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1 Introduction

The purpose of this final report is to summarize our accomplishments over the period May
93 to October 1996 for the investigation entitled “Retrieval of soil moisture and roughness
from the polarimetric radar response” supported by the Terrestrial Ecology Program of NASA
Headquarter. The main objective of this investigation was the characterization of soil moisture
using imaging radars. In order to accomplish this task, a number of intermediate steps had
to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of
electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing
of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly
influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil
moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces
was considered and a hybrid model that relates the radar backscattering coefficient to soil
moisture and surface roughness was developed. This model is based on extensive experimental
measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave
frequencies over a wide range of moisture conditions and roughness scales in conjunction with
existing theoretical surface scattering models in limiting cases (small perturbation, physical
optics, and geometrical optics models). Also a simple inversion algorithm capable of providing
accurate estimates of soil moisture content and surface rms height from single-frequency multi-
polarization radar observations was developed. The accuracy of the model and its inversion
algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil
surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized
phase difference into the model. Experimental data in conjunction with numerical simulations are
used to relate the soil moisture content and surface roughness to the phase difference statistics.
For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random
surfaces was developed. Finally the scattering problem of short vegetation cover above a rough
soil surface was considered. A general scattering model for grass-blades of arbitrary cross section
was developed and incorporated in a first order random media model. The vegetation model and
the bare-soil model are combined and the accuracy of the combined model is evaluated against
experimental observations from a wheat field over the entire growing season. A complete set of
ground-truth data and polarimetric backscatter data at L-, C-, and X-band over a wide range
of incidence angles were collected. Also an inversion algorithm for estimating soil moisture
and surface roughness from multi-polarized multi-frequency observations of vegetation-covered
ground is developed.

In what follows a summary of major accomplishments with pertinent references are provided.

2  Summary of Major Accomplishments

The following tasks were accomplished during the past year:



1. Development of a polarimetric calibration technique for distributed targets:

Quantitative analysis of the measured backscatter from rough surfaces required the use of
a very precise radar calibration procedure. Traditionally, calibration of distributed targets
is performed using calibration methods developed for point targets and using the illumi-
nation integral to calculate the backscattering coefficients. Using this method, possible
phase variations or antenna cross-talk variations (between orthogonal polarization chan-
nels) across the beam are totally ignored, which may compromise the calibration accuracy.
To rectify this deficiency of existing calibration techniques, a new technique was devel-
oped with which the radar polarization distortion matrix is characterized completely by
measuring the polarimetric response of a sphere over the entire mainlobe of the antenna,
rather than along only the boresight direction [1].

2. Development of a Semi-Empirical Scattering Model:

At microwave frequencies many natural surfaces do not fall into the validity regions of the
theoretical models, and even when they do, the results based on these models fail to agree
with the measurements. To circumvent this difficulty, we took a rather unique approach
to the problem. Using our calibrated polarimetric radar system, extensive backscatter
measurements covering a wide range of surface roughness and moisture conditions were
conducted. The statistical parameters of the surfaces were determined by a laser pro-
filometer and soil moisture was measured by taking samples and using dielectric probes.
Using the polarimetric data and the expected asymptotic behavior of backscattering co-
efficients in limiting cases, a semi-empirical model (SEM) was developed and its accuracy
was tested [2, 3, 18]. item Development of a fully polarimetric hybrid model for bare soil
surfaces:

The semi-empirical model for bare soil surfaces which was developed in the first phase
of this investigation was improved. The improved model is made fully polarimetric by
including the phase difference statistics [19, 20].

3. Development of a Level-1 SAR image classifier:

A radar image classifier was developed for the purpose of identifying statistically homoge-
neous distributed targets in the imaged scene. This task was important it bears directly
on to the soil-moisture estimation objective. Basically it is mandatory to identify the
cover class of a given pixel before any algorithm is applied to it. This classifier operates
on calibrated L- and C-band data and segments the image into four categories: (1) Bare
surfaces, (2) Short vegetation, (3) Tall vegetation, and (4) Urban. The accuracy of the
classifier was tested using independent images acquired in different seasons [4].

4. Development of a dielectric probe for measuring the soil moisture:
Traditionally coaxial probes have been used for measuring soil moisture in fields. These
probes are very sensitive to pressure and have a very small contact area. Accurate mea-
surement using these probes require a large number of sample measurements which is very
time consuming. To rectify this problem we designed and completed a prototype soil probe
based on microstrip resonators that is not only very accurate, but also very convenient to
use. With this new probe it is also possible to predict the soil type to some extent [5).



5. Development of in situ and in vivo vegetation dielectric measurement technique:
A waveguide technique for measuring the dielectric constant of vegetation needles was
developed. Basically the dielectric constant of the sample is calculated from the measured
reflection coefficient using a novel inversion algorithm based on an eigen-analysis of the
impedance matrix of the method of moments solution [6].

6. Development of bistatic scattering measurement facility:

In order to characterize soil moisture and roughness parameters of a surface covered with
randomly oriented particles (as in the vegetation case), the bistatic scattering character-
istics of the surface are required. The specular direction is the most important bistatic
direction in this type of problems because the mean-field (coherent scattering) is not zero.
For this purpose a fully polarimetric bistatic scattering system was designed and tested.
The Bistatic Facility is currently configured to perform bistatic measurements in the 8.5-10
GHz and 34-35 GHz frequency range [7, 8].

7. Development of scattering model for inhomogeneous rough surfaces:
One major problem with existing theoretical models for rough surfaces as applied to soil
surfaces is their inability to treat inhomogeneous dielectric profile. Recently we developed
a theoretical model that can take into account the effect of vertical inhomogeneity. For
the first time a complete second order fully polarimetric scattering model for stratified
rough surfaces with relatively small rms height. The model was experimentally verified
using careful controlled experiments [9, 21].

8. Development of a numerical technique for rough surfaces:
Numerical simulations are necessary to indicate the trend of the scattering behavior, par-
ticularly where theoretical solutions and/or controlled experimental data do not exit. In
specific three different approaches addressing different problems in numerical evaluation
scattering behavior of rough surfaces were considered:

e One problem in numerical computation of scattering from rough surfaces is related to
the fact that the scattering is usually computed from finite samples of rough surfaces.
In order to eliminate the edge effect of finite samples, the magnitude of the incident
wave is tapered. In these methods, the dimension of surface samples must be chosen
large enough so that the backscatter becomes independent of footprint size [22]. To
rectify this problem, we developed a novel numerical method that can be illuminated
by plane waves. To eliminate the effect of edges, tapered resistive sheets are used.
It is shown that the new method is numerically more efficient than the traditional
methods [12].

o The numerical techniques available in the literature are limited to perfectly conduct-
ing surfaces. However, the dielectric properties of soil surfaces are very much differ-
ent from those of perfect conductors. Due to moisture variations and inhomogeneity
among the constituent particles, the soil medium usually behaves as an inhomo-
geneous dielectric. The numerical simulation developed here has the capability of
handling inhomogeneous dielectric surfaces. This simulation was used to evaluate



the effect of moisture profile and correlation function on the backscatter data. It
was found that both the correlation function and the dielectric inhomogeneities play
a very important role [10, 11].

o One limitation of existing numerical methods is their lack of efficiency. To improve
the computation time wavelet basis function are used to produce spars impedance
matrices which are easily invertible [23, 24].

9. Retrieval of soil moisture form vegetation covered surfaces:
Under this task some basic studies were carried out. We developed forward scattering
models for characterizing the dependence of radar backscatter to soil moisture in the
presence of short vegetation. The following models were developed:

¢ Conducting of field measurements for surfaces covered with short vegetation:

A complete set of ground-truth data and polarimetric backscatter data were collected.
A wheat field was chosen as the test field and radar measurement was conducted
over the entire growing season. The backscatter data collected on the wheat field
was calibrated and processed completely. This data was collected in summer 1993
during the whole growing season (mid-April to mid-September) at 6 incidence angles
and 3 frequencies (L-, C-, and X-band). The experimental results show a significant
backscatter sensitivity to soil moisture for all three frequencies and under different
vegetation biomass conditions [15].

o Development of scattering model for grass blades:
A analytical scattering model for grass-blades of arbitrary cross section was devel-
oped. Closed form expressions for the polarizability tensor elements are derived.
This model is valid when the all cross section dimensions are small compared to the
wavelength [13].

o Generalization of Rayleigh-Gans model:
A theoretical scattering model for long, thin dielectric cylinders of arbitrary cross sec-
tion and electrical length was developed. This is an extension of our previous model
for electrically long cylinders. Using this solution we are able to model scattering
from grass blades of arbitrary cross section and curvature very accurately [14].

o Coherent Scattering Model for Short Vegetation :
A coherent scattering model with high fidelity was developed. In this model, the
effects of coherence among the scatterers as well as non-uniform illumination are
taken into account. The scattering formulation for the grass components accounts
for fine geometrical features of the grass blades such as curvature and cross section.

(16, 17]
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Measurement and Calibration of Differential
Mueller Matrix of Distributed
Targets

Kamal Sarabandi, Member, IEEE, Yisok Oh, Student Member, IEEE, and
Fawwaz T. Ulaby, Fellow, IEEE

Abstract—The recent interest in radar polarimetry has led to
the development of several calibration techniques to retrieve the
Mueller matrix of a distributed target from the multipolariza-
tion backscatter measurements recorded by a radar system.
Because a distributed target is regarded as a statistically uni-
form random medium, the measurements usually are conducted
for a large number of independent samples (usually spatially
independent locations), from which the appropriate statistics
characterizing the elements of the Mueller matrix can be de-
rived. Existing calibration methods rely on two major assump-
tions. The first is that the illuminated area of the distributed
target is regarded as a single equivalent point target located
along the antenna’s boresight direction, and that the statistics of
the scattering from all of the measured equivalent point targets
(representing the spatially independent samples observed by the
radar) are indeed the same as the actual scattering statistics of
the distributed target. The second assumption pertains to the
process by which the actual measurements made by the radar
for a given illuminated area are transformed into the scattering
matrix of that area. The process involves measuring the radar
response of a point calibration target of known scattering ma-
trix, located along the boresight direction of the antenna, and
then modifying the measured response by a constant, known as
the illumination integral, when observing the distributed target.
The illumination integral accounts for only magnitude varia-
tions of the illuminating fields. Thus, possible phase variations
or antenna crosstalk variations (between orthogonal polariza-
tion channels) across the beam are totally ignored, which may
compromise the calibration accuracy. To rectify this deficiency
of existing calibration techniques, a new technique is proposed
with which the radar polarization distortion matrix is character-
ized completely by measuring the polarimetric response of a
sphere over the entire main lobe of the antenna, rather than
along only the boresight direction. Additionally, the concept of a
“differential Mueller matrix” is introduced, and by defining and
using a correlation—calibration matrix derived from the mea-
sured radar distortion matrices, the differential Mueller matrix
is accurately calibrated. Comparison of data based on the previ-
ous and the new techniques shows significant improvement in
the measurement accuracy of the copolarized and cross-polarized
phase difference statistics.

I. INTRODUCTION

E literature contains a variety of different methods
for measuring the backscattering cross section of
point targets. In all cases, however, the calibration part of

Manuscript received February 6, 1992. This work was conducted under
ARO Contract DAAL 03-91-G0202 and JPL Contract JPL-C-958749.

The authors are with the Radiation Laboratory, Department of Elec-
trical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109.

IEEE Log Number 9204943,

the measurement process involves a comparison of the
measured radar response due to the unknown target with
the measured response due to a calibration target of
known radar cross section. Under ideal conditions, both
the unknown and calibration targets are placed along the
antenna boresight direction, thereby ensuring that both
targets are subjected to the same illumination by the
radar antenna. The situation is markedly different for
distributed targets; the unknown distributed target is illu-
minated by the full antenna beam, whereas the calibration
target—being of necessity a point target—is illuminated
by only a narrow segment of the beam centered around
the boresight direction. Consequently, both the magnitude
and phase variations across the antenna pattern become
part of the measurement process.

The magnitude variation usually is taken into account
through a calculation of the illumination integral [1]-[4],
but the phase variation has so far been ignored. The role
of this phase variation across the beam with regard to
polarimetric radar measurements and the means for tak-
ing it into account in the measurement process are the
subject of this paper.

Terrain surfaces, including vegetation-covered and
snow-covered ground, are treated as random media with
statistically uniform properties. In radar measurements,
the quantities of interest are the statistical properties of
the scattered field per unit area. One such quantity is the
scattering coefficient o °, which is defined in terms of the
second moment of the scattered field:

4mrt (|E°%)

o’ = lim lim C—

roo A= A |EY|

where E' and E°® are the incident and scattered fields, A
is the illuminated area, and r is the range between the
target area and the observation point. The above defini-
tion of o is based on the assumption that the target is
illuminated by a plane wave. Although in practice such a
condition cannot be absolutely satisfied, it can be approxi-
mately satisfied under certain circumstances. The correla-
tion length [ of a distributed target represents the dis-
tance over which two points are likely to be correlated,
implying that the currents induced at the two points due
to an incident wave will likely be correlated as well. Thus,
the correlation length may serve as the effective dimen-
sion of individual scatterers comprising the distributed
target. The plane-wave approximation may be considered

0018-926X /92803.00 © 1992 IEEE
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valid as long as the magnitude and phase variations of the
incident wave are very small across a distance of several
correlation lengths. In most practical situations, this “lo-
cal” plane-wave approximation is almost always satisfied.
When this is not the case, the measured radar response
will depend on both the illumination pattern and the
statistics of the distributed target [5], [6].

An implied assumption in the preceding discussion is
that the phase variation across the antenna beam is the
same for both the transmit and receive antennas. When
making polarimetric measurements with dual-polarized
transmit and receive antennas, the phase variation of the
transmit and receive patterns may be different, which may
lead to errors in the measurement of the scattering matrix
of the target, unless the variations are known for all of the
polarization combinations used in the measurement pro-
cess and they are properly accounted for in the calibration
process.

In this paper, we introduce a calibration procedure that
accounts for magnitude and phase imbalances and an-
tenna crosstalk across the entire main beam of the an-
tenna. By applying this procedure, we can make accurate
measurements of the differential Mueller matrix of a
distributed target using the local plane-wave approxima-
tion. The differential Mueller matrix can then be used to
compute the scattering coefficient for any desired combi-
nation of receive and transmit antenna polarizations, and
by employing a recently developed technique (7], the
statistics of the polarization phase differences can also be
obtained. By way of illustrating the utility of the proposed
measurement technique, we will compare the results of
backscatter measurements acquired by a polarimetric
scatterometer system for bare soil surfaces using the new
technique with those based on calibrating the system with
the traditional approach, which relies on measuring the
response due to a calibration target placed along only the
boresight direction of the antenna beam.

II. THEORY

Consider a planar distributed target illuminated by a
polarimetric radar system as shown in Fig. 1. Suppose the
distributed target is statistically homogeneous and the
antenna beam is narrow enough so that the backscatter-
ing statistics of the target can be assumed constant over
the illuminated area. Let us subdivide the illumination
area into a finite number of pixels, each including many
scatterers (or many correlation lengths), and denote the
scattering matrix of the ijth pixel by AS(x;, y;). The scat-
tering matrix of each pixel can be considered as a complex
random vector. If the radar system and its antenna are
ideal, the scattered field associated with the ijth pixel is
related to the incident field by

E] | etnn [AS,(x,5)

LJ K ASw(x03)  ASu(x.y) || E
(1)

where E, and E, are the components of the electric field
along two orthogonal directions in a plane perpendicular

Asuh(xiiyj) E,’;
r(x;, )
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Nluminated area

Fig. 1. Geometry of a radar system illuminating a homogeneous dis-
tributed target.

to the direction of propagation and K is a constant. In
reality, radar systems are not ideal in the sense that the
vertical and horizontal channels of the transmitter and
receiver are not identical, and the radar antenna intro-
duces some coupling between the vertical and horizontal
signals at both transmission and_reception. Consequently,
the measured scattering matrix U is related to the actual
scattering matrix of a point target S by [8]

e2ikor ——

0- Wt

(2

where R and T are known as the receive and transmit
distortion matrices. For small point targets where the
illumination pattern of the incident field can be approxi-
mated by a uniform plane wave, measurement of S is
rather straightforward, and in recent years, this problem
has been investigated thoroughly by many investigators
[9]-[11]. The distortion matrices are obtained by measur-
ing one or more targets of known scattering matrices, and
then by inverting (2), the scattering matrix of the un-
known target is obtained. In the case of distributed tar-
gets, however, distributed calibration targets do not exist.
Moreover, the distortion matrices and the distance to the
scattering points are all functions of position. That is, for
the ijth pixel, the measured differential scattering matrix
AU can be expressed by

r?

eZikO’(‘i'Yi)

AU = R(x,,,)

r*(x;, ;)
AS,(x;, )’j)
AS,.(x;, Yj) ASuu (x5 y))

The radar measures the sum of fields backscattered from
all pixels within the illuminated area coherently, i.e., -

AS,. (X, Y1) |=
Uh(xl y/) T(xi’yj)‘ (3)

e2ikor(xi,yi)_

ﬁ=;?pa;5ﬂ%nM§%mi%xlﬂ)

Thus, the measured scattering matrix is a linear function
of the random scattering matrices of the pixels. For uni-

form distributed targets, we are interested in deriving
information about the statistics of the differential scatter-
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ing matrix from statistics of the measured scattering ma-
trix U. One step in relating the desired quantities to the
measured ones is to perform a calibration procedure to
remove the distortions caused by the radar and the an-
tenna systems. The traditional approach used for calibrat-
ing polarimetric measurements of extended-area targets
relies on two approximations. First, it is assumed that for
each measured sample, the differential scattering matrix
of the illuminated area is equal to some equivalent scat-
tering matrix at boresight. Using this approximation, it is
hoped that the equivalent scattering matrix has the same
statistics as the original differential scattering matrix. This
approximation is purely heuristic and cannot be justified
mathematically. Second, the measured data for each sam-
ple are calibrated as if they were a point target, and the
result is modified by a constant known as the illumination
integral to account for the nonuniform illumination [3],
[4]; thus, the crosstalk variations away from the antenna’s
boresight direction over the illuminated area are ignored.
The illumination integral accounts for only magnitude
variations of the gain patterns of the transmitter and
receiver antennas, and no provision is made for account-
ing for any possible phase variations in the radiation
patterns.

In this paper, we attempt to derive the second moments
of the differential scattering matrix from the statistics of
the measured matrix without making any approximation
in the radar distortion matrices or using the equivalent
differential scattering matrix representation. In random
polarimetry, the scattering characteristics of a distributed
target usually are represented by its Mueller matrix, which
is the averaged Stokes matrix [4]. The Mueller matrix
contains the second moments of the scattering matrix
elements. By the central limit theorem, if the scatterers in
the illuminated area are numerous and are of the same
type, then the statistics describing the scattering are
Gaussian (Rayleigh statistics). In such cases, knowledge of
the Mueller matrix is sufficient to describe the scattering
statistics of the target [7].

In a manner analogous with the definition of the scat-
tering coefficient as the scattering cross section per unit
area, let us define the differential Mueller matrix M° as
the ratio of the Mueller matrix (AM) derived from the
differential scattering matrix (AS) to the differential area,
ie.,

HAM
sdm0AA
To compute the differential Mueller matrix, the ensemble
average of the cross products of the differential matrix
components is needed. Let us define

Mo

(S2X82,) (S¥S%> (S%S°) (82585

= (SpxS2.) (S,‘,’,",‘S,,,,) (SPrSpy  (SpxSp.)
T (SgEsey  (Sgrsey  (Sgrse)  (Serse)
(So*Sey (8o °h> (oS y  (S°*Se,)

5)
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where
lim ——<AS;" AS. .
AA-0O AA

In terms of the correlation matrix V=V°, the differential
Mueller matrix can be computed from

<Sotso> =

pq st

M° = 4myWoy! (6)
where [4]
1 0 0 O
= 01 0 O
00 1 1)
0 0 —i i

In order to calibrate a radar system so as to measure
the differential Mueller matrix, let us represent each
2 X 2 matrix in (4) by a corresponding four-component
vector, in which case (4) simplifies to

z‘ko'(x. }'/)

= x;, ¥;) AP (x;, y; 7
ZE 2(x”y)) y]) ( y]) ( )
where
U, Asw(xi’yj)
— U.,;. Asvh(xi:}'j)
Y= Y
Uhv ’ (xny]) Ashv(xi’yj) (8)
U AS(%:r )
Rw(xi’yj) Tw(xi’Yj)
— th(xi’yj) - T;:h(xi’yj)
H(x;,y;) = y T(x,y;) =
( yj) th(xi’yj) ( yj) Thv(xiv)’j)
th(xiryi) Tin(xi5 ;)
and it can be easily shown that
R,T, R.T, RuT, R,T,
= RwThv RwThh th Thu RuhThh
DG =\ RyT, RuTw RuTo RuTw| ©
RhuThv thThh thThv thThh

The mth component of the measured target vector (%,,)
defined by (8) can be obtained from (7), and is given by

2|kor(x ¥
% = E E

Thus, the averagcd cross products of these components
are

2(x',yl Z l(xi’yj)A‘Z(xi’yj) .

