:50 9 0.88 0.25 48.6 8.86 8.79 99% 0.45 0.71 R73 red pine Oct 3 16:34 16:52 24 1.37 0.39 57.9 17.84 17.81 100% 0.66 1.18 R74 white pine Oct 3 17:45 18:06 23 3.94 0.38 49.1 37.67 25.51 68% 1.00 4.28 R75 white pine Oct 3 17:10 17:33 21 4.09 0.40 51.3 42.63 39.72 93% 1.07 4.91 R77 red pine Aug 19 12:03 12:24 24 1.88 0.99 44.2 9.37 8.02 86% 0.46 2.23 R81 red pine Aug 19 12:43 13:06 23 2.12 0.35 54.2 11.72 11.43 97% 0.52 2.64 R82 red pine Aug 19 10:41 11:04 22 1.40 0.67 57.4 8.52 8.50 100% 0.44 1.60 R83 red pine Aug 19 16:12 16:32 22 2.28 0.62 42.6 8.35 7.78 93% 0.43 2.99 R86 northern hardwoods Oct 2 13:40 14:06 23 2.89 0.36 47.3 33.05 0.06 0% 0.93 1.96 R87 aspen, lowland Oct 2 17:56 18:44 22 2.91 0.50 52.2 16.85 0.00 0% 0.64 2.27 Agricultural Fields Start Stop No. LA Mean Tip Field Crop Typ Month Day Time Time LoationsLAI Mean tand. RA _ Oct 6 _ 15:51 15:53 18 2.07 1.49 74.7 R3 ____- -1 ---- Oct 6 _15:59 16:01 18 3.12 0.94 59.7 FC _________ Oct 6 ___16:14 16:16 18 3.53 2.35 67.3 FD Oct 6 ___ 16:08 16:13 18 2.57 1.39 67.3 FE O______ct 6 _15:41 15:43 18 3.97 2.71 67.7 FF_ Oct 6 15:32 15:34 18 3.14 10.98 65.7 = ____ ______Oct 6 ___16:22 16:24 18 4.31 1.31 58.0 FH ____Oct 6 _16:53 16:54 18 2.05 1.45 78.7 R ____Oct 6 116:47 16:49 18 3.59 1.55 62.0 RI ___Oct 6 116:39 16:43 18 2.95 1.51 67.3 K _________ Oct 6 ___16:32 16:34 18 3.44 1.45 74.3 FL ___Oct 6 14:00 14:07 18 2.90 0.75 65.0 FM ____Oct 6 115:08 15:09 18 0.66 0.16 82.3 FN Oct 6 115:20 15:24 18 3.06 1.53 70.7 FO ____ _____Oct 6 ___14:15 14:17 18 2.71 0.75 65.7 FP_ Oct 6 14:23 14:30 18 3.27 1.10 60.0 Fc Oct 6 14:37 14:43 18 3.41 1.53 63.0 FR __Oct 6 114:50 14:52 118 2.95 1.57 60.3 RS Oct 6 114:57 14:59 18 3.69 1.60 59.0 R______ _ct 6 113:36 13:38 18 2.54 1.66 77.7 R _______________________Oct 6 13:20 13:28 36 2.93 1.59 69.2

4.2 VEGETATION MOISTURE MEASUREMENT BY DESTRUCTIVE SAMPLING Vegetation moisture status during the mission was obtained from two methods: destructive sampling and dielectric measurements. Destructive sampling was done for 10 trees including one each of the 10 major species found in the test site, all 21 agricultural fields, plus Cryderman field and the grassy area at the Raco Airport. 4.2.1 Forested Areas The destructive sampling was done in order to characterize the moisture content and dry density of woody stems as functions of stem diameter. One tree of each of the following species was felled and sampled: red maple, sugar maple, American beech, bigtooth aspen, trembling aspen, red pine, jack pine, white pine, northern white-cedar, and black spruce. Individuals chosen were either large pole-size or mature for all species except the two aspens where large saplings were selected. Trees were felled by chainsaw near the base of the trunk. The trunks were then marked at each centimeter change in diameter. Following this, slices or trunk cross-sections were then removed from the trunk at each marked centimeter increment. Slices taken ranged from about 3 cm to 15 cm in height and were centered on a particular diameter, with longer samples taken near the slender top of the tree so as to have a large enough mass and volume to obtain a reliable moisture estimate. Small branches and twigs were also sampled to fill out the smaller end of the diameter range. This methodology can be seen in Appendix A. For example, for red maple (Acer rubrum) samples were taken starting at 15 cm at the base of the cut trunk, and were taken every subsequent centimeter decrement, ending with samples of twigs at 1.0 and 0.5 cm. A sizable sample of leaves were also taken for each tree. A portable electronic scale was taken into the forest and wet weights of all samples were immediately obtained. Larger trunk cross-sections were placed directly on the scale and measured. Information about the sample plus its wet weight was recorded on individual forms and these and the sample were then placed and sealed in zip-lock bags to preserve moisture. Short-term preservation of moisture was potentially important for water displacement method volume measurements which would be made upon return from the field. 53

For small twigs, numerous twigs were needed to constitute a reliable sample. These were collected, placed in previously weighed ziplock bags, measured, labeled, and sealed. Later during the same day all woody and foliage samples were measured for volume using a water displacement method. This method is based on the equivalence between 1 g pure H20 and 1 cm3 at a constant temperature. The vegetation samples were submerged in a water filled vessel. The volume was estimated by weighing the displaced water on a scale accurate to 0.001 g. The volumes obtained would be used to compute bulk density and volumetric moisture of the trees sampled. Next the samples were dried to determine dry weight. Samples were dried in portable drying ovens on-site and also at the University of Michigan Biological Station at Pellston, Ml. Some samples which potentially still contained some moisture upon return to Ann Arbor, were dried further at the University of Michigan Botanical Gardens in Ann Arbor. Samples were weighed and weights recorded after sufficient drying. After all measurements were completed the following calculations could be made: Average tree gravimetric moisture (dry wt. g/g) Mg -I n'WwA (13) MgM. where MWi = wood sample wet wt. (g), MDi = wood sample dry wt. (g), and fl = the number of samples Average tree bulk density (g/cm3) (14) Db= I A n il Vi ] where MDi = wood sample dry wt. (g), Vi = wood sample volume (cm3), and n = the number of samples 54

Table 16: Summary Table of Vegetation Moisture In Forest Stands Avg. Avg. Gravimetric Volumetric Avg. Bulk Basal Moisture (dry Moisture Density Stand Species Date Diameter Type wt. g/g) (cm3/cm3) (g/cm3) 31 Red Maple 9/29/94 15.0 Wood 0.626 0.358 0.570 _Foliage _ 1.462 0.599 0.418 31 Sugar Maple 9/29/94 15.0 Wood 0.585 0.346 0.600 Foliage 1.527 0.425 0.302 32 Black Spruce 1 0/1/94 13.0 Wood 0.836 0.439 0.546 _Foliage | 1.071 1.405 1.313 31 American Beech 9/30/94 17.0 Wood 0.786 0.420 0.536 ___________ Foliage 1.735 0.381 0.219 24 Jack Pine 1 0/1/94 17.0 Wood 1.192 0.505 0.434 _________ Foliage 1.573 0.621 0.395 22 RedPine 1 0/1/94 16.0 Wood 1.580 0.607 0.392 Foliage 1.284 4.146 3.228 75 Eastern White Pine 10/1/94 20.0 Wood 1.391 0.590 0.442 _Foliage | 1.247 0.540 0.433 33 Bigtooth Aspen 9/30/94 9.0 Wood 0.944 0.494 0.523 _Foliage | 1.641 0.673 0.410 33 Quaking Aspen 9/30/94 14.0 Wood 0.882 0.417 0.466 _Foliage | 1.725 0.978 0.567 32 Northern White-Cedar 10/1/94 18.0 Wood 0.970 0.589 0.520 __ ______Foliage _ 1.077 10.4001 9.655

Average tree volumetric moisture (cm3/cm3) ( 15 MWi - MDi (5) 0 = E ^ -- n i=l- Vi where Mwi = wood sample wet wt. (g), MDi = wood sample dry wt. (g), Vi = wood sample volume (cm3), and fn = the number of samples The same calculations could also be applied to leaf/needle measurements although the sample size which was usually one (one large bag of leaves or needles) did not require averaging as included in the above formulas. These mean results plus individual measurements, location, and date/time, are in the Following Table 16: Summary Table of Vegetation Moisture in Forest Stands. 4.2.2 Agricultural Fields Vegetation moisture by destructive sampling was also carried out for 20 agricultural fields plus Cryderman Field and the Raco Airfield. In agricultural fields samples of vegetation were taken by using shears to cut all herbaceous vegetation down to the ground in a 0.25 x 0.25 m plot. A paper or ziplock bag was weighed and recorded, then the vegetation was placed in it and the weight of vegetation plus bag was weighed and recorded. Later the vegetation was dried and re-weighed. From these measurements, the following were calculated: Vegetation gravimetric moisture (wet wt. g/g) MW-MD (16) Ml - A where Mw= sample wet wt. (g), and MD = sample dry wt. (g) 56

Table 17: Summary Table of Vegetation Moisture and Biomass In Agricultural Fields e Te ravlmetric Wet Blomass Dry Blomass Moisture (wet (kg/m2) (kg/m2) wwt. g/g)_,, Cryderman Field 10/3/94 11:15 0.602 0.398 0.158 Raco Airfield 10/3/94 0.293 0.958 0.677 A 10/6/94 1:30 0.560 0.534 0.235 B 10/6/94 1:55 0.636 0.531 0.194 C 10/6/94 2:25 0.771 0.693 0.159 D 10/6/94 2:15 0.704 0.907 0.269 E 10/6/94 0.748 1.523 0.386 F 10/6/94 2:59 0.718 1.504 0.427 G 10/5/94 11:00 0.594 1.578 0.640 H 10/7/94 3:30 0.648 0.651 0.229 I1 0/7/94 3:30 0.768 2.942 0.683 K 10/5/94 0.538 1.330 0.614 L 10/7/94 3:30 0.600 1.102 0.441 M 10/6/94 3:15 0.687 0.394 0.123 N 10/6/94 3:11 0.743 0.746 0.192 0 10/5/94 1:00 0.655 1.304 0.450 P 10/6/94 3:39 0.564 1.573 0.685 Q 10/6/94 3:54 0.571 1.066 0.457 R 10/6/94 0.777 0.744 0.166 S 10/5/94 2:00 0.568 1.931 0.834 T 10/7/94 3:00 0.615 0.974 0.375 U 10/7/94 2:00 0.567 1.150 0.498 m_

Vegetation wet biomass (kg/m2) _ MW (17) BW= MW A*1000 where Bw=sample wet biomass (kg/m2), MW = sample wet weight (g), and A=area of sample (m2) Vegetation dry biomass (kg/m2) MD (18) BD = D A * 1000 where BD=sample dry biomass (kg/m2), MD = sample dry weight (g), and A=area of sample (m2) These results are included, along with location, date, and time, in Table 17: Summary Table of Vegetation Moisture and Biomass in Agricultural Fields. 4.3 DIELECTRIC MEASUREMENTS OF FOREST TREES Dielectric measurements of trees had been made at the Raco site during the past four years, and these provided the basis for the hypotheses in Table 14: Vegetation Properties: Hypotheses, Objectives, and Methods relating to dielectric measurement. Findings indicated that in early fall with most of the deciduous leaves still green as was the case in the early part of the October mission, deciduous trees were still transpiring and thus trunks and main stems were actively transporting water. Near the end of the mission deciduous leaves began to undergo fall color change, but advanced senescence had not occurred. Many of the deciduous forest stands measured were within several miles of the climate mitigating influence of Lake Superior. 58

Table 18: Tree Dielectric Measurements Completed During the August and October SIR-C/X-SAR Project SIR-C Dielectric Measurements: August Species Size Class e' vs. Depth Date Stand Probe Beech pole 8/15/94 31 P148, C127 Bigtooth Aspen mature 8/1 7/94 34 P148, L102, C127 Bigtooth Aspen sapling 8/17/94 33 P148, L102, C127 Black Spruce mature 8/17/94 88 P148, L102, C127 Jack Pine mature 8/1 6/94 24 P148, C127 Jack Pine sapling 8/16/94 3 8 P148, C127 N White Cedar mature 8/1 7/94 88 P148, L102, C127 Red Maple pole 8 /1 5/94 31 P148, C127 Red Pine mature 8/1 6/94 43 P148, C127 Red Pine sapling 8/1 6/94 2 2 P148, C127 Sugar Maple pole 8/1 5/94 31 P148, C127 White Pine mature 8/1 6/94 25 P148, C127 SIR-C Dielectric Measurements: October Species Size Class e' vs. Depth Date Stand Probe Beech pole 9/28/94 31 P148, L102, C127 Bigtooth Aspen mature 9/29/94 34 P148, L102, C127 Black Spruce pole 9/29/94 32 P148, L102, C127 Jack Pine mature 10/2/94 24 P148, C120 Jack Pine sapling 1 0/2/94 86 P148, C120 N White Cedar mature 9/29/94 32 P148, L102, C127 Red Maple mature 9/28/94 31 P148, L102, C127 Red Pine mature 10/2/94 23 P148, L102, C120 Red Pine sapling 10/2/94 86 P148, C120 SugarMaple mature 9/28/94 31 P148, L102, C127 Trembling Aspen mature 9/29/94 34 P148, L102, C127 Trembling Aspen sapling 9/29/94 33 P148, L102, C127 White Pine mature 10/2/94 23 P148, L102, C120 Species Size Class e' vs. Time Date Stand Probe Red Pine pole 9/29/94 22 C120 Sugar Maple pole 1 0/2/94 31 C120 Sugar Maple pole 1 0/7/94 31 C120 Sugar Maple pole 1 0/9/94 31 C120 59

4.3.1 Dielectric Depth Profiles Two meet objective one under dielectric measurements in Table 14, dielectric measurements were made as a function of depth into tree trunks. These detailed profiles were carried out for one to two individuals each of nine tree species of interest (in nine different test stands) in August and ten in October. When two individuals of the same species were measured, they were sampled from different age classes (usually one mature, and one sapling). The species, stands, sampling dates, and probes used are listed in Table 18: Tree Dielectric Measurements Completed During the August and October SIR-CIXSAR Mission in the columns "e' vs. Depth." Measurements were made approximately at 1-2 mm intervals until several mm past the cambium, then every 5 mm, and increasing to every 10 mm for large individuals. For this and the other two sampling procedures, data were collected using portable dielectric probes (P, L, and C-bands) coupled with programmable HP calculators.[4] Each probe measurement results in an estimate of e' and e" the real and imaginary parts respectively of the complex dielectric constant. In this case data were taken in the field as reflection coefficients and later converted to e. Figure 1 gives the dielectric depth profile of red maple and red pine taken 9/28/94 and 10/2/94 respectively. Appendix D provides a complete set of the plots. 4.3.2 Temporal Variance in Dielectric To meet objective two it was necessary to determine if the dielectric changed as a function of time at least through the time range of the overflights and, if possible, throughout a 24 hr. cycle. Because there was some diurnal change in air and soil temperature and humidity (warm sunny days, and significantly cooler nights), it was hypothesized that there might be a diurnal trend in bole moisture status in some species. If there was a significant change, other tree dielectric measurements would require adjustment with respect to time of day to reflect the moisture status at the time a particular overflight. To test this, dielectric probes were attached to trees and programmed to take measurements at regular intervals. Two trees, a large pole-size sugar maple, and a pole size red pine were monitored over a 24-hour cycle. Trees monitored for diurnal trends are listed in the third table (e' vs. Time) of Table 18. Plots for all temporal measurements can be found in Appendix E. 60

Figure 1: Dielectric Depth Profiles at P-Band Red Maple-mature September 28, 1994 20 CD 0 25 Depth (mm) Red Pine-mature October 2, 1994 20 15 10 5 0 0 25 50 75 100 125 Depth (mm) 61

62

5 Weather Data The SIR-C/X-SAR mission occurred during a time of changing weather conditions. To analyze a specific image or detect change over the mission time frame in several images, weather data, especially precipitation, would be needed as outlined in the following table. Table 19: Weather Observations: Hypotheses, Objectives, and Methods Hypothesis Objective Method 1. Precipitation will vary over 1. Acquire precipitation data 1. Deploy a network of 21 the imaged area during any at a level of detail sufficient precipitation gauges and given for contouring incident total take measurements after precipitation event. precipitation over the each precipitation event. imaged area. 2. Forest canopies 2. Determine precipitation 2. Locate five rain gauges intercept a percentage of interception for each of five under each forest total precipitation with forest communities present community and locate an interception percent de- in the test site. additional five of the 21 pendent upon species gauges in adjacent open composition. areas. 3. Other weather 3. Collect data on wind 3. Acquire daily weather parameters will also vary speed, air pressure, radar maps plus hourly or over the mission duration humidity, and precipitation. daily reports (wind, and will be useful in image pressure, humidity, and and ground data analysis. precipitation). The array of 21 gauges was designed with 16 deployed in a 4 x 4 array in clearings. The remaining 5 were placed such that one was within each type of forest community (red pine, jack pine, lowland conifer, northern hardwoods, and aspen) and paired with gauges in nearby or adjacent clearings. All gauge locations were chosen for ease of access by all weather roads and trails. Monitoring of the precipitation gauges extended over the period September 29 - October 10, 1994. The gauge locations are shown on the map SIR-CIX-SAR Precipitation Gauge Network. Rain gauges were constructed prior to the October mission and were made by permanently attaching wide-mouth pvc funnels to the top of pvc bottles. PVC test tubes were mounted upside-down on the side of each bottle to allow easy mounting over a tall re-bar in the field. Forty-two rain gauges were constructed. Each bottle was pre-weighed to have a baseline bottle/cap empty 63

weight. These were then mounted on top of 6' lengths of re-bar driven into the ground at 21 locations. Thus, after a precipitation event, a bottle containing precipitation could be quickly removed, capped, and brought back from the field for weighing, and a new bottle immediately placed on the re-bar. The time required to pick up all 21 cans was a minimum of 4 hours. Summary data for the precipitation gauges is presented in Table 21: Precipitation (mm of water) during the October SIR-CIX-SAR Experiment, and includes GPS derived rain gauge coordinates, precipitation amounts for each precipitation event, and total precipitation for the only precipitation period, October 8-10. Table 20: Intercepted Precipitation provides the paired rain Table 20: Intercepted Precipitation Gauge Community Type Stand # Gauge No. Net Difference No. in in Total Precipitation Under Associated (10/8-10/1 0) in mm Canopy Clearing 1 7 Aspen Sapling 33 6 -6.59 1 8 Northern Hardwoods 1 6 | -2.34 1 9 Lowland Conifer 32 4 -9.11 20 Jack Pine 24 13 -6.83 2 1 Red Pine 43 8 -2.82 gauge locations and net difference in precipitation (gauge in clearing minus gauge in forest). Appendix F gives daily temperature, precipitation, and wind speed from the weather station at Sault Saint Marie (NOAA). Appendix G consists of daily weather data collected at the Pendills Creek and Sullivan Creek Fish Hatcheries (U.S. Fish and Wildlife Service). Appendix H consists of NOAA Michigan daily weather radar precipitation maps showing the geographical extent of any precipitation events during the mission period. 64

Table 21: Precipitation (mm of water) during the October SIR-C/X-SAR Experiment Total Precipitation Gauges n (mm) Clearinas UTM Coordinates Daily Precipitation (mm) (9/29 to 10/10) 10/8/94 10/9/94 10/10/94 RGO1 653398.85 5124818.76 1.50 9.71 4.30 15.51 RG02 652479.55 5134204.71 1.34 10.41 5.84 17.59 RG03 647640.57 5149001.97 1.67 10.64 5.55 17.86 AG04 656312.88 5148039.79 1.14 11.34 4.35 16.83 RG05 660790.98 5146916.28 11.99 3.92 15.91 RG06 660899.85 5143693.21 1.53 11.51 4.91 17.95 RG07 658619.88 5140909.63 1.73 10.87 5.37 17.97 RGo8 661123.74 5134324.47 1.96 9.91 2.46 14.33 RG09 661386.03 5116773.78 0.00 10.30 2.20 12.53 RG10 670155.78 5146167.49 2.68 11.93 4.01 18.62 RGI1 668914.72 5135953.98 1.72 8.42 4.25 14.39 RG12 668995.54 5131239.14 2.93 8.98 3.72 15.63 RG13 673771.39 5141224.64 2.36 12.98 5.48 20.82 RG14 675240.93 5119485.00 0.09 8.53 2.49 11.11 RG15 686741.88 5138593.63 0.75 9.82 4.02 14.59 RG16 683283.12 5122152.11 0.39 7.59 2.61 10.59 Average: 1.45 10.31 4.09 15.76 Std. Dev: 0.87 1.46 1.18 2.79 Net Precipitation Guages i (mm) Forests UTM Coordinates 10/8/94 10/9/94 10/10/94 (10/8 to 10/10) RG17 660858.63 5143738.68 0.93 7.88 2.55 11.36 RG18 660899.27 5143971.80 0.96 12.01 2.64 15.61 RG19 656312.07 5147989.56 0.00 6.51 1.21 7.72 RGO2 673845.39 5138054.15 2.10 8.25 3.64 13.99 RG21 658462.38 5134211.05 1.50 8.60 1.41 11.51 Average: 1.10 8.65 2.29 12.04 Std. Dev: 0.78 2.04 0.99 3.00 Net Precipitation (mm) AN Gauges _ 10/8/94 10/9/94 10/10/84 (10/8 to 10/10) Average: 1.36 9.91 3.66 14.88 Std. Dev: _0.84 1.72 1.36 3.21

"I I I 10 10 Cu 40 -a1) I..I 0), CIO 0 -C.) 0)r 0) a) T0 -0 0 C.) 6 C. cu a: cn V0 cu C,) 0 C.) 0 40 C,) 0 C,) I I - 7 2; c 4L

4 0 4 E4r I'' -1 - 0,.. r k."4- 4 14Z4 - I I - I L I i I.. 0 I dw % of k\.t T es. Fl - OW — Oa a I 0 -x y I m 0% I Ur n. A -I I _r A 4 --- i AN -4 i No i a i -4*'W-4 —tv. -, - i = i. - - -.- -— & 1, p. so -1 I -- T ty a.%I - 4 m - f - -, -,- - - - r-I — ff -. k. d. - - 41sim-. -t.i,.I 1..1.. I a " '....% S..-. S-. 0 4. - v.N. V I - I - I - * -.- u - '. I I.I co * aL a. *.s asb '. so IT — J.tz x 1 114 I", 4 - - -.0 0 a..' 6, I a R 1 -,40 a -KphxcrA vmv - - Fy —lt ga-.4.1 I I 1 -; - --- -- -1 r I - -.-. - - - I a I (v i + r.I 6 —. -T- — T.1 a I.. - - me# - I I 0 %.8 - R U D Y R. A - I Wif...... 1T 4.I. J, I z..i gig. - a...4' =: &L.LW!h.~I.2I -.L... 1 I ml I -, >, kt-.1 i — St dll.1 40.:.-ci...,. i, 10..... LAM....,. Fl. - -N -- 4,W.0 -1, -- - -Vl -..V- - I — II I -- w V.MO- I I I II A. - m -.. —.. -'-. - -.- -i. 'I I I. - YA f I-_ "j. --- -- ii ~- -A-1'.I ~-?rI - - Uxll-;i-.. I*(.%-, s e. 84 I.-.I/.31 I Ft - I I I I I I ' N w -.1 x I — -... - - -- -- - - -,.. --....... r. P. I.1 —. elftlll —114s-% - i I.00. i:1, of a. - I, sign.I -1 I I. -j 0 t,,W, i -dw J.0 f.01 1A P0 a —.!t - r.1 /ZI.. -%i,I X I!. n -, 'I.. -1 i ki. —,- i 1 - -.1 -0-4 -A-.0. F ML,-,I -...-z O-L-4/-. -....: I - 1....i ..It, - I. -71, 1 -.,.-....... M... ------- A ---- -- — A- -' --— L- -. I -- a & - 67.

6 References 1 Bergen, K.M., M.C. Dobson, T.L. Shank, and I. Brodie, Final Report: Structure. Composition. and Above-ground Biomass of SIR-C/X-SAR and ERS-1 Forest Test Stands 1991-1994. Raco Michigan Site, Radiation Laboratory Final Report, 026511-7-F, 1995. 2 Ulaby, F.T., R.T. Moore, and A.K. Fung, Microwave Remote Sensing: Active and Passive. Reading, Massachusetts: Addison-Wesley, 1982. 3 Norman, J.M and Gower, S.T., "Rapid estimation of leaf area index in conifer and broadleaf plantations," EcologY, 72:1896-900, October 1991. 4 Brunfeldt, D.R. Manual for portable dielectric probe, Applied Microwave Corp: Lawrence, KS, January 1989. 69

APPENDIX A: FOREST LARGE SCALE ROUGHNESS PLOTS Al

CrydermanField 8/18/94 30 20 10 E 0 ' -. RMS Height ~, - '"" " TI= 4.745cm. -10 \ T2= 5.891cm I -20 -20 Height T1 (cm) -30 -30 " Height T2 (cm)u) -40 -50 -60 0 10 20 30 40 50 60 Distance (m) A2

Rifle Range-Surface 1 8/17/94 25 E 0) 0 C. co (I) 0 --25 - f3MS Heigh TI = 1.81cm T2= 1.71 cm Height TI (cm) Height T2 (cm) ----- -50 - 0 10 20 30 40 50 60 Distance (in) A3

Rifle Range-Surface 2 8/17/94 E 0 -0 (.I CO '1 -Cam cn 1:: 0 10 20 30 40 50 60 Distance (m) A4

Rifle Range-Surface 3 8/18/94 E 0.0 r' m CD 0 -25 0 10 20 30 40 50 60 Distance (m) A5

Rifle Range-Clear Cut 10/3/94 - 0 I CO U) 0 10 20 30 40 50 60 Distance (m) A6

Stand 22 Red Pine Plantation 8/19/94 150 RMS Height T1 T1 =5.08 cm -100 T2=2.76 cm T2 "-"o E 0) ~' 50 -I U CD!::00A Distance (m) A7

Stand 23 Mature Red and White Pine Plantation 10/10/94 150 -100 -E -- 0 0 50 -I: CD 0. Y.l RMS Height TI- 9.96 cm Height T1 (cm) 1 -50 i I a... I I I 0 5 5 10 15 15 20 25 30 Distance (m) A8

Stand 24 Pole Size Jack Pine Plantation 8/19/94.a AM. d 1 CJ. E o -r I 0 ci::3 03 100 -50 -0 - RMS Height TI= 6.42 cm T2= 9.04 cm Height T1 (cm) Height T2 (cm) 000 —10 11% -50 k _-.... F 0 10 20 30 40 50 60 Distance (m) A9

Pole Size Stand 31 Northern Hardwood 8/18/94 1 RMS Height T1 6.99 cm T2=5.66 cm "U 0 I C) Height T1 (cm) Height T2 (cm) I -50 I I -.. a I I 0 1 10 I 30 4 40 50 60 Distance (m) A10

Stand 32 Mature Northern White-Cedar 8/18-8/19/94 E t 0 I CO) 0 A: co 0 10 20 30 40 50 60 Distance (m) All

Stand 33 Aspen Sapling 8/18-8/19/94 1 E 0 0 o Cu C) 0 10 20 30 40 50 60 Distance (m) A12

Stand 43 Mature Red Pine Plantation 10/11/94 150 A 1 E 0 cam ICo U) 0 5 10 15 20 25 Distance (m) A13

Stand 44 Mature Black Spruce 8/18-8/19/94 0) 0. — I Cu::3 0 10 20 30 40 50 60 Distance (m) A14

Stand 51 Sapling Red Pine Plantation 10/10/94 4 Cf I " i. E 0, I.) Cu 100 -0 50 -0 - RMS Height T1I 6.8 cm Height T1 (cm) -50 ~ 0 2.5 5 7.5 10 10 12.5 Distance (m) A15

Stand 75 Mature White Pine Plantation 10/11/94 1! r, I.'L) 1 t~ E -e 0.= I 0 C) co O3 100 -50 - RMS Heiht T1i 10.49 cm Height T1 (cm) -nu-". I I 1 I1 0 5 10 15 20 Distance (m) A16

Stand 78 Seedling Red Pine Plantation 10/10/94 di U-0!1 1I. I -Ow* E 0 I 0 cn 100 -50 -0 - RMS Height T1- 10.06cm Height T1 (cm) - I. 0 2.5 5 7.5 I 10 12.5 Distance (m) A17

Stand 80 Seedling Red Pine Plantation 10/10/94 4 tC I nu I E -' 0 I =t C() 100 -50 -0 - RMS Height T1- 7.6 cm Height T1 (cm) ~VI -50 I I 0 2.5 5 7.5 10 12.5 Distance (m) A18

APPENDIX B: SOIL MOISTURE IN FOREST STANDS AND CLEARINGS BI

L ' 0 0 - > a 0 c Sc

9/30/94 Organic Layer Mineral Soli Gravimetric Gravimetric Volumetric Organic Layer Moisture (dry wt Moisture (dry wt Bulk Density Moisture Location Sample Cod Wet Wt. (g9 Dry Wt. (g) Core Volume Comments Depth (cm) WM g.. (g/cmA3) (cmA3/cmA3) Cryderman TRil 82 30 6__ 6250 43.42 ______0.32 1.44 0.46 Cryderman TR1-2 59-50 47.80 43.42 _ _ 0.24 1.10 0.27 Crydurman TRI-3 69.40 48 60 43.42 0.43 1.12 0.48 Cryderman TR 1 23 Mean 70.40 52.97 _ 0.33 1.22 0.40 Sfdev _ 11.43 8.27 0.09 0.19 0.11 Raco Air I 00 77-00 68.90 43.42 0.12 1.59 0.19 Raco Air 2 00 77.50 65-60 43.42 0.18 1.51 0.27 Raco Air 3 00 79.20 66-70 43.42 0.19 1.54 0.29 mean 77.90 67.07 ________ o.16 1.54 0.25 Stdev ______is 1 1.68 0.04 0.04 0.05 RR Si 1.00 61.40 53.40 43.42 0.15 1.23 0.18 fR Si 200 64-80 58.10 43.42 0.12 1.34 0.15 FR Si 3 00 70-80 66.00 43.42 0.07 1.52 0.11 Mean 65.67 59.17 _ _____ 0.11 1.36 0.15 Stdev 4.76 6.37 __________0.04 0.15 0.04 RR S2 IA 96990 65.80 43.42 0.06 1.52 0.09 RR 18_I RR S2 2 A 54.80 48-00 43.42_ 0.14 1.11 0.16 RR S2 28 RR S2 3 A 73-20 66-40 43.42 0.10 1.53 0.16 RR S2 38 Mean _ 65.97 60.07 0.10 1.38 Stdev _____9.51 10.45 _ _ _ 0.04 0.24 0.04 RR S3 1 00 _ 5830 50.00 43.42 013 1 0.13 1.15 0.15 RR S3 2.00 53,40 45.90 43.42 _ I _ 0.16 1.06 0.17 RR S3 3 00 45.90 39.20 43.42 1 _ _ 0.17 0.90 0.15 Me0n 51.87 45.03 10.15 1.04 0.16 Stdev _ 5.37 5.45 _ _ 1 _ _ 0.02 0.13 0.01

9/30/94 Organic Layer Mineral Soil Gravimetric Gravimetric Volumetric Organic Layer Moisture (dry wt Moisture (dry wt Bulk Density Moisture Location Sample Cod Wet Wt. (tg) Dry Wt. (g) Core Volume Comments Depth (cm) g/g) g/g) (g/cm^3) (cm^3/cm^3) Stand 22T It I... Stand 22 T 1-3 Stand 22 TI-5 Stand 22 T1-A ____________ Stand 22 T15B -5.___ Stand 22 T41-A 37.20 23.90 _ 1cm hum., n.v. 1 0.56 Stand 22 T4-1B 67.80 56.20 43.42 min. soil 0.21 1.29 0.27 Stand 22 T4-3A 59.10 52.10 43.42 min. soil ___0.13 1.20 0.16 Stand 22 T4 -3B ____ Stand 22 T4-5A 29.70 21.90 1 cm hum n.v. 1 0.36 Stand 22 T4-58 77.20 64.10 43.42 min ol I 0.20 1.48 0.30 Mean 54.20 43.64 _1 0.46 0. 18 1.32 0.24 Stdev 20.17 19.43 0 0.14 0.04 0.14 0.07 Stand 31 T4-1A 46.10 25.00 2cm hum. n.v. 2 0.84___ Stand 31 T4-18 127.50 107.00 125.80 5cm b. core, min. soil __0.19 0.85 0.16 Stand 31 T4-3A 46.60 22.00 2cm hum., n.v. 2 1.12 Stand 31 T4-38 167.30 146.60 125.80 cm b. core, min. soil __0.14 1.17 0.16 Stand 31 T4-5A 44.80 19.80 2.5cm hum., n.v. 3 1.26 Stand 31 T4-5B 121 80 93.20 125.80 5cm b. core, min. soil 0.31 0.74 0.23 Stand 31 T5-1A Stand 31 T5-1B Stand 31 T5-3 ___ Sland 31 TS-5A___ _ _ Stand 31 TS-SB ____ liean 92.35 68.93 2 1.07 0.21 0.92 0.18 Sldev 53.32 54.07 0 0.21 0.08 0.22. 0.04 Stand 32 T1-1 _ Stand 32 TI-3 Stand 32 T1-5 ____ Mean Stdev ___ __________ _~~,,

I I --- II I I 9130194 Organic Layer Mineral Soil Gravimetric Gravimetric Volumetric Organic Layer Moisture (dry wt Moisture (dry wt Bulk Density Moisture Location Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) g/g) /g) (g/cm^3) (cm^3/cm^3) Stand 34 T 1-1A ____I.__ Stand 34 Tl-IB Stand 34 T1-3. _____ Stand 34 T I-5___ Stand 34 T2-1A 85.30 49.60 ___ 2cm hum., n.v. 2 0.72_ Stand 34 T2-1B 66.20 58.70 43.42min. soil ___0.13 1.35 0.17 Stand 34 T2-3A 7480 24.80 2cm hum., n.v. 2 2.02 Stand 34 T2-3B 74.30 58 70 _ 43.42 min. soil __0.27 1.35 0.36 Stand 34 T2-5A 130.70 58.30 -___ 7cm hum., n.v. 7 1.24 Stand 34 T2-5B 91 50 73.50 min. soil, n.v. ____ _0.24 Stand 34 T5-1 ___ Stand 34 T5-3A___ _ Stand 34 T5-3B Stand 34 T5-5A _____ ____ __ Stand 34 T5-5B Mean 7.13 53.93 4.1.33 0.21 1.35 0.27 Stdev 23.13 16.22 3 0_ __30.65 0 0.000 0.13 Lrf CQ

10/1/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Locallon Sample Cod Wet WI. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture g/g) Density (g/cm^ (cmA3/cm^3) Cryderman TR1-I 64 8 46.9 _ 43.42 ___0.38 1.08 0.41 Cryderman TR1-2 64.4 54 1 - 43.42 0.19 1.25 0.24 Cryderman TR1-3 70.6 48.7 43.42 0.45 1.12 0.50 Cryderman TR-23 Mean 66.60 49.90 __ 0.34 1. 15 0.38 Sldev 3.47 3.75 0.13 0.09 0.14 Haco Air 1 00 70 3 60 43.421 __ 1 0.17 1.38 0.24 Raco Air 2 00 78.1 64.9 43.42 ___0.20 1.49 0.30 Haco Air 3 00 73.4 60.1 43.42 0.22 1.38 0.31 Mean 73.93 61.67 - _ __0.20 1.42 0.28 Stdev 3.93 2. 0 ___ _ 0.03 0.06 0.04 RSi 1 00 72 9 66.3 43.42 0.10 1.53 0.15 RRSI 2 00 71.6 64.7 43.42 ___0.11 1.49 0.16 RRS1 3 00 67 7 57.2 43.42 0.18 1.32 0.24 Mean 70.73 62.73 _ _ 0. 13 1.44 0.18 Stdev 2.71 4.86 0.05 0. 11 0.05 RR S2 IA 62.7 558.7 43.42 ridge top 0.07 1.35 0.09 RRS2 18 61 54.5 43.42 furrow bottom 0.12 1.26 0.15 RRS2 2A 59.5 56- 43.42 top 0.06 1.29 0.08 RRS2 28 60.9 55.6 43.42 bottom 0.10 1.28 0.12 R S2 3A 57.9.54:6 43.42 top ___ 1 0.06 1.26 0.08 RR S2 38 59 4 54.3 43.42 bottom 0.09 1.25 0.12 Mean 60.40 55. 8 _____0.08 1.29 0. 10 Stdev 1.80 1.70 ___ ____ 0.03 0.04 0.03 RRS3 1 00 55.3 47.9 43.42 __ _ 0.15 1.10 0.17 RRS3 200 55.8 49.4 43.42 ___0.13 1.14 0.15 RRS3 300 62.1 54.9 43.42 0.13 1.26 0.17 Mean 57.73 50.73 ______0.14 1.17 0.16 Sldev _ 3.79 3.69 0.01 0.08 0.01