2|k°[r(x,», )=

(%, 2/*)-2222; e

r(x;, y;)]

o YT(x yy)

T o

I=1p=1
(A‘Z(xi, y,')A.?’;(x,.., yj’)) .

it ( Xis yj)D:p(xi” ¥i)

(10)
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If the number of scatterers in each pixel is assumed to be
large, or the correlation length of the surface is much
smaller than the pixel dimensions, then

(AS(x,,9) A5 (%, 3,))
0, i#iandj#j
T (A, i=itand =)
It should be mentioned here again that the target is
assumed to be statistically homogeneous, and the antenna
beam is assumed to have a narrow beam. Hence, (%)

is not a function of position within the illuminated area
In the limit as A A approaches zero, (10) takes the follow-

Vo

@z ¥ ¥ T Dni(%:)
‘DIp(x,y)dxdyJM"x"*). (11)

=] p=1

Equation (11) is valid for all combinations of m and n
and, therefore, it constitutes 16 equations for the 16
correlation unknowns. Let us denote the measured corre-
lations by a 16-component vector %, and the actual corre-
lations by another 16-component vector 2 so that

Z=(FS*),  i=4l-1)+p
% =%,

In this form, (11) reduces to the following matrix equa-
tion:

j=4(m-=1) +n.

;?7= (12)

where the ij element of B is given by

”=//Ar4(

and, as before,
i=4(l-1) +p,

Once the elements of the correlation calibration matrix B
are found from (13), (12) can be inverted to obtain the
correlation vector 2. The elements of the correlation
vector are not arbitrary complex numbers; for example, 2,
and 2 are complex conjugate of each other and 2, is a
real number; thus, these relationships can be used as a
criterion for calibration accuracy. The differential Mueller
matrix can be obtained from the correlation matrix W°
whose entries in terms of the vector 2 are given by

mI(‘x y) p(x y) dXdy (13)

j=4(m-1) +n.

5[ K H %

o - 2y 2 2 s
& K[ 24 2

2 2. 20 &

Evaluation of the elements of B requires knowledge of
the radar distortion matrices over the main lobe of the

antenna system. The distortion matrices of the radar can
be found by applying the calibration method presented in
the next section.

III. CALIBRATION PROCEDURE

As was shown in the previous section, the correlation
vector 2 can be obtained if the calibration matrix D(x, y)
given by (9) is known. A simplified block diagram of a
radar system is shown in Fig. 2. The quantities 7,,7,,7,, 7,
represent fluctuating factors of the channel imbalances
caused by the active devices in the radar system. Without
loss of generality, it is assumed that the nominal value of
these factors is one, and their rate of change determines
how often the radar must be calibrated. The antenna
system also causes some channel distortion due to varia-
tions in the antenna pattern and path length differences.
The crosstalk contamination occurs in the antenna struc-
ture, which is also a function of the direction of radiation.
It has been shown that the antenna system, together with
two orthogonal directions in a plane perpendicular to the
direction of propagation, can be represented as a four-port
passive network [8]. Using the reciprocity properties of
passive networks, the distortion matrices of the antenna
system were shown to be [8]

Z(9,€)
R C(w. €)
’[0 mwa“awa 1]‘”
= o[ 1 cwouws o
ﬂ““"kwx> 1 ” 0 qwa

(15)

where ¢, ¢ are some coordinate angles defined with re-
spect to the boresnght direction of propagation. The quan-
tity C(y, £) is the antenna crosstalk factor and
r (¥, €),r,(y, £),1,(¢, £),4,(y, £) are the channel imbal-
ances caused by the antenna system. These quantities are
not subject to change due 1o variations in active devices,
and once they are determined, they can be used repeat-
edly.

In order to find the radar distortion parameters at a
given point (x, y) on the surface, we first need to specify a
convenient coordinate system with respect to the antenna’s
boresight direction so that the distortions become inde-
pendent of incidence angle and range to the target. The
azimuth-over-elevation coordinate angles (i, ¢) provide a
coordinate system that is appropriate for antenna pattern
measurements. The angle ¢ specifies the elevation angle
and ¢ specifies the azimuth angle in a plane with eleva-
tion £, as shown in Fig. 3. The mapping from (y, ¢)
coordinates to (x, y) coordinates can be obtained by con-
sidering a radar at height h with incidence angle 6, and
the boresight direction in the y-z plane, as shown in Fig.
4. It is easy to show that constant-¢ curves on the surface
of a sphere map to constant-y lines and constant-i curves
map to hyperbolic curves. The mapping functions are
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V-Transmitter Circulator
[ 1 N\ ty (v2)
O Lt I &, V0.
H-Transminer Girculaxor direction (vA)
O [ T ] M) Thiv.
Lth S 3 thovd)

V-Receiver
H-Receiver
Fig. 2. Simplified block diagram of a polarimetric radar system.

Fig. 3. Azimuth-over-clevation coordinate system (¢, £) specifying a
point on the surface of a sphere.

fig, 4. Geoinetry of a radar above z-y plane and ti'ainsfofma‘tion”c'bf
azimuth-over-clevation coordinate to Cartesian coordinate.

given by
B .h tan ¢
~ cos( + £)

y =htan§(bo‘+.§) .

where ¢ = £ = 0 represents the boresight direction.

The entries of the calibration matrix D(y, £) as defined
by (9) should be obtained through a calibration proce-
dure. Following the single-target calibration technique
given in [8), a single sphere is sufficient to determine the
channel imbalances as well as the antenna crosstalk factor

for a given direction. Hence, by placing a sphere with
radar cross section o’ at a distance r, and a direction (¢,
&) with respect to the radar, the receive and transmit
distortion parameters can be obtained as follows:

Un
(1+C?)o'/4m

R, T, =rie 2k

L& 7
A R, (1+C)U
T,, 1+ C? I
T, ¢ U
1 .
c=¢—a(1-¢1—a) (16)
where
-~ s s
; - a vhYhv
U Ui

and U° is the measured (uncalibrated) response of the
sphere at a spec1ﬁc direction (¢, £). In terms of the
known quantities given by (16) the calibratlon matrix D
can be written as

1 Ca C Cza
C .c? "Ca
B(.£) =Ralul 0 Clap " p. Cap| (7

ke CZB Cap c/s af

"

where the dependences on cp and f of all parametcrs is
undcrstood

- In practice, it is unposs1ble to measure the sphere for
all values of ¢ and ¢ within the desired domain; however
by discretizing the domain of ¢y and :¢ (main lobe) intc
sufficiently :small subdomains * over--which the-antennz
characteristics are almost constant, the mtegral given by
(13) can be evaluated with good accuracy.

Polarimetric measurement of a sphere over the entire
range of ¢ and¢ is very time consuming, and under fielc
conditions, performing these measurements seems impos
sible. However, this measurement can be performed in ar
anechoic chamber with the desired resolution Ay and A.
only once, and then under field conditions, we need tc
measure the sphere response only at boresight to keej
track of variations in the active devices.:Without loss o
generality, let us assume that 7, =7, =%, =1, = 1 for th
sphere measurements when performed in the anechoi
chamber, and that these quantities can assume othe
values for the measurements made under field conditions
If the measured distortion parameters at boresight (fiels
condition) are denoted by prime and calculated from (16,
then the channel imbalances corresponding to the fiel
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Fig. 5. Polarimetric response of a metallic sphere over the entire mainlobe of X-band scatterometer; normalized o, (a)
corresponds to G2 and normalized o;,, (b) corresponds to G,G,; phase difference between copolarized (c) and cross-polarized
(d) components of the sphere response correspond to phase variation of the co- and cross-polarized patterns of the antenna.

measurements are

]

" (5:1)2 ~2ikgtry-rey (% 0) T (0, 0)
L R,(0,0),T,,(0,0)
Ti4(00) T,,(0,0) »
T,(00) T,,(0,0)

Ri4(0,0) R,,(0,0)

7, Ru(0,0) Ru(0,0)°

Now, the calibration matrix at any direction (3’(!#, £))
can be obtained from (17) by replacing R, T,,, a, and B

\la‘_'h ‘:"l]:_ 1

(18)

by R, T,, ', and B’ where
R,T,=71R,T,
’ i'h
=
tl}
’ ;h
B’ = ’r:B- (19)

Having found the calibration matrices for all subdo-
mains, the element ij of the correlation—calibration ma-

trix (B), as given by (13), in the azimuth-over-elevation
coordinate system takes the following form:

by = [ | Dail#, ) D3(4, )

cos? ¥ cos (0, + £)
. —

dydé (20)

where () is the solid angle subtented by the illuminated
area (main lobe of the antenna).

IV. EXPERIMENTAL PROCEDURE AND COMPARISON

To demonstrate the performance of the new calibration
technique, the polarimetric response of a random rough
surface was measured by a truck-mounted L-, C-, and
X-band polarimetric scatterometer with center frequen-
cies at 1.25, 5.3, and 9.5 GHz. Prior to these measure-
ments, each scatterometer was calibrated in an anechoic
chamber. The scatterometer was mounted on an
azimuth-over-elevation positioner at one end of the cham-
ber, and a 36 cm metallic sphere was positioned at the
antenna boresight at a distance of 12 m. Then the polari-
metric response of the sphere was measured over the
mainlobe of the antenna. The sphere measurements at
L-band, which has the widest beam of the three systems,
was performed over (¢, ¢) € [—21°, +21°] in steps of 3°,
and the ranges of (¢, £) for C- and X-band were +10.5°
and +7° with steps of 1.5° and 1°, respectively. To im-
prove the signal-to-noise ratio by removing the back-
ground contribution, the chamber in the absence of the
sphere was also measured for all values of ¢ and &.

Fig. 5(a) and (b) shows the co- and cross-polarized
responses of the sphere at X-band, and Fig. 5(c) and (d)
shows the co- and cross-polarized phase differences (¢,
— s Oy — ). Similar patterns were obtained for
the L- and C-band. Using the sphere responses, the
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bare soil surface. (a), (b), and (c) show the difference in the co- and cross-polarized backscattering coefficients, and (d)
demonstrates the enhancement in the ratio of the cross-polarized backsmttenng ooefﬁaents obtamed by the mew method.

correlation-¢alibration matrices were determined as out-
lined in the previous section.

To evaluate the improvement provided by the new
calibration technique, we shall compare results of polari-
metric observations of a bare soil surface processed using
the new technique with those obtained previously on the
basis of the boresight-only calibration technique. The data
were acquired from a truck-mounted 17-m-high platform
for a rough surface with a measured rms height of 0.56 cm
and 'a correlation length of 8 cm. The - polarimetric
backscatter ‘response was measured as a function of inci-
dence angle over.the range 20°-70°. To reduce the effect
of speckle on the measured data, 100 spatially independ-
ent samples were measured at each frequency and inci-
dence 'angle. Also, the response of the sphere at the
boresight 'was measured- to account for.-any possible
changes in the active devices. The collected backscatter
data were -calibrated by the new and old methods. The
first test of accuracy of the new calibration algorithm was
to make sure that the components of the correlation
vector Z satisfy their mutual relationships, as explained in
Section II. For all cases, these relationships were found to
be valid within +0.05%.

The second step in the evaluation process is the relative
comparison of the -backscattering coefficients and phase

SR
i 1," e : by v ,:1 ECAET0 8 CA N
. G b

statistics denvcd from the two techmques s Fig * 6(a)}~(c)
shows the co- and cross-polanzed backscattermg -coeffi-
cients as a- functlon of incidence angle, calibrated by the
old and the new methods. The differences in- backscatter
ing coefficients, as shown in these figures, are less than
0.75 dB. It was’ found that the difference in backsmttenng
coefficients is less ‘than 1 dB for all- frequencnes -anc
incidence angles Although 1'dB error in” ¢° may’ seexr
negligible, in some cases, such as the variation with soi
moisture content for which the total dynamic range of o
is about 5 dB, the 1 dB error becomes significant. Fig. 6(d
shows the ratio of two cross-polarized scattering ‘coeffi
cients after calibration by each of the two methods. Theo
retically, this ratio must be one and independent of inci
dence angle. In this figure, it is shown that the nev
calibration method more closely agrees with’ theoretm
expectatlons than the old method.

The third step involves a comparison of the phas
difference statistics of the distributed target. It has bee:
shown that when the dimensions of the antenna footprin
are much larger than the correlation length, the probabil
ity density function (pdf) of the phase differences can b
expressed in terms of two parameters: the degree ¢
correlation () and the polarized phase difference ({) [7
The degree of correlation is a measure of the width of th
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pdf, and the polarized phase difference represents the
phase difference at which the pdf is maximum. These
parameters can be computed directly from the compo-
nents of the Mueller matrix and are given by {7]

l (A3 '*‘-lu)z + (A4, ‘-’43)2
2 Ay Ay

Ay — A
My + My |

a=

£=tan“(

Parameter a varies from zero to one, where zero corre-
sponds to a uniform distribution and one corresponds to a
delta-function distribution (fully polarized wave). Parame-
ter { varies between —180° and 180°.

Fig. 7(a)—(c) shows the degree of correlation calculated
by the new and old methods for the copolarized phase
difference (¢, — 4,,) at the L-, C-, and X-band, respec-
tively. There is a significant difference between the two
methods in all cases. The partially polarized backscattered
Stokes vector obtained by the old calibration method
appears more unpolarized than the Stokes vector ob-
tained by the new method. The virtue of this result can be
checked in the limiting case if an analytical solution is
available. A first-order solution of the small perturbation
method for slightly rough surfaces shows that the
backscatter signal is fully polarized, and therefore, the pdf
of the copolarized phase difference is a delta function,
corresponding to a = 1. The roughness parameters of the
surface under investigation falls within the validity region
of the small perturbation method at L-band. The value of
a at L-band derived from the new calibration method is
in much closer agreement with theoretical expectations
than the value obtained by, the old method. Fig. 8(a)—(c)
shows plots of the copolarized phase difference at the L-,
C-,.and X-band, respectively. At the L- and X-bands, the
‘valuc of .{ obtained by the two methods are positive and
not very different from each other. Also, it noted that ¢
has a positive slope with incidence angle. However, this is
not the.case for the C-band; the value of { obtained by
the old method is negative, has a negative slope, while the
behavior of { obtained by the new method is very similar
to that at the other two frequencies. This deviation is due
to the large variation of phase difference between the V-
and H-channels of the C-band radar over the illumination
area, and since the old method does not account for phase
variations, it is incapable of correcting the resulting er-
rors. Similar results were observed for the statistics of the
cross-polarized phase difference (¢,, — @,,).

V. CONCLUSIONS

A rigorous method is presented for calibrating polari-
metric backscatter measurements of distributed targets.
By characterizing the radar distortions over the entire
mainlobe of the antenna, the differential Mueller matrix
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Fig. 7. Degree of correlation for copolarized components of the scatter-

ing matrix for the L-band (a), C-band (b) and x-bind (c)
is derived from the measured scattering matrices with a
high degree of accuracy. It is shown that the radar distor-
tions can be determined by measuring:the. polarimetric
response of a metallic sphere over- the main Jobe of the
antenna. The radar distortions. are categorized .into two
groups, namely, distortions caused by the active devices,
and ‘distortions caused by the antennastructure (passive).
Since passive distortions are :immune ‘to changes once
they are determined, they can be used repeatedly. The
active distortions can be obtained by measuring the sphere
response only at boresight, ‘thereby reducing the time
required for calibratiori under field conditions. The cali-
bration algorithm was appheduto=backscatter data - col-
lected ‘from a rough surface+by -L-; C-, and X-band

scatterometers. Comparison of results obtained with the

new algorithm with the results detived from the old cali-
bration method show that ‘tHe discrepancy between the
two methods is less 1 dB for the backscattering coeffi-
cients. The discrepancy, however, is ‘more drastic for the
phase-difference statistics, iridicating that removal of the
radar distortions from the cross products of the scattering
matrix elements (differential Mueller ‘matrix elements)
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Fig. 8. Polarized phase difference for copolarized components of the
scattering matrix for the L-band (a), C-band (b), and X-band (c).

cannot be accomplished with the traditional calibration
methods.
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An Empirical Model and an Inversion Technique
for Radar Scattering from Bare Soil Surfaces

Yisok Oh. Kamal Sarabandi. Member. IEEE. and Fawwaz T. Ulaby. Fellow, IEEE

Abstract— Polarimetric radar measurements were conducted
for bare soil surfaces under a variety of roughness and moisture
conditions at [-, -, and X-band frequencies at incidence angles
ranging from 10" to 70°. Using a laser profiler and dielec-
tric probes, a complete and accurate set of ground truth data
were collected for each surface condition, from which accurate
measurements were made of the rms height, correlation length,
and dielectric constant. Based on knowledge of the scattering
behavior in limiting cases and the experimental observations, an
empirical model was developed for .0, and o in terms
of ks (where & = 2z/) is the wave number and ~ is the rms
height) and the relative dielectric constant of the soil surface.
The model, which was found to vield very good agreement
with the backscattering measurements of this study as well as
with measurements reported in other investigations, was used to
develop an inversion technique for predicting the rms height of
the surface and its moisture content from multipolarized radar
observations.

I. INTRODUCTION

Investigation of the radar backscattering response of natural
surfaces is an important problem in remote sensing because
of its potential in retrieving the desired physical parameters
of the surface, namely, its soil moisture content and surface
roughness. Although the problem of electromagnetic wave
scattering from random surfaces has been investigated for
many years, because of its complexity theoretical solutions
exist only for limiting cases. When the surface profile deviates
only slightly from that of a smooth surface, perturbation
solutions can be used. In the classic treatment of the small
perturbation method (SPM) [1], [2] it is required that the
rms height be much smaller than the wavelength and the rms
slope be on the same order of magnitude as the wavenumber
times the rms height. Recently, a perturbation method based on
perturbation expansion of the phase of the surface field (PPM)
was developed which extends the region of validity of SPM to
higher values of the rms height s, provided the slope remains
relatively small [3]. The other limiting case is when surface
irregularities are large compared to the wavelength, which
is equivalent to having a large radius of curvature at each
point on the surface. In this limit, the Kirchhoff approximation
(KA) is applicable [4], [5]. Various types of modifications and
improvements to this model can be found in the literature. In
these papers, the effects of shadowing and multiple scattering
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are discussed. which basically extend the region of vahdity of
the KA solution. but by onlv a limited extent [6]. Combined
solutions of KA and SPM. which are applicable for composite
surfaces. have basically the same regions of validity as the
individual models (7).

At microwave frequencies many natural surfaces do not fall
into the validity regions of the theoretical models. and even
when thev do. the available models fail to provide results in
good agreement with experimental observations. This assertion
will be demonstrated by the results of the present study. The
major goal of this investigation is to determine the dependence
of the radar backscatter on the roughness parameters and
soil moisture content of natural surfaces through extensive
backscatter measurements for a variety of moisture and rough-
ness conditions, over a wide range of incidence angles and
frequencies. Once the dependence of the radar backscatter on
these parameters has been established, an empirical model can
be used to retrieve the surface roughness and soil moisture
content from measured radar data.

The radar measurements reported in this study were ob-
tained by a truck-mounted network-analyzer-based scatterom-
eter (LCX POLARSCAT) [8]. The data were recorded in a
fully polarimetric format at L-, C-, and X-band frequencies
at incidence angles ranging from 10° to 70°. An empirical
model was formulated using the magnitudes of the measured
data, and another data set was used to verify the model
performance. Excellent qualitative and reasonable quantitative
agreements were obtained. The polarimetric measurements
included recordings of the phase statistics of the backscattered
signal, but these will not be discussed in this paper as they are
the subject of a separate report.

II. EXPERIMENTAL PROCEDURE

Fig. 1 shows a diagram of the scatterometer system and
drawings of the laser profiler and dielectric probe. A brief
description of each follows.

A. Scatterometer

The University of Michigan’s LCX POLASCAT (8] was
designed with the capability to measure the scattering matrix
of point or distributed targets at L-, C- and X-band (with
center frequencies at 1.25, 4.75, and 9.5 GHz, respectively).
The scatterometer consists of an automatic vector network
analyzer (HP 8753A), a computer unit, a disk drive for data
storage, an amplifying and pulsing circuitry for hardware
range gating, a relay actuator, and L-, C-, and X-band RF

0196-2892/92$03.00 © 1992 IEEE
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TABLE |
POLARIMETRIC SCATTEROMETER (POLARSCAT) CHARACTERISTION
L C X

Center Frequency 1.50 GHz 4.75 GHe 9.50 GHz
Frequency 0.3 GHz 0.5 GHz 0.5 GHz
Bandwidth
Antenna Type Dual Polarized Pyramidal Horn
Antenna Gain 22.1dB 253 dB 295 dB
Antenna Beamwidth | 12.0° 8.0° 54°
Far Field (2d*/\) 85m 58m 10.5m
Platform Height 18§ m 18 m 18m
Cross-pol Isolationt | 45 dB 45 dB 45 dB
Calibration Accuracy | =0.3 dB +0.3dB =03 dB
Measurement 0.4 dB =0.4 dB +0.4 dB
Precision (N > 100)
Phase Accuracyt +3° =3° +3°

tAfter polarimetric calibration using STCT [9].

Platform on the Top
of the Truck Boom

@ '

Dielectnc Probe
| ] Reflectometer
| Network | | Assembly
\ Analyzer | | (C)
- ————- - 4 Signal Processing
and Computcr
ssembly
Laser Source
(b)
Control
Unmit
Laptop
Computer
Fig. 1. Experimental system: (a) Scatterometer block diagram. (b) Laser

profile meter. (c) Dielectric probe.

circuits and antennas, as shown in Fig. 1. The antennas
are dual-polarized with orthogonal mode transducers (OMT)
used for simultaneous transmission of a V-polarized signal
and reception of both the V- and H- components of the
backscattered signal. The process is then repeated for an H-
polarized transmitted signal.

A computer is used to control the network analyzer (through
an HP-IB interface bus) to acquire the desired data auto-
matically. The computer also controls a relay actuator which
energizes the desired frequency and polarization switches.
Table I contains a list of the basic characteristics of the scat-
terometers, including specifications of the center frequencies,
bandwidths, antenna characteristics, and overall performance.

To achieve good statistical representation of the measured
backscatter for distributed targets, a large number of spatially
independent samples are required. In this experiment 90 and
60 independent samples were taken at incidence angles of 10°,
20°, 30° and 40°, 50°, 60°, 70°, respectively. To achieve
good range resolution, and also to increase the number of
independent samples, the measurements were performed over
bandwidths of 0.3 GHz for L-band and 0.5 GHz for C-
and X-band. By treating the backscattering coefficient as

constant over the mentioned bandwidths, the total number
of independent samples represented by each measurement of
the scattering coefficient ¢°, including those achieved through
frequency averaging, exceeds 1000 at most incidence angles.

In addition to the soil backscatter data, the noise background
level was measured by pointing the antennas toward the
sky. The noise background level was subtracted from the
soil backscatter data coherently to improve the signal to
noise ratio. The polarimetric response of a conducting sphere
was measured to achieve absolute calibration of the radar
system [9]. To minimize the time elapsed between the four
polarization measurements comprising a single polarimetric
data set, the soil backscatter data were collected in a raw-data
format. The radar data was then postprocessed to separate the
unwanted short-range returns from the target return using the
time domain gating capability. The gated target response was
then calibrated using the sphere data.

B. Laser Profile Meter

The height profiles of the soil surfaces were measured by
a laser profile meter mounted on an XY-table, as shown in
Fig. 1. The laser profiler, which is driven by a stepper motor,
can measure a surface profile with 1 mm horizontal resolution
and 2 mm vertical accuracy. A iaptop computer is connected
to the stepper-motor controllers to vosition the laser distance
meter with the desired steps in the X and Y directions. The
heights measured by the laser profiler are also collected and
stored by the same computer. A minimum of ten 1-m profiles
were collected for each surface with steps of 0.25 cm in the
horizontal direction. In addition to the surface profiles acquired
by the laser profiler, two 3-m profiles were collected using
chart paper and spray paint to monitor large scale roughness
variations. The radar measurements were conducted for four
surface-roughness conditions, covering the range from 0.32
cm to 3.02 cm in rms height (Table II).

C. Dielectric Probe

The dielectric constant of the soil surface was measured by a
C-band field-portable dielectric probe [10]. The probe consists
of a reflectometer assembly with a coaxial probe tip and a
signal processing assembly with a calculator. The dielectric
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TABLE I
SUMMARY OF ROUGHNESS PARAMETERS
Surtace s (cm) !/ (cm) 11 FreqiGHz) A 1%
1.50 013 26 L!
S-1 0.40 84 0.(48% 4.7 0.40 54 Cl
9.50 0.80 167 X1
1.50 0.10 31 2
S-2 0.32 9.9 0.032+ 75 032 9.8 Q2
9.50 0.64 19.7 N2
1.50 035 26 L3
S-3 1.12 8.4 0.133+ 4.75 1.11 8.4 C3
9.50 223 16.7 X3
1.50 0.95 2.8 L4
S-4 3.02 8.8 0.485% 475 3.00 8.8 C4
9.50 6.01 17.5 X4
» = rms height
{ = correlation length
m = rms slope
h=2z/A
tm = /I assuming exponential autocorrelation function
tm = /25 /1 assuming Gaussian autocorrelation function
TABLE Il

SUMMARY OF SoiL MOISTURE AND DIELECTRIC DATA

Surface Measured ¢, (4.8 GHz) Estimated m, calculated (¢,, €,) for (0-4 cm) layer

Number Top Soil 4 cmdepth  Top 4 cm 1.5 GHz 4.75 GHz 9.5 GHz
1 -wet 14.15 16.74 0.29 0.33 15.57,3.71 1542, 2.15 1231, 3.55
1 -dry 6.58 11.05 0.14 0.24 7.99, 2.02 8.77, 1.04 5.70, 1.32
2 -wet 14.66 14.30 0.30 0.29 14.43,347  1447,1.99 12.64, 3.69
2 -dry 487 8.50 0.09 0.19 5.85, 1.46 6.66, 0.68 4.26,0.76
3 -wet 15.20 15.10 0.31 0.31 15.34,3.66  15.23,2.12 13.14, 3.85
3 -dry 7.04 10.02 0.15 0.22 7.70, 1.95 8.50, 1.00 6.07, 1.46
4 -wet 8.80 10.57 0.19 0.23 892,224 9.64, 1.19 7.57,1.99
4 -dry 7.28 8.84 0.16 0.19 7.23, 1.83 8.04, 0.92 6.28, 1.53

constant was measured at the soil surface and at a depth of
4 cm at each of more than 50 locations randomly chosen
over each surface. The relative dielectric constant (e,) was
used to estimate the moisture contents (m,) by inverting a
semiempirical model [11] which gives ¢, in terms of m,. The
real part of ¢, was used in the dielectric-to-moisture inversion
because the error in measuring the imaginary part of ¢, by the
dielectric probe is relatively higher [12]. The mean value of
m, was then used in the same semiempirical model to obtain
an estimate for ¢, at L-, C-, and X-band. Table III gives the
measured values of ¢, at 4.8 GHz and the estimated values of
m,, for the top surface and 4-cm deep layers, from which the
0—4 cm average dielectric constant was calculated at L-, C-,
and X-band. Soil density was determined from soil samples
with known volume.

III. EXPERIMENTAL OBSERVATIONS AND
COMPARISON WITH CLASSICAL SOLUTIONS

In this section we present samples of the measured radar
data to illustrate the spectral, angular, and polarization be-
havior of rough surface scattering. Next, for surfaces whose
statistical roughness parameters fall within the region of va-
lidity of theoretical models, we will compare the experimental
observations with theoretical predictions.

A. Experimental Observations

Four different fields (S1, S2, S3, and S4) were examined in
this study. Each was measured under two different moisture
conditions, relatively wet and relatively dry. The roughness
parameters of the surfaces, such as the rms height s, autocor-
relation function p(§), correlation length I, and rms slope m,
were calculated from the measured surface height profiles and
are given in Table II.

Based on an analysis of the surface-height distributions, we
concluded that the surface-height deviation is approximately
Gaussian for all four surfaces, with a probability density
function given by

0 = o2

2s _2_32

1)

For the first three surfaces, the measured autocorrelation
function p(€) was found to be closer in shape to an exponential
function of the form

p(€) = exp[- [ €| /4] )
than to the Gaussian function
p(€) = exp[-£/£2). ©)

The Gaussian form provided a better fit for the roughest field,
S4. This is illustrated in Fig. 2 for fields S1 and S4. The



EMPIRICAL MODEL AND INVERSION TECHNIOUE

M oeral

Autocorrelanon tupgien

0 S 10 1$ 20 25, 30

(a)

1.00 T T T T T
- v Measured
s M\
e 07 Lo Gaussian
c M\
£ M\ - = ~ Exponen
v A\
€ osof Y 1
-— A\
g . I =88em
E 025t N R
v ~
E ..
° == = - -
TN SR S
3
< \

-0.25 . - - A

0 S 10. 15 20. 25 30

Displacement, & (cm)
(b)

Fig. 2. Comparison of the measured autocorrelation functions with the Gaus-
sian and exponential functions for surfaces (a) S1 and (b) S4.

surface rms slope can be calculated from m = s./| p”(0) |,
where p"(0) is the second derivative of p(£) evaluated at
¢ = 0, which yields m = s/l for the exponential function
and m = /2s/! for the Gaussian function.

Among the four surfaces, surface S2 is the smoothest
(s = 0.32 cm), surface S1 (s = 0.4 cm) is slightly rougher,
surface 83 (s = 1.12 cm) represents an intermediate-roughness
condition, and surface S4 (s = 3.02 cm) is a very rough
surface that was generated by ploughing the top 15-cm surface
layer. Electromagnetically, these surfaces cover a wide range
of roughness conditions (Table II), extending from ks = 0.1
to ks = 6.01 (where k = 27/) is the wave number) and
from kf = 2.6 to k¢ = 19.7. The 12 roughness conditions
corresponding to the four surfaces and three wavelengths
are identified in ks — k¢ space in Fig. 7, together with the
boundaries for the regions of validity of the small perturbation
model (SPM) and the physical optics (PO) and geometric
optics (GO) solutions of the Kirchhoff approximation.

Fig. 3 shows angular responses of the vv-polarized backscat-
tering coefficient (03,) for four different bare soil surfaces
with rms heights ranging from 0.3 cm to 3.0 cm, all at
a moderately dry moisture condition (m, = 0.15). The
sensitivity of oy, to surface roughness is clearly evident at
both 1.5 GHz (Fig. 3(a)) and 9.5 GHz (Fig. 3(b)); over the
30° — 70° angular range, o2, exhibits a dynamic range of 16
dB at 1.5 GHz and 10 dB at 9.5 GHz, corresponding to the
surface roughness (s) range from 0.3 cm to 3 cm. We also
observe that at 9.5 GHz, the surfaces with ks = 2.23 and 6.01
exhibit approximately the same radar response, suggesting that
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Fig. 3. Angular response of of,. for four different surface roughnesses at
moderately dry moisture condition (m,. ~ 0.15) at (a) 1.5 GHz and (b) 9.5
GHz.

0y, becomes approximately insensitive to surface roughness
for ks > 2.0.

Further illustration of the effect of surface roughness on the
angular response of ¢° is shown in Fig. 4, which contains
plots of the three principal polarization components for the
smoothest case (Fig. 4(a)), corresponding to surface S2 at
1.5 GHz, and for the roughest-surface condition (Fig. 4(b)),
corresponding to surface S4 at 9.5 GHz. Based on these and
on the data measured for the other surfaces, we note that the
ratio of o, to o3, which will be referred to as the copolarized
ratio, is always smaller than or equal to 1, and it approaches 1
as ks becomes large. Very rough surfaces, such as C4 (surface
4 at C-band) and X4, do not show any noticeable differences
between oy, and o}, while smooth surfaces show values of
o4/ 05, smaller than 1. It is also observed that the copolarized
ratio is a function of incidence angle for smooth surfaces
and decrease as the incidence angle increases. The sensitivity
of the copolarized ratio (o}, /03,) to surface roughness and
incidence angle is shown in Fig. 5. For very rough surfaces
(ks > 3),00, /09, =~ 1 and is independent of incidence angle.
Another point worth noting is that the shape of the angular
pattern of the cross-polarized backscattering coefficient 0§, ,
is similar to that of oy, but the ratio o}, /03, which will be
referred to as the cross-polarized ratio, increases with ks as
shown in Figs. 4(a) and (b) (and more explicitly in Fig. 11).

The backscattering coefficient of a surface is also a function
of its moisture content. Fig. 6(a) shows the backscattering
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coefficient of surface 1 for two moisture conditions, m, =
0.29 and m, = 0.14. The ratio of o3, (or o},) of wet soil
to o2, (or o5,) of dry soil is about 3 dB at incidence angles
in the 20° to 70° range. Fig. 6(b) shows the angular response
of the copolarized ratio o}, /o9, for a fixed roughness at two
different moisture contents. The magnitude of the copolarized
ratio is larger for the wet surface (6 dB at 50°) than for the
dry surface (3 dB at 50°).

B. Comparison with Classical Solution

This section evaluates the applicability of the small per-
turbation method (SPM), the physical optics (PO) model,
and the geometric optics (GO) model to the measured radar
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Fig. 7. Roughness parameters and the region of validity of SPM, PO, and
GO models.

data. Expressions for the backscattering coefficient 4° and
the regions of validity of these models are given in [5]. The
locations of the 12 surface roughness conditions are identified
in ks — kl space in Fig. 7. Also shown are the regions
of validity of the SPM, PO, and GO models for random
surfaces characterized by a Gaussian autocorrelation function.
The lower limit of the ks value of the validity region of the GO
model is given byks > v/2.5/ cosf, which varies from 1.62
at 10° to 6.32 at 60°. The limit shown in Fig. 7 corresponds
to § = 40°.
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TABLE I\
AUTOCORRELATION FUNCTIONS AsD THE CORRESPONDING ROUGHNESS SPECTRA
Normalized 0 $) 120 sinw)
Gaussian: exp [=&7/17] (=721 expl=(hl s #))

Exponential. oxp {—]€]/1]
Mcasured: Numenical datas

()25 1+ 2k sw=) !

Fourier Transform of &)

According to Fig. 7. some of the surface roughness condi-
tions fall outside the regions of validity of all three models.
while several satisfy the model conditions. In order to compare
the measured data with model predictions, we have selected
surface 1 at 1.5 GHz (L1) to compare with the SPM, surface
1 at 9.5 GHz (X1) to compare with the PO model, and surface
4 at 9.5 GHz (X4) to compare with the GO model.

1) Small Perturbation Model: The measured angular re-
sponses of o7, and oy, are shown in Figs. 8(a) and (b)
for data set L1 (surface 1 at 1.5 GHz), together with plots
calculated using the SPM for each of three autocorrelation
functions: a Gaussian function of the form given by (3),
an exponential function of the form given by (2), and
the measured autocorrelation function obtained from the
measured surface profile, which is approximately exponential
in form (Fig. 2(a)). The calculated curves include a coherent
component to account for the strong backscatter response near
normal incidence (see Table IV).

Overall, SPM provides a reasonable fit for o5, when used
in conjunction with the exponential correlation function, but
not as well for op,. Fig. 8(c) provides a comparison of the
measured data for o;,,0p,, and op, with SPM calculated
using the exponential correlation function. The cross-polarized
backscattering coefficient oy, , which was computed using the
second-order SPM [2], is in close agreement with data and
exhibits an angular response similar to that of o9, (at angles
greater than 20°).

2) Physical Optics Model: Several of the surface roughness
conditions examined in this study fall within the region of
validity of the PO model. We have chosen X1 for detailed
examination in this section. The plots shown in Fig. 9 indicate
that the PO model provides good agreement with measured
data for o, when an exponential correlation function is used,
but the model underestimates o, at angles beyond 40° . Since
the PO approximation does not account for cross-polarization
in the backscattering direction, comparison with the measured
oy, data is not warranted.

Similar comparisons between theory and measured data
were performed for the other five surface conditions that,
according to Fig. 7, satisfy the validity conditions of the
PO model. In all cases, the deviation between theory and
measurements was greater than what was noted above for X1
(Fig. 9), with some of the deviations being as large as 20 dB.
Furthermore, the level of the measured angular response of
0y, Was observed to be always greater or equal to that of
oy, for all surfaces, moisture contents, and incidence angles,
which is contrary to the behavior of the PO model.

3) Geometrical Optics Model: For angles below 50°, the
GO model was found to differ from the measured angular
responses of o3, and o, by 3 dB or less for surface condition
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Fig. 8. SPM model with different autocorrelation functions compared to the
measured data of L1 (surface 1 at 1.5 GHz, ks=0.13) for (a) VV-polarization,
(b) HH-polarization, and for (c) VV-, HH-, and HV-polarizations using an
exponential autocorrelation function.

X4 (Fig. 10) and by 4 dB or less for C4. The coherent
component of the backscattering coefficient is negligibly small
for a very rough surface, and the noncoherent component
dominates at all angles including normal incidence.

The major conclusions we drew from our analysis of the
measured radar data when compared with the predictions of
the SPM, PO, and GO models are:

1) Some natural surface conditions fall outside the regions
of validity of all three models.

2) None of the models provides consistently good agree-
ment with the measured data, particularly at incidence
angles greater than 40°.
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and (b) HH-polarization.
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3) The PO model predicts that 0, < o}, contrary to all
observations.

In addition, since they are first-order solutions, both the PO
and GO models cannot be used for oj,. Faced with these
inadequacies of the available theoretical scattering models, we
decided to develop an empirical model that relates o7, 0},
and o}, to the roughness (ks) and dielectric constant (e,) of
the surface. This is the subject of the next section.

IV. EMPIRICAL MODEL

The empirical model developed in this section is based
on the radar backscatter data measured in this investigation
and on knowledge of the scattering behavior in the limiting

SONO I MARCH 1w

. -
- . » N
E . :
. .
N — e e
£ i
c k o4 ¢ 1
¥ ;
L ) .
a < 1
1
¢ ; N ‘
o ! N N s ¢ T
ks
(a)
-s v v
o
Z
oi
©
~ — q023°r,% (lexp(-ks))
2
) (c,=15343.66)
"
o ao.t o 30 :
3 c 40"
s S0
5. L P A .
o 1L 2 3 4 5 6 1
ks

(b)

The sensitivity of the cross-polarized ratio, o} . /o?,., to surface
roughness for (a) dry soil and (b) wet soil.

Fig. 11.

cases (such as when ks is very large). For this data set,
the surface roughness and moisture content cover the ranges:
0.1 < ks <6.0,2.6 < k¢ <19.7, and 0.09 < m, < 0.31.

We begin with an examination of the cross-polarized ratio
q = oy,/05,. We observed from the measured angular
responses that op, and o, exhibit similar variations with
incidence angle, particularly over the 30° — 50° range, for all
surface roughnesses, moisture contents, and frequencies. Figs.
11(a) and (b) show the measured values of ¢ as a function
of ks for dry and wet soils, respectively. They include the
values measured at 30°,40°, and 50° for all surface-frequency
combinations. We observe that for the dry soils g increases
rapidly from about —20 dB at ks = 0.1 to about —10 dB at
ks = 3, and then maintains that level for ks > 3. For the
wet soils, g exhibits a similar behavior as that noted for the
dry soils, except that its saturation level is closer to —8.5 dB
for ks > 3.

The curves shown in Fig. 11, which provide a good fit to
the data, are given by the empirically determined function

qé-o% = 0.23\/f;[1 — exp(—ks)] 4

vv

where I, is the Fresnel reflectivity of the surface at nadir,

_|L-v&[
Fo—ll—_*_f . 5)
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Next, we shall examine the copolarized ratio p = o}, /05,
The measured values of this ratio are shown in Fig. 12 for wet
and dry moisture conditions at 40° and 50°. For very smooth
surfaces, this ratio is about —6 dB, and for very rough surfaces
it is equal to 0 dB. Similar results were obtained at 30°. The
curves shown in Fig. 12 are based on the empirical expression

[1/3T]
VE - (2) ek @

where 6 is the incidence angle in radians.

Having established empirical formulas for ¢ = oy, /09,
and p = o5, /09, that provide reasonable agreement with the
measured data, the remaining task is to relate the absolute level
of any one of the three linearly polarized backscattering coeffi-
cients to the surface parameters. Upon examining the measured
data, we developed the following empirical expression for the
magnitude of o,

ahh

‘lJ‘U

gcos @

Ogu(0, €r,ks) = +[To(6) + T (6)] ™

where
9= 0.7[1 - exp<—0.65(ks)l'8)] ®)

and p is as given by (6).
With the ratios p and ¢ being given explicitly in terms of
ks and ¢, (through T';) and the function g being governed by

only ks, the three linearly polanzed backscattering coctticients
are given by (7) for o7 and by

arnbeksy = gy peost 0T (= Th 80 (9)
and

op (8. ksy=qa) (Hoe, ks). (10)

for the other two components. We note that both #; and
oy, are proportional to the average of the vertically and
horizontally polarized Fresnel reflectivities of the surface at
the incidence angle #. The HH component is smaller than
the VV component by a mulliplvine factor p(p < 1). For
ks > 3.p~1and o). ~ oy,. For smaller values of ks. the
factor p accounts for the difference in level between o and
oy, and includes a dependence on ¢,.

Aside from the dependence on 8 inherent in the quantity
[T.(8) + Tx(#)] and in the function p, both o2, and of,
vary as cos®6. A more elaborate functional dependence for
the power of cosf can be devised in terms of ¢, and ks,
but this was found to be unnecessary. As we will see next, the
empirical model was found to provide a good representation of
the measured data at all frequencies and over a wide angular
range. The model was evaluated against three data sets: (a)
the data measured in this study, (b) another independently
measured data set that was not used in the development of
the model, which shall be refered to as Independent Data Set
II, and (c) a data set that was recently reported by Yamasaki
et al. [13] at 60 GHz.