10/1/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Molture Locallon Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Molsture /g) Density (g/cm^ (cmA3/cm^3) Stand 32 T1-1 735 17.8 organic, n.v 20 3.13 Stand 32 TI-3 62.3 16.1 __organic, n.v 21 2.87_ Stand 32 TI-5 86 2 16.1 organic, n.v 22 4.35 Mean 74.00 16.67 21 3. 45 Sldev 11.96 0.98 __1 0.79 Stand 43 T5-1 58.1 49.6 _ 43.42 __0.17 1.14 0.20 Stand 43 T5-3 60.8 50.7 43.42 _0.20 1.17 0.2 Stand 43 T5-5A 49.9 35.6 43.42 _ 0.40 0.82 0.33 Stand 43 T5-5B Mean 56.27 45.30 0.26 1.04 0.25 Sldev __ _ 5.68 8.42 _ __ _0.13 0.19 0.07 Sland 44 TI-IA. 23.4 17.55 28.95 swampy, 2 05cm 0.33 0.40 0.13 Stand 44 TI-1B 52.7 48.2 28.95 205-10 cm 0.09 1.11 0.10 Sland 44 TI-2A 67.7 53.6 28.95 20 top 5 cm 0.26 1.23 0.32 Stand 44 T1-2B - 38.3 18 28.95 5-10cm (20) 1.13 0.41 0.47 Stand 44 T I-3A -79.3 -45.7 not vol. below 40cm moss _ 0.74 Stand 44 T1-38 128.2 34.5 not vol. moss 5x 5 2.72 Mean 64.93 36.26 ___________ 2.72 0.51 0.79 0.26 SIdev _ 36.8 15.61 _ _ 0.42 0.44 0.17

_10/4/ 94 Mineral Soil Mineral Soil Organic Layer Gravlmetrlc Volumetric OrganIc Layer Gravimetrlc Moisture (dry wt MIneral Soil Bul Moisture Location Sample Cod Wet Wt. (9) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture W M DensIty (g/cmAI (cCmA3/cmA3) Crydefman TRll Cryderman TRI-2 65 1 53.1 43.42 _____ 0.23 1.22 0.28 Crydurman RIR3 71 5 54.6 43.42 _ 0.31 1.26 0.39 Crydermaan TR t23 67.8 47.7 43.42_ 0.42 1.10 0.46 Moen 68.30 53.85 0.27 1.24 0.33 Sldev 4.53 1.06 _ _______ 0.06 0.02 0.08 Haco Air 100 776 65 43.42 _ _ _ _ 0.19 1.50 0.29 R.cO Ait 200 70 59.8 43.42 _ _ 0.17 1.38 0.23 Raco Air 3 00 75.2 62 3 43.42 _ _ 0.21 1.43 0.30 Mean 74.27 62.37 _ _ _____ 0.19 1.44 0.27 Stdev __ _ 3.89 2.60 _ _ _________0.02 0.06 0.03 RRSI 1 00 62 5 57.4 43.42 __0.09 1.32 0.12 RASi 2 00 66.2 60 43.42 _ _ _ _ 0.10 1.38 0.14 RSi 3 00 60.8 54.9 43.42 _ _ 0.11 1.26 0.14 Mean 63.17 57.43 _ _ _______0.10 1.32 0.13 Sidev 2.76 2.55 _ _ _________0.01 0.06 0.01 HF i2 1A 58.6 53.6 43.42 _ _ 0.09 1.23 0.12 RR 18 a RR S2 2A 50 2 46.5 43.42 ______0.08 1.07 0.09 RR S2 228 RR S 3A 48.1 43.1 43.42 ______0.12 0.99 0.12 RR S2 38_ Mean 52.30 47.73 _ _ _ _______0.10 1.10 0.11 Stdev __ _ 5.56 5.36 0.02 0.12 0.02 RR S3 1 00 _ 55 49.7 43.42_ 1 _ 0.11 1.14 0.12 RR S3 2 00 _ 58 1 53.3 43.42 _ _ 1 0.09 1.23 0.11 RR S3 3 00 54.4 49 43.42 1 _ 0.11 1.13 0.12 Mean 55.53 50.67 _ _ _ 1 _ 0.10 1.17 0.12 Stdov __ _ 1.99 2.31 _ _ _ 1 0.01 0.05 0.01

... 10/4/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Location Sample Cod( Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture /) Density (g/cmA (cm^3/cm^3) Stand 24 T51 1 42 3 _35.5 43.42 I 0.19 0.82 0.16 Stand 24 T5-3 43.4 33.8 43 42 0.28 0.78 0.22 Stand 24 T5-5A 48 _40.1 43 421 _____ 0.20 0.92 0.18 Stand 24 TS-SB 5 ------ Mean 44.57 _ 36.47 _ 0.22 0.84 0.19 Sldev 3.02 1 3.26 _____ 0.05 0.08 0.03 Stand 33 T5-1 50 75 41.3 _ 4342 1-3 cm humus 0.23 0.95 0.22 Stand 33 T5-3 55.2 45 4 43.42 ____ 0.22 1.05 0.2 Stand 33 T5-SA 54 3 45.5 ____43_42 1-3 cm humus 0.19 1.05 _0.20 Stand 33 T5-5B Stand 33 T6-1 55 6 45.1 43.42 0.23 1.04 0.24 Mean 53.96 44.331 0.22 1.02 10.22 Stdev ____. 2.21 1. 2.021 _____ 0.02 0.05 0.02 Itn 37 -— 3 1 - --------------------------------------- Stand 37 1-3 Stand 37 T5-1 52.1 -44.9 I3 43.42 0.16 1.03 0.17 Stand 37 T5-3 57.8 49.4 43 42 _________ _ 0.17 1.14 0.19 Stand 37 IT5S 1 49.5 42.5 43.42 _______0.16 0.98 016 Mean 53.13 45.60 0__.17 1.05 0.17 Stdev _ 4.25 1 3.50 L ____ _0.001 0.08 1 0.02 Stand 38 T3-1 55.1 5. 3 I- -_ 43.42 - 0.04 1.22 0.05 Stand 38 T3-3 56.96 526 43-42 ____ _ 0.08 1.21 010 Stand 38 1T35 59 52.5 -___ 43 42 _ 0.12 1.21 0.15 Stand 38 T5-1 Stand 38 T5-3 Stand 38 _____TS -- Mean 57.02 2.70. —l _ T o 0.08 1.21 0.10 Sldev ___.95 0.26 1___ __0.04 0.01 0.05 aN PO

10/5/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Locallon Sample Cod Wet Wt. (g) Dry Wt. g) Core Volume Comments Depth (cm) Moisture Ol.) Density (g/cmAI (cmA 3/cmA3) Crydermmn TAI-i _ Cryderman TRI-2 65 3 51.5 43.42 _ _ 0.27 1.19 0.32 Cryduirran TRI-3 72.9 56.7 43.42 _ _ 0.29 1.31 0.37 Cryderman TR1I23 68 54.6 43.42 0.25 1.26 0.31 Mean 69.10 54.10 __ ________0.28 1.25 0.35 Sldev 5.37 3.68 0.01 0.08 0.04 Haco Air 1 00 63.7 52.7 43.42 ______0.21 1.21 0.25 Haco Air 2 00 69.1 60.6 43.42 0.14 1.40 0.20 Haco Air 3 00 73.8 61.6 43.42 _ _ _ 0.20 1.42 0.28 Mean 68.57 58.30 ________ _____ _0.18 1.34 0.24 Sldev 5.05 4.88 0.04 0.11 0.04 RRSi 1I 00 67.6 59.1 43.42 0.14 1.38 0.20 RR Si 2 00 54.7 48.9 43.42 _ 0.12 1.13 0.13 AR Sit 3 00 60.6 55 43.42 0.10 1.27 0.13 Mean 60.97 54.33 _ __ ________0.12 1.25 0.15 Sidev 6.46 5.13 0.02 0.12 0.04 RR S tA RR 2 1 a RR~ S 2 A 50.7 47.3 43.42 _ 0.07 1.09 0.08 RR.9 2B RR S2 3A 56 51.6 43.42 _ _ 0.09 1.19 0.10 RR S2 3B Mean 53.35 49.45 __ ___ _ ______0.08 1.14 0.09 Sidev 3.75 3.04 ___________ 0.01 0.07 0.02 RR S3 1 00 447 40.5 43.42 _ _ 0.10 0.93 0.10 RR S3 2 00 51.5 45.5 43.42 _ _ 0.13 1.05 0.14 RR S3 3 00 45.2 43.1 43.42 _ _ _ 0.05 0.99 0.05 Mean 47.13 43.03 ___ _________0.09 0.90 0.09 Sfdev 3.79 2.50 _ _ _ _ 0.04 0.06 0.04

T 10/5/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Location Sample Cod( Wet Wt. () Dry Wt. (g) Core Volume Comments Depth (cm) Moisture g/g) Density (glcmA^ (cm 3/cmA3) Stand 22 T1-1 Stand 22 TI-3 _________ Stand 22 rl-5 67.1 61.7 43.42 2 cm humus __0.09 1.42 0.12 Stand 22 TI-5A 62.5 57.2 43.42 3 cm humus ___0.09 1.32 0.12 Stand 22 T1-S58 64 52.8 43.42 4 cm humus ____ _0.21 21.22 0.26 Stand 22 T4-1A..____________ Stand 22 T4-1B Stand 22 T4-3A Stand 22 T4-3B ___ Stand 22 T4-5A._ Stand 22 T4-5B Mean 64.53 57.23 ____0.13 1.32 0. 17 Sldev 2.35 4.45 0.07 0.10 0.08 Stand 31 T4-1A Stand 31 T41-1B...___________ Stand 31 T4-3A _ Stand 31 T4-3B _ Stand 31 T4-SA ______ Stand 31 T4-5B Stand 31 TS-IA 58.3- 51.2 43.42 2-5 cm humus 0.14 1.18 0.16 Stand 31 T5-1B 105.8 __. 37.8 2-5cm hum n.v.. 3 1.80 Stand 31 T5-3 53 1 44.9 43.42 2-5 cm humus 0.18 1.03 0.19 Stand 31 T5-5A 63.2 55.8 43.42 0.13 1.29 0.17 Stand 31 T5-5B _ Mean 70.10 47.43 3 1.80 0.15 1.17 0.17 Sldev 24.15 7.82 0.03 0.13 ~0.01 1-4 r4 PO

10/5/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Location Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture g/g) Density (g/cm^ (cmA31cm^3) Stand 34 IT1IA 54.7 45.5 43.42 2-5 cm humus 0.20 1.05 0.21 Stand 34 TI-18 91.8 53.9 _2-5cm hum n.v. 3 0.70 Stand 34 TI-3 62.2 54.6 43.42 2-5 cm humus 0.14 1.26.18 Stand 34 TI15 57 47.2 43.42 2-5 cm humus 0.21 1.09 0.23 Stand 34 T2-1A Stand 34 T2- B Stand 34 T2-3A Stand 34 T2-3B Stand 34 T2-SA Stand 34 T2-5B Stand 34 T5 - Stand 34 T5-3A Stand 34 T5-3B --- - Stand 34 T5-5A Stand 34 T5-5B " Mean 66.43 50 30 3 0.70 0.18 1.13 0.20 Stdev 17.21 4.62 ___0.04 0.11 0.03 Sland 43 5-1 66.2 57.6 43.42 0.15 1.33 0.20 Stand 43 T5-3 54.2 44.5 43.42 1__ _ 0.22 1.02 0.22 Stand 43 TS-55.... —1 Men 58.20 49.23 1 _ _ _ 0. 1 1.13 0.21 Sldev I _ 6.93 7.27____ ____ 0.03 0.17 0.01 c4 Po

10/6/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Molature (dry wt Mineral Soil Bul Moiature Localion Sample Cod Wat Wt. (g Dry Wt. (g) Core Volume Commenta Depth (cm) Molture j Denaity (glcmA (cmA 3/cmA3) Crydunrman TRW-i Cryderaian TR12 65 1 50.8 43.2 _____ 0.28 1.18 0.33 Crydurman TR13 72.4 56.5 43.2 0.28 1.31 0.37 Crydaman TRI-23 63 9 50.9 43.2 0.26 1.18 0.30 Mean 68.75 53.65_ 0.28 1.24 0.35 Sidev 5.16 4.03 __________0.00 0.09 0.03 AdLo Air 1 00 64.7 55.5 43.2 0.17 1.28 0.21 Haco Air 2 00 69.6 61.6 43.2 0.13 1.43 0.19 Haco Air 3 00 65.3 53.2 43.2 _ 0.23 1.23 0.28 Mean 66.53 56.77 _ 0.17 1.31 0.23 Sldev 2.67 4.34 _ _ _ _ _ _ 0.05 0.10 0.05 RR St 1 00 60.3 53.4 43.2 _ _ _ 0.13 1.24 0.16 fRSI R 200 57.4 51.7 43.2_ 0.11 1.20 0.13 FIR Si 300 58 52.9 43.2 _ _ 0.10 1.22 0.12 Mean 55.57 52.67 _______ _ _ _ 0.11 1.22 0.14 Sldev __ _ 1.53 0.87 _ _ _ _ _ _ 0.02 0.02 0.02 FIH S2 IA 61.2 52.9 43.2 _ _ 0.16 1.22 0.19 RR S2 Ir RFR F 2 A 606 54.8 43.2_ 0.11 1.27 0.13 RR S2 2 8 FR S2 3 A 53.8 48.4 43.2_ 0.11 1.12 0.13 RR S2 3B_ Mean 58.53 52.03 _012_ ________.12 1.20 0.15 Sldev _ 4.11 3.29 0.03 0.08 0.04 RR S3 1 00 44.1 40.7 43.2 _ j _ 0.08 0.94 0.08 RR S3 2.00 49.1 43 43.2 1 _ _ 0.14 1.00 0.14 RR S3 3 00 56.5 53 43.2 _ J _ 0.07 1.23 0.08 Mean 49.90 -45.57 _ _ 1 _ 0.10 1.05 0.10 Stdev _ 6.24 6.54 1 _ 1 _ _ 0.04 0.15s 0.04 COf ' —4

10/6/94 Mineral Soil Mineral Soil Organic Layer Gravimetrlc Volumetric Organic Layer Gravlmetrlc Moisture (dry wt Mineral Soil Bulk Moisture Location Sampl Cod< Wet Wt. () DrWt (a) Core Volume Comments Depth (cm) Moisture lg/g) Density (g/cmA (cmA3/cm^3) Sland 24 T5-1 504 42.2 43.2 - 0.19 0.98 0.19 Stand 24 T5-3 46.4 35 4 43.2 __0.31 0.82 0.25 Stand 24 TS5SA 61.3.5277 - 43.2 6cm hum layer ___0.16 1.22 0.20 Sland 24 T55B Mean 52. 70 43.43 __ _I 0.22 1.01 0.21 Sldev 7.71 8.72 _ _ 0.08 0.20 0.04 Stand 33 TSI1 59.6 50.4 43.2 - 0.18 1.17 0.21 Stand 33 T5-3 52.3 39.6 43.2 0.32 0.92 0.29 Stand 33 T5-5A 62.9 55 9 43.2 _ _ _ 0.13 1.29 0.16 Sland 33 T5-SB 62.3 29.8 __ _ 2-3cm humus n.v. 3. 1.09 Stand 33 16-1 Mean 59.2o 43.93 3 1.09 0.21 1.13 0.22 Sldev 4.87 11.60 0___.10 0.19 0.07 Sland 37 T1-3 - Stand 37 T5-1 50.1 44.1 43.2 0.14 1.02 0.14 Stand 37 T5-3 56.5 48.6 43.2 0.16 1.13 0.18 Stand 37 T5-5 59 9 53 3 43.2 0.12 1.23 0.15 Mean 55.50 40.67 ___ _0.1 4 1.13 l 0.1 Stdev 4.98 4.60 0.02 0.11 0.02 UI I.-.1- I I I I 0.I Stand 38 T3-1 56 54.6 43.2 0.03 1.26 0.03 Stand 38 T3-3 60 1 56.8 43.2 0.06 1.31 0.08 Stand 38 T3-5 64.5 59.2 43.2 I 0.09 1.37 0.12 Stand 38 T5-1_______ _ Stand 38 T5-3 I I I...... Stand 38 TS 5 Mean 60.20 56.87 - o 0.06 1.32 0.08 Sldtv 4.25 2.30 ___. 0.03 0.05 0.05

1017/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Location Sample Cod Wet Wt. (DW. (a) Core Volume Comments Depth (cm) Moisture WM Density (glcmA (CmA 3/cmA3 Crydorman TRI-1 Cryderman TRI-2 53 41.8 43.42 ______0.27 0.96 0.26 Crydarman TR13 67.3 51.7 43.42 ______0.30 1.19 0.36 Crydatman TRI-23 61.6 48.3 43.42 ______0.28 1.11 0.31 Mean 60.15 46.75 _________0.286 1.08 0.31 Sldev 10.11 7.00 ____________ 0.02 0.16 0.07 Haco Air 1 00 68 57 2 43.42 _ 0.19 1.32 0.25 Fiaco Air 2 00 69 9 61.3 43.42 _ _ _ 0.14 1.41 0.20 Haco Air 3 00 73.1 59.4 43.42 _ _ 0.23 1.37 0.32 Mean 70.33 59.30 _ _ _ _ 0.19 1.37 0.25 Sldev 2.58 2.05 0.01 0. 05 0.06 RR St 1 00 61.5 54.2 43.42 _ _ _ 0.13 1.25 0.17 iR St 2 00 56.2 48.4 43.42 _ _ _ 0.16 1.11 0.18 RR Si 3.00 60.9 55.1 43.42 _ _ 0.11 1.27 0.13 Mean 59.53 52.57 _ _ _ _ _ _ 0.13 1.21 0.16 Slde _ 2.90 3.64 _ _ ______0.03 0. 08 0.02 HRRS2 IlA 54.4 49.1 43.42 _ 0.11 1.13 0.12 RR S2 a18 RR S2 2 A 62 6 57 43.42 _ _ _ 0.10 1.31 0.13 RRnS2 28 RR S2 3A 50.7 46.3 43.42 _ _ 0.10 1.07 0.10 AR S2 3B Mean s55.o90 50o.a _ __ __ _ 0.10 1.17 0.12 Sldev 6.09 5.55 _ _ _ _ 0.01 0.13 0.01 RR S3 1 00 61.9 54.8 43.42 ______0.13 1.26 0.16 RR S3 2.00 446 38 43.42 _ _____0.17 0.88 0.15 RR S3 3.00 51.7 48.7 43.42 _ _ _ 0.06 1.12 0.07 Mean 52.73 47.17 __ _ _ _ _ _ 0.12 1.09 0.13 Stdebv I 8.70 8.50 _ 0.06 0.20 0.05 [0q 90