A. Comparison With Measured Data

Because of space limitations, we will present only two
typical examples illustrating the behavior of the empirical
model, in comparison with the data measured in this study.
This is shown in Figs. 13 and 14 for surface S1 (representing
a very smooth surface with s = 0.40) and surface S4
(representing a very rough surface with s = 3.02). In both
cases, very good agreement is observed between the model
and the measured data at all three frequencies and across
the entire angular range between 20° and 70°. The levels
of the measured values of o7, and op, at § = 10° for
surface S1 include a strong contribution due to the coherent
backscattering component that exists at angles close to normal
incidence. No attempt has been made at this stage to add a
coherent component to the empirical model, and, therefore, its
range of applicability does not include the angular range below
20° for smooth surfaces. If the surface is rough, as is the case
for surface S4 (Fig. 14), the coherent backscattering coefficient
is negligibly small, in which case the empirical model may be
used at all angles between 0° and 70°.

B. Comparison With Independent Data Set 11

Prior to conducting the measurements reported in this study,
another data set was acquired by the same radar system for
three surface roughnesses. The surface profiles were measured
by inserting a plate into the surface and spraying it with paint.
Such a technique provides an approximate representation of
the surface, but it is not as accurate as that obtained using
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Fig. 13. Empirical model compared to the measured data of surface 1 for
wet soil at (a) 1.5 GHz, (b) 4.75 GHz, and (c) 9.5 GHz.

the laser profiler. Hence, our estimate of the values of ks and
kl for Independent Data Set II are not as accurate as those
we obtained with the laser profiler for the surfaces discussed
in the preceding sections of this paper. Nevertheless, we
conducted an evaluation of the empirial model by comparing
its prediction with the backscatter data of Independent Data
Set II and found the agreement to be very good at all three
frequencies, provided we are allowed to modify the value of
s measured with the metal plate technique. An example is
given in Fig. 15 in which the curves were calculated using the
empirical model with s = 0.7 cm; the value of s estimated
from the metal-plate record was 0.46 cm.

C. Comparison With 60 GHz Data

Our final comparison is with a 60 GHz data set that
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Fig. 14. Empirical model compared to the measured data of surface 4 for
wet soil at (a) 1.5 GHz, (b) 4.7° GHz, and (c) 9.5 GHz.

was recently reported by Yamasaki et al. [13]. Even though
k = 2r /X = 1260 at 60 GHz, the three surfaces examined in
this study were extremely smooth, with rms heights of 0.055,
0.12, and 0.20 cm. The corresponding values of ks are 0.16,
0.64, and 1.75. Good overall agreement is observed (Fig. 16)
between this data and the empirical model, despite the fact that
the correlation lengths for all three surfaces are smaller than
the smallest correlation length of the surfaces on the basis of
which the empirical model was developed.

V. INVERSION MODEL

Having established in the preceding section that the empir-
ical model is a good estimator of oy,,0%,, and of, over a
wide range of ks (0.1 to 6), we shall now invert the model
to obtain estimates of s and the moisture content m, from
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observation of 63, 05, and o5, . Because the empirical model
was developed on the basis of data for surfaces with kl in the
range 2.6 < kl < 19.7, we cannot ascertain its applicability
or the applicability of the inversion model for surfaces with
kl outside this range.

Suppose we have measurements of 03,, 0}, and o, for a
given surface at a given incidence angle 6 and wavelength
A. From these measurements, we compute the copolarized
and cross-polarized ratios p = o5, /05, and ¢ = o} /o5,
By eliminating ks from (4) and (6), we obtain the following
nonlinear equation for T',:

09\ 1/3Te
(—) -[1——q—]+\/5—1=0 (1)
s 0.23T,

= \ .
= v
= .
) .
c _ \
v -
:od : :
‘:' It - \
= ! N
b4 0 b -
- “
- - - g
R —
g. 30 b C——— \l
c N : e Mo
2 a0¢
: ’ c o Moo
2 ob---
< L R . - o
&: 6 'y -e_ __{: - ll \ o, Measured

0 100 20 3 3 S0 e 70

Incidence Angle (Degrees)
(a)

20.

a
2 10 .
©
© ot )
g
s 10 4 1
€ o B g ¢
g o " ¢ |
]
® 304 p
5 40_'_"°‘°"°—-=-.¢_____
« )
2
ﬁ '50»‘ B
@
0. 10. 20. 30. 40. SO. 60. 70.
Incidence Angle (Degrees)
(b
20. T T T T T v
@
T w0} 1
©
° ot 4
g
S -10.le © o 8 8 E
£ T 29 5 |
¥ 0.
U —
0 30t ¢ o Ty - --- o 1
g s X 6 @ es‘
= 40.} 4
~
2
£ s0r 1
@
0. 10. 200 30. 40. S0. 60. 70.
Incidence Angle (Degrees)
©

Fig. 16. Empirical model compared with the data reported by Yamasaki e
al. [13] at 60 GHz for (a) soil-1 (s = 0.013 cm, ( = 0.055 cm), (b) soil-2
(s = 0.051 cm, ( = 0.12 cm), and (c) for soil-3 (s=2.88 cm, /=0.20 cm).

where 6 is in radians. After solving for I'; using an iterative
technique, we can calculate the real part of the dielectric
constant ¢/, from (5) by ignoring the imaginary part €., which
is a valid approximation for a soil material. Next, the moisture
content m, and the imaginary part of the dielectric content ;'
can be determined from the model given in [11]. Finally, with
T', known, the roughness parameter ks can be determined from
(6).

Because the copolarized and cross-polarized ratios p and g
are not sensitive to surface roughness for very rough surfaces
(ks > 3), this technique cannot estimate ks for such surfaces.
Hence, it is preferable to use radar observations at the lowest
available frequency for estimating the moisture content and
rms height of a bare soil surface. By way of illustrating the



. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING VOL 300 NO 20 MARCH 12

S— T ——— - -

30~ ¢
- |
- b
T i
s 20} ,c
£ .
. ,
w s
© 7’
10 o %
’
o 7 rms error = 0.23
4
00 o —
0.0 1.0 20 30 a0
Measured ks
(a)
6. - T T T T i
o
st A
~ o |
Xy 4 |
A o/ 1
o0 °s
g 7’
- 3t °oo , 4 4
"3 ° o:/ ’ o
e L 9
.g: z o/
& 2
| d 006
’ rms error = 0.81
/

0. 1. 2. 3. 4. S. 6.
Measured Imag (¢, )
©

Estimated Realb 6 )

rms error = J§ 43

4] S 1 15 NG 2¢

Measured Realt g1

(b)
05 :
S
04+ 4 4
> ©
E o3t .’
T )
s o ¢
£ ot ; ,
w ;
.y
0[ < 4
L7 rms error = 0.04
4
ook . N A N
0.0 0.1 02 03 04 0.5
Measured m,
(d)

Fig. 17. Comparison between the values of surface parameters estimated by the inversion technique and those measured in situ for (a) ks, (b) the real
part of €, (c) the imaginary part of ¢, and (d) the volumetric moisture content m...

capability of the inversion technique, we present in Fig. 17(a)
the values of ks estimated by the inversion technique plotted
against the values measured in situ. The data points include
the data measured in support of this study for all surface
conditions, but exclude surfaces for which ks > 3. of Figs.
17(b) and (c) show the results for €, and ¢;’, respectively, for
all surfaces measured in this study (the inversion technique
is capable of estimating €., ¢, and m, for any ks, but it is
incapable of estimating ks if ks > 3), and Fig. 17(d) presents
the results for m,. Note that for each value of m,, we have
three sets of values for €., ¢/, and ks, corresponding to the
three frequencies used in this study.

The results displayed in Fig. 17 represent the first demon-
stration ever reported of a practical algorithm for estimating
the roughness, dielectric constant, and moisture content of
a bare soil surface from multipolarized radar observations.
Before this technique can be widely applied, however, it is
prudent to conduct additional experiments over a wide range
of roughness and moisture conditions.

V1. CONCLUDING REMARKS

The major results of this study are summarized as follows:

1) At microwave frequencies, the available rough-surface
scattering models are incapable of predicting the scat-
tering behavior observed for bare-soil surface.

2) The copolarized ratio p = o}, /05, < 1 for all angles,
roughness conditions, and moisture contents; p increases
rapidly with increasing ks up to ks ~ 1, then it increases

at a slower rate, reaching the value 1 for ks > 3. For
ks < 3, p decreases with increasing incidence angle and
with increasing moisture content.

3) The cross-polarized ratios ¢ = o}, /03, exhibits a strong
dependence on ks and a relatively weak dependence
on moisture content. The ratio g increases rapidly with
increasing ks up to ks ~ 1, then it increases at a slower
rate, reaching a constant value (that depends on the
moisture content) for ks > 3.

4) The proposed scattering model provides very good agree-
ment with experimental observations made over the
ranges 0.1 < ks < 6,2.5 < kl <20, and 0.09 < m,, <
0.31. The model was found to be equally applicable
when tested against radar data measured for surfaces
with parameters outside the above ranges.

5) Soil moisture content (m,) and surface roughness (ks)
can be retrieved from multipolarized radar observations
by applying the inversion technique developed in this
paper.

REFERENCES

[1] S. O. Rice, “Reflection of electromagnetic waves by slightly rough
surfaces,” Commun. Pure Appl Math., vol. 4, pp. 351-378, 1951.

[2] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote
Sensing. New York: John Wiley and Sons, 1985.

[3] D. Wineberner and A. Ishimaru, “Investigation of a surface field phase
perturbation technique for scattering from rough surfaces,” Radio Sci.,
vol. 20, pp. 161-170, Mar. 1985.

[4] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic
Waves from Rough Surfaces. Norwood, MA: Artech House, 1987.



(9]

[10]

[

[12

(13]

FMEPIRE AL MOy ANDVINA R RND N B REND

Pl Liabo MR Moorcoand A K Fune Meoronvas Remaon o
AVt and Passive vois 2and 50 Norwood, M Arteeh House Tusn
A K Funeand O Foms “Muluple scatenng and dopolanization by
o randomiv rouch Kirchott surtace.” JEEE Trans Antennas Propaa:
Vol AP0 pp 403371 My 19N

G S Brown, “Buackscattening trom o Gaussian distributed pertecth
conducting rough surtace.” IELE Trans Antennas Propagas vol AP-2o
pp 472N My TN

MoA Tassoudp o K Sarsbundis and BT Ulaby. “Design con-
sideration and implementation of the LON polanimetne scaticrometer
(POLARSCAT).” Rep 022486-T-2. Rudiation Laboratory. the Uninver-
sitv of Michigan, June 1989

K. Sarabandirand B T, Uluby. A convenient techmique tor polanimetric
calibration of radar ssstems.” JEEL Trans. Geoser Kemote Sensing. vol
2a pp. 1022-1033. 1990

D. R Brunfeldt. “Theory and design ot a hicld-portable diclectric mea-
surement svstem.” JEEE Int. Geoser Remote Sensing Svmp. (1GARSS)
Digest vol. 1. pp 339-563. 1987,

M. T. Hallikainen. F. T. Ulaby. M. C. Dobson. M. A. El-Raves. and
L. Wu. “Microwave diclectric behavior of wet soil -Part I: Empinical
models and experimental observations.” [EEE Trans. Geoscr. Remore
Sensing. vol. GE-23. pp 25-34. 1985

T. J. Jackson. “Laboratory evaluation of a field-portable diclectric soil-
moisture probe.” JEEE Trans. Geosci. Remote Sensing. vol. 28, pp
241-245. Mar. 1990

H. Yamasaki. J. Awaka. A. Tukahashi. K. Okamoto. and T. lhara.
“Mcasurements of soil backscatter with a 60 GHz scatterometer.” IEEE
Int. Geosci. Remote Sensing Symp. (IGARSS '91) Digest. vol. 2. pp
403-406. 1991.

Yisoh Oh oS s ccconce e BN aceoo e
i enanenng ror Yonsa Unnvcssiy Noo
Noroa an T2 and the MS dceres e o
cninecning trom the Umvessiy o Missoiss Kol
MO TS

Ho s currenth workinz towand the PhD ol
2t the Universiv of Michizan, Ann Arbor A

His rescarch interests inciude cicctromagnetic wang

saatlening trom random: surlaces and microwan
remote sensing

Kamal Sarabandl (S'87-M'90), for a photograph and biography, please sec
page 211 of this issue of the TRANSACTIONS.

Fawwaz T. Ulaby (M'68-SM'74-F'80), for a photograph and biography,
please sec page 211 of this issue of the TRANSACTIONS.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. VOL

2.NO S, SEPT 1994 1081

Knowledge-Based Classification of Polarimetric SAR
Images

Leland E. Pierce, Fawwaz T. Ulaby, Kamal Sarabandi, and M. Craig Dobson

Abstract—In preparation for the flight of the Shuttle Imaging
Radar-C (SIR-C) on board the Space Shuttle in the spring of
1994, a Level-1 automatic classifier was developed on the basis
of polarimetric SAR images acquired by the JPL AirSAR sys-
tem. The classifier uses L- and C-Band polarimetric SAR mea-
surements of the imaged scene to classify individual pixels into
one of four categories: tall vegetation (trees), short vegetation,
urban, or bare surface, with the last category encompassing
water surfaces, bare soil surfaces, and concrete or asphalt-cov-
ered surfaces. The classifier design uses knowledge of the na-
ture of radar backscattering from surfaces and volumes to con-
struct appropriate discriminators in a sequential format. The
classifier, which was developed using training areas in a test
site in Northern Michigan, was tested against independent test
areas in the same test site and in another site imaged three
months earlier. Among all cases and all categories, the classi-
fication accuracy ranged between 91% and 100%.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is capable of gen-

erating high-resolution images of terrain, and, when
operated in a polarimetric mode, it records the scattering
matrix of each pixel in the imaged scene [1]. To reduce
the effects of speckle, which is characteristic of fully fo-
cused SAR images, multiple pixels are averaged together
prior to using the image for the extraction of quantitative
information. The images used in the present study were
generated by the JPL AirSAR system, which operated at
P-, L-, and C-Bands [2]. Each image consisted of 1024
X 750 pixels, each representing nominally an area 12 m
in azimuth X 6.6 m in slant range, or 12 m X 10 m av-
erage on the ground surface (Table I), with each such pixel
being an average of four looks (or, equivalently, four fully
focused pixels). The incidence angle ranged from approx-
imately 30° at the near range (top) of the image to 60° at
the far range (bottom).

The motivation of the present study is to develop a
Level-1 classifier capable of accurately classifying the
pixels in the imaged scene into four terrain categories
(classes): tall vegetation (trees), short vegetation, urban,
and bare surfaces (which includes water surfaces, bare soil
surfaces, and road surfaces). In an earlier SAR classifier
[3] all vegetation was lumped into one class: insufficient
for our future needs.

Manuscript received October 29, 1993; revised March 14, 1994.
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MI 48109.
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TABLE |
SAR IMAGE ATTRIBUTES

JPL AirSAR | L-Band: 1.25 GHz, C-Band: 5.3 GHz
Test Sites Pellston, MI; Raco, MI
Pixel spacing | 12 m azimuth, z x 6.6 m slant range, y
Image sizes | 1024 pixels az. x 750 pixels range

12.4 Km az. x 7.5 Km range

Each is nominally a 4-look pixel

Simulated annealing was used by Rignot and Chellappa
in an attempt to post-process the results of an MLE clas-
sifier [4] and performed quite well, yielding better than
95% classification accuracy for up to 13 classes. How-
ever, simulated annealing is a complex and time-consum-
ing procedure to apply over an entire image. Wong and
Posner [5] developed a clustering technique that can au-
tomatically devise the best number of classes and their
means in feature space using a simulated annealing pro-
cedure. The classifier was based on the Mahalonobis dis-
tance [6] from each of these class means. While classifi-
cation accuracies were not given, the procedure performed
quite well, visually.

Another classifier, similar in methodology to the pres-
ent work was presented by Moghaddam and Freeman [7].
A set of hierarchical decision rules was used to distin-
guish between basic land cover types. No published ac-
curacies were given, and our own experience with their
code has been disappointing.

The classifier developed here is to use only L- and C-
Band data as input because the classifier is part of a
broader program at the University of Michigan aimed at
the development of an automatic information extraction
processor that can be applied to the image data expected
from the Shuttle Imaging Radar-C/X-SAR system, that is
scheduled for flight on the Space Shuttle in April 1994.
The SIR-C/X-SAR system has been designed to produce
polarimetric radar images at L- and C-bands, and VV-
polarized images at X-Band.

Fig. 1 depicts the eventual structure of the information
processor. Following full calibration of the SAR images,
a Level-1 classifier is used to classify the scene into the
four aforementioned classes. For the bare surfaces, con-
textual information is to be used when separating water
surfaces from bare ground surfaces. For the latter, an in-
version algorithm [8] is applied to determine the soil
moisture content and surface roughness. In practice, bare

0196-2892/94304.00 © 1994 IEEE
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Fig. 2. Pellston test site showing training and test stands used during clas-
sification.

tested with other stands of the same type but different in-
cidence angles. The short vegetation class was based
solely on grasslands, cultivated and fallow (airport).
Water was the only large bare feature in this image, and
so the bare class was trained and tested with water alone.
However, an apron and the runways at the airport were
successfully classified as bare.

III. CLAsSIFIER DESIGN

The input data space consists of 14 channels, corre-
sponding to the image attributes described in the previous
section. All of these channels, however, are partially cor-
related with one another. Our initial attempt at developing
a classifier was based on the application of traditional pat-
tern recognition techniques such as the Bayesian estimator
and the principal components approach [12], [13]. Al-
though mathematically rigorous, these techniques did not
lead to classifiers with good classification accuracy. As
an alternative, we pursued a different approach that relied
very heavily on our understanding of the physics of the
scattering process and the experience gained from exten-
sive experimental measurements and theoretical analyses
conducted for various types of terrain media. We call the
result of this approach a ‘‘knowledge-based classifier.”’

Fig. 3 provides an outline of the classifier design pro-
cedure. The first step attempts to separate ‘‘urban’’ pixels
from everything else where an urban pixel refers to a
ground area containing man-made physical structures such
as buildings. Scattering by such structures is character-
ized by a double-bounce reflection mechanism resulting
in a co-polarized phase difference ¢ close to +180°. Ad-
ditionally, urban scenes exhibit higher values of image
texture than do other distributed targets. Fig. 4(a) shows
the boundaries of the urban/nonurban discriminator based
on ¢; and T,,(C). Urban pixels are classified as urban
with an accuracy of 100%, while a few percent of the
nonurban pixels are incorrectly classified as urban. This
was purposely done to make sure that all the urban pixels
were correctly classified to ensure that urban features were
not incorrectly identified as trees. The majority of the
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Fig. 3. Classifier design.

misclassified pixels are in areas close to the city of Pells-
ton and along roads and highways (Fig. 5), suggesting
that in reality these are ‘‘mixed’’ pixels including build-
ings along roads and lakefronts.

After removing all pixels classified as urban from fur-
ther consideration, the next step is to identify those that
are tall vegetation. The single most useful channel in this
regard is oy, (L), the cross-polarized L-Band backscatter-
ing coefficient. This is evident in Fig. 4(b) which shows
that tall vegetation can be easily discriminated against the
other two remaining categories (bare surface and short
vegetation) using this channel. Physically, this is due to
large branches in the crown, which generate a much larger
cross-polarized return that do smaller leaves and grass.
The discrimination can be improved slightly with the ad-
ditional use of 02,, (L) (the final classification results are
summarized later in Section IV).

After removal of the tall vegetation pixels from further
consideration, classifying the remaining pixels among the
last two classes (bare surface and short vegetation) in-
volves a two-step process. In the first step, short vegeta-
tion pixels are identified on the basis of a9, (C) and
T% (L), as seen in Fig. 4(c). The remaining pixels are
classified as bare if both cross-polarized returns are very
low [Fig. 4(d)], while the remaining pixels with a higher
cross-polarized return are classified as short vegetation.
Physically, water and other bare surfaces are expected to
give very low cross-polarized returns due to a lack of large
angled features. Very rough water, however, has an in-
creased cross-polarized return, but also increased texture,
especially in o, (L).

Pixels that are not classified initially as short vegeta-
tion, nor later as bare, are reclassified as short vegetation.
This final assignment rule was used because most of the
“‘unclaimed’’ pixels did indeed belong to the short-veg-
etation class.

In order for other investigators to try out this classifier
on their own images, the equations used for each rule are
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explain both large texture and a high double-bounce con-
tent in the backscattered signal. In a future version of this
algorithm a context-sensitive post-processing step will be
used o remove anomalous classifications such as these.

IV. REesuLTs

The classifier was developed on the basis of SAR data
for the training areas shown in Fig. 2. The classification
results for pixels in the training areas are given in Table
II. and the results for independent test areas are given in
Table III. For both training and test areas. the classifica-
tion accuracy exceeds 98% for three of the four classes.
and for the fourth (short vegetation) the classification ac-
curacy is better than 90%.

Note that classification accuracies are not given for the
urban class. This has been done for two reasons: 1) since
there is only one urban area, testing with the training area
is unfair and misleading; and 2) since the urban area is
not uniformly filled with urban features, but also contains
trees, short vegetation, and surfaces, the classification ac-
curacy calculated over the rectangular urban training stand
will be inaccurate. The other three classes have accurate
and uniform testing areas and so classification accuracies
can be evaluated accurately. The urban class has been op-
timized so that it appears wherever buildings are known
1o occur, and does not appear within forested areas.