____ ______ 10/7/94 __ _ Mineral Soil Mineral Soil Organic Layer Gravimetrlc Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Location Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture /g) Density (g/cm^ (cmA3/cm3) Stand 22 Ti - 668 61.4 43.42 I 0.09 1.41 0.12 Stand 22 T l3 62.2 58.3 43.42___ 0.07 1.34 0.09 Stand 22 T -5 Stand 22 T1-5A 66 4 55.6 43.42_ 0. 1911 1.28 0.25 Stand 22 T 1-5B Stand 22 T4-IA _A Stand 22 T4-1B Stand 22 T4-3A Stand 22 T4-3B I I Stand 22 T4-SA Stand 22 T4-5B Mean 65.13 s5.43 _ 0.12 1.35 0.15 Stdev 2.55 2.90 _____0.07 0.07 0.08 Stand 31 T4-1A ~ I -— _ 1 _ Stand 31 T4-1B Stand 31 T4-3A Stand 31 T4-3B Staid 31 T4-5A Stand 31 T4-5B Sland 31 T5-1A 638 55.7 43.42 2cm humus 0.15 1.28 0.19 Stand 31 TS-IB _____ Stand 31 TS-3 58 8 51.3 43.422 cm humus 0.15 1.18 0.17 Stand 31 T5-5A 48 7 37 9 43.42 2 cm humus ___0.28 0.87 0.25 Stand 31 T5-5B 58.1 27.9 2__cm hum layer n.v. 2 1.08 Mean 57.35 43.20 _2 0.33.1 0.19 1.11 0.20 Stdev ___6.30 12.70 _____0.08 0.21 0.04

I 10/7/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Locallon Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture g/g) Density (g/cm^3 (cm^3/cm^3) Stand 34T I- IA ___ ______________ Stand 34 ITlB ______________ SIdnd 34 T1-3 - Stand 34 TI -5 I I | - Stand 34 1T2-1A __ ______________ ______I=| -_ Stand 34 T2-IB ____________ __________ ___ Stand 34 T2-3A__________ ____________________________ Stand 34 T2-3B _________ Stand 34 T2-5A Stand 34 T2-5B _____________ Stand 34 T5-1 68.1 61 43.42 4 cm humus 0.12 1.40 0.16 Stand 34 T5-3A 62.7 53.6 43 42 4 cm humus 0.17 1.23 0.21 Stand 34 T5-3B,. Stand 34 T5-5A 5 1 36.2 43 42 4 cm humus 0.41 0.83 0.34 Stand 34 T5-SB 54 8 24.5 hum layer 3-5 nv 4 1.24 Mean 59.15 43.83 __ 4 1.24 0.23 1.16 0.24 Stdev 7.70 16.55 _0.16 0.29 0.09 Stand 43 T5-1 65.1 __58 _ 43.42 2-3cm humus ______ ______0.12 1.34 0.16 Stand 43 T5-3 60.2 52.9 43.42 2-3cm humus 0.14 1.22 0.17 Stand 43 T5-5A 57.1 49 43.42 2-3cm humus _ 0.17 1.13 0.19 Stand 43 T5-5B 38.9 23 2-3cm hum n.v. 3 0.69 Mean 55.33 45.73. ____3 0.69 0.14 1.23 0.17 Sidev __ 11.43 15.59 _ __ __ _ 0.02 0.10 0.01

10/8/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Location Sample Cod Wat Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) moisture W M Density (g/cmA (cmA3/cm 3) Crydurman TR-lIl Cryderman TA12- 62 5 48 2 43.42 _ _ 0.30 1.11 0.33 Crydorman THI)-3 71.2 54.7 43.42 _ _ _ 0.30 1.26 0.38 Crvdafmim TRI123 62 5 48.4 43.42 _ _ _ 0.29 1.11 0.32 Mean 66.55 51.45 _ _ _ _ 0.30 1.15 0.35 Sfdev 6.15 4.60 __________0.00 0.11 0.04 Haco Air 100 70 2 59.3 43.42ddrizzling _ _ _ 0.18 1.37 0.25 Raco Air 2 00 73.2 64.5 43.42 _ _ _ 0.13 1.49 0.20 Haco Air 3 00 77.9 65.8 43.42 _ _ _ 0.18 1.52 0.28 Mean 73.77 63.20 _0.17 1.46 0.24 Sldev _ 3.88 3.44 __________0.03 0.08 0.04 HA Si 100 59 51.9 43.42 drizzling. _ _ 0.14 1.20 0.16 RRAS 2 00 57.3 50.3 43.42 _ 0.14 1.16 0.16 AR Si 3 00 59.7 51.5 43.42 _ _ _ 0.18 1.19 0.19 Mean 58.67 51.23 _0.15 1.15 0.17 Sldev 1.23 0.53 ___________0.01 0.02 0.02 HAR 2 IA 50.3 44.2 43.42 drizling _ _ 0.14 1.02 0.14 RR~ 1 I a RAR S 2A 55.9 49.8 43.42 _ 0.12 1.15 0.14 RR S 2 2 B RR S2 3 A -52-4 47.2 43.42_ 0.11 1.09 0.12 RR 52 3B Mean 52.87 47.07 _ _ _ _ 0.12 1.05 0.13 Sidev 2.53 2.80 _ _ _ _ 0.01 0.06 0.01 RR S3 100 56.2 51.1 43.4 1driztz2lng _ _ _ _ 0.10 1.18 0.12 RR S3 2 00 46.4 38.8 43.42 _ _ _ 0.20 0.89 0.18 RR S3 3 00 52 47.5 43.42 ______0.09 1.09 0.10 Mean 51.53 45.50 _ _ _____ 0.13 1.05 0.13 Sldev _ 4.92 6.32 _ _ _ _ _ _ 0.06 0.15 0.04 '

I i___ 10/8/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Location Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Moisture g/g) Density (g/cm^3 (cm^3/cm^3) Stand 24 T5-1 501 42 6 43.42 1-5 cm humus 0.18 0.98 0.17 Stdnd 24 15-3 54.2 42.7 43.42 1-5 cm humus _________ ____0.27 0.98 0.26 Stand 24 T55A 56.1 49.7 43.42 1-5 cm humus __0.13 1.14 _ 0.15 Stand 24 T5-58 91.6 45.2 _hum layer, n.v. 3 1.03 Mean 63.00 45.05 3 1.03 0. 19 1.04 0.19 Sldev 19.23 3.33 0.07 0.09 0.06 Stand 33 T5-1 56 5 44.7 43.42 2cm hum layre n.c. 0.26 1.03 0.27 Sland 33 T5-3 61.8 56.7 43.42 2cm hum layre n.c. 0.09 1.31 0.12 Sland 33 T5-5A 65.9 60 1 _ 43.42 2cm hum layre n.c. 0.10 1.38 0.13 Sland 33 T5-5B 42.7 -- 22.3 ____ hum layer n.v. 2 0.91 Stand 33 T6-1 _ Mean 56.73 45.95 ----- 2 0.91 0.15 1.24 0.17 Sldev 10.11 17.09 _________ 0.10 0.19 0.08 Stand 37 T 1I-3 Stand 37 T5-1 57.6 - 51.6 -- 43.42 0.12 1.19 0.14 Stand 37 T5-3 51.2 44.9 - 43.42 0.14 1.03 0.15 Sland 37 15-5 45.6 38.2 43.42 0.19 0.88 0.17 Mean 51.47 44.90 _____0.15 1.03 0.15 Sldev 6.00 6.70 _ _ 0.04 O0.15 0.02 ON r-4 Po

10/9/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moiature (dry wt Mineral Soil Sul Molature Location Sample Cod6 We Wt. (g) 2Dry WI. () Core Volume Commenta Depth (cm) Molature WM Denaity (g/cmA I (cmA3/cmA3) Crydefrian TAt-I 66 9 5222 43.42 _ _ _ 0.28 1.20 0.34 Crydorirran T37-2 Crydrreian TR t3 73 8 54 92 _ 43.42 _ _ 0.34 1.26 0.43 C~ryduuman TRI-23 64.8 46.9 43 42 _ 0.38 1.08 0.41 Mean 70.35 53.56 _ _ _ _ _ 0.31 1.23 0.39 S4dev 4.58 1.92 _ _ _______0.04 0.04 0.07 Haco Air 100 655 53.4 43.42 _ _ _ _ 0.23 1.23 0.2 Haco Air 2300 749 64.75 43.42 _ _ 0.16 1.49 0.23 ao Air 3 00 73 9 56-96 43.42 _____ 0.30 1.31 0.3 SMean 71.43 59.37 _ ______ 0.23 1.34 0.30 Sldev 5.16 5.80s 0.07 0.13 0.08 RASi 1 00 56.6 46-11 43.42 started drizzling 0.23 1.06 0.24 MFiS1 200 559 _ _40.7 43421 _ _ _ 0.37 0.94 0.35 RHRSt 3 00 60.2 50-55 43.42 _ _ _ _ 0.19 1.16 0.22 Mden 57.57 45.79 _________ 0.26 1.05 0.27 S2d.v 2.31 4.93 _ ________0.10 0.11 0.07 HH S2 IA 62 7 53.6 43 42 no rain 0.17 1.23 0.21 RH S2 2 A RA S2 2A 59.4 51.86 43.42 0.15 1.19 0.17 RRS 3A 53.3 44-87 43.42 _ _ 0.19 1.03 0.19 RR S2 36 0__9___03_0_19 SMean0 59.47 5.11 _ _ 0.17 1.15 0.19 S4dev _ 4.77 4.62 _ _ _ _ _ 0.02 0.11 0.02 RRS3 1.00 61 52.3 43.42 0.17 1.20 0.2 RR S3 2.00 55.6 49-39 43.42__ _ _ _ _ 0.13 1.14 0.14 RR S3 3 00 49.3 36-15 43.42 _ _ 0.36 0.83 0.30 M ean 55.30 45.95 _ _ _ _ ___ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __0.22 1.06 0.22 Stdev _ 5.56 8.6 -__ __ _ _ _ _ _ 0.22 1.06 0.20 5.86 8.S~b r.611 I 0. 13 0.20 0. 08 0) N

1 019194 mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Location Sample Cod Wet WI. (g) Dry Wt. (a) Core Volume Comments Depth (cm) moisture WMjj DDensity (g/cmA (cmA3/cmA3) Stand 22 Ti-i 7 1 63-83 43.42 ______0.11 1.47 0.17 Stand 22 Ti1-3 69 62.28 43.42 _ _ _ 0.11 1.43 0.15 Stand 22 li-S_ Stand 22 T1-SA 74.2 56 82 43.42 _ _ _ 0.31 1.31 0.40 Stand 22 T1-58 58.4 22 38 2-4 cm hum. n~v. 4 1.61 Stand 22 T4-IA Stand 22 T4i-18 Stand 22 T4-3A Stand 22 T4-3B Stand 22 T4-SA Stand 22 T4-5B Mean 68.15 51.33 4 _ 4 1.61 0.15 1.40 0.24 Sldev 6.84 19.53 _ _ ___O._ t1 0. 08 0.14 Stand 31 T4-IA Stand 31 T4-1B Stand 31 T4-3A Stand 31 T4-3B Stand 31 14-SA Stand 31 T41-5_ Stand 3i TS-IA 52.3 39.9 43.42 2-4 cm humus _ _ 0.31 0.92 0.29 Stand 31 TS-i1_ Stand 31 TS-3 61.5 61.9 43.42 2-4 cm humus _ _ 0.18 1.20 0.22 Stand 31 TS-SA 64 2 53.13 43.42 2-4 cm humus _ _ 0.21 1.22 0.25 Stand 31 TS-SB 89.8 28.15 humus 2-4 cm n.y. 4 2.19 WMan - 66.95 43.2? 4 2.19 0.23 1.11 0.25 Sldev _ 16.06 1 11.71 _ 0.07 0.17 0.03

.._ -I___-___ 10/9/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bulk Moisture Location Sample Cod Wet WI. (g) Dry WI. (g) Core Volume Comments Depth (cm) Moisture W/g) Density (g/cm^ (cm^3/cm^3) Stand 34TlA T________ IStand 34 TI-1B ____ -- | Stand 34 TI-3 _____ Stand 34 T1-5. — - - Stand 34 T2- A __________________ Stadnd 34 T2-B ________ Sldnd 34 T2-3A _____ Stand 34 T2-3B ___. - ~ Stand 34 T2-5A Stand 34 T2-5B Stand 34 T5-1 ~_ | ~ ~ Stand 34 T5-3A ____~ Stand 34 T5-3B 67.8 57.3 43.42 0.18 1.32 0.24 Stand 34 T5-5A Stand 34 T5-SB Mean 67.80 57.30 _ ____ 0.18 1.32 0.24 Sldev_____ ___________ ______ Stand 37 T 1-3 63.5 55.06. 43.42 0.15 1.27 0.19 Stand 37 T5-1 53.7 40.17 43.42 0.34 0.93 0.31 Stand 37 T5-3 ______________ Stand 37 T5-5 55 5 43.66 43.42 0.27 1.01 0.27 Mean 57.57 46.30 ___ 0.25 1.07 0.26 S 5.22 7.0.09 70.18 0.06 Stand 38 T3-1 Stand 38 T3-3....____. Stand 38 T3-5 Stand 38 T5-1 57 5 52.25 43.42 2cm n.c. litter ~ 0.10 1.20 0.12 Stand 38 T5-3 65.5 56.96 43.42 0.15 1.31 0.20 Stand 38 T5-5. 63.1 53.92 43.42 _______ 0.17 1.24 0.21 Mean 62.03 4.3__8 0.14 1.25 0.18 Stdev 4.11 2.39 0.04 0.05 0.05 Stand 43 T5-1 68 1 |59.83 43.42 0.14 1.38 0.19 Stand 43 T5-3 57 2 45.5 43.42 2cm nc litter _ 0.26 1.05 0.27 Stand 43 T5-SA 59.8 49.53 43.42 2cm n.c. litter ___ 0.21 1.14 0.24 Stand 43 T5-SB ___ Mean 691.70?_ 1.62 _________ __0.20 1.19 0.23 Sldev _ 5.69 7.39, 0.06 0.17 0.04

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 0 /1 0 /9 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Moisture (dry wt Mineral Soil Bul Moisture Location Sample Cod Wet Wt. g Dry WI. (g) core Volume comments Depth (cm) moisture WMg Density (g/cmAl (CMA3/c MA3) Grydaiiman TRI-l 60.6 44.13 43.42 _ ______0.37 1.02 0.38 Crydeitman TRI12 63.6 45.06 _ 43.42 _ ______0.41 1.04 0.43 Crydaiman TRI13 65.6 49.88 _ 43.42 _ ______ _______0.32 1.15 0.36 C~ d fn n TR 1 23 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Mean 63.27 46.36 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _0.37 1.07 0.39 Sdv253.9_______ _______0.05 0.07 0.03 Raco Aet 100 61.2 45432_______ _______0.29 1.09 0.32 Raco Air 2 00 80 66-37 __ 43-42 ____ __ ______ ______0.21 1.53 03 Fiaco Air 3 00 83.9 68-16 43.42 _ _____ ______0.23 1.57 0.36 Moen 75.03 60.68 ______0.24 1.40 0.33 Sidev 12.14 11.44 ____ ________0.04 0.26 0.03 ARHSI 1 00 56 4 - 4574 _____43.42 _______0.23 1.05 0.25 HHIR~ 2,00 57.3 48.36 43.42 _ _____ ______0.18 1.11 0.21 FRRSi 3 00 60.3 51.25 43.42 _ ______0.18 1.18 0.21 Mean 58.00 48.45 _____ _____________0.20 1.12 0.22 Sldev 2.04 2.76 ______ ______0.03 0.06 0.02 RH4 l2IA 62.1 51 8 43.42 ______ _____0.20 1.19 0.24 R R S 2 18I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ RR S 2 A 6 03 51.76 ____43.42 _ _____ ______0.16 1.19 0.20 RR.% 2 8__ _ _ _ _ RH S2 3 A 54.7 47.07 43.42 _ ____________0.16 1.08 0.18 RR S 38 _ _ _ _ _ _ _ _ _ _ _ Mean 59.03 50.21 _______0.15 1.16 0.20 Sidev 3.86 2.72 0.02 0.06 0.03 RR S3 1.00 62.8 __54.6 43.42 _______ ______ ______0.15 1.26 0.19 RH S3 2.00 _ 49.7 39.3 43.42 _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __0.26 0.91 0.24 RR S3 3 00 61.2 53.95 43.42 ______ ______ ______0.13 1.24 0.17 Mean 57.90 49.28 _______ _______ ____________0.18 1.14 0.20 Stdev __ _ _ _7.15 18.65 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _0.07 0.20 0.04

10/110/94 Mineral Soil Mineral Soil Organic Layer Gravimetric Volumetric Organic Layer Gravimetric Molsture (dry wt Mineral Soil Bulk Moisture Location Sample Cod Wet Wt. (g) Dry Wt. (g) Core Volume Comments Depth (cm) Molsture g/g) Density (g/cm^ (cm^3/cm^3) Sland 24 T5-1 66.1.57.4 _ 43.42 4 cm humus 0.15 1.32 0.20 Stand 24 T5-3 56 4 44.89 43.42 5 cm humus 0.26 1.03 0.27 Stand 24 T5-SA 67 1 59.09 43.42 6 cm humus ____0.14 1.36 0.18 Stand 24 T5-5B 93.3 28.11 hum layer n.v. 4 2.32 Mean 70.73 47.37 4 I 2.32 10.18 1.24 0.22 Sidev _ 15.80 14.32 ____ 0.07 0.18 0.04 Stand 33 T5-1 61.7 49.01 43.42 1-3 cm humus 1 __0.26 1.13 0.29 Stand 33 T5-3 64 1 54.95 43.42 1-3 cm humus ___0.17 1.27 0.21 Stand 33 T5-5A 65 2 53.54 43.42 1-3 cm humus 0.22 1.23 Sland 33 T5-5B 656 26 2hum layer n.v. 2 1.52 Stand 33 T6-1___________ _ Mean 64.15 45.88 _ 2 1.52 0.21 1.21 0.25 Sldev ___ 1.75 13.49 __ ___ 0.05 0.07 0.06 Stand 37 TI-3 T__ Stand 37 T5-1 587 47 35- 43.42 1 ___0.24 1.09 0.26 Stand 37 T5-3 52.8 40.43 43.42 ___0.31 0.93 0.28 Stand 37 T5-5 62.3 52.38 43.42 0.19 1.21 0.23 Mean 57.93 46.72 ___ 0.25 1.08 0.26 Stdev _ 4.80 6.00 _ 0.06 0.14 0.03 Stand 38 T3-1 64.1 59 29 43.42 ___0.08 1.37 0.11 Sland 38 T3-3 49 1 39.97 43.42 _ _ 0.23 0.92 0.21 Stand 38 T3-5 55.2 46.67 43.42__ _ 0.18 1.07 0.20 Sland 38 T5-1 ___ Stand 38 T5-3 ________ _ Stand 38 T5-5 Mean 56.13 48.64 0.16 1.12 0.17 Sldev _ 7.54 9.81 _____0.08 0.23 0.05

APPENDIX C: TABLES AND PLOTS OF VEGETATION MOISTURE MEASUREMENTS BY DESTRUCTIVE SAMPLING IN FOREST STANDS Cl

Stand 31 Red Maple 9/29/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) /g) (g/cm3) (cm3/cm3) 0.5 1.0. 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 leaves leaves 0.788 0.734 0.720 0.679 0.716 0.696 0.659 0.570 0.577 0.560 0.583 0.529 0.519 0.557 0.580 0.554 1.321 1.603 0.164 1.123 0.636 0.571 0.590 0.539 0.517 0.535 0.554 0.539 0.538 0.542 0.563 0.554 0.566 0.589 0.511 0.326 0.129 0.825 0.458 0.388 0.423 0.375 0.341 0.305 0.320 0.302 0.314 0.287 0.293 0.309 0.328 0.326 0.675 0.522 Mean of Wood= 0.626 0.570 0.358 SD of Wood= 0.085 0.180 0.143 Mean of Leaves= 1.462 0.418 0.599 Stand 31 Sugar Maple 9/29/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/g) (g/cm3) (cm3/cm3) 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 leaves leaves 0.784 0.664 0.716 0.760 0.658 0.647 0.616 0.540 0.575 0.557 0.514 0.468 0.436 0.478 0.516 0.433 1.904 1.150 0.280 0.411 0.682 0.651 0.656 0.610 0.628 0.604 0.621 0.615 0.613 0.640 0.637 0.626 0.635 0.686 0.207 0.397 0.219 0.273 0.488 0.495 0.431 0.395 0.386 0.327 0.357 0.342 0.315 0.300 0.278 0.299 0.327 0.297 0.395 0.456 Mean of Wood= 0.585 0.600 0.346 SD of Wood= 0.112 0.105 0.077 Mean of Leaves= 1.527 0.302 0.425 C2

Stand 32 Black Spruce 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/g) (g/cm3) (cm3/cm3) 4.0 1.145 0.487 0.558 5.0 1.026 0.513 0.527 6.0 0.992 0.460 0.457 7.0 0.858 0.442 0.379 8.0 0.787 0.466 0.367 9.0 0.680 0.474 0.322 10.0 0.623 0.490 0.305 11.0 0.642 0.470 0.302 12.0 0.545 0.510 0.278 13.0 0.563 0.510 0.287 0.5 0.770 0.052 0.040 1.0 0.701 1.996 1.399 2.0 1.149 0.134 0.154 3.0 1.225 0.635 0.778 leaves 1.071 1.313 1.405 Mean of Wood= 0.836 0.546 0.439 SD of Wood= 0.231 0.445 0.329 Mean of Leaves= 1.071 1.313 1.405 Stand 32 Northern White-cedar 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/g) (g/cm3) (cm3/cm3) 0.5 0.842 0.677 0.570 1.0 0.702 3.720 2.613 2.0 1.159 0.333 0.386 3.0 1.176 0.474 0.557 4.0 1.151 0.444 0.511 5.0 1.214 0.407 0.494 6.0 1.182 0.412 0.487 7.0 1.160 0.385 0.446 8.0 1.072 0.356 0.381 9.0 1.023 0.354 0.362 10.0 0.960 0.357 0.343 11.0 0.847 0.361 0.306 12.0 0.822 0.353 0.290 13.0 0.788 0.359 0.283 14.0 0.766 0.354 0.271 15.0 0.770 0.335 0.258 18.0 0.861 0.335 0.288 leaves 1.077 9.655 10.400 Mean of Wood= 0.970 0.589 0.520 SD of Wood= 0.180 0.811 0.549 Mean of Leaves= 1.077 9.655 10.400 C3

Stand 24 Jack Pine 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) 9/9) (g/cm3) (cm3/cm3) 0.5 1.0 2.0. 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 needles 1.003 1.040 1.208 1.274 1.374 1.668 1.697 1.661 1.620 1.362 1.238 1.053 0.974 0.891 0.851 0.859 0.801 0.879 1.573 0.412 1.434 0.468 0.389 0.393 0.339 0.361 0.342 0.364 0.354 0.359 0.347 0.344 0.347 0.371 0.378 0.419 0.391 0.395 0.414 1.492 0.566 0.495 0.539 0.565 0.613 0.568 0.589 0.482 0.444 0.365 0.335 0.310 0.316 0.325 0.336 0.343 0.621 Mean of Wood= 1.192 0.434 0.505 SD of Wood= 0.312 0.252 0.269 Mean of Leaves= 1.573 0.395 0.621 Stand 22 Red Pine 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/g) (g/cm3) (cm3/cm3) 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 needles 1.000 1.077 1.420 1.704 1.892 1.906 1.621 1.830 1.833 1.791 1.719 1.631 1.609 1.513 1.527 1.441 1.355 1.284 0.319 0.767 0.589 0.575 0.346 0.347 0.366 0.314 0.318 0.329 0.333 0.345 0.328 0.344 0.340 0.339 0.370 3.228 0.319 0.826 0.836 0.980 0.655 0.662 0.594 0.575 0.582 0.590 0.573 0.563 0.527 0.521 0.519 0.489 0.502 4.146 Mean of Wood= 1.580 0.392 0.607 SD of Wood= 0.263 0.127 0.154 Mean of Leaves= 1.284 3.228 4.146 C4

Stand 31 American Beech 9/30/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) 9/9g) (g/cm3) (cm3/cm3) 0.5 1.0 2.0. 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 leaves 0.797 0.867 0.751 0.917 0.778 0.830 0.856 0.792 0.766 0.793 0.789 0.783 0.803 0.769 0.763 0.695 0.618 1.735 0.654 0.197 0.188 0.528 0.547 0.576 0.595 0.566 0.582 0.559 0.588 0.581 0.556 0.591 0.562 0.635 0.610 0.219 0.521 0.171 0.141 0.484 0.426 0.478 0.509 0.449 0.446 0.444 0.464 0.455 0.446 0.454 0.428 0.441 0.377 0.381 Mean of Wood= 0.786 0.536 0.420 SD of Wood= 0.066 0.133 0.104 Mean of Leaves= 1.735 0.219 0.381 Stand 75 Eastem White Pine 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/g) (g/cm3) (cm3/cm3) 0.5 0.998 0.170 0.169 1.0 1.138 1.535 1.747 2.0 1.142 1.016 1.160 3.0 1.895 0.324 0.613 4.0 1.804 0.445 0.803 5.0 1.731 0.325 0.562 6.0 1.156 0.335 0.387 7.0 1.471 0.339 0.498 8.0 1.430 0.348 0.497 10.0 1.493 0.304 0.453 11.0 1.187 0.352 0.418 12.0 1.616 0.297 0.481 14.0 1.493 0.304 0.453 16.0 1.455 0.296 0.431 18.0 1.279 0.328 0.420 20.0 0.965 0.357 0.344 needles 1.247 0.433 0.540 Mean of Wood= 1.391 0.442 0.590 SD of Wood= 0.282 0.343 0.378 Mean of Leaves= 1.247 0.433 0.540 C5

Stand 33 Bigtooth Aspen 9/30/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) /9) (g/cm3) (cm3/cm3) 0.5 0.956 0.561 0.536 1.0 0.916 0.934 0.855 2.0. 0.997 0.729 0.726 3.0 1.033 0.442 0.456 3.5 1.180 0.418 0.493 5.0 0.976 0.417 0.407 6.0 0.950 0.429 0.408 7.0 0.788 0.383 0.301 8.0 0.790 0.442 0.349 9.0 0.851 0.477 0.406 leaves 1.641 0.410 0.673 Mean of Wood= 0.944 0.523 0.494 SD of Wood= 0.118 0.176 0.173 Mean of Leaves= 1.641 0.410 0.673 Stand 33 Quaking Aspen 9/30/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) g/9) (g/cm3) (cm3/cm3) 0.5 0.992 0.040 0.040 1.0 0.972 0.244 0.238 2.0 1.054 1.269 1.338 3.0 1.020 0.502 0.512 4.0 1.096 0.438 0.480 5.0 0.983 0.401 0.394 6.0 0.887 0.491 0.436 7.0 0.883 0.430 0.380 8.0 0.811 0.464 0.376 9.0 0.855 0.487 0.416 10.0 0.691 0.435 0.300 11.0 0.667 0.439 0.293 12.0 0.698 0.447 0.312 13.0 0.777 0.461 0.358 14.0 0.841 0.450 0.378 leaves 1.725 0.567 0.978 Mean of Wood= 0.882 0.466 0.417 SD of Wood= 0.136 0.252 0.278 Mean of Leaves= 1.725 0.567 0.978 C6

Stand 32 Northern White-cedar 10/1/94 Gravimetric Volumetric Stem Diameter Moisture (dry wt. Bulk Density Moisture (cm) 9/9) (g/cm3) (cm3/cm3) 0.5 0.842 0.677 0.570 1.0 0.702 3.720 2.613 2.0 1.159 0.333 0.386 3.0 1.176 0.474 0.557 4.0 1.151 0.444 0.511 5.0 1.214 0.407 0.494 6.0 1.182 0.412 0.487 7.0 1.160 0.385 0.446 8.0 1.072 0.356 0.381 9.0 1.023 0.354 0.362 10.0 0.960 0.357 0.343 11.0 0.847 0.361 0.306 12.0 0.822 0.353 0.290 13.0 0.788 0.359 0.283 14.0 0.766 0.354 0.271 15.0 0.770 0.335 0.258 18.0 0.861 0.335 0.288 leaves 1.077 9.655 10.400 Mean of Wood= 0.970 0.589 0.520 SD of Wood= 0.180 0.811 0.549 Mean of Leaves= 1.077 9.655 10.400 C7

Red Maple Stand #31 9/29/94 2 - 0) 10 `0 co, E -0, 0 CD 1.5-~ 1 - 0.5 - -. Density -I 20 IU.. 0 5 1 0 1 5 Diameter (cm) Sugar Maple Stand #31 9/29/94 2 CY) *0 CY) *0 E 0) 0 1.5 -1I 0.51 0. -.0e, G " "'. -1 %. -— Ill 0 5 1 0 1 5 20 Diameter (cm) C8

Black Spruce Stand #32 10/1/94 c I ct C3 0 r co ".O* cm 1.5 -1 -0.5 -A\ U I ~,I I 0 5 5 10 15 20 Diameter (cm) N White Cedar Stand #32 10/1/94 2 -1.5 -I: 2 1 - -- M E Ca 0 0.5 -0 - I. I 0 5 I 15 2I I 10 15 20 Diameter (cm) C9

2 - cm *0 CY E 10 c 0 1.5 - 1 - 0.5 - 0 si Jack Pine Stand #24 10/1/94 IA \b Density mg 20 I aI 0 5 1 0 1 5 Diameter (cm) 2 - Red Pine Stand #22 10/1/94.0,*0 0%, b0 E 0, 0) 0 1.5 -0.5 -n rDensity mg,-I 20 U " I IU 0 5 1 0 1 5 Diameter (cm) dlo

Beech Stand #31 9/30/94 2 - 0) 10 CY) E 10 0 1.5 - 1 - 0.5 - N.1 - 11 II II 0 5 10 15 20 Diameter (cm) 2 - White Pine Stand #75 10/1/94.I I r~ts I p i V V 10 0) E 0) 0 1.5-~ 1 am 0.5 -' I a a I a I I I I I I ) 5 10 1 5 20 25 Diameter (cm) cil

Bigtooth Aspen Stand #33 9/30/94 2 - cm 0) 10 1.5 -1 - 0.5 - 0 * IN I Density mg I 0 5 10 15 20 Diameter (cm) Trembling Aspen 9/30/94 Stand #33 2, "N0 cm, E Ui cm 0 1.5-~ 1 - 0.51.0 00 I tj -4 I 0 5 1 0 1 5 Diameter (cm) 20 C12

APPENDIX D: VEGETATION DIELECTRIC PLOTS: e' vs. Depth D1

Dielectric Depth Profile September 28, 1994 Beech-pole dbh=20 cm P-Band 20 15 100 0 2 4 6 8 Depth (mm) 8 a) 0 25 50 75 100 Depth (mm) D2

Dielectric Depth Profile September 28,1994 Beech-pole dbh=20 cm C-Band 10, 8 6 4, j 2 -0 - I.j: A ) aa a 6 I I I I 0 25 50 5O 75 100 Depth (mm) D3

Dielectric Depth Profiles September 29, 1994 Bigtooth Aspen-mature dbh=30 cm P-Band 40 0 1 0 25 50 75 100 125 Depth (mm) L-Band 0 0 25 50 75 100 125 Depth (mm) D4

Dielectric Depth Profiles September 29,1994 Bigtooth Aspen-mature dbh=30 cm C-Band 8 6 0 4. 2 0 25 50 75 100 125 Depth (mm) D5

Dielectric Depth Profiles Black Spruce-Pole September 29,1994 dbh= 20cm P-Band 25 -20 -15 - CD 10 5 -0 - 25 50 75 100 Depth (mm) i L-Band 17 7. CD 0 25 50 75 100 Depth (mm) D6

Dielectric Depth Profiles September 29, 1994 Black Spruce-pole dbh=20 cm C-Band 1 0) 0 25 50 75 100 Depth (mm) rV7

Dielectric Depth Profiles October 2, 1994 Jack Pine-mature dbh=24 cm P-Band 40. 30, 0 20. 10 -0 - 0 25 50 75 100 Depth (mm) C-Band 20 0 15 10. 5 0 25 50 75 100 Depth (mm) D8

Dielectric Depth Profiles October 2, 1994 Jack Pine-sapling dbh= 12.6 cm P-Band 50O 40 30. 20 - Q) 10 0 10 20 30 40 50 60 Depth (mm) 40 30 9 CD 2014 C-Band 0 10 20 30 40 50 60 Depth (mm) D9

Dielectric Depth Profiles September 29, 1994 N White Cedar-mature dbh=35cm P-Band 40 30 0 20 10 0 25 50 75 100 Depth (mm) L-Band 20 15 10 0 25 50 75 100 Depth (mm) D10

Dielectric Depth Profiles September 29, 1994 N White Cedar-mature dbh=35 cm C-Band CD 0 25 50 75 100 Depth (mm) DlI

Dielectric Depth Profiles Red Maple-mature September 28,1994 dbh= 26.5cm P-Band 20 15 CD 10 5 0O C 6 5 4 0) 3 2 1 0 ) 25 50 75 Depth (mm) 100 L-Band 25 50 75 Depth (mm) D12

Dielectric Depth Profile September 28, 1994 Red Maple-mature dbh=26. 5cm C-Band 8 6 0 4 2 -0 - 0 25 50 75 100 Depth (mm) D13

Dielectric Depth Profiles October 2, 1994 Red Pine-mature P-Band 25 20 15 10 5 0 25 50 75 100 125 Depth (mm) L-Band 10, 7.5 D 5 -2.5 -0O 0 25 50 75 100 125 Depth (mm) D14

Dielectric Depth Profiles October 2, 1994 Red Pine-mature C-Band 20, 15 -10. 5 -0 - 0 Depth (mm) D15

Dielectric Depth Profile October 10, 1994 Red Pine - sapling C-Band 0D 0 10 20 30 Depth (mm) '0 D16

Dielectric Depth Profiles October 2, 1994 Red Pine-sapling P-Band 40 -30 - 20 - 0) 10 - a -A ---L --- ( 0 er g w -. ( 3- I I ) 10 20 30 40 5 30 40 50 Depth (mm) D17

Dielectric Depth Profiles September 28, 1994 Sugar Maple-mature dbh=25 cm P-Band CD 10 0 25 50 75 100 Depth (mm) L-Band 15 10 -5 - 0 25 50 75 100 Depth (mm) D18

Dielectric Depth Profiles September 28, 1994 Sugar Maple-mature dbh=25 cm C-Band 10 8 6 4, 2 0-.4a, ', A 4b " A%% OO& "O 0 25 50 75 100 Depth (mm) D19

Dielectric Depth Profiles Trembling Aspen-mature September 29, 1994 dbh=25 cm 25 20 P-Band 15 10, 0 25 50 75 100 125 Depth (mm) L-Band 10, 0 5 2.5 0 0 25 50 75 100 125 Depth (mm) D20

Dielectric Depth Profile September 29, 1994 Trembling Aspen-sapling dbh=6 cm 8 6 4 2 0 C-Band 0 10 20 30 0 10 20 30 Depth (mm) D21

Dielectric Depth Profiles Trembling Aspen-mature September 29, 1994 dbh=25 cm C-Band 8 6 4 0C 2 0 0 25 50 75 100 125 Depth (mm) D22

Dielectric Depth Profiles Trembling Aspen-sapling September 29, 1994 dbh=6 cm P-Band 20 15 10 5 e' -0o — el. e" ----. ---.4 \..... ^....,-^ L M -dF 0 I 0 10 20 30 Depth (mm) L-Band 10 -8 -6 - 0D 4 -2 - a4 oe............,~ "I 0 00 r i _I _ 0 10 20 30 30 Depth (mm) D23

Dielectric Depth Profile October 2, 1994 White Pine-mature P-Band q0 0 25 50 75 100 Depth (mm) L-Band 15 10, e".. ----. - \./S>^ ---,~ Sr,,,0 0 0 0 25 50 75 100 125 Depth (mm) D24

Dielectric Depth Profile October 2, 1995 White Pine - mature C-Band e0 e" -*-.... 10 Q) 0 25 50 75 100 125 Depth (mm) D25

APPENDIX E: VEGETATION DIELECTRIC PLOTS: e' vs. Time El

25 20 15 10 Temporal Variance in Tree Dielectric Red Pine Stand #22 September 30, 1994 C-Band 1 10 12 14 16 18 20 22 24 Time (hour EDT) h~ E2

Temporal Variance in Tree Dielectric Sugar Maple Stand #31 C-Band 10/2/94 25 -20 - 15 - r \ Ace as 25 - 20 -15 -10 - 5 0) 10 -r-.I I -. —. M A. - I l I I..* a I- - I I I I I I I I I I I I I 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 I I 9 10 Time (hour EDT) E3

25 -20 -15 -10 - Temporal Variance in Tree Dielectric Sugar Maple Stand #31 C-Band 10/7/94 e' e" _f ----,.,,Z. --. 10 15 20 25 Time (hour EDT) E4

Temporal Variance in Tree Dielectric Sugar Maple Stand #31 C-Band 10/9/94 20 - 15 - -20 -15 - 10 - 5 10 - D 5 - LL_ --- — -- - I-....... i 0 1 1i4 16 18 o 22 24 2 4 6 8I 12 14 16 18 20 22 24 2 4 6 8 10 Time (hour EDT) E5