The classified image. shown in Fig. 5. contains a cer-
tain amount of ‘‘speckle,”” which presumably is a result
of misclassification. These areas may also be correctly
classified areas that are just areas of sparse vegetation sur-
rounded by denser areas. In either case, one may want to
apply an ‘‘aggregator’’ to the classified image. In com-
paring this image to a map produced through air photos,
a certain amount of aggregating has already been per-
formed on that data. In order to perform a fair compari-
son, the SAR classifier should apply a similar aggregation
step. The aggregation algorithm used here is very simple:
examine a 3 X 3 pixel region surrounding the pixel of
interest and if over 70% of these pixels are a particular
class, then the center pixel is assigned that class. Appli-
cation of this aggregator improves the classification ac-
curacy somewhat, but the image has dramatically less
“speckle’ (Fig. 6).

To allow a visual comparison of classification accu-
racy, a classification map from 15 years ago [14] is shown
in Fig. 7. This map was manually interpreted from air
photos. We have reclassified it so that only the four classes
that our classifier uses are visible. Note that the airport
was classed as an airport (land use) and that we have col-
ored it as short vegetation since that is the majority of the
land cover there. The city of Pellston is also a solid poly-
gon because it is a land use rather than land cover map.
The remainder of the map shows remarkable similarity to
our classified image. except for the few new clear cuts.

The classification algorithm was also applied to a com-
pletely different site. Raco. imaged three months earlier.
April 1. There are no large urban areas at this site. but

Fig. 6. Fully classified Pellston test site with aggregation Urban is 1n
white. tall vegetation is green, short vegetation is light brown, bare is blue

Fig. 7. Manually classified Pellston test site. Abstracted from Michigan
DNR MIRIS data [14]. Urban is in white, tell vegetation is green, shon
vegetation is light brown, bare is blue.

TABLE 11
CLASSIFICATION ACCURACY, NO AGGREGATION, PELLSTON SITE, TRAINING
AREAS. JULY
True Class
Classified As | Tall Veg [ Short Veg | Bare
Tall Veg - 98.32 0.00 | 0.00
Short Veg 1.46 94.74 | 0.87
Bare 0.00 5.26 1 99.07
TABLE I
CLASSIFICATION ACCURACY, NO AGGREGATION, PELLSTON SITE. TESTING
AREAS, JuLY
True Class
Classified As | Tall Veg | Short Veg | Bare
Tall Veg 93.04 2.84 | 0.01
Short Veg 1.96 90.77 | 0.18
Bare 0.00 5.94 | 99.80
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ABSTRACT

Accurate determination of spatial soil moisture distribution and monitoring its temporal
variation have a significant impact on the outcomes of hydrologic, ecologic -and climatic
models. Development of a successful remote sensing instrument for soil moisture relies on
the accurate knowledge of the soil dielectric constant (€s0it) to its moisture content. Two
existing methods for measurement of dielectric constant of soil at low and high frequencies
are, respectively, the time domain reflectometry and the reflection coefficient measurement
using an open-ended coaxial probe. The major shortcoming of these methods is the lack of
accurate determination of the imaginary part of €,4. In this paper a microstrip ring resonator
is proposed for the accurate measurement of soil dielectric constant.- In this technique the
microstrip ring resonator is placed in contact with soil medium and the real and imaginary
parts of €, are determined from the changes in the resonant frequency and the quality factor
of the resonator respectively. The solution of the electromagnetic problem is obtained using
a hybrid approach based on the method of moments solution of the quasi-static formulation
in conjunction with experimental data obtained from reference dielectric samples. Also a
simple inversion algorithm for €,y = €, + je!' based on regression analysis is obtained. It is
shown that the wide dynamic range of the measured quantities provides excellent accuracy
in the dielectric constant measurement. A prototype microstrip ring resonator at L-band
is designed and measurements of soil with different moisture contents are presented and
compared with other approaches.



1 Introduction

Successful modeling and understanding of global change are dependent upon an improved
understanding of climatic and hydrologic processes. Soil moisture and its spatial and tempo-
ral variations play an important role in both climatic and hydrologic models. Radar remote
sensing of soil moisture has been an ongoing area of research over the past two decades.
Characterization of dependence of dielectric constant of soil to its moisture content is an
important step in this endeavor. In this paper the theoretical and experimental aspects of a
field-portable device for accurate measurement of both the real and imaginary parts of soil
dielectric constant are discussed.

Two commonly used methods for field measurement of dielectric constant of soil are
the time domain reflectometry (TDR) and the reflection coefficient measurement using an
open-ended coaxial probe. In the TDR method the dielectric constant of the soil medium
is determined from the delay time of the reflected wave from the open ends of a two-wire
transmission line buried inside a soil medium [1]. The time delay can only provide the
information about the real part of dielectric constant €. The accuracy of the TDR method
is limited by the resolution of the TDR system. In the coaxial probe method (2], the complex
dielectric constant is estimated from the measured complex reflection coefficient of the open-
ended coaxial line pressed against the unknown material. The accuracy of this technique
is limited by the small dynamic range of reflection coefficient as a function of €. Another
problem with this technique when applied to soil medium is the small contact area of the
coaxial tip which may be comparable to the soil particles. It should also be noted that soil
dielectric measurement using coaxial probe is very sensitive to the applied pressure which
degrades the accuracy of this measurement technique.

In this paper a microstrip ring resonator as a device for the dielectric measurement of
soil is proposed to overcome the aforementioned problems with the existing devices. Ap-
plication of ring resonators in characterizing the dielectric properties of materials is not a
new idea (3, 4, 5]. However, these techniques are specialized for dielectric measurements of
thin materials in a stripline configuration and/or only characterization of real part of low
dielectric materials is considered. Since both the real and imaginary parts of the dielectric
constant of soil have a wide dynamic range with respect to the soil moisture content and
the measurement configuration is different from those reported in the literature, a careful
theoretical and experimental study of the proposed problem is required. The dielectric mea-
surement technique is very similar to the standard cavity measurement technique [6] with
a subtle difference. Basically, the real and imaginary parts of the dielectric constant are to
be inferred from the shift in the resonant frequency and the change in the quality factor
of the resonator after placing the resonator in contact with the soil medium. The subtlety
stems from the fact that the microstrip resonator can be regarded as a partially-filled res-
onant cavity and therefore the simple relationship between the dielectric constant and the
measured changes in the resonant frequency and the quality factor can no longer be applied.
Although the partially-filled nature of the microstrip resonators complicates the retrieval
of dielectric constant from the measured quantities, it is a desirable feature in the soil di-
electric constant measurements. In the standard cavity measurement, if the loss tangent of



the dielectric material exceeds 0.05, it becomes practically impossible to accurately measure
the resonant frequency (fo) and the quality factor (@) of the loaded cavity. However, for
the partially-filled resonators the changes in fo and @ are substantially less affected by the
loading dielectric material. It is shown that with appropriate microstrip resonator design,
dielectric constant of soil with moisture content as high as 40% can easily be measured.

In Section 2 the theoretical analysis of the problem is given. In this analysis which
will be referred to as the forward problem a numerical solution for calculating the resonant
frequency and the quality factor of the resonator in terms of ¢ and ¢/ is provided. The
numerical solution is constructed based on a quasi-static formulation. Since the practical
microstrip resonators are constructed on finite substrate, the effect of finite substrate width
is also investigated. In Section 3 the inverse problem is considered. There, a simple algorithm
for retrieval of €/ and € from the measured changes in f, and @) based on regressional analysis
is developed. Finally in Section 4 experimental results are presented. It is shown that the
accuracy of the quasi-static solution degrades as the dielectric constant of the unknown
material increases. This phenomenon has also been observed in stripline resonators [3]. In
this section the theoretical results based on the quasi-static analysis are slightly modified
to agree with experimental data obtained from reference dielectric samples. To verify the
accuracy of this hybrid model, dielectric constant of a sandy soil with different moisture
contents were measured using a prototype microstrip ring resonator and the results are
compared with those measured by three other independent methods.

2 Theory

A microstrip ring resonator is a simple transmission line resonator whose geometry is shown
in Fig. 1. The resonator is excited by a transmission line through a capacitive coupling
and at certain frequencies, depending on the electrical length (perimeter) of the resonator,
a standing wave pattern forms around the circular path of the resonator. The maximum
voltage of the standing wave occurs at the exciting point. The resonant frequencies corre-
spond to a condition where the perimeter of the ring is an integer multiple of the guided
wavelength, that is,

d
M= =123,
n

where d is the diameter of the ring and A, is a function of the microstrip parameters w;, h,
¢s and €5 as shown in Fig. 2.

At resonant frequencies there exists a voltage maximum at 324 away from the excitation
point. By placing a capacitively coupled transmission line at this voltage maximum point,
the field in the resonator can be probed to detect the resonant frequencies. Basically the
transmission coefficient S2; of the two-port resonator is measured as a function of frequency
and the resonant frequencies are identified as frequencies for which |Sy;| is maximized. It
should be noted that the coupling capacitors tend to lower the resonant frequency and these
must be as small as possible for accurate measurement of the resonant frequency. Spectral



measurement of |S;;| can also reveal the quality factor of the resonator which is a measure
of power loss in the resonator. The dissipated power in the resonator includes the dielectric
loss, the conductor loss and the radiation loss. For a given microstrip resonator with known
substrate dielectric constant ,, strip width w,, and substrate height h we are seeking an
algorithm that would enable us to compute the complex dielectric constant of the half-space
medium in contact with the ring resonator from the spectral measurement of |S3;|. To estab-
lish the relationship between the complex dielectric constant of the unknown medium and
the measured guided wavelength and the @ of the resonator, the quasi-static approximation
for microstrip transmission lines is used. Strictly speaking microstrip structures cannot sup-
port TEM waves, however, at low frequency where the substrate height and strip width are
small compared to the wavelength, it is expected that the quasi-static approximation pro-
vides accurate results [7]. The quasi-static approximations found in the literature are usually
concerned with lossless dielectrics. In what follows a brief derivation of Poisson’s equation
for lossy dielectrics is given from which an integral equation for the charge distribution on
the microstrip will be obtained. Starting from Maxwell’s equations for time harmonic fields

VxH = jwe'E + oE, (1)

VD =p.+ pimp ;D=¢€¢E (2)

where p. is the conduction charge density, pimp is the impressed charge density and ¢ and
o are the permittivity and conductivity of the medium respectively. The conduction cur-
rent J = oF can be related to the conduction charge density p. through the continuity
relationship V-J=—jwp. and therefore

Lv.E=p. (3)
w

Combining (3) and (2) and defining the complex permittivity as e=e’-15, it can easily be
shown that

CV'E = p{mp- (4)

For TEM waves the electric and magnetic fields are irrotational and therefore the electric
field can be obtained from a complex potential function ¢ through

E=-V¢

which together with (4) results

vig= L (5)
€

Assuming the ground plane and the strip of the microstrip are at potentials zero and Vo,
(5) can be solved subject to the boundary conditions. In this case pimp=p(z) is the induced
charge distribution on the strip. If G(z,y,z',y') represents the Green’s function of the
problem, then the complex potential function can be obtained from

é(z,y) = /_1 p(z")G(z,y,',y")dz'.
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Using the Fourier transform technique the Green’s function for the microstrip problem is
found to be

1 /0°° e~k cos(a(z — II))da, (6)

Gz —z',y,h) == (escoth(ah) + €)a

T
where ¢, is the dielectric constant of the substrate and ¢; is the dielectric constant of the
upper half-space. Since the potential function is known over the metalic strip, the integral
equation for the induced charge density can be derived by evaluating the potential over the
strip and is given by

Vp = / ® p(z')G(z — o', b, h)da'. (7)
=
The integral equation can be solved numerically using the method of moments and point
matching technique. Subdividing the strip into N sufficiently small cells, (7) can be cast
into a matrix equation
ZR=V

where R is the vector of unknown charge density and V is the excitation vector whose entries
are constant Vg potentials. To evaluate entries of Z, the Green’s function given by (6) must
be computed for different values of observation (z,,) and source (z,) points. The decay
rate of the integrand of (6) (when y = k) as a function of « is rather poor (the asymptotic
behavior of the integrand for large values of a is . To improve the convergence rate

1
afes+e2) )
the order of integrations in (7) can be changed and the entries of the matrix are found to be

3 92 foo sin(a-A;—) COS(a(xm - 27"))
Zan = ;/o a*[e, coth(ah) + €] * K

where Az = £. It is noted that the impedance matrix is Toeplitz and symmetric, that is,
Znn = Zpg when m —n = p — g and Zpp = Zpm. Thus integral in (8) must be evaluated
only N times to fully characterize the impedance matrix. Once the impedance matrix is
characterized the charge density can be obtained from

= =<1 -

R=Z V.
The quantities of interest in the microstrip resonator are the electrical length and the quality
factor of the resonator which are directly related to the line capacitance and conductance.
The line capacitance is proportional to the total charge in phase with the voltage and the

line conductance is proportional to the conduction current. The total complex charge on the
strip represented by Q) = @, + 7Q; can be obtained from

Q= /__i p(z)dxz%ZZZgl

from which the line admittance can be calculated and is given by

. Q _ . 1
Y—V()—]wvo-]w;%:Z,-j.
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It can be shown that over a narrow range of frequency the microstrip line behaves like a
capacitor in parallel with a resistor. The line capacitance and conductance thus are given

by
C =YY RelZ3'] Fim 9)

G =-wy Y Im(Z;"] S/m. (10)

For wideband applications a more complicated equivalent circuit must be considered. As-
suming that the substrate material and the upper half-space medium are nonmagnetic, the
line inductance becomes only a function of geometrical feature of the line and can be ob-
tained from magnetostatic analysis. An alternative approach is to find the line capacitance
of the air-filled microstrip line (Cy) and find the line inductance from

1

L= G

where V,=3x108 m/s is the phase velocity of the air-filled line [7). To check the validity
and accuracy of the numerical method, the line capacitance computed by the method of
moments with ¢ = 1.0 and ¢, = 6.15 is compared with the line capacitance computed using
the conformal mapping technique and is shown in Fig. 3.

The quality factor of the resonator is defined as the ratio of the total average energy
stored in the resonator to the power dissipated in a cycle. At resonance W, = W,,, = iC V2,
thus the quality factor due to the dielectric loss can be obtained from [6]

W, + Wy, icv: wC
Qi=w P =wiGV2 =—G—- (11)

Another issue of practical importance is the finiteness of the substrate. The theoretical
analysis given above is valid when the microstrip ground plane is of infinite extent. In practice
the resonator substrate is finite and its effect on the line capacitance and conductance per unit
length derived for microstrip with infinite ground plane must be investigated. Fig. 2 shows a
microstrip with finite substrate and ground plane in contact with a half-space homogeneous
medium. Our objective here is to characterize the smallest substrate width w, so that the
difference between the line capacitance per unit length in this case and that of the infinite
substrate is negligible. In this case a simple integral equation for the surface charge density
on the strip and ground plane is obtained. The substrate dielectric is replaced with the
induced polarization charge

pp = €o(€s — 1) [§(F— )i - E— V- E] (12)

where r, is a position vector that specifies the contour of the substrate (C) and 7 is an
outward unit vector normal to the substrate boundary. After applying the Green’s theorem
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the integral equation for the surface charge density and the complex potential function is
found to be

€&+1 _ G( LY, T ’y,) wi/2 ' ot '
(g)@n) = ~ala~1) [day) =g et [ 7 p()Gevia, 0)de

wy/2
+ / " py(@)G(z,y; ', —h)dz’ (13)

—w,/?

where G(z,y; z',y’) is the Green’s function of the half-space dielectric problems and is given
by

1 — 12 )2
+lln\/(z )24 (y +9)?|. (14)
Once the integral equation is solved numerically the line capacitance and conductance per
unit length can be obtained as shown before. Fig. 4 shows the line capacitance of a finite
substrate microstrip line with ¢, = 6.15, A = 0.245¢m, and w, = 0.37cm as a function
of wy/w, for e, = 1. It is shown that when w,/w, > 5 the formulation based on infinite
substrate is accurate for computation of the line capacitance.

Gle,yid') = ~goc [layfe =27 + 4= v -

3 Inversion Algorithm

In this section a retrieval algorithm for the complex dielectric constant of a half-space dielec-
tric medium in contact with a microstrip ring resonator is sought. Following the standard
cavity dielectric measurement approach the real and imaginary parts of the effective dielec-
tric constant of the loaded resonator can be obtained from which the complex dielectric
constant of the half-space medium must be inferred. Basically, first the resonant frequencies
of the loaded (resonator in contact with the dielectric medium) and unloaded (resonator in
free space) resonators are found from the measured frequency spectrum of |Sy;|. Then noting
that at resonance the electrical length of the resonator is equal to the guided wavelength, it

can easily be shown that:
o Re[y/el;/] (15)
1 u
f v/ Cess

where f' and f* are, respectively, the resonant frequencies of the loaded and unloaded
resonators. Since the ring resonator is a transmission line resonator, the relationship between
the effective dielectric constant and the line parameters can be obtained from:

G
Foy/Eess = w\[ LC(1 = j—7).

Assuming the substrate is lossless (G* = 0) and noting that the line inductance is not a
function of dielectric loading, it can be shown that

I ufgff
¢ =02 (16)
Cets
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ICu = _u!l (17)
w ecff
Comparing (17) to (11) and using (16), the imaginary part of the effective dielectric constant
of the loaded resonator can be obtained from

o e
el = Qfdf (18)

Using (15) and (18) the real part of the effective dielectric constant of the loaded resonator
€is; in terms of measured % and Qg and € can be obtained. Once €, and €}, are
obtained the line capacitance and conductance can be derived from (16) and (17).

Besides the dielectric loss, other factors such as radiation and conduction losses deter-
mine the quality factor of the resonator. If @, represents the quality factor of the unloaded
resonator and @ is the quality factor due to the dielectric loss, the measured quality factor

of the resonator (@) can be obtained from [6]
1 1 + |
Qn Qu Qa
Equation (19) can be used to measure @4 when the radiation losses of the loaded resonator
and unloaded resonator are the same or the radiation loss is negligible compared to the
conductor and substrate losses. This can be verified by measuring the quality factor of the

resonator when loaded with different lossless dielectrics. However, if the radiation loss is
significant and varies with dielectric loading, (19) can be modified to

1 1 1 1
@ ateta 20
where @, the quality factor due to radiation loss and its dependency to €, must be determined
empirically. As will be shown later, for most soil conditions Q4 << @, and therefore
characterization of @, with respect to €, is not necessary.

The last step in the inversion algorithm is the computation of €; and o3 from the mea-
sured C! and G'. In the previous section a numerical forward model for computation of the
line capacitance and conductance in terms of €, and o, was developed. Computation of the
forward model for various €, and o, reveals that C' and G' are smooth functions of €, and
0. Over the region of interest for ¢, and o, these functions are one-to-one and onto which
implies that the inverse functions exist. Since C(€),02) and G(€y,03) are gentle functions of
€, and 02, the inverse functions are also gentle functions of C and G. To demonstrate this
fact, €, and o, versus the line capacitance and conductance of a microstrip with €, = 6.15,
h = 0.245cm, and w, = 0.37cm are calculated numerically and are shown in Figs. 5 and
6. It is shown that the line capacitance is strongly dependent on €, and less influenced by
oy as expected. Also the line conductance is most sensitive to o3 and to a lesser extent
to €, . Therefore the inverse functions can simply be approximated by their Taylor series
expansions, that is

(19)

6 ~ag+ a1C + 4,6 + a3CG + a4C? + asG* + a6CG? + a7C*G + agC? + ayG®
4410C*G* 4+ annCG® + a12C°G + a13C* + a14G* (21)
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o0y by + b1C + bG + b3CG + byC* + bsG? + bgCG? + b:C%G + bsC® + byG?
+b10C%*G? + b;; CG® + b12C3G + b13C* + b14GH. (22)

The coefficients of the polynomials can be obtained from the forward model using at
least fifteen pairs of (C, G). However, in order to find better estimate of the coefficients much
more data points over the region of interest should be used in a least-mean-square estimator.
Once the coefficients are determined the measured C and G can directly be used in (21) and
(22) to find the unknowns €, and o,.

4 Experimental Results

In this section the design considerations for the development of a prototype microstrip ring
resonator and some experimental results are given. Prompted by the need for a high quality
factor transmission line resonator, the ring resonator as opposed to other types of transmis-
sion line resonators, such as a half-wavelength straight line resonator, was chosen. Another
attractive feature of this resonator in measuring the dielectric constant of soil is its rela-
tively large contact area with the soil medium. The coupling of energy to the resonator
is accomplished using an unconventional method. Ring resonators are usually excited by
a microstrip line through a capacitive air gap as shown in Fig. 7. However, for dielectric
measurement applications it is better to excite the resonator with an open-ended coaxial
line placed right underneath of the conducting strip as shown in Fig. 1. In this method
the coupling capacitance of the resonator is not affected by the dielectric constant of the
unknown material and therefore the quality factor due to the resonator coupling (Q,) re-
mains unchanged. Another important design parameter is the resonator filling factor. This
parameter signifies the percentage of the stored electric energy in the substrate to the overall
stored energy. For example to measure very lossy dielectrics a large filling factor is required
to keep most of the field lines inside the substrate. The filling factor is directly proportional
to the line capacitance of the unloaded microstrip (inversely proportional to the unloaded
characteristic impedance).

A microstrip ring resonator with a moderate filling factor that would allow accurate
dielectric measurement of soil with volumetric moisture contents varying from 0% to 30%
was designed using trial and error. It was found that a line with characteristic impedance of
50€2 would satisfy the filling factor requirements. For the prototype design, a Duroid 6006
substrate with €, = 6.15 and h = 0.254cm was used. The strip width and the ring perimeter
for the required unloaded characteristic impedance of 50() and resonant frequency of 1.25
GHz were calculated to be w, = 0.37cm and £ = 11.35¢m respectively. The dimension of the
finite substrate was chosen so that the constraint w,/w, > 5 is satisfied for every point on the
circular ring of the resonator. To examine the accuracy of the measurement technique and
the aforementioned inversion algorithm, lossless reference dielectric samples were measured.
An HP 8720 Network Analyzer with synthesized source was used to measure the quality
factors and resonant frequencies reported in this paper. Six thick reference dielectric slabs
(Stycast) with nominal dielectric constants of 2.2, 3, 6, 10, 13, and 16 were measured using
the prototype resonator. It was found that the measurement accuracy degrades as the
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dielectric constant of the medium increases.

The experiments indicate that the quasi-static approximation overestimates the line
capacitance when the dielectric constant of the half-space mediumis increased. To investigate
this phenomenon, two methods were pursued: (1) experimental, and (2) numerical. In the
experimental investigation the effect of surface waves and the quasi-TEM nature of the
approximate solution were examined. It is known that when the substrate height & is large
the structure becomes capable of supporting surface waves in the substrate. Three thinner
substrates were used to construct ring resonators (all with characteristic impedance of 502)
and the measurements with reference samples were repeated. Same amount of discrepancies
were obtained independent of substrate thickness. Next we examined the effect of quasi-
TEM approximation in our formulation. For this purpose, a resonator was made from
Duroid 6010 substrate with ¢, = 10 and used to measure the permittivity of the Stycast
sample with dielectric constant 10. In this case the medium surrounding the microstrip is
homogeneous and the fundamental mode of propagation is TEM. However, a discrepancy in
the measured dielectric on same order as before was observed. Having obtained inconclusive
results from our experimental investigation, we resorted to numerical techniques. First a full-
wave analysis for calculation of the effective propagation constant in microstrip lines based
on the method of moments was used [8]. It was found that for the frequencies and microstrip
dimensions used in this investigation the quasi-static solution provided very accurate results.
Next the problem was analyzed completely using a three-dimensional FDTD numerical code
[9]). After 20,000 iteration corresponding to 7 hours CPU time on a Cray super-computer, it
was found that the resonant frequency obtained by the FDTD method had more discrepancy
with the measured one than that obtained from the quasi-static method. One possible reason
for the larger error is that the time domain methods may not be very suitable for resonant
structures.

As a final resort we decided to rectify the problem by including an empirical correction
factor in the quasi-static solution. Let us denote the line capacitances derived from the quasi-
static solution and those measured from the inversion algorithm by C, and C,, respectively.
Fig. 8 shows the discrepancy in the line capacitance (AC = Cy— Cy,) as a function of the six
measured dielectric constants. Since the measured discrepancy is a smooth function of €; and
no discrepancy exist when €; = 1 the following expression for the corrected line capacitance
is obtained:

Ce=C, — k(e — 1), (23)

where k£ = 2.46 x 107!? is calculated using a least-mean-square linear estimator. This
corrected line capacitance is then used in (21) and (22) to derive the coefficients a; - - - a14 and
b, - - - by4. These coefficients are listed in Table 1 for a microstrip with e, = 6.15, A = 0.254cm,
and w, = 0.37cm.

Next the behavior of the dielectric constant of a sandy soil as a function of moisture
content is studied. The prototype ring resonator is used to measure soil samples with vol-
umetric moisture contents ranging from 0% to 30%. Fig. 9 shows typical responses of the
ring resonator in contact with soil samples having moisture contents ranging from 0% to
30%. Three other independent techniques were also used to measure the soil samples. These
include the open-ended coaxial probe, cavity resonator, and air-filled coaxial line. The dielec-
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tric measurement using air-filled coaxial line is based on reflection coefficient measurement
of a short-circuited coaxial line filled with soil samples. In this method the middle section
of a long hollow coaxial line is used as the sample holder as shown in Fig. 10. Measuring
the reflection coefficient over a wide bandwidth (B) and using the time domain capability
of the network analyzer, the reflected signal after traveling twice through the sample can be
measured. The hollow section of the coaxial line must be longer than the spatial resolution
(3 x 10%/2B) of the system. Fig. 11 shows the steps involved in measuring the reflection
coefficient of the short circuit for a 50 air-line of length [ = 50cm filled with d = 20em of
dry sand. The measured complex reflection coefficient is related to the dielectric constant of

the sample through
S11 = —(1 — R?)2e™7%ol gmiko(Ver-1)d (24)

where R = % is the reflection coefficient at the interface of air and soil. By inverting (24)
the real and imaginary parts of the soil dielectric are obtained. The accuracy of this method
decreases as the imaginary part of the dielectric constant increases unless the sample length
is decreased.

Figs. 12 and 13 show the measured real and imaginary parts of the dielectric constants of
the sandy soil with seven different moisture contents using the four independent measurement
techniques. The cavity method could only be used for the 0% and 5% moisture conditions
and shows an excellent agreement with the ring resonator measurement. For the real part
of the dielectric constant the agreement among all four techniques is very good. However, it
is shown that the coaxial probe overestimates the imaginary part of the dielectric constant

as the moisture content increases.

5 Conclusions

Theoretical, numerical, and experimental aspects of a microstrip ring resonator based di-
electric measurement device are discussed in this paper. The real and imaginary parts of
dielectric constant of a homogeneous medium in contact with the ring resonator is calculated
from the shift in the resonant frequency and the change in the quality facior of the resonator.
The solution to the forward problem is obtained from a numerical analysis of the quasi-static
solution. For the inverse problem simple algebraic expressions based on regression analysis of
the forward problem are also obtained. Measurements of reference dielectric samples showed
that the accuracy of the quasi-static solution decreases as the dielectric constant of the half-
space medium increases. To identify the source of error, full-wave numerical analysis and
extensive experiments were conducted. Our efforts in identifying the source of errors were
inconclusive. The errors in the quasi-static solution are corrected empirically from which
the inversion expressions are obtained. The validity of the ring resonator measurement tech-
nique is demonstrated by comparing the measured dielectric constants of a sandy soil with
different moisture contents with those obtained from three other measurement methods. It
is shown that the measurement technique is both accurate and versatile. The ring resonator,
because of its large contact area, is very suitable for dielectric measurement of soil and can
easily be constructed into a field portable device.
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Figure 1: Top view and side view of a ring resonator used in this investigation.

Figure 2: Geometry of a microstrip line in contact with a half-space homogeneous dielectric
medium.
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L € a3 l
ao | -0.787696E+01 | by | 0.333251E.01
a; | 0.113820E-01 | b, | -0.419435E.03
az | -0.625590E-06 | b, | 0.619400E-07
a3 | -0.170414E-07 |, b | 0.907383E-08
as | 0.437116E-03 | b, | 0.755818E-06
a5 | 0.518208E-11 | bs | -0.924463E-12
ag | -0.858796E-13 | bs | 0.863279E-14
ay 0.193313E-09 | b, | -0.346372E-10
ag | -0.465772E-06 | bs | 0.610040E-08 -
ag 0.628353E-17 | by | -0.300749E-18
a0 0.130853E-15 | by | -0.121781E-16
aj | 0.344406E-19 | by, | -0.313788E-20
a2 | -0,386692E-12 | b, [ 0.504362E-13
a3 0.359810E-09 | b;5 | -0.167593E-10
a14 | -0.123399E-22 | b4 | .0.903452E-24

Table 1: Taylor polynomial coefficients for €, and 03 respectively.

.
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A Technique for Dielectric Measurement of
Cylindrical Objects in a Rectangular Waveguide

Kamal Sarabandi, Senior Member, IEEE

Abstract— In this paper, the inverse scattering problem of
a homogeneous dielectric post in a rectangular waveguide is
considered. A novel inversion algorithm, based on the method
of moments and eigen analysis, for computation of the dielectric
constant of the post (¢) from the measured voltage refiection
coefficient is introduced. In this method the integral equation
for the polarization current induced in the dielectric post is cast
into a matrix equation, and then the contribution of ¢ to the re-
sulting reflection coefficient is expressed explicitly using the eigen
analysis. It is shown that the dielectric constant can be obtained
from the solution of a complex polynomial function which in
turn can be obtained numerically using the conjugate gradient
method. Practical aspects of dielectric measurement using this
technique are discussed. The HP-8510 network analyzer is used to
measure the reflection coefficient of dielectric posts in an X-band
waveguide sample holder. Metallic and known dielectric posts are
used to determine the accuracy of the dielectric measurement
technique.

1. INTRODUCTION

ITH advances in technology, synthetic aperture radars

have become the most promising remote sensing tool
in retrieving the biophysical parameters of a vegetation stand
[1], [2]. For this reason in the past two decades considerable
effort has been devoted to measurement and characterization
of the dielectric constant of vegetation [3]-[8]. All existing
methods for dielectric constant measurement of vegetation
are destructive: that is, the samples must be cut to shape to
fit in the sample holder. Therefore natural variation of the
dielectric constant as a function of temperature and water
content cannot be measured. Moreover, the existing methods
of dielectric measurement are suitable for broad leaves, and
a reliable dielectric measurement technique for pine needles
does not exist. Motivated by the need for an accurate method
to measure the complex dielectric constant of pine needles at
microwave frequencies both in situ and in vivo conditions, the
problem of scattering from a dielectric post in a rectangular
waveguide is considered.

The dielectric measurement technique proposed in this
paper is based on the reflection coefficient measurement from
cylindrical obstacles in a rectangular waveguide. A slot or a
small hole in a waveguide wall that does not interrupt the flow
of currents on the walls does not couple energy to the outside:
hence the internal fields remain undisturbed. For example, a
hole whose diameter is much smaller than both the cutoff and
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guide wavelengths made on the broad walls parallel to the
narrow walls and perpendicular to the axis of a waveguide
does not disturb the surface currents of a TE;; mode. If a
pine needle (or any dielectric object) is inserted through the
hole, part of the incident wave will be scattered back towards
the generator. The reflected wave is a function of both the
dielectric constant and the geometry of the cylinder cross
section. The idea is to measure the reflection coefficient of
a cylinder with known cross section and then calculate its
dielectric constant.

Analytical scattering solutions for cylindrical posts in a
rectangular waveguide are limited to metallic circular posts
of small diameters [9], [10]. A more complicated solution
based on a grating formulation for a metallic circular cylinder
can also be found [11]; however, the solution seems to be
excessively complex and has limited potential for combination
with other structures. For larger metallic cylinders or, in
general, dielectric cylinders of arbitrary cross section one
must resort to numerical techniques. In [12] a numerical
solution for metallic circular cylinders of arbitrary diameter
in a rectangular waveguide is given. In this paper a numerical
solution for the scattering problem of a homogeneous dielectric
cylinder in a rectangular waveguide supporting a TE;o mode
is sought with the emphasis on the inverse scattering solution.
Using a vector network analyzer and dielectric posts with
known cross section and dielectric constant both the forward
and inverse scattering formulations are verified.

II. FORWARD SCATTERING FORMULATION

Suppose a homogeneous dielectric cylinder with a known
geometrical cross section is placed vertically in a rectangular
waveguide. The post has a uniform cross section, and its
position in the waveguide is also known. The width of the
rectangular waveguide is a and its height is b. The geometry
of the problem and the coordinate system used are shown in
Fig. 1. It is assumed that the waveguide can only support the
dominant TE;p mode which is propagating in the positive 2-
direction. The incident wave induces a polarization current
in the dielectric cylinder which becomes the source of the
scattered field in the waveguide. The scattered field can be
expanded in terms of waveguide modes where the reflected and
transmitted waves (away from the cylinder) can be evaluated
by retaining only the first mode. Since the reflection and
transmission coefficients in a rectangular waveguide can be
measured with a high degree of accuracy [8], a numerical
solution for the induced polarization current is sought in order
to establish the relationship between ¢ and I'.

0018-9456/94504.00 © 1994 IEEE
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Fig. 1. Geometry of the scattering problem of a dielectric post in a rectan-
gular waveguide.

The incident field and the cross section of the scatterer
in this problem are independent of y which implies that
the induced polarization current is also independent of y.
Moreover, the incident field is along § and as mentioned
6/6y = 0 for all field components; therefore the induced
polarization current is along § as well. This simplifies the
problem drastically because using the image theory, the top
and lower waveguide walls can be removed provided that the
dielectric rod is replaced by an infinite cylinder of the same
dielectric constant and cross section placed in the resulting
parallel-plate waveguide. To set the integral equation Green’s
function for the problem is required. Suppose an infinite
current filament of magnitude I is located at (z', z') parallel to
the walls of the parallel-plate waveguide. Again by applying
the image theory, the waveguide plates can be removed by
replacing the filament current with two periodic arrays of
filament currents of the same magnitude and 180° phase
difference. Summing the contribution from all filaments:

G=-Rk, f Hy(kopy) = Ho(kopy)
4 0 n 0 n

n=-00

where p; = f(z-7'-2na)*+(2-2')? pf =
V(E+z -2na)2+(z-2')> and ko and Zp are,
respectively, the propagation constant and the characteristic
impedance of the free space. H} is the Hankel function of
zeroth order and first kind. The convergence rate of this series
is very poor; thus its numerical evaluation is very inefficient.
A better representation for Green’s function can be obtained
using the Poisson summation formula [11] and is given by

G= —";OZ0 i Sin(l‘fz’) Sin(';—"z)eik:nlz—z’|
a

P )

n=1

where k,,, is defined by

2
fon = [ (22
Suppose a TE;o mode with field distribution
i _ae (T ikyz
E' = §jsin (az)e

i_s illuminating the cylinder, inducing a volumetric polariza-
tion current J(z,z2) in the cylinder. The induced current is
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proportional to the total electnc field inside the cylinder and
1s given by

J(z.z2) = —1koYp(e = 1)(E* + E")

where E° is the scattered field given by
E’(z.z) = Q/J(:r’,:’)G(;r.z::r’.z')dx’d:’.

Therefore the integral equation for the induced current is of
the following form:

J(z,2) = —tkoYp(e — 1) [sin (%x)eikhz

+ /J(:z:',z')G(:c. 2T z')d.r'dz’}. )

An analytical solution for this integral equation is not known;
however, an approximate numerical solution can be obtained
using the method of moments. By subdividing the cross
section of the cylinder into sufficiently small rectangular cells
over which the induced current can be assumed constant, the
integral equation can be cast into a matrix equation. If the

discretized polarization current is denoted by a column vector
J, then

zJ=V (3)
where V is the excitation vector given by
v; = sin (Iz;)eik"“
a

and (z;, z;) is the Cartesian coordinate of the ith cell. In (3)
Z is the impedance matrix whose elements can be computed
from

2o =
;JkOZO & 4sin (BE=i) sin (2Z54) sin (2242) sjp (Easdz
E a a 2a 2
é n=1 2k'2u (%)
X gikns|2i=2;] zj # %
<
5 din(15) i (52) i o5
a n=1 ik'zu ("_:')
L x (eknsB82/2 1) z; =y
]
+ koZo i 4sin® (P2E) sin (2522) (efknee/2 _ 1)
a &~ ikﬁ,(l‘f)

where Ar and Az are the pixel dimensions. Once the po-
larization current is obtained, by inverting (3), the scattered
field can be calculated easily. Since the waveguide can only
support the TE;o mode, only the first term of Green’s function
is needed to compute the reflected or transmitted wave. For
example, away from the dielectric cylinder the reflected wave
is given by

E = —kozosin(ﬁ)e“""‘/J(x’,z')sin<£t—/)dz'dll~

aky, a . a

Therefore, the reflection coefficient, defined as the ratio of
the reflected wave to the incident wave at z = 0, in vector
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notation is given by

I'= —E’;éAIAZVtJ

akK];

4)

where V" is the transpose of the excitation vector. In a similar
manner the transmission coefficient can be obtained from
ko2, -
r=1- %AIAZV:}

ar),

where V is the conjugate transpose of V.

III. RETRIEVAL OF DIELECTRIC CONSTANT
FROM REFLECTION COEFFICIENT

The main goal of this analysis is the calculation of the
dielectric constant of the dielectric cylinder from its measured
reflection coefficient. As the analysis of the previous section
shows there is no simple relationship between the dielectric
constant € and the reflection coefficient I. The only case
where an analytical solution for ¢ can be obtained is when
the cylinder is electrically thin, i.e., kod < 1 with d being a
typical dimension of the cylinder cross section. In this case
the polarization current can be assumed constant, and it can
be shown that

ia
in2 220 o2ik) 20
kg[ASsm — ] —A

e=1+4+ ©)

where AS is the area of the cross section of the thin cylinder,
(o, 20) is the coordinate of the cylinder center, and A is given

by
=1 . /nrzg . (' 4 [z0=2'| gt 1.
Z_sm( ) sin| —— |e** 7% Idx'dy’,
k a AS a

n=1 "

A=

Since the summation is slowly converging, the contribution of
higher order terms, which are varying over the cylinder cross
section, to the integral is significant; therefore the integral for
each term must be evaluated carefully.

Direct retrieval of € from I'(¢) for thick cylinders is not
possible. However, brute force numerical search methods such
as Newton-Ralphson or conjugate gradient can be used to find
the dielectric constant that satisfies

I'(e)-Tm=0

where I, is the measured reflection coefficient, and I'(¢) is the
calculated reflection coefficient for a given dielectric constant
and cross section geometry. Search routines, depending on
the initial guess, usually require the calculation of Z~* many
times. The calculation of I'(¢) using (4) is very slow which
makes the search routine inefficient.

In what follows a procedure for the calculation of I'(e)
is presented which does not require evaluation of Z~* for
different values of e. The search routines can be made efficient
by noticing that the dielectric constant appears only in the
diagonal elements of the impedance matrix. The effect of ¢ in
Z7! can be made explicit by splitting the impedance matrix
into two matrices:

Z=W+pI
where I is the identity matrix, 8 = i/(koYp(e — 1)), and W
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Fig. 2. The signal flow diagram of the measurement setup and the sample
holder.
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is a matrix whose elements are defined as

Wi =z 1#]
_ koZy i 4sin®(nrz;/a)sin(nrAz/2a)
Y7 a — ik2,(n7/a)

X (eikﬂ,Az/2 - 1) 7= j-
Computing the eigenvalues and eigenvectors of W it can be
shown that

W = QAQ™! (6)



where A is the diagonal matrix containing the eigenvalues
of W. and @ is the matrix of eigenvectors; that is, the jth
column of @ is the eigenvector of W corresponding to the jth
eigenvalue A,. Noting that the identity matrix can be written as

I=QIQ!

and using (3), (6), and (7) the polarization current can be
computed from

(7

J =Q[A+817'Q V.

The expression for the reflection coefficient can now be written
as

koZo

D(e) = ~ o= Azdz QVI'A+80Q7V. (8

Defining U = QtV and U' = @'V, (8) can be expanded
to get

koZ()
aklz

UnUl (e~ 1)
(e = 1) +1ikoYp

Z = ©)
where M is the dimension of Z. From this expression it is
obvious that once the eigenvalues and eigenvectors of Z are
obtained, the reflection coefficient can easily be evaluated for
any values for € from (9). By setting the right-hand side of (9)
equal to the measured reflection coefficient I',,, a polynomial
of degree M is obtained whose roots are the possibe values
of . The admissible solutions for e must satisfy ¢’ > 1 and
¢’ > 0 which can be imposed as a constraint in the search
routine. In this paper the conjugate gradient method is used to
search for the global minimum of the function

f(€) = IT(e) = Trm?

subject to the mentioned constraint. For relatively thin cylin-
ders expression (5) can be used as the initial guess.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In this section the applicability and accuracy of the dielectric
measurement algorithm described in the previous section are
examined. An automatic measurement setup comprised of
an HP-8510B vector network analyzer, an HP-8511 test set,
and an HP-9000 computer is used to measure the complex
reflection coefficient I',, of a dielectric cylinder in an X-band
waveguide sample holder. The waveguide sample holder con-
sists of a waveguide matched load and a piece of waveguide
with a coax-to-waveguide adapter which is connected to the
HP-8511. The samples are placed at the junction of the two
waveguide pieces (z = 0) and centered in the middle of the
waveguide cross section (z = a/2). Centering the dielectric
cylinder in the middle of the waveguide cross section increases
the reflected wave, thus improving the signal-to-noise ratio for
thin cylinders with low permittivity.