APPENDIX F: DAILY WEATHER DATA: SAULT STE. MARIE WEATHER STATION Fl

S26 (A T-4 SY q%9 *.**Th3 LiZr..;5 SEP 1994 SAJLT STE. KAP:L. n: N*S OFFICE. NCA.AA 214 WEST 14)TH AVENiUr LOCAL '..d..- *. a, e Ii i l — t — c Itt,. - St'?s INQUIRIES/Co"ENTSI C#%IL Tt ML A-CAL Pb (704) 271-4300 VOICE LILMJATOLOGICAI It, * 271-4010 70D/271-4876 FAA SURBA4 OrrxCE MONTHLY SUMMARY S~bV~b --- ---- LATITUDE 46' 2?3N LONGITUDE 84 22W ELEVATION (GROUND) 718 fEET TINt ZONE EASTERN 1484: TEMPERATMRE sa's *tat r tPcs S"OW/Sit es P f AvtAA WIND S1JNSKIN't cnrv.b I ss:cz _ STATION(M. P. H.I G(ZCRts GUST IMI? z. U tI OF aq) w i - U VO ZLZASCLA3I A -.c sa f 724 J A - de: O. O s0ac LA.TsaL ~ ~ K S 0 ACC 1 2 3 4 5 6 7A 78 6 SI 10 11:2 13. s 15 16 17 13 19 2C 21 2?.23 01 59 37 48 -11 42 17 0 - 0.00 0. 029.470 31 7.6 8.0 23 NW 15 31 701 88 3 2 02 64 35 o50 -9 44 i 0 1 0 0.00 0.0 29.555 33 2.5 3.7 12 S 34 5 77 72 5 4 03 64 43 54 -4 46 13 0 0 0.00 0.0 29.600 36 1.2 4. 7 14 NE 3 24 714 90 3 4 04 64 44 54 -4 49 11 0 2 0 0.00 0.0 29.580 12 8.2 8.3 18 SE 3 15 3 47 44 9 3 05 66 43 57 -1 49 a 0 1 0 T 0.0 29.380 12 10.2 0.7 25 SE 18 14 24? 31 9 9 06 62 so 56 -2 53 9 0 1 0 T 0.0 29.190 31 7.0 9.4 22 NW 16 30 77 10 10 9 07 64 44 54 -4 51 11 0 1 0 0.01 0.0 29.130 29 5.6 6.0 13 W 14 29 524 67 5 3 03 67 40 54 -3 47 11 0 1 0 0.00 0.0 29.210 30 5.1 5.7 20 NW 14 30 733 94 5 3 09 60 45 53 -4 46 12 0 1 0 0.00 0.0 29.3 50 32 5.9 7.6 13 NW 14 29 7 7 6 100 0 0 10 65 38 52 -5 44 13 0 0 0.00 0.0 29.490 10 3.8 5.1 12 SE 7 16 770 100 0 0 11 71 43 57 1 53 I 0 2 0 0.00 0.0 29.490 12 5.6 6.4 14 SE 10 15 337 44 7 5 12 76 52 64 3 60 1 0 1 8 0 0.00 0. 0 29.330 22 2.4 S..7 16 SW 10 24 490 64 7 6 13 74 57 66 10 63 0 11 a 0 0.53 0.0 29.180 27 4.0 6.2 13 W 10 30 393 52 10 9 14 65 s5 62 6 60 3 0 1 0 T 0.0 29.270 11 4.6 6.6 14 SE 12 10 0 0 10 10 IS 64 59 62 7 61 3 0 2 0 0.13 0.0 29.140 11 9.6 9.7 17 SE 14 11 0 0 10 10 16 74 59 67 122 64 0 2 1 8 0 0.11 0.0 28.980 23 4.5 3.2 22 NW 13 30 110 1is 9 9 17 61 49 55 0 52 10 0 1 0 T 0.0 29. 170 31 10. 9 1. 4 25 NW 18 32 623 83 4 4 13 67 43 55 1 49 10 0 1 0 0.00 0.0 29. 230 30 8.6 9.5 26 NW 21 31 744 100 0 1 19 72 45 59 S 50o 0 0 0.00 0.0 29.320 23 5.4 6.2 13 W 14 29 741 100 0 0 20 77* 47 62 3 57 3 0 23 0 0.00 0.0 29.290 25 0.6 4.1 12 NW 9 34 423 57 4 3 21 74 56 65 11 59 0 0 1 0 0.00 0.0 29.250 11 7.1 7.6 iS SE 12 15 343 47 10 8 22 74 56 65 12 57 0 0 1 0 0.00 0.0 29.33 5 12 9.5 01.1 22 SE 16 114 3477 47 9 7 23 72 56 64 11 58 I 0 1 0 0.00 0.0 29.250 11 8.5 9.0 16 SE 14 11 3633 50 6 8 24 68 51 60 7 56 5 0 1 0 0.00 0.0 29.280 10 4.4 5.0 8 E 7 14 195 27 10 9 25 60 49 55 3 S6 10 0 1 0 0.11 0.0 29.150 07 5.9 7.2 23 NE 16 04 0 0 10 10 26 54 47 51 -1 48 14 0 0 0.09 0.0 29.010 07 11. 5 1.7 25 NE 16 06 0 0 10 10 27 58 49 54 2 53 11 0 1 0 0.10 0.0 28.880 05 3.0 5.0 14 NW 9 32 0 0 10 10 28 51I 4S 48 -3 47 17 0 1 0 0. 44 0.0 28.805 31 14.6 4.9 30 NW 22 32 0 0 10 10 29 51 41 46 -5 39 19 0 1. 0 T 0.0 29.100 32 14. 2 4.6 32 NW 23 31 236 33 3 5 30 S8 34'* 46' -5 41 19 0 0 0.00 0.0 29.210 32 3.0 6. 4 17 NW 13 26 511 72 6 6 Sumr sumTOA TTL FR 7PE.40 TOT Stm Svml SUN UN R OF DAYS CR I M SU U AV G AVG. V I P DEP.l PRECIPITATION DEP, DATE:29 D A0TE:29 * 06 5 "c"" Avcl 5. 47.i1 56.-3 1.21 51.7 -421 3.01 INCH 3 -2,.19 b2566, 50 J CL) II: D H VI NUMBER OF DAYS SEASON TO OATl -., 1-.. SNOW, ICE "PELETSI GMTES IN 24 HOURS ANZ DATES I.. I -REAuTEST GREATEST DEPTH ON GROUND OF SNOW, ICE PELLETS OR ICE as AL AW *Ih 1 J - - r w-waa~ I rwran- nwu-% c s I I- - -- - -- I - - - - OWIMIN TEKP.1 MINIMUMnv TEK?.l 2201 9TRUHUERSTORMS UFREIMPITATIONI SNOW. ICE PELLETS AND a g 4I 32' 1 s 32' 1 O' _ Dga. pEY.IH HU P m 4 1 0.231 13 0.0I o-I I o I A I A I A Al -31 Irrr CLEAR 6 WORMY CLCU a q C rnu r I 8 - - I-. 1. — I w - -j U..-KIr vLi 2 %.LAV I I i EXTREME FOR THE MONTH - LAST OCCURRENCE IF MORE THAN ONE. DATA IN COLS 6 AND 12-15 ARE BASED ON 21 OR MORE OBSERVATIONS AT T TRACE AMOUNT. HORLY INTERVALS. RESULTANT WIND IS THE VECTOR SUM OF WIND SPEEDS + ALSO ON EARLIER DATE(S). AND DIRECTIONS DIVIDED BY THE NUMBER OF OBSERVATIONS. HEAVY FOG: VISIBILITY 1/4 NILE OR LESS. COLS 16 6 17: PEAR GUST - HIGHEST INSTANTANEOUS WIND SPEED. BLANX ENTRIES DENOTE MISSING DR UNREPORTED DATA. ONE OF TWO WINDS IS GIVEN UNDER COLS 13 & 19: FASTEST MILE- HIGHEST RECORDED SPEED FOR WHICH A NILE OF WIND PASSES STATION (DIRECTION IN COMPASS POINTS). FASTEST OBSERVED ONE MINUTE WIND - HIGHEST ONE MINUTE SPEED (DIRECTION IN TENS OF DEGREES). ERRORS WILL BE CORRECTED IN SUBSEQUENT PUBLICATIONS. I CERTFY THAT THS IS AN OFMCIAL PUBUCA11ON OF THE NATIONALOCEAN1C AND ATMOSPHERIC ADMINISTRATION, A.ND IS COMPILED FROM RECORDS ON FILE AT TIU -NATIONAL CU.LMATCDATA CENTEI:R NATIONAL NA110)\). %A11OAl.I n CJU U OCEANIC AND ENN1RC)\MEA1A.;I TELLITI:. DATA. CUMATK' DATA CE\17-R DIRECTOR a ATIOSPHRJ, ADINISTRAflON AND INFORMIATIO% SERVICE ASlIF1LLIt. NORM CAROU\A NATIONAL CLIMATIC DATA CE.NTER F2

OBSERVATIONS AT 3-HOUR iNTERVALS- 11' i5'9 p I I T - I I I I I I IS C u at VC lO "K i o I-.j 0 I I: SL IAw 7 A. AL 2; a iC I t i a C K r z 0 C6 b: w a rC hi W: It z w 1. cn K - L: z C "K 1'7 1 1.r K LI; I S - ~L hE hi0 I I I AL A e. _: i. Q Z C~ i Z: Z. rI c J.,.: ill a _: i I: Ix I 6b ll a i I I I I I I I i I A2;i rk.j it ~IL lklr t L Q.v SEP 013 SEP 02 SEP 03 01 0 Uf.L 1I 43 42 411,3 35 6 0 uw_ i 4314214 93130 5 5 UW. 1 50 49 4790t06 3 04 3 IWL 10 41 41 41 r100 102 3 0 u:LY. 39 39 33 96 00 0 9 30 1 43 43 47196136 3 07 41 IL 201 42 42 421100130 4 3 2 1 3 F 40 40 39 96 11 3 3 UN. 1 43 43 43 o00 00 0 101 71 30 2 J 552 50 46 7 231 8 3 U1(K. 2 C 554I9 42 621 23 6' 25 20 53 54 90 75 07 S 13 3 VOL. 2 so s0 4256 31 C2 5 UWL 2 601 52145 5j 00 C 6 25 15 62 53 44521 1610 UJL 2 57 49 41155132:12 1 20 60 53 47 62 3 4 7 2 Wr% 1s 63 52 42146124 7 19 0 WIL 2 51 46 41 69 32 9 3 U1,. 2 56 52 49 73 34 5 0 2191. 1 55 50 45 69 31 1221 0 VWL1 Is I 1 43 431 421 96 126 4 41 UW 51 I 46 46 1 46 1-1%O 321 4," m I 31 4 t 46 9 3 09 4 SEP 04 SEP 05 SEP 06 01 01 UWL 1I F I4*1 48 431100107 6 7 200! C 53 501 48 90 11 3 0 25 Is; 551 52 50 3 12 5 04, 7, 301 0lF 46 46* 46 100,00 0 5 UPC417 49 49 40 96 09 7 C0 19 15 54 53 521 931 1 071 0 2 0 3 F 49 49 49 100 12 6 10 3 1 6 F soF 501 5C 100 09 3 '10 12 10' 55 55 9P 00 0 101 91 7 6 IF 156154153190 110 739601011 61 51 54 7314 10 101 4 10 60 5O 571 901 2 3 136 91 25 151i 1 1631 S 4916 13 1.0 9 60 1511 I 64 551 43 56 14 15 10 16 10J 58 56 54 lI 31 12 16 10 200 20 63 4 54 45 s 15 1 1 10 30 60 54j 49 67 13 12 10 20 7 57 55 53 7 31 1 4 191022020 1 571 5214372 13 8310 50 1 9 57 53 50 73134 91I0 50 57154 523 4 30 1 4 22 1 200 25 53 so 4 8 9reI 13 9 10io 90 1 56 S 51 47 72 12 81 8 50 9 551 531 5 1 97 301 11 SEP 07 SEP 03 SEP 09 O I L 3X 1a50149143193 30 5 0 F 0 r 4646 46 100 00 0 00214 7 51 51 50 96 30 6 041 0210. 80 I 4S 9 43 1100 26 1 221L Of SIF 4545 45 100 00 0 32vwL 7 49 49 43 9631 5 071 oWIL 3 4747 471100 31 4 4W 6 F 424? 42 100 00 0 02101. 15 47 45 42 3301 4 10 5Wl L20 63 57 5263 30 6Io0NLIOI I 62 5855 789 30 3 OVUNL 20 55 50 44 67 34 7 13 9 401 0 9 1 53 56 55 90 28B 7 2UNL2OI 2 16656 48 532711 OUNL 20 s0 53 46 60 30 12 16 SlJILJ G I I sol58 551 el 291 121 2 VN L I 65j 55! 461 50 32 9 0 vXi 2 so 158 521 471 67 29 12 19 5 60 53 57 90 271 4 3 2194 1 56 53 47 72 33 6 0 07941 15 51 49 46 33 23 5 221 0 1 VXL 1 7 _1 _ 5050010 0 0NL I _ 5049 43 93 30 5021911.1 4347 45399 094 SEP 10 SEP 11 SEP 12 010110W 7 424241 (44 96 r00 0 02 4NL.41 F 45 454510007 0 351511W 71 55 55 541971 0 3 04 0 VX 7 42 41U 40 93 07 5 0 VNL I I F 4r 44 44 100 0 3 6 250 2S9 F 53 53 53 100 00 0 07 0 VlN IS2 42 41 40 93 07 510 1 f 4 F 43 43 481200 09 4 9 5 0112 F 53 53 S3 100141 10 0 UNL is 54 49 44 69 14 6 7 51 F 555453 93 11 6 9 150 S F 66 64 63190 04 13 1 SEPi 61 53 4658 07 42 2141 S 1 61 57 70 15 9 0 UNL1 SP 72 67 64176 29 16 0 VNtI I 1 641 54 46rs 52 0 1~i rIi1 1 96 0?3 14 8 5IJL 0 751 69 65 7 7 62 19 0 56 52 49 78 157 24 7 4 8 2 1 I 61 58 56 34 13 7 7 2111 6U K9 67 65 63 87 24 7 22- 0 VNL 10 45 44 43 93 -03 3 6 LI 91. 10 _ j 56 55 5 4 93 11 4 7 211U&. 4 -_ 9 63 62 61 93 21 5 SEP 13 SEP 14 SEP is 01 6MCA.. 0 12 F 58 585810000 0 7 3: 2 F 59 59 59 100 29 4 010 6 4 F 60 59 59 i9712 6 04 10 40 1 F 59 59 59100 1Sf 3 1017 2 F 60 60 65 100 31 41 0! 35 5 RWF 59 59 59f100 11 1 07 10 1 o712 RWF 63 63 63 1001231 610f16 4 F 1611611 6 110000 71 0 7 7i L. 59 59 5S 97 1.1 12 10 10 3r1 5 F 66 65 65 97 1251 6 1)161 F f64f 63 62 93 10 7 >7 7 Sf LF 60 59 59f 97 11 12 13 10 120 10 73 68 65 76 1291 9 10 6fsf F 1641 62 61. 90 11 S 2 21 LF 62 62 62 100 12 9 16 LnL[ 7 73 69 67 82 S2 1j'0 j 64 61 59 34 13 7 10 2 314 RWF1 64 64 64 100 >7 7 19 10 30 4 F 66 65 64 93 24 5 10 10 5 F 61 59 5s 901 10 7 10 1 0 6 F 64 64 641100 I 1 9 22110 30 4 IF 63 621 621 97 129 6 10 5 4 F 60 59 58 931 11 6 10 0 0 1 F 63 63 63 100 11 7 SEP 16 SEP 17 SEP 18 01 9 1431 0 6 F 6262621001071 6101 51 5 F f61f 60160 97 30 1271 7011 545453 96 35 6 04 SI 2C 31 F 6161 62 10024 4. 10144 1.F 1571557157100321 0U UNL I 43 43 43 1001' 6 3 07 10 16 31 F 6464641001181 5 5 7011 15 55 54 53 93 33 3 02101. 121 4444 44 10030 3 1 C 10 5 "I 4F 69 67 67 97122f 91 101. 20 f5954 1'50 72 32 S 021I911 201 62 58 55 78 291I0 13 9 9 2 I F 72 69 67 34 f11 ii 5 UKI.20 59 53f 49 67 3 1 13 0 fUWL 20j 66 56 48 53 33 15 16 91 4 51 H 73 69 67 [ j2 1 421:0 04 11 61 56 51 70 32 1 4 0[0701 2] 64 55 43 56 3016 19 10! 4 7 RN 63 62 62 97 29 8 1 210NL1 15 53 52 51 93 29 6 0 21011. 20 57 52 48 72 11 7 22 4- 074 5 F 61 61 61 100 27, 5 01011. 151 52 52- 51 96 29 80 0 2101 15 50 50 49 96 27 3 MAXIMUM SHORT DURATION PRECIPITATION TIME PERIOD (MINUTES) 5 10 15 20 30 45 60 80 100 120 150 130 PRECIPITATION (INCHES) 0.08 0.15 0.17 0.17 0.20 0.24 0.33 0.38 0.39 0.40 0.42 0.49 ENDED: DATE 13 13 13 13 13 13 13 13 13 13 13 13 ENDED: TIME (LST) 0736 0738 0739 0739 0739 0739 0739 0739 0739 0739 0739 0739 THT PRECfPTTATION AMOUNTS FOR THE INDICATED TIME INTERVALS MAY OCCUR AT ANY TIME DURING THE MONTH. THE TI INDICATED IS THE ENDING TIME OF THE INTERVAL. DATE AND TIME ARE NOT ENTERED FOR TRACE AMOUNTS. -A1E 2 F3