One difficulty in reflection coefficient measurement is the
errors caused by the measurement setup. These errors are
known as systematic errors which can be removed by an
external calibration procedure. The signal flow diagram of the
measurement setup is shown in Fig. 2 where Ey, E,, E;, E;
are, respectively, the directivity, source mismatch, frequency
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Fig. 4. Magnitude (a) and phase (b) of the reflection coefficient of a circular
metallic post with diameter d = 0.63 cm in a WR90 waveguide.

tracking, and load errors. The reflection coefficient measured
by the network analyzer (T';) before calibration is related to
the actual scattering matrix of the cylinder (I'y, = s;;) by

812821 E
1—-822E;

1-E, (811+m‘-&)

1-822E;

Calculation of s;; from this error model requires the two-port
calibration procedure. However, ¥; for waveguide loads can
be as small as —50 dB and if cylinders with s;; > —20 dB
are concerned, the error in s;; measurement would be less
than 0.2 dB when E; is set to zero. In this case the error
model reduces to that of a single-port device. To correct for the
system errors, the measurement system can be calibrated using
three independent loads with known reflection coefficients. For
the waveguide sample holder a short, an offset short, and
a matched load were chosen to calibrate the system. Since
the calibration is done over a frequency range F™ir — Fmax
the length of the offset short () must be chosen such that
k22Xl < 7 to assure the independence of the calibration loads.

To check the accuracy of the measurement setup and the
forward algorithm, the reflection coefficients of a circular
Teflon post with diameter d = 0.7 cm and dielectric constant
€ = 2 +40.005 and a metallic post with radius d = 0.63 cm
were measured and compared with the method of moments
results. Figs. 3 and 4 show the measured and calculated

s+

Ia=FEq4+

E,.
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Fig. 5. Magnitude of the reflection and transmission coefficients (a) and
complex reflection coefficient versus dielectric constant (b) for a circular
cylinder with d = 0.5 cm at 10 GHz in a WR90 waveguide.

reflection coefficients of the Teflon and metallic posts over
the frequency range 8-12 GHz, respectively. The measured
magnitude is within +0.2 dB of the calculated magnitude, and
the measured phase is within £3° of the calculated phase of the
reflection coefficient. With the confidence in the measurement
technique, the inversion algorithm is attempted next. First let
us examine the sensitivity of the reflection coefficient function
to the dielectric constant. Fig. 5(a) shows the magnitude of
the reflection and transmission coefficients as a function e
for a circular post with d = 0.5 cm at 10 GHz. It is noted
that for ¢ = 20 a resonance occurs where s;; = 0 and
821 = 1, satisfying the conservation of energy. Fig. 5(b) shows
the complex reflection coefficient of the same cylinder as
a function of the dielectric constant. It is also noted that
the dielectric constant can be a multivalued function of the
complex reflection coefficient. Due to the complex dependence
of the reflection coefficient on the dielectric constant and
the geometry of the post, criteria for the uniqueness of the
solution cannot be established analytically. However, using
the numerical analysis it was found that the dielectric constant
becomes a single-valued function of the dielectric constant
when the electrical thickness of the post (dy/]e|) is small
relative to the wavelength (away from the resonance). Fig. 6

0.00 5_ p = == - T AT T T
9.6 134 172 2.0 M8 w6 3.4 36.2 40.0

Fig. 6. Sensitivity of magnitude of the reflection coefficient to the real and
imaginary parts of the dielectric constant for a circular cylinder with d = 0.5
cm at 10 GHz in a WR90 waveguide.

Dielectric Constant
~N

Frequency (GHz)

Fig. 7. Calculated real and imaginary parts of the dielectric constant from
the measured reflection coefficient of a circularTeflon post with d = 0.5 cm.

shows the three-dimensional and the contour map of the
magnitude of the reflection coefficient as a function of both ¢’
and ¢” for the circular dielectric post at 10 GHz. The sensitivity
of the reflection coefficient function to changes in ¢ when
both ¢’ and €” are large is very low and inversion may not
be very accurate. Again using the forward numerical model
it was found that I is very sensitive to ¢ when the electrical
thickness of the post is small compared to the wavelength.
To examine the accuracy of the inversion algorithm a
circular Teflon post with d =0.5 cm was placed in the sample
holder, and its dielectric constant was calculated from the
measured reflection coefficient. Fig. 7 shows the calculated
dielectric constant of the Teflon post as a function of frequency
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Fig. 9. Calculated real and imaginary parts of the dielectric constant from the
measured reflection coefficient of circular wet wooden posts with d = 0.32
cm and moisture content my < 0.5.

which agrees well with the expected values of ¢ for Teflon. To
show another example, the dielectric inversion algorithm was
applied to wooden cylinders with different moisture contents
(mg). Ten samples of cylindrical wooden posts with d =
0.32 cm were prepared, and their reflection coefficients were
measured. The experiment was repeated after the wooden
posts were soaked in water for a day. The calculated average
dielectric constants of the dry wood with my, < 0.01 and
wet wood with my = 0.5 are shown in Figs. 8 and 9,
respectively. The bars on the measured real and imaginary
parts of the dielectric constant indicate the standard deviation
of the measured quantity derived from ten samples.

V. CONCLUSION

An accurate method for measurement of the dielectric
constant of cylindrical objects with arbitrary cross section
is presented. In this technique the dielectric constant of the
cylinder with known cross section is calculated from the
measured complex reflection coefficient of a matched rectan-
gular waveguide containing the dielectric object. A novel and
efficient inversion algorithm based on the method of moments

and eigen analysis 1s introduced. The validity and accuracy of
the method are examined from the measurement of dielectric
posts with known dielectric constant. It is found that the
accuracy in dielectnc measurement decreases as the electrical
thickness of the cylindnical post is increased. The choice of
sample holder in this technique is suited for in situ and in vivo
dielectric measurement of pine needles.
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Bistatic Specular Scattering
from Rough Dielectric Surfaces

Roger D. De Roo, Student Member, IEEE, and Fawwaz T. Ulaby, Fellow, IEEE

Abstract— An experimental investigation was conducted to
determine the nature of bistatic scattering from rough dielectric
surfaces at 10 GHz. This paper focusses specifically on the
dependence of coherent and incoherent scattered fields on surface
roughness for the specular direction. The measurements, which
were conducted for a smooth surface with ks < 0.2 (where k
= 27/X and s is the rms surface height) and for three rough
surfaces with ks = 0.5, 1.39, and 1.94, included observations
over the range of incidence angles from 20° to 65° for both
horizontal and vertical polarizations. For the coherent compo-
nent, the reflectivity was found to behave in accordance with the
prediction of the Physical Optics model, although it was observed
that the Brewster angle exhibited a small negative shift with
increasing roughness. The first-order solution of Physical Optics
also provided good agreement with observations for hh-polarized
incoherent scattering coefficient, but it failed to predict the
behavior of the vv-polarized scattering coefficient in the angular
range around the Brewster angle. A second-order solution is
proposed which appears to partially address the deficiency of the
Physical Optics model.

I. INTRODUCTION

CATTERING of electromagnetic fields by random rough

surfaces in the backscatter direction has many uses and
has been investigated extensively over the past few decades.
By comparison, very few experimental investigations have
been attempted to evaluate forward scattering in the specular
direction. This is in part because the applications for specular
scattering are not as straightforward as for backscattering. The
many theoretical developments for scattering from random
rough surfaces, while developed for the general bistatic case,
have only been extensively used and tested for backscattering.
Therefore, the usefulness and validity of these theories for
specular scattering is largely unknown.

Recent developments in the modeling of terrain for radar
backscattering indicate that specular scattering from a rough
ground surface combined with scattering by an overstructure
(such as trees or crops) can contribute significantly to the
backscattering from the terrain as a whole [1]-[5]. Therefore
an understanding of the nature of specular radar scattering and
knowledge of the behavior of specular scattering theories are
needed. Several experimental investigations were conducted at
centimeter wavelengths in the 1946-1960 period to evaluate
the variation of the coherent and incoherent components
of the specularly reflected energy as a function of surface

Manuscript received April 30, 1993; revised September 17, 1993. This work
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Fig. 1. Calculated coherent refiectivity for v polarization using the Physical
Optics model for a Gaussian surface with ks vaired from 0 to 2.5, and € = 3.

roughness. The results for the coherent component, which is
represented by the reflection coefficient, are summarized in
Beckmann and Spizzichino [6]. According to these results, the
overall variation of the reflection coefficient with ks, where
k = 2r/), and s is the rms height, may be explained by
the coherent scattering term of the Physical Optics surface
scattering model [6], [7]. The data, however, are rather lacking
in several respects: (1) marginal accuracy with regard to both
the measured reflected signal and the surface rms height, (2)
limited dynamic range (10 dB relative to the level of the
signal reflected from a perfectly smooth surface), and (3) no
examination of the behavior in the angular region around
the Brewster angle. Additional bistatic measurements were
reported by Cosgriff et al [8] in 1960, but the data were not
calibrated, nor were the surfaces characterized.

More recently, Ulaby et al. [9] measured bistatic scattering
from sand and gravel surfaces at 35 GHz, and while the
data were calibrated and the surfaces were characterized,
no comparison to a theoretical prediction was given. In the
optical regime, Saillard and Maystre [10] have measured the
bistatic scattering of light from dielectric surfaces, and have
observed a change in the Brewster angle as the roughness of
the surface increased. Greffet [11] explained their observations
using the Small Perturbation Method [12]). However, the
Small Perturbation Method does not explain the observations
reported in our present study: the first-order Small Perturbation
Method predicts that the Brewster angle will move toward
grazing as the roughness increases, while our observations
indicate the opposite.

0018-926X/94304.00 © 1994 IEEE
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There are three major rough surface scattering approach-
es which have long held the acceptance of the scientific
community as valid for some ranges of surface roughness.
The Geometric Optics (GO) model, the Physical Optics (PO)
model, and the Small Perturbation Method (SPM) are the three
theoretical approaches most commonly used at microwave
frequencies for characterizing scattering from random rough
surfaces [7]. While both GO and PO models rely on the
Kirchhoff approach of using the tangent-plane approximation,
they yield very different predictions for the scattering of waves
from a rough surface. In particular, the GO model does not
predict any coherent reflectivity from rough surfaces. This may
appear to be an inadequacy of the GO approach; however,
the GO approach is valid only for surfaces so rough that
any coherent scattering would be very small anyway. The PO
model, on the other hand, has a simple expression for the
coherent scattering component, but the complete expression
for incoherent scattering, even for single scattering, has not
yet been formulated. SPM is a different approach, but its range
of validity is restricted to surfaces with small rms heights and
slopes. Because the ranges of validity for the GO and SPM
theories are outside the range of rms heights described in this
paper, comparisons to GO and SPM will not be discussed.

In this paper we will examine experimental measurements
of the coherent and incoherent scattering components in the
specular directions at 10 GHz for several dry sand surfaces
covering a wide range of rms heights (0.5 mm to 1.4 cm). The
measurements were conducted over an incidence angle range
extending from 20° to 65° for both horizontal and vertical
polarizations. The sand, with a relative dielectric constant
of 3.0 and negligible loss factor, exhibits a null for vertical
polarization at the Brewster angle of 60°. The experimental
data are compared with predictions based on a revision of
the Physical Optics solution that is slightly different from and
more accurate than the standard form available in the literature

(71

II. PHYSICAL OPTICS MODEL—A VECTOR SOLUTION

The Physical Optics approach involves integration of the
Kirchhoff scattered field over the rough surface. The coherent

field reflection coefficient from a surface with a Gaussian
height distribution is given by [7]:

Rq(a) = Rqoe—2k252 cos? oépq (1)
where the polarization subscripts p,q are either h or v, and
cosf = -2 - k;. The angle 6 is both the angle of incidence
and reflection; coherent scattering occurs only in the specular
direction from the mean surface. The reflection coefficient
Ry for a plane surface is given by (15) and (16) below.
Fig. 1 shows [',(8) = |R,(8)|*> for several values of ks.
The Brewster angle does not change with surface roughness,
but the coherent scattered power decreases very rapidly with
increasing roughness.

The power in the incoherent reflected field may be given
by a Taylor series in surface slope distributions. In Ulaby
et al. [7] the Physical Optics solution is called the Scalar
Approximation because slopes are ignored in the surface local
coordinate system, leading to a decoupling of polarizations
in the vector scattering equations. As a result, co-polarized
scattering in the plane of incidence is fairly accurate, but
cross-polarized scattering is zero. With the inclusion of surface
slopes transverse to the plane of incidence in the vectorial
solution to the Physical Optics approximation, depolarization
in the plane of incidence is predicted when the Taylor series is
expanded to the second order in surface slopes. The derivation
is given in Appendix A. In the specular scattering direction, the
first order terms are zero. The Physical Optics expression for
incoherent scattering in the specular direction, which includes
the zeroth and the important part of the second order terms, is
given by (see last paragraph of Appendix A):

09, = 2k? cos? Blag, | I + 4k*s* cos® 8(|ajy, | + latpg|*) 20

@

where
I(I) — e—‘ik"'s2 cos? @ /00 (e4k237 cos? 0p(€) - I)Edé‘ (3)
0

*® /70 2 2,2 .02
Iéo =/ ( g(;)) e-—4k 3* cos 0(1—p(E))£d6 (4)
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and
Qonn = Rno (5)
aipy = Ry (6)
vy = Ruo 0)
@y = Rur ®)
ghh = Qg = 0 ©)
Qouh = Qlyn = Qohy = Aipy =0 (10)
@i = (Rnocos® 8 + Ryo)/sinf (11)
aphy = —(Ruo cos® 6 + Ryo)/sin 8 (12)

The ag,, terms are the zeroth-order terms (scalar approxima-
tion); the a;,, and ay,, terms are the second-order terms due
to slopes longitudinal and transverse to the plane of incidence.
The function p(£) is the normalized correlation function of
the surface, and the parameters R,o, Rho, Ry1, Rp1 are the
coefficients of the (field) reflectivity local to the surface when
expanded in terms of surface slopes:

(13)
(14)

Rh(za y) = Rpo + RhlZ,(x, y) 4.
Ry(.’L‘, y) = Ry + R,,lZ,(z, y)+ -

where Z;(z, y) is the surface slope longitudinal to the direction
of the incident wave at the (z,y) lateral coordinates of the
surface. The zeroth-order terms are identical to the reflection
coefficients for a smooth surface. In particular,

cosf — n; cosd

Ryp= B MOTA (15)
72 cos 8 + 1, cos B,

_ M cosf — mp cos by
0= 71 cos 8 + 12 cos 0,

m2 sin 9(1 - Rho) - Thbc—osa— sin 0:(1 + Rho)

(16)

—_ ko cos 8,
h1 = 19 cos § + 11 cos b,
(17)
m sinf(1 — Ryo) — 7727%2% sin6:(1 + Ryo)
1= 71 cos § + 77 cos B,
(18)

where 8, is related to 6 by Snell’s Law: k; sinf = kysin 6,
and n = /ju/e. These first-order coefficients are different from
those found in Ulaby et al [7] and Ulaby and Elachi [13] due
to the incorporation of a more precise method for expanding
the local angle of transmission.

The zeroth-order terms dominate co-polarized scattering ex-
cept near the Brewster angle, where the zeroth-order terms tend
toward zero. For cross-polarization, the zeroth-order terms
predict no scattering for all specular angles, and therefore
cross-polarized scattering is determined by the second-order
terms. Unfortunately, this is still a single-scattering theory,
and depolarization is very small compared to other possible
sources, such as multiple scattering or volume scattering. Thus
it provides a simple estimate of the minimum expected cross-
polarized scattering in the specular scattering direction. The
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Fig. 3. Typical results of surface characterization of one of the surfaces
measured in this study: (a) Histogram of measured heights for a slightly
rough surface and the Gaussian probability distribution used to model it; a
total of 4353 height measurements were made, from which the rms height
was calculated to be s = 6.9 mm. (b) Measured autocorrelation function of
the same surface.

co-polarized second-order terms are all negligible except in the
vicinity of the Brewster angle, where the zeroth-order terms
vanish for vv polarization. The second-order terms all tend
toward zero at grazing, and the cross polarized terms tend
toward zero at nadir.

The fact that the Kirchhoff approximation is capable of
predicting any cross-polarized single scattering in the plane of
incidence is somewhat surprising. However, this is possible
because the Physical Optics approximation is used in the
derivation; use of the Geometric Optics approximation ne-
glects diffraction and is incapable of predicting cross-polarized
scattering. While expressions similar to, but not identical with,
those described here for the higher order terms of the Physical
Optics model have been presented in the past [14], and have
been unsuccessful in matching experimental measurements of
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the cross-polarized scattering coefficient [15], the authors are
not aware of any attempt to use the higher order terms to
explain scattering in the vicinity of the Brewster angle.

III. MEASUREMENT DESCRIPTION

A. Laser Profiler

The measurements shown in this paper are for random sur-
faces with varying roughness. The surfaces were characterized
by a Laser Profiler, a device engineered at the University of
Michigan to measure 2 meter linear or 1 meter by 1 meter
square sections of surface profiles. The Profiler is shown in
2 meter linear mode in Fig. 2. Using a Pulsar 50 Electronic
Distancemeter manufactured by GEO Fennel, it can measure
profiles of surfaces without direct contact. The profiler has a
horizontal resolution of 1 mm and a vertical resolution of 2
mm. Fig. 3(a) is an example of the height histogram generated
from the profile measured for one of the surfaces, and Fig. 3(b)
shows the corresponding correlation function.

B. Bistatic Facility

The configuration shown in Fig. 4 depicts the indoor bistatic
radar system used for making the measurements reported in
this paper. It is a stepped-frequency (8.5-10 GHz) measure-
ment system capable of measuring the scattering matrix S
of the target contained in the area or volume formed by the
intersection of the transmit and receive antenna beams. Using
an HP8720 vector network analyzer with an amplifier on the
transmitting antenna, the system measures a complex voltage

223
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Diagram of the Bistatic Facility.

for any pair of v or h receive and transmit polarization states.
With proper calibration, it is capable of measuring all four
complex elements of the scattering matrix of the target surface.
The hardware allows the transmitter and receiver to be located
independently at any point on a hemispherical shell 2.1 m from
the center of the target. In practice, however, measurements
are accurate only when both antennas are within 70° of nadir.
The receive antenna is a dual-polarized horn antenna with
a beamwidth of 12°, and the transmit antenna is a dual-
polarized parabolic dish whose feed was designed such that the
main beam of the parabolic dish is focused at a range equal
to the distance to the target surface, which is held constant
for all measurements. Because of the larger aperture (30 cm
diameter), the transmit antenna has a narrow beam of 5°,
which dictates the extent of the surface area responsible for
the scattered energy. By using a focused beam antenna, we
achieve a narrow-beam configuration without having to satisfy
the usual far-field criterion. A baffle made of radar absorbing
material was placed in the direct path between the transmitter
and reciever to insure proper isolation of the two antennas.
To separate the measured signal into its coherent and
incoherent components, it is necessary to measure many
statistically independent samples of the random surface char-
acterizing the target surface. This is achieved by rotating
the sample holder in increments of 10°, thereby realizing 36
spatial samples per full rotation. The spatial correlation of
the measured incoherent power indicates that measurements
decorrelated every 15°, resulting in 24 independent samples
per surface. Measurements of smooth surfaces indicate that
phase coherence is maintained between independent samples.
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The total path length, from transmitter to target to receiver,
has a standard deviation less than 4 mm (7° at 9.25 GHz) for
the set of independent samples.

C. Separation of Coherent and Incoherent Power

The Bistatic Facility measures a complex voltage V,,, which
is proportional to the scattered electric field for each po-
larization state at each spatially independent sample of the
surface. Because the scattered electric field is composed of
a coherent component from the mean surface and an inco-
herent component from the rough surface and/or volume, the
measured voltage will also have a coherent and incoherent
component: V,, = Vion + Vincon. These two components can
be separated because the incoherent component has a zero
mean: (Vipcon) = 0. Provided a large number of independent
samples are measured, the coherent power P°" is proportional
to the square of the complex average of the measured voltages:

Pt = Vegn|? = [V (19)
The incoherent power P"°°h is then proportional to the

variance of the fluctuating component of the measured voltage:

PmCOh “Vmcohl ) =

[Vin = Vin|? (20

D. Calibration

The bistatic measurement system is calibrated using a
bistatic adaptation of the polarimetric backscattering calibra-
tion technique developed by Sarabandi and Ulaby [16]. For
measurements corresponding to the bistatic specular configura-
tion, a large, flat conducting plate is used as a calibration target.
Further verification is obtained by measuring a conducting
hemisphere placed on the calibration target. The radar cross
section of the hemispherical target was calculated via Physical
Optics. Calibration to date has been accurate to within 0.5
dB in magnitude and 10° in co-polarized phase difference at
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boresight. The system is extremely stable; while the calibra-
tion procedure is performed for each day of measurements,
calibrations have been good for up to 5 days.

The bistatic facility measures E,q, the p polarized field due
to a g polarized transmitted field. The power in this measured
field P,q, is composed of a coherent and an incoherent
component:

Ppq = Pigh + Ppaceh @h
K, |?
pov = pr Kl 2
4(4m)2(ro, + 10:)2 ™ )
K,o|? 95(7,9)9¢(, y)
Pmcoh Ptl Pal 0 5 / p—————dzdy (23)
( )3 - A T2(I y) ( )
= I( pq)|3 PqIAm Pq 24)

where the coherent power reflection coefficient, and therefore
the coherent power, exists only for co-polarized scattering:
Peh =Ty, =0if p # q.