OBSERVATIONS AT 3-HOUR INTERVALS '. If \ I - I I ( L 7DLP A.A7.LE o_ - C 3 6. bT I - - Ji ~ T I- - E I ix 0 C IL~ C L Z x x b r-i K i t^ f l v - t JL __ _ _ _ _ _ __ L -l _ _ _ _ _ - i I SEP 19 01 3 11L 10 04 0 IVL 10 07 0 UMwL 15 10 0 UML 20 13 0 UML 20 16 0 UL 20 19 0 1UML 20 22 0 UML 20 50 49 48 93 26 4 51 50 49 93 32 6 46 46 46 100 00 0 62 SS 50 65 30 6 69 58 50 51 27 11 71 59 49 46 32 5 58 55 52 31 23 5 56 54 52 87 23 5 SEP 27 0 VWL C 54 54 53 96 27 5 0 1ML. 5 F 5 jS. 5: 10 C. 10 2 0 2 F 5: 15: 1 100 C00 0 U1L 7 6 1 6? 60 87 05 3 2.ML!5 768 9 63 64 32 7 UNL 15 70 66 60 60 23 4 5 UK. 15 66 62 60 81 2! 6 2 UNL 15 59 58 57 93 08 3 SEP 21 2 UWL 10 57 57 5' 100 07 3 7 UML t 57 57 57 100 08 6 8 130 7 57 57 57 100 10 5 10 UNL 10 69 64 61 78 13 8 10 UML 10 73 65 60 64 15 10 10 UML 10 72 65 60 66 12 7 10 200 10 64 63 62 93 12 5 7 200 10 59 58 58 97 11 6 SEP 22 SEP 23 SEP 24 01 5,UML 3 F 59 58 56 97 08 7 10 90 7 62 56 56 84. '9 9 7 U 7 55 55 54 97 07 04 2 UNL 2 F 57 57 57 100 09 6 10 80 7 59 57 56 9C:0 7 6 UNL 5 F 511 51 51 100 06 4 07 9VUNL 2 F 57 56 56 97 10 7 5 ML. 3 F 58 57 57 97 110 8 10 200 3 F 5 5152 51 96109 10 UM13L 7 65 62 60 864 111 11 10 98 5 F 62 60 59 90:3 21 10 200 5 F 59 57 56 90 09 5 13 UML 10 7 1 63 57 6 1 14 1 3 0 VML 8 70 65 6 1 73 15 10 9 200 8 67 6 1 57 70 11 16 9 100 10 7?. 63 57 61 14 11 10 UL a 70 63 59 68 13 10 10 100 10 67 62 58 73 14 6 19 10 10010 64 59 56 75 11 8 10 UML 9 61 59 57 87 12 6 9 120:0 61 59 58 90144 22 10 80 7 6 61 59 57 87 10 7 10UM 70 1 57 57 6 55 93 08 5 10 100 8 59 58 58 9711 SEP 25 SEP 26 SEP 27 01 7 90 7 2 571 57 57 100 07 310 25 10 S 49 468 46 90 06 14 10 7 7 51 51 51 100 09 6 04 10 1 0 7 57 57 57757100 115 410 25 10 R 48 47 45 69 06 9 10 4 2 F 52 52 52 100 05 6 07 10 3 0 2141P 58O 58 O5100I1 3 9 45 15 48 48 47 96 06 14 10 6 3 I F 51 51 51 100 06 6 10 10 12 5 R.F 59 59 58 97 09 3 10 30 15 49 468 47 93 07 11 10 5 2 F 54 54 53 96 06 5 13 10 11 5 RWF 59 59 59 100 09 610 8 15 I 51 50 4 90 07 9 10 6 3 F 57 56 55 93 05 110 6 1 0j6 F 60 59 9 97 10 1 4 12 1 2 163 5 1 49 86 08 9 10 30 3 F 56 55 55 97 00 0 19 10 3 3 LF 55 55 55 100 03 10 10 10 10 51 50 49 93 09 8 10 5 18 RF 54 54 553 96 30 6 22 10 15 7 531 5048e900513 8 7 50 50499607 710 23 RF.? 5151 51100000 SEP 29 01 10 25 4 RP 51 51 51 100 29 5 04 10 25 7 R 49 48 47 93 3111 ( 7 10 25 8 R 49 49 48 96 30 10 10 10 6 4 RF 50 50 50 100 32 12 13 10 7 4 RF 49 49 46 96 30 16 16 10 5 2 2LF 4 49 47 96 31 16 19 10 10 4 LF 47 46 4593 31 17 22 10 22 5 RF 47 46 44 69 31 14 SEP 29 7 30 46 45 43 89 32 12 4 UNL 10 44 42 39 83 33 14 7 90 12 44 42 40 86 31 9 25 15 468 44 40 74 32 12 10 25 15 49 4439 69 30 15 7 30 20 47 43 39 74 31 17 5 UNL 20 45 42 39 C 21 12 2 UNL 20 ~~ 44 ~4 06 11 Q SEP 30 0 UML 10 36 36 35 96 17 2 UNL 10 38 38 38 100 12 8 50 10 39 39 38 96 08 4 M1L 15 52 4 43 72 06 3 UML 20 57 51 45 64 35 8 UNL 20 55 5044 67 30 10 250 20 47 44 40 77 32 10-20n 15- - - 4A x- A2 \ ac do- M 4 3 4 3 5 10 7 i —. -. -- - -, I — - 1 -. I I I.. I. I.,I..I.; 71AV a V I ~p I I44 od 4vI E I il r WEATHER CODES AND NOTES 6 'C 6W T R RW ZR L ZL TORNADO FUNNEL CLOUD WATER SPOUT THUNDERSTORM RAIN RAIN SNOWERS FREEZING RAIN DRIZZLE FREEZING DRIZZLE S SNOW SW SNOW SHOWERS SG SNOW GRAINS SP SNOW PELLETS IC ICE CRYSTALS IP ICE PELLETS IPW ICE PELLET SHOWERS A HAIL F FOG IF ICE FOG GF GROUND FOG BD BLOWING DUST BN BLOWING SAND BS BLOWING SNOW BY BLOWING SPRAY K SMOKE R HAZE D DUST SUMMARY BY HOURS AVERAGES RESULTANT TEMJPERAUJRE WIN I 61 I u 61 I I v>: t 1L h? I I -I ' I 0 i o >. m 61 01 5 29.250 52 51 51 95 6.2 03 1.9 04 6 29.250 51 50 50 97 5.5 05 2.1 07 7 29.265 50 50 50 97 5.6 07 2.1 10 7 29.270 59 56 54 83 6.4 05 1.2 13 6 29.260 63 58 53 71 10.8 28 2.1 16 7 29.235 63 57 53 71 10.6 29 2.4 19 7 29.240 57 55 53 85 8.4 30 1.7 22 6 29.250 53 52 51 93 6.7 02 1.0 CEILING: UNL INDICATES UNLIMITED WIND DIRECTION: DIRECTIONS ARE THOSE FROM WHICH TEE WIND IS BLOWING, INDICATED IN TENS OF DEGREES FROM TRUE NORTH: I.E. 09 FOR EAST. 18 FOR SOUTH. 27 FOR WEST. AN ENTRY OF 00 INDICATES CALM. SPEED: THE OBSERVED AVERAGE ONE-MINUTE VALUE (MPH-KNOTS X 1.15). I F4

NATIONAL CLIMATIC DATA CENTER ROOM 120 151 PATTON AVENUE ASHEVILLE, NORTH CAROLINA 28801-5001 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE S300 -"pf& C lOhlb;-" h -oj^ s -;,Z^44 Pn FIRST C:LASS POSTAGE AND FEES PAID NOAA PERMIT G-19 (* LCD-20-1 4847-EX 25439 UNIVERSITY OF.ICHIGAN ATTN: ENGINEERIPY LIBRARY 30743 DOW 3LDG ANN ARaOR MI 48139 Is,,11,,l,,,,11II. 11,.,i.Lil SEP 1994 14947 SAULT STE. MARIE. MI I I C F-f - W^ ] - a e a %tTI v r ~ ( HOURTLY PRECIPTTATTON (WATER EOHITVAT.EN TN TINCHES a....-...#.-. — --- —. --- —.d... v.-,..... ua V - 'sIu, NC Pv&. A.M. HOUR ENDING AT P.M. HOUR ENDING AT <I 5 -- j — 5 10 11 12 1 2 3 4 5 6 7 8 9 1011 12 i it IT 1t 2 --- - I- -_ L-ll11. I I I -I I __ -~12II m I 0 0] 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 11 is 19 20 21 22 23 24 25 26 27 21 29 3C 0.01 T T T T 0.10 T T 0.02 T 0.01 0.04 0.21 T T T 0.18 T T 0.02 0.01 T 0.04 T 0.01 T 0.02 T T 0.0.02 T 0.0110.021 T T T T 0.07 0.01 T T T 0.041 0.01 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 / 26 28 ( 29 30 0.02 0.03 IT T 0.04 0.01 0.03 0.01 0.01 T 0.03 T 0.03 0.02 T 0.01 T 0.02 T 0.02 0.031 0.05 T 0.02 T 0.01 0.01 0.01 T T T T T 0.10 0.11 T T T 0.01 0.01 0.02 0.01 I I - -- -- — s - - -- - F5

ci>c *M52-. 5 2-ct C'6 uv4NEqSTT" gF WCHIGAN~ t E L qqc. OCT 1994 cSAUtL ST L. fL. MI 1551. U 0193-2630 wws orricE. NOAA 214 WEST 14TH AVENUE 1BIEAa1JOCAI. DCAAT (704) 271-4300 VOICE,JV JIjJJJ~,~JI (tl ~-~0V~fCLIfMATOLOGIC DA IATA c 271-4010 TDD/271-4876 TAX MONTHLY SUMMARY suou"" O brrCE.6 t; 7 9 LATITUVDE 46 2N LONGITF D 24' 22'W FLtVATIONJ IGROUINT) 713 FEFT TIRE ZONE EASTERN 14347 H ( 0b OH 0~rz H U)w TENPEN.ATIIRZ F a~iUa t Dayl WOAM VTYPSV SNOW/ A3%MA1 v WIND SUSINE cm ShI Ss I pa ICE I Ii - ~L IJSTATON. - - WY GRAWV VW ON pullau" -rSI~ 3 EV ~ OW.asa PEA FASTEST YWS I __t uiinemLD ( l cu GUST 1-4a N u S "IL AT - Of0) d N I SimPELEY I bv slvm 0700 b ILEV. h z K 8 bmilm Gew w '24 lK, i a 0, JR (IN. ~ VIn 'A - D LE (PTNAL) on a W 0 K I 2 3 4 5 6 7A 71 7 9 10 11 12 13 14 5 16 117 13 19 20 21 22 231 01 53 3946 -4 3619 0 0 0.00 0.0 29.190 33 9.0 10.33 23MNW 20 32 550 7822 2 02 52 29 41 -9 32 24 0 0 0.00 0.0 29. 3 30 32 6.3 9.3 26 NW 13 30 699 100 2 2 03 52 34 43 -7 34 22 0 0 0.00 0.0 29.490 36 4.8 7.4 23 N 1S 31 657 94 3 2 04 49 35 42 -7 35 23 0 0 0.00 0.0 29.455 34 6.6 8.1 21 NW 15 31 303 44 3 7 05 54 35 45 -4 33 20 0 0 0.00 0.0 29.260 24 4.9 6.0 15 W 12 24 33 56 3 7 06 63l' 42 55 6 50 10 0 1 0 0.00 0.0 29.1380 16 5.0 7.0 20 SW 14 22 369 54 7 5 b07 65 52 59 10 53 6 0 1 0 0.04 0.0 29. 100 13 11.-3 2 2.2 26 sr 21 13 267 39 10 9 03 65 45 55 7 51 30 0 1 0 0.35 0.0 29.020 25 5.3 3.4 22 SW 33 23 0 10 9 09 46 36 41 -7 33 24 0 1 4 0 0.24 T 29.070 30 15.0 6.1 43 NW 32 29 219 32 3 I 10 49 32 41 -6 35 24 0 0 0.01 0.0 29.490 32 8.7 9.4 23 N 17 32 512 76 6 4 12 53 30 44 -3 39 21 0 2 0 0.00 0.0 29.580 16 5.1 6.2 20 S 14 t1 532 30 3 4 12 62 33 50 3 42 15 0 1 0 0.00 0.0 29.550 13 5.6 6.9 16 SE 13 17 610 92 1 1 13 64 39 52 6 45 23 0 1 0 0.00 0.0 29.510 09 5.7 6.6 13 E 5 06 632 95 7 5 14 56 40 43 2 42 17 0 0 0.00 0.0 29.530 12 6.0 9.1 21 SE 13 15 62 94 3 2 15 60 40 50 4 42 15 0 0 0.00 0.0 29.620 11 3.1 3.3 16 SE 13 11 374 57 5 5 16 60 40 50 5 43 15 0 0 0.00 0.0 29.590 11 3.9 9.1 21 SE 16 12 140 21 10 10 17 53 43 51 6 50 14 a 1 0 0.16 0.0 29.3SO 11 9.3 9.4 17 E 14 10 0 0 10 10 13 56 52 54 9 55 21 0 1 0 0.77 0.0 29.030 13 7.4 7.6 13 SE 10 14 0 120 10 19 66 54 60' 16 55 5 0 1 0 0.04 0.0 23.910 21 3. 3 20.12 31 SW 13 23 305 47 5 20 54 47 51 7 43 14 0 1 0 0.03 0.0 29.060 29 11.0 2 1.7 30 NW 21 31 17 3 10 10 21 56 44 50 6 46 15 0 0 0.00 0.0 29. 130 17 2.38 5.9 12 SW 9 23 42 7 10 3 22 62 44 53 10 50 12 0 1 0 0.02 0.0 29.040 12 10.4 20.3 21 SE 16 D1 161 25 7 7 23 53 42 43 5 44 17 0 1 0 0.21 0.0 238.70 25 7.4 9.4 35 SW 20 23 163 29 7 7 24 46 35 '41 -2 35 24 0 0 0.06 0.0 23.940 25 10. 2 2 0 5 21 W 14 26 0 010 3 25 47 36 42 0 33 23 0 0 0.20 0.0 29.070 30 3.52 0.3 23 NW 16 31 222 36 7 3 26 45 29 37 -5 35 23 0 0 T 0.0 29.350 33 4.6 6.2 13 NW 15 31 149 24 10 7 27 54 23' 41 0 33 24 0 1 0 0.00 0.0 29.240 17 5.1 3.2 25 SW 17 23 362 53 3 3 23 57 33 43 7 43 17 0 0 T 0.0 23.960 13 3.9 20.3 33 SW 20 21 1 0 10 3 29 57 36 47 6 43 13 0 0 0.04 0.0 29.000 26 6.6 3.3 26 N9W 13 31 307 50 6 5 30 56 37 47 7 32 13 0 0 0.00 0.0 29.200i 24i 9.9 0.1 25 SW 16 24 530 37 1 1 31) 49 I 31 40 0o 32 25 0 0 0.00 0.0 29. 130 33 4.3 7.1 17 NW I 41434 1651 27 91 7 sDIlMOL OF DAYS D, I AVG. lECIFPIT O T DEPD TE; - 4 9 1 DATE: 55. 39. 47.3 2.1 4.8.1 IwH 1 1 -1 06L 02,11 46. 6.716 NUMBR OF DAYS rELAS TO SkAl =vwikr &Fwlk SNOW. ICE pDLTS GREATEST IN 24 HOURS AND DATS 1.0 INCH 0 GREATEST DEPTH ON GROUND OF SNOW, ICE PELLETS OR CE AND DATEr n=AIn=AU I. 1 ~ i I-F D I n.,4 I C~nW Trr rT~ -s-re. MIU M 1PRgi-F"""*I 7j V ILCIFITATIONI bnowl 14L FLLLr IrU, " na.0 a 9 ' I a 3 2' 1 s 3 2' 1 - O' I DEP. -DLP. I UAVY Mg II 0.891 I-t-18 I &race 09 1 1 1 I n I i I L I n.a- I -a C1Wh3 3 DPART.Y CtLOtUv C C40Dlv IA I V I v I a di %. I2 % I.I~~AILIWW~ A ( vEXTREE FOR THE MONIE - LAST OCCURRENCE IT MORE THAN ONE. DATA IN COLS 6 AND 12-15 ARE BASED OW 21 OR MORE OBSERVATIONS AT T TRACE AMOUNT. HOURLY INTERVALS. RESULTANT WINO IS THE VECTOR SUM OF WIND SPEEDS + ALSO ON EARLIER DATE(S). AND DIRECTIONS DIVIDED BY THE NUMBER OF OBSERVATIONS. HEAVY FOG: VISIBILITY 1/4 MILE OR LESS. COLE 16 1 17: PEAR GUST - HIGHEST ETANTANZOUS WINO SPM. BLANK DITRIES ODI9OS MISSING OR NREPORTED DATA. ONE OF TWO WINOS IS GIVEN UNDER COLS 136 19: FASTEST MILE- HIGHEST RECORDED SPEED FOR WHICH A MILE OF WIND PASSES STATION (DIRECTION IN COMPASS POINTS). FASTEST OBSERVED OllE MINUTE WINO - HIGIMST ONE HIMINU SPEED (DIRECTION IN TENS OF DEGREES). ERRORS WILL BE CORRECTED IN SUBSEQUENT PUBLICATIONS. I CERTIFY THAT TIS IS AN OFFICIAL FUBUCATION OF TUE NATIONAl. OCEANIC ASD ATMOSPHERIC ADMINISTRATION. AND IS COMPILED FROM RECORDS ON FiLE Al TTE NATIONAL CUIMATIC DATA CENTER. ~) Z 4AL.NAlIONAL NATIOnAL %AflONAL OCEANIC AND LVIRONW%4fNStAI. SATELJIJT DATA CIJMATIC DATA CEN-TR DIRECTOR n o a a ATMOSPHERIC ADhONA1TON AND INFORMATION SERVICE ASHFVILE. NORKh CAROUIA NATIONAL CLIMATIC DATA CE.NER F6

p OBSERVATIONS AT 3-HOURINTERVALS:994 14M4 I FL T t] AEI I _ 07 E11015 9 7 S 401 111. 5 54 2 62 011.1 33 1 651 4 14 0. 5 7 4 0 49 4 32 52 32I 44 'O 6 -PI: 0 t l z' t lo~ 19111144373 510,1433132 9111.20643 OCT 04 OCT 05 OCT 04 0110 401 3 75 3 4 a 3 15, 4139 37 60 0 9 0 01W, 3 4 3 2 91 3s 04 10 40I 13 411 361 5 799041 9 710 151 37 37 31 94 23 3 0 11311 61 43 4 12 43 0 06 3 0710 4535 391 371 341 7910217401 440 KL3634 648923 9 5 51V 45453145I00a013 130 912015 421 441 351S 731014 7 U14015 24742 31 4732 4 764 V 11 150335 531 52 906 13 9 2SL 15 44 3 1 s3 10 7121 9 45 37 59 24 10 7 2111 6( 45 4 01 54 76311 11 197110.L15 423940347932930113111 4649 44 74 20 21 31L1.2 4 573[ 5076115 22111111. 15 4 4 3633932730 3WL1 _ 4)342413207 56 011L1. 0 1 53525113127 OCT 07 OCT 06 OCT 09 Oil 10111.0 5535 735294122 73111015 4240563 672 910 2 0 1 4545434 94304 041510.10 5s452 5379012 6910401i 3 57545642623 4101 612 4344 44410020963 0710 6010 i55525063179021040 15 45439020 911 a424421005 13 10 110 is 43 57524S76 013191055 10 IS 555742 352 41 267 40 42403 5t13011o7 307 is 4056467141100 75120S 46461003 24 460 3 3937S 60 3492 3014 1104 07 174253 654712121 7 H 52 52100S921106161K 42369357316322 221035 1 7UML 30 431595376159327303 35 XL I I 3 47147100310 201 5 0 I 1 3734349349 OCT 07 OCT 03 OCT 32 0140 250 I37S3435936 40111.1X F 313131102 60 000 2010 20L1 40 40 4010 91443 04131110.10 34435 2 2653449 6314 47 3131311 00002 1001Is11.1 404040 1000294 0710o 25l 151 1 rl39343274333230 0 1 27 d 3440 r 330006I, ~ o 55161 67 3636361000614~oll 107 51110.20 14394731O 312 0 2111.1 444534906020 5911110. 50464246413 137 0UM2520 I 45413774 32131 I1311.2 I544640 5516120011111. 14 1 42540 3508616130 1921 1110.020 3933463241210.2 44 52 5436914 21 10 I 61 4444426431 47 21431110.2 6j 454 iS1 37743210 21311.2SI I 5y 446391 4319003 O 69 2511 1 571 039 34I9 34 4 1 2201302 _ 134343410000001110.3 drs oVL z 433291 30111. 454154494094 OCT 13 OCT 14 OCT 15 031130.2 7 44444410006 522S113037 4443416907 90 0 0 NL 10 4130 (0 40 61407 0471427444444 I 510007 521P1128 1r0.1011 434240690632 9011111.101~ III I 41163373097Iaol~ 04 3 MM 10 3 I 1 )5 34 320 83 12 30 70 O 10 1 3 s sil 00 0 0 51 I Ir I a I i0 i0 60loo 09 0731125.5 39 4040410000633112210 1012 1 4040399409 4210 1 11151 I3 4036346411 10710 0.M1 50 49 34 79 0941 110.2 1 4 I 3 41405426311 0 94 20.2 50 47 43771211 3613711.20 GS41554945640 54504 72 265111.2 Ss 15 265 34670135 1471110.20 4 2554674015 2 531112 6 5450444453191011111.2 1054514 4491291 39521U111.1953 534643911311611.2 4 4543406012 41011111. 146 4745 69124 22 01110.152 1 349441 346004 1301130.1 I 43 421 9412 51011161.1 44591 OCT 14 OCT 17 OCT 36 0l 1 251 0 4 343 431 00 09 50201 49474 45 610710 179 0 1 H5 431 53 5310013 0 04102006 414341 410006 410532 49 46 4490069 701 1 6. 4544 1 63 300124 071 302001 01 4241 0 614 6 4 710 611 1 o0v0399 0 817 535ol4035 31006 17 I 101011020 514944630111 501 52597 90313 91 2 4 12 5 SO45 45477100129 13 9100L 20 5953474951211103 3W 2 S 52525194 13 430 1 7 2so 5555551001365 1 60rmm20 54504441 6021410S UHL 26 SG 5252521004 12 100W 2 61. 5 I 445410146 29 S UML 11 1 5 S3 37 3 1 2 1 6 2 8M3 2 46 i5 3 40 to 15312 6 10 VNbh 1 4 i 47 45 31 9 12 6 19120 101 I 51 44 41 4912 610 4ML 5 J_ 2 521 411 90011 1110 NL I I 5546 1 55 5510012 OCT 26 OCT 17 OCT is 010 50 2S I 0 4 434371100 69 S 10 420 52 74521012 60710 10 1I.? 53 535555100 135 04i 10 200 F I1 rI l Ioo 09 4 20 Ss R Id I 9 47 i 90 01 s P 0 20 1 Id 54 Sl 91 3 00 12 6 TIE PERIOD KI 21 UTS 9 109 15 44 20 30 4 40 0 100 120 150 160 7 PECIPITATI 20O (I S) 0.05 03 21S I 0.1 0.109 0 10 0.1 02 920.24 0.30 5 54 0.33 0. 049 EDD DATE 16200 20 169 316 16 1 6 11 96 I 3 v 16 I 1 16 s 55 1 006 16 ENDED TINE is T 1i 42 01 04 12 032 0140 P 2 02152 159 12 10227 0246 030 0334S S04117 1211 5 0 25 1 1 50 I I i1 42 71II r10i Y 2 21S 1100121 51 201 2 U1 I 46 (1 55 1 0 151 6 TIMPMID MNUTS) 2 is 20 0 4 I so 100 120 ISO IS ENDEl~olis DATE is is is i rlol55 d s isI is is is is 11Io I J1F s is is~011 1 ENDE1 e TIKE LST) 0 s42 0122 0124ro 0224 0242 0252 0 32 259 0227 0249 0306 033sl 6 1 6 041 r1 I ( TNE PRECIPITATION AMOUNTS FOR THE INDICATED TIME INTERVALS MAY OCCUR AT ANY TINE DURING THE MONTH. THE TIME INDICATED IS THE ENDING TIRE OF THE INTERVAL. DATE AND TIME ARE NOT ENTERED rOR TRACE AMOUNTS. F7

OBSERVATIONS AT 3-HOtR IN] ( ( r;I dp i 11 - YI b.IKi E a.I OCT 19 01 10 2 0 SLI 54 56 S6100 11 4 04 10 3 0 122L S6 S6 516 00 16 6 07 10 4 04I 57 57 57 100 09 3 3010 15 5 7 40 59 so93 2111 13 3 UN.. 10 65 60 57 76 2215 161 0 30 IS 40 Ss S2 7524 12 1it10 30 15 94 S3 51 3321 9 2210 35 10 94 54 539622 6 OCT 20 1028315 53 52511 93 25 s 30 2515i 53151 50 to025 6 10 5 1 LT 511 1 51100 32 9 9 1215 50 49 46 9330 1! 10 12 15 511 49 47 64 30 1 10 115 isi0sSo 46446 43 15 9 17 20 46 47 45 69 30 10 10 i5 15 46 47 44 93 26 3 10 20 15;O 20 15 10 25 15 10 30 15 10 30 1 5 9 30 20 4 30 20 0 UWL 15 OCT 21 49 46 47 93 26 7 46 47 45 6t 24 5 47 44 44 69 14 3 s0 49 47 s0 1s64 52 50 46 64 20 4 53 s0 46 63 12 4 46 46 47 96 13 5 45 45 45 100 11 4 OCT 72 OCT 23 OCT 34 OlOg UYL 7 44 44 44 100 09 5 10 25 5 R. 50 50 0 300 13 7 UWL 15 41 39 37 64 25 10 04 101 7 41 I 47 471471100 091 4 101 25 5 IR. 47147 47 30013 0 6 0 UNI 1 5 34 35 34 93 2 3 6 0714610 41F 4 7 4 7 r 7 0 I 47 4 0 101471100 I6 r1 44 4 4 1200121 5 10 501 5 39 346 321 741462 10191 70 I 2I 52 9 1190193 1I4 10 G1 70 150 Sf 49 4 7 9 011 6 10 50 15 4 2 39 34 73251 11 131 9fw. 10J I 4 1 S17531 79 12j2 11 41 25S 2 0 I 01 47 432 7724 21432 1 0 50 15 45 41 341 71 241 11 14 5 UIL 101 99 5 6S4( 6 4 213j 31 31 231 10 1Rw 45 44 4 2 6 9126 1 17 1 0 30 15 4 5 4 0 341 446 249 19 0 51 5 I0 90 12 14 7J 23 10 4443416924 510 3010 4 1 367351 79261 2 2 7 SO0 7 5 51 S0 62 21 3UHLI 4 42 0 92 7 1 0 2 5 R 3 7 3 7 3 1 00 2 lr 9 OCT 2 5 OCT 24 OCT 27 011 2 0 7 9 a 373737100296 8 7 29S15 3 9 3 7 395 86435 5 oUNLi I 30 3 0 30 100 00 0 04 1 013 4 a 3 93 939 100 24 910 2 319 3 7 343469 34 3 7VUWL 0 127P 32 32 32100 09 5 07 10 13 5 f 36 36 36 100 2511.0215 3637349303 3 9 30 0 12 3434 34100095 13 720 20 44 4136474 3312629ZS20 42 41 396935 6 4 UNL12 53 464346922 12 144 2015 44 4136603114613015s 4239 39433 I3 oUL 20 5446 42 44 211 0 19 9 2019S 403036344433 7 2 15 37 343469 31 4 OWVN.20 44 41 36601234 224 219II 139 391 3869430 SOUR 20C 32 32 321200 19 1 41 O UNL1IS I 1 421 40 39 1 $612546 OCT 20 OCT 29 OCT 30 Ol 0 UXL 1s 401 39 33 93 211 3510 40 10 R 52 49 47 63 22 130 OWL 15 1 42 37 29 40 24 9 041 0. 1UHi 42142 41 9411114 7 40110 51 49446r31 24 6 OU WL S 42 37 291460246 0761 6 vNQ 44143 42 93 I 61 I 1 46 47 4S It1251 9 OWI LI 37 33 27146724 7 10 13010S12 S11 46 49 601171 69120115 I 514947864124 5001 VIC15 46 41 32 S4 29 6 13110 13015 49 49, 72120 12 3 UM 15 j 94147 721301 15 oUNL 20 55S46 35 47 24120 a lu it ICU A 56 I 4 9 4 2 lol Su a 4 20i 53 4 1 3 6 31 1 7 2 VWL 25 2 2 1 05 rlt2 l 191101220 1944441 S2U9.15 424409119 4 2 UNL 20 443162 341012020 9449424001 24 2 51 0 907 53644s2onl20 4 359 22 9 22 10 40 10 f S31 49 44 72 20 12 0 oWL 15 40 360 35 62 2 4 3 UN. 15 45 41 37 74 246 6 OCT 31 01 4UNL 1is 37 39 3361e231 4 04 0U ULIs 35 35330212241 4 07 SUNHLI 15 31 31 30 91001 0 10 7 U0. I 45 42 36 7412712 11 13930120 4644033411311 6 14 10 200120 44 36 30 59 I 19110 200325 393432 74 3 4 22 101 Il 19 391 341 311 730 4_ WEATHER CODES AND NOTES a TORNSADO sow IF ICE FOG &C FUNoIEL CL`OUD SW SHOW SSOVERS GY GROUND FOG 4W Wuh SPOU? SG 5NOW GRAINS SD SLOWING DUST T TEUU-IIDUSOR SP SNOW PELLETS S SLOWING SAND R RAIN) IC ICE CRYSTALS 3S SLOWING SNOW RV RAIN SHOWERS IP ICE PELLETS BY SLOWING SPRAY SR FRZING, RAIN IPW ICE PEEJXT SHOVERS K SNORE L DRIZZLE A RAIL B BASE IL FRUZ9ING DRIZZLE F FOG D DUST CEILING: MML INDICATES UUN.INITND WIND DIRMTIO6: DIrMeTIMONS ARE TBOSE FROM WHICH TUE WIND IS SLOWI=G. INDICATED IN TDIS OF DEGREES FROM TRUE NORTH: I.E. 09 FOR EAST. 16 FOR SOUTH, 27 FOR, WEST. AN DITRY OF 00 INDICATES CAIL. SPUD: TOE ODSERYND AVERAGE 013-MINUTE VALUE (NMI-JrOITS X 1.15). SUMMARY BY HOURS AVERAGES RZSULTANT wrWD To- I. D W VA VA 0 1 ~w U 01 5 29.240 44 43 41 91 4.5 20 1.1 04 4 29.240 43 42 40 92 4.5 19 0.4 07 7 29.250 43 41 40 92 7.0 12 0.9 10 7 29.240 49 44 43 el 10.2 22 1.6 13 4 29.240 93 46 43 71 12.3 25 4.2 14 4 29.220 52 46 43 70 12.7 26 3.6 19 4 29.230 47 44 42 63 6.3 16 0.6 22 41 29.240 45 431 421 90 1 7.6 15s 1.5 ( F8

Pit-b k^SE IU E. Ir -er ma,\i n r f ( RATIONAL CLIMATIC DATA CENTER ROOM 120 IS} PAnIO& AVEZnr ASIEVILLE, NORtB CAROLINA 2 101-S001 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE S300 FIRST CLASS POSTAGE AND FEES PAID NOAA PERMIT G-19 1 LCD-20-1 4847-EX 25439 UNIVERSITY OF MICHIGAN ATTN: ENGINEERING LIBRARY 30748 DOW BLDG ANN ARBOR MI 48109 aIS...lGiii..I,.111I...Ii. t.IlI - t r ( OCT 1994 14147 SAULT STE. MAIE, IK l,, - ~-'.&& - 3ke,.... HOURLY PRECIPITATION (WATER EOUIVALENT IN INCHES\ l A.M. HOUR ENDING AT P.M. HOUR ENDING AT 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 01 01 02 02 03 03 04 04 05 05 06 06 07 T 0.03 T 0.01 T 01 02 T T T 0.01 0.03 0.05 0.03 0.06 0.09 0.06 0.01 0.01 T T T 08 09 T 0.07 001 0001 0.03 0.01 0.01 T 0.01 0.02 T T 0.010.01 0. 0 0.02 T 0.01 T 0.01 0O 10 T 0.01 21 11 11 12 12 13 13 14 14 16 16 17 T T T T 0.01 0.01 T 0.07 0.0 0.01 0.01 T T 17 1 0.04 0.24 0.09 0.13 0.10 0.04 0.03 T 0.03 0.03 0.02 T T 0.01 T T T T 0.01 T 19 19 T 0.01 0.01 0.02 T T T T T T T T T 19 20 T T T 0.01 0.02 20 21 21 22 0.01 0.01 22 23 0.02 0.05 0.06 0.04 0.01 T T T 0.02 0.01 T T 23 24 T T 0.02 0.03 0.01 24 25 0.02 T 0.01 T T T T 0.01 0.11 0.02 0.01 T 0.01 0.01 T T 25 26 T T T T T 26 27 21 29 T T T T 29 29 0.01 0.01 T T 0.02 29 30 3C 31 31 5 L I I 5 6 7 B 9 D 1 2 3 6 5 6 7 B p D 1 2 3 4 5 6( 7 D I F9

APPENDIX G: DAILY WEATHER DATA: U.S. FISH AND WILDLIFE SERVICE (Note: Temperatures are given in OF Precipitation is given in inches) Gl

S'l~cLaLr C rwL' REFOD OF AIn An~' WAT TF1EAIUR1ES S-'A-I'ION: K - L~ I lu 4JF W)WI'II AIR WTERPN1) WATWATM RDARXcS DAX Law HE MEAN 12:00:00 ROo 4~:00 IMean LOW EIOH KEAN 5 6 I Itt IV 4~U -c 6 n6~q -P-...n..~ Z -. 0 ____ 0.0 JI- 4- 22- 47#S - __ 3qU 1"q. An,' t 'q z 10 So c /t,, AL 11.-r,4Jr 4j U7SQ 41 G2

RIJ0RD OF AIR ANiD WATER TZX@F6JRES STAZ=ON; N- i ") i p -(!I - --- - F TL 1 e; NORM 1. jt-iz r- 1. j 9 qk 4L I -- - I AIRWA __ PONT) WATE WATDR PJ*ARKS _____LOW MEAN12 00:00 Noo 4: 00 MJean LOW lH2JGH M - ncl-.7 4 17- 4q.. 3~ 4_ _ 3 4 1 3. - _ _ _ _ _.-7 0 ~~ I i i _ _ _ _ __4 _.0 Tt.34 Dqq qz-3 s 3 c / 5OK ___ ______, I '-II f DL 28 q9402 __ '1 J AlO4 - 4.41 IQ~t~D f * (P Y~o 05A G3

SZ&?ZDN PtCifu/ IlC, RzcozD OF A~ll AND) U&!ZR 4flRrAJAIURI s L N, iVP~ MVNMh >5F,:7. AIR ~ IA POND WATER _WATZRIDAS MAYI ~LowYcR MA 112: 00 LOW MON H=M1C4 AN RO ICH( KFAN 391 (~6/f~A Ur 4O IL( S! LL _ __ * 4 '-11 4' ___ qo ~ ~ C/~4 53 53 53 ~ __ 10 q i0 soLV~ FI7 ____ ___ C.a.. 5,Oehf~-1 I/ -___ ____ 13 53 SsC&s~ ___Ra ___ 351~ 7 c/~d A S-3* Si 5.3.5_ I0 6 56' 7 __5) q5 -45. - - -q iL ___To Sf S35 23. __ 25 R l) __ __ __ C. leIf53u 24 III I I PfC'i4?FA1%L II1 IJ'7 I Ifr2 r~1. rT 0 dI if II iU I 0 'ni mb- -. -- - 1 i 7- ,:- 1 a 1, -! =1 -':; - - i -, f -, f, " 1 1, :- I + -r+ -, =' - - i - - - ff 9 -, I!ft IF- a r 9 V-, -4 r4, I01 25 Iii L /t"- /i&3001 ]P IL JI?). I Y152IY-11 W-Si II k P I:. I.f ON ( AU711' 2- 14 j_-V 21 I T 142. ~ f LkIC.O IC' It 5' t m 'm I so IsckSO IZ 5 -C)-"T II I F r.PO A&P7 -13/ 44"Lq I KK m % a I a 295- 1 P.$__ 1.DI I I I NUIAL -CA.e~ II I r" Hi7a KIMALL. dc-'s 11 LA rdkiII-TT -1 Aq2.-7 I IIlia I I I ffi-apmor%-. ll:FJL-,r 0 1 J= -.- &V-.- qb JI - I G4

. - -. -W M Dft.x.) -- -. - Z.) -3 Z) -) r. L-) SATZON NDILL. nMIR 0F AIR AND WAWn TwflZATUflS.S CqEEKNH P___ _iOND WATm WAE it n&Rs Jay, ILOW HIGH MR" _ 12: 00 LWV KN HIGN KKAR LOW 1110 i -7 - __ = - - 0 75 m ___ 3Z 5"I g3. SWUJiAV 1,5 f' 50z: 4f 6 ~ ~'(l'Al 50o ____ c A-3 2. 5)., 19 J2 OQC. _ __ __ ___ 5.5 5 0 ____7____- a. -co- 49 ~ 263y~ _ L 6 _- Z__ ~. 19 27 63U/ /~P 20LL3f l 29 ~L ~i L~.J~LI 302O - ~. L o _ ~ S~7_ _ _ TOAL2TL2 COA ____ ~UA _______ G5

APPENDIX H: MICHIGAN DAILY PRECIPITATION MAPS H1

I 0* I~

"'~" j U 4 A *$-***- *.

.........~...... U -

* ***.* -. *. Ii * U - *iyc. * U A U *****'7'* U * A7' A '.7' L. *'7' 1* 7". 77' 7" "'*'*

........ im -t.l 4*1 Q~~ I ON~x

.....................*.. ,

*. \U w