The co-polarized coherent power reflection coefficient is
calculated by comparing the coherent power from a target to
that from a large flat conducting plate, for which I’y C*" =1and

= 0. Thus,

Pcoh
r,, = 22 25

pp P;,:;l ( )

The co-polarized differential scattering coefficient is calcu-
lated by comparing the incoherent power from a target to that
of the calibration power. 1 4,,,, Was calculated from extensive
measurements of the normalized antenna patterns for both
antennas, for each of the principal polarization states, over
the entire main lobe of the antennas, at the boresight ranges

ror and rgs. Thus,

incoh
0 _ 4 Py

oy =
pp
(roe + TOr)ZIA;u PP P;;l

(26)

IV. RESULTS

A. Surface Characterizations

The shape of a random rough surface is described by the
surface height distribution function and the surface height
correlation function. For a surface whose height is given by
z = f(z,y), the surface-height probability density function is
given by ps(z), and is assumed to be Gaussian:

1
2) =
ps(z) o

_1:2
e 2,7

27)

Measurements by this and other experimenters [17], [18]
indicate that this assumption is appropriate. Fig. 3(a) shows
the fit between a histogram of measured surface heights
and equation (27). The surface height characteristics can be
specified by a single parameter, s, which is the root-mean-
squared surface deviation from the mean planar surface located
at z = 0.

The other statistical descriptor of random rough surfaces is
the normalized correlation function, denoted by p. It describes
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Fig. 6. Measured coherent reflectivity of three rough surfaces. Continuous
curves are predictions based on Physical Optics. In all cases, the surfaces
have a relative dielectric constant € = 3.0. (a) ks = 0.515.kl = 5.4. (b)
ks = 1.39. k1 = 10.6. (c) ks = 1.94.k = 11.8.

the degree to which the height at one location given by
z = f(=z,y), is correlated to the height at another location,

NS

given by 2" = f(a’.y'). For surfaces described by a stationary
random process. g can be expressed in terms of the lateral
separations « = r — ' and v = y — 3 between the two
locations on the surface. Moreover, if the surface statistics are
symmetric under azimuthal rotations, the correlation function
can be described by a single variable £ = vu2 + v2, which
specifies the absolute value of the lateral separation. Unlike the
surface height distribution function, the correlation function
may take on several forms for naturally occurring randomly
rough surfaces. The vast majority of the literature on rough
surface scattering assumes that the surface statistics are az-
imuthally symmetric and Gaussian, while many measurements
of commonly occurring surfaces in microwave remote sensing
situations indicate that an exponential correlation function may
be more appropriate [19].

A correlation function for a surface with a correlation length
of 52.5 mm is shown in Fig. 3(b). It was generated by
averaging the individual autocorrelations of 3 linear profiles
of the surface. Experimentation has shown that only 3 profile
measurements averaged together are neccessary to accurately
determine the correlation length and shape of this and other
surfaces, but many more are needed to demonstrate that the
correlation function tends toward zero beyond a few correla-
tion lengths. For the purposes of this paper, the correlation
length of a surface is that length at which the normalized
correlation function is e~!. As a result of the negative values
of the correlation function, several of the integrals used to
predict scattering characteristics ((3) and (4)) may yield values
which are obviously incorrect. However, only a few surface
profiles are needed to determine the shape of the correlation
function within one correlation length, and if the rest of the
correlation function tends towards zero, this portion of the
correlation function dominates the integrals. The effect of the
shape of the correlation function within one correlation length
can be explored by considering several analytical forms for
the correlation function.

B. Coherent Scattering

At the Brewster angle, the reflectivity for the vertical
polarization is identically zero for a smooth interface between
two lossless dielectric media. Whether or not it remains
identically zero for a slightly rough surface is not clear.
The Physical Optics approach clearly predicts that this is so;
moreover, it predicts that the minimum reflectivity remains at
the same incidence angle as for a smooth surface. This can
be seen in Fig. 1. However, the Small Perturbation method
predicts that the angle of minimum reflection for vertical
polarization increases slightly with increasing roughness of the
surface [11]. The fact that Physical Optics does not predict
a change in angle while the Small Perturbation does is a
consequence of the fact that the correction to the Fresnel
coefficient is multiplicative for Physical Optics while it is
additive for Small Perturbation. Additional terms in the Small
Perturbation expansion may move this minimum angle back
toward the smooth-surface Brewster angle.

a Fig. 5 shows measurements of the reflection coefficient
for a smooth dry surface with ks < 0.2 (the rms height s was
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Fig. 7. The reduction of coherent scattering from a surface due to roughness.
Shown is the measured coherent reflectivity of several surfaces (all with with
¢ = 3) but differing roughness parameters 1, normalized to the reflection
coefficient of a smooth surface. The angles of incidence range from 20° to 70°
and the roughness ks ranges from 0 to 2. The continuous curve is the Physical
Optics prediction for surfaces with Gaussian-height probability densities.

smaller than 1 mm, the measurement precision of the laser
profileometer). The curves in Fig. 5 were calculated using the
Fresnel reflection coefficient formulas given by (15) and (16)
for a surface with a relative dielectric constant ¢ = 3.0 + j0.
The dielectric constant for the sand medium was measured by
a dielectric probe, which gave a value of ¢’ = 3.0 for the real
part and a value of €” < 0.03 for the imaginary part. Because
€'/’ « 1 and the inclusion of ¢ as high as 0.05 does not
significantly change the results of any of the calculations in
this paper, it was ignored. The excellent agreement between
the measured data and the calculated curves presented in Fig.
5 provides testimony to the measurement accuracy of the
system.

Fig. 6 compares measured values of the power reflection
coefficient I' with curves calculated using Physical Optics
(equation (1)) for surfaces with ks = 0.515,1.39, and 1.94.
Although good overall agreement is observed between theory
and experimental observations, it should be noted that the
location of the Brewster angle exhibits a slight shift towards
decreasing angle of incidence; the Brewster angle shifts from
60° for the smooth surface shown in Fig. 5 to 58° for
the surface with ks = 1.39 (Fig. 6(b)) and to about 56°
for the surface with ks = 1.94 (Fig. 6(c)). The shift is
toward decreasing angle of incidence, which is opposite to
the direction predicted by the Small Perturbation Method.

By way of summary, Fig. 7 shows the dependence of the
g-polarized normalized power reflection coefficient v, on the
roughness parameter ), where

_ FQ(E,aaw) — IRIIIZ
’yq(w) a qu(ﬁ,o,O) B |Rq0|2
— oW

(28)

(29)

and ¥ = kscosé.

10. T T T Y T Y T T

Scattering Cross Section a° (dB)

Incidence Angle @ (degrees)

(a)

10. f L ) M

A0 RAAAS RARAS B T v

"""""""

Scattering Cross Section o® dB)

o3
b~
b

.30 1 1 1 1 L
0. 10. 20. 30. 40. S0. 60. 70. 80 90

Incidence Angle 8 (degrees)
®)

10. T T L) Ll L T T L

Scattering Cross Section o® (dB)

.30, 1 1 1 1
0. 10. 20. 30. 40. S50. 60. 70. 80. 90.

Incidence Angle @ (degrees)
©

Fig. 8. Measured co-polarized specular scattering coefficient for three rough
surfaces. Continuous curves are based on Physical Optics: the dashed curve
corresponds to the zeroth-order term for 60, the solid curve to o9, with
both the zeroth-order and second-order terms included; the dotted curve
corresponds to 02 - The second-order term is negligible for hh polarization.
In all cases, the surfaces have a relative dielectric constant € = 3.0 and an
exponential correlation function was used. (a) ks = 0.515,kl = 5.4, (b)
ks = 1.39,kl = 10.6, (c) ks = 1.94,kl = 11.8.
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C. Incoherent Scattering

As was discussed previously in Section II, the expression
given by (2) for the bistatic specular scattering coefficient
consists of two terms, a zeroth-order term and a second-order
term, with the latter being the result of a new derivation of
the Physical Optics model given in Appendix A. Fig. 8(a)
shows the measured values of o0, and o, for a slightly rough
surface with ks = 0.515, plotted as a function of incidence
angle, as well as plots for the same quantities calculated in
accordance with (2). The calculated curves include a pair
for the zeroth-order term alone, and a pair for the sum of
the zeroth-order and second-order terms. For hh polarization,
the second-order term is much smaller than the zeroth-order
term, and therefore its contribution is insignificant. The same
observation applies to vv polarization for angles more than
5° away from the Brewster angle, but in the vicinity of the
Brewster angle, the second order term becomes the domi-
nant contribution and it correctly predicts the level of the
experimental observations.

Unfortunately, for the rougher surfaces shown in Figs. 8(b)
and (c) with ks = 1.39 and 1.94, the model overestimates the
level of ¢°, particularly for vv polarization in the vicinity
of the Brewster angle. The measured data fall in between
the curves calculated on the basis of the zeroth-order term
alone and the curves based on both terms. Thus, despite the
improvement that the proposed model provides for the slightly-
rough case shown in Fig. 8(a), it is inadequate for very rough
surfaces.

V. CONCLUSION

Several measurements of specular scattering from rough
surfaces at 10 GHz are presented. They indicate that the
Physical Optics predictions for coherent scattering are very
good for surface roughness as large as ks = 2.0, with
the exception that the theory does not predict a shifting
of the Brewster angle by a few degrees towards nadir. A
theoretical explanation of this phenomenon is unresolved.
For co-polarized incoherent scattering, Physical Optics has
been shown to be an adequate descriptor for a surface with
ks = 0.515, but rapidly loses its quantitative predictive value
for ks > 1.

APPENDIX A. A VECTOR PHYSICAL OPTICS DEVELOPMENT

In Ulaby et al. [7], the Physical Optics solution for scattering
from a dielectric rough surface is presented under the scalar ap-
proximation. This approximation leaves out many terms, some
of which change the results of the calculations significantly. In
particular, cross-polarized scattering is neglected in the plane
of incidence under the scalar approximation. What follows is a
full vector solution to the Physical Optics problem, including
vector terms which are neglected via the scalar approximation
and some higher order terms in the expansion of the solution
with respect to surface slope, with the rest of the assumptions
remaining the same as in Ulaby et al. [7].

The solution starts with the exact Stratton-Chu integral
equation for the p-polarized scattered far field due to a g-
polarized wave (§Eoe™7*™) incident upon a rough surface:

— ‘k_,C 1k Ro A R -
E;q = -L——————TL, X /[(ﬂ X E) — T]‘ﬁs X ('IAI X H)]

4r Ry
x ek TdS (A.])
_'.kse_]ksRO . R N -
= whbo / Upge?*(ts=) 7y g (A2)

where the singly scattered fields on the surface are calculated
via the tangent plane approximation and are given by:

fiy X E = [Ru(q- 0)(Ry x f)
+Ry(dy - 7:)(§-d)) By (A3)
mAg X H= [Ru(Ry -73)(g - 1)t
- Ry(§-d)(f1 x )] Eo (A4)

where 7; is the incident wave direction, ¢ is the incident wave
polarization direction, 7 is _the unit normal to the surface,
t = f; x Ay /| x Ay, and d = A; x £. Also, R, and Ry, are
the v- and h- polarized Fresnel Reflection coefficients local to
a point on the surface. These quantities, and the appropriate
vector products, are defined in Ulaby et al. [7]; however, the
exact expressions for Uy, under the single scattering tangent
plane approximation do not appear there and hence are given
here for reference:

Uik = —5=[RvZ:((sinfsin A¢p + Z; cosf + Z;Z; sinf)

+ (cos 6 + Z; sin 8)(sin 6 cos 8, sin Ag
+ Z; cosfcosf, — Z;sinfsinf,))
— Ry(sinf — Z;cos8)((cosf + Z;sinf)
X (sinf cos A¢ — Z; cosf)
+ (sin @ cos 8, cos Ag — Z; cosf cosf,
+ Z:Z; sinfcosf, — Z;sinfsinb,
+ (22 + Z2) cosBsinb,))]

! ———[~Rn(sinf — Z; cos ) ((sin 6 sin A¢

D?D,
+ Z cosf + Z,Z; sin B) + (cos @ + Z;sin6)
X (sin 6 cos 8, sin Ag + Z; cosf cosf,
~ Z;sinfsind.))
~ Ry Z,((sin 8 cos 8, cos Ag — Z} cos b cos b,
+ Z4Z; sinf cosfs — Z;sin O sind,
+ (2 + Z%) cosfsin,)
+ (cosb + Z;sinf)
X (sin 6 cos A¢ — Z; cos6)))

[RhZ:((cosf + Z;sinb)

D2D

(A5)
Uuh

(A.6)

Uhv DZD

X (sinf cos Ap — Z; cos9)

+ (sin @ cos 8, cos A@ — Z; cos 6 cos b,

+ Z4Z; sinf cos s — Z;sinfsinf,

+ (2% + Z?%) cosBsinb,))

+ R,(sinf — Z, cosf)

X ((sinfsin Ap + Z; cosb + Z,Z; sin )
+ (cos @ + Z; sin 6)(sin 6 cos f, sin Ag

+ Z; cosfcosf, — Zysinfsinb,))] (A7)
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Uy = [RnZ:((cos 8 + Z;sin §)

D2D
(sinf cosf,sin Ag + Z; cos b cos b,
— Z;sinfsiné,)
+ (sinfsin Ag + Z; cos0 + Z,Z; sin b))
— R, (sin 8 — Z; cos 8)((sin 6 cos 8, cos Ag
— Z{ cosfcosb, + Z:Z; sinf cos b,
— Z;sinfsinb, + (22 + Z?) cosfsinb,)
+ (cos 8 + Z;sin8)(sinf cos Ap — Z;] cosb))]
(A.8)

where 6 and 6, describe the incident and scattered eleva-
tion angles measured from nadir, respectively, A¢ describes
the angular change in azimuthal direction between the inci-
dent and scattered waves, Z; and Z, represent the surface
slopes within (longitudinal to) and transverse to the plane
of incidence, respectively, Z} and Z; represent the surface
slopes within (longitudinal to) and transverse to the plane
of the scattered wave, respectively, D; = |a; x 7] =
V/(sin — Z;cos8)2 + Z2, and D, = \/1+ Z}7 + Z}.

Unfortunately, the exact expressions for U are not mathe-
matically tractable in the Stratton-Chu integral, as the surface
slopes are random functions of the location on the surface.
An approximate solution can be obtained by expanding U
in a Taylor series in slopes and retaining only the first two
terms:

Upg = UQ +UD 4. (A9)

1
= D_z(aom + (atipg Z1 + atipgZt + Quspg 2]

+ GyapgZ¢)/sin 6 + - - -) (A.10)

Note that D, need not be expanded as it will be cancelled upon
integration over dS = D,dzdy, but D; is Taylor expanded as
follows:

1

1
—5? "~ (sinf — Z;cos )2 + 22 (A.11)
_ 1 ( _ Z? 0 Z
sin® 4 sin’f  tanf
z
tan?f ) (A.12)

Similarly, the reflection coefficients local to the surface are
also expanded in terms of slopes:

R, =Ryo+RnuZi+--
Ry = Rho+ RnZi + -

(A.13)
(A.14)

The reflection coefficients are not dependent on Z; or Z,
and depend on even powers only of Z;. The a coefficients in
the expansion of U are, for all principal linear polarization
combinations, given by:

aonh = —Rpo(cos b + cosb,) cos Agp (A.15)
aguh = —Rno(1 + cosf cosb,)sin A¢ (A.16)
aohy = Ryo(1 + cos B cosb,)sin Ag (A.17)

Qoyy = —Ryo(cos b + cosf,) cos Ag (A.18)
atinh = Ruo(sinBsinb, — (1 + cos b cosb,) cos Ag)

— Ry sinf cos Ad(cos b + cosb,) (A.19)

@ishh = Rpo cosf(cosf + cosb,) (A.20)
atinh = Ryosin Ag(1 + cosf cosb,) (A21)
atshh =0 (A22)
alivh = —Rposin A¢(cos 6 + cosb,)

— Ry sinfsin A@(1 + cos b cosb,) (A.23)
Ggvn =0 (A.24)
ativh = Rposinf cosfsinf,

— R, cos A¢g(cosf + cosb,) (A.25)
atsuh = —Rhocos (1 + cosf cosb,) (A.26)
liky = Ryosin A¢g(cos @ + cosb,)

+ R,1sin8sin A¢(1 + cos 6 cosd,) (A.27)
Qishy =0 (A.28)
Qtihy = —Ryosinf cosfsin b,

+ Rpo cos Ag(cos b + cosb,) (A.29)
Gtshy = Ryocos (1 + cos b cosb,) (A30)

Alive = Ryo(sinfsin b, — (1 + cosf cosb,) cos Ag)

— R,1sin(cos 8 + cosb,) cos A (A31)
Glsvw = Ryo cosB(cos b + cosb,) (A32)
@tive = Rposin A¢(1 + cosf cosb,) (A.33)
Qtgpy =0 (A.34)

A. Differential Radar Cross Section
The elements of the covariance matrix [13] are given by:

(SmnSpq) / / UpnUp et P =27\ 45 45" (A35)

from which the differential radar cross section can be derived:

2
o = k ———(SpgSpq)

"= I (A.36)

Using (A.9):

UnnUy U'('?r)lUISO)' o U(l)'+U(1)U(0) )+UDD*

mn= pq

(A37)
and evaluating these separately, we can express o° as:

k2 * *
Opg & ((S S )a°+(ququ>sl

rq 47 A
+(SpgSpg)s2) (A38)
(SmnSpqds0 = / / (UL UQ» k(=) (=7)) 45 g1

(A39)
(SmnStg)st = / / (UQUD* + UDUO*)
jk(ﬁ.—r‘z.)-(r‘~r‘))d3d5/ (A.40)

(SmnSpeds = / / UL UL =) (=) 4545/
(A41)
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To obtain explicit expressions for a
tions will be used [7]:

, the following rela-

(chx(z—Z')> — e—qfsz(lw(f)) (A.42)
(Z, ele:(z—2 )> (Z'e”‘ -z )) — —jqzszcosaag(f)
e—9:8°(1-p(€)) (A.43)
(2% 07) = (Z007) = ~jg.5ina 2o
e=0:52(1-p(6)) (A.44)
2
(Z,2.e39::=%)) = —cos a(q, 26??)
e~%:2*(1-p(€)) (A 45)
: . F:) 2
(Z,Z,e%(*=2)) = —sin a(q, 2 g(fg))
e~9:5°(1-p(€) (A 46)
(Z,Z;ejq'(z"I)) = (2,7.3%"%)) = _sinacosa

2
x(qz_g?a_g(fﬂ) e~ %o (1-0(6) (A .47)
as well as the following Bessel function integral identity:
/ cos(na + B)e7*°**da = 215" cos fJ,(z)  (A.48)
2T

where g, = k(cosf + cosf,), s is the rms height, (¢, ) are
the polar coordinates of the difference between the unprimed
and primed surface locations, and p(§) is the normalized
surface height correlation function.

B. Zeroth Order Term

The analysis of the zeroth order term is straightforward and
yields the traditional coefficients for Physical Optics:

k2 .
47I'A (S S ) 4 k aOmnaoquO Wk aOmnaoquO
(A.49)
where

Io = 2me~ %% / [e%°°P®) _ 1)Jo(q:€)edE  (A.50)
0

g¢ = ky/sin? 0 + sin? 6, — 2sinfsinf, cos A¢p (A.51)
This term represents the expected power in a particular direc-
tion due to the correlation of the height of the surface at one
point to the height at another point. This term is the largest

contribution to o?.

C. First Order Term

The first order term in Ulaby et al. [7] is that of the scalar
approximation. Below is the full vector solution under the

229

tangent plane approximation:

k2 3 —k2

:hr—AO-(Smn ;q)s‘ [(a0mna[.,'pq + alnnn(l(.)pq)ql!

4mq, sinf
L

+ (aOmnal,pq + alsmna[‘)pq)qls
-

+ (aOmnatipq + atimna(.)pq)qti

*
+ (a0mnatapq + atsmnaapq)Qts]IO

(A.52)
where
qii = k(sinf, cos A¢ — sin6) (A.53)
gti = ksinf,sin A¢ (A.54)
Qs = k(sinf, — sin 6 cos Ag) (A.55)
gts = ksinfsin A¢ (A.56)

This term represents the expected power in a particular di-
rection due to the correlation of height of the surface at one
point to the slope at another point. This term is negligible for
scattering in the plane of incidence.

D. Second Order Term

The cross-slope term does not appear in Ulaby et al [7], but
is nonetheless an analytic term. It is given by:
k? .
yryH ——(SmnSpq)s?
k%3t
" 4sin’6
+ atimna:ipq + atamna:.pq

* *
{[alimna’lipq + Qlsmn a[qu

+ ((2Usmnaipg + Gtimnlyp,)

= (GlimnGgpq T+ Atsmn0ipg)) sin A

+ ((atimnaypq + Glsmniipg)

+ (atimna:,pq + a’tﬂﬂ‘l'na:ipq )COS A¢]I20
- qti)
)

- [(alim"a;ipq - aiim'la’:ipq)(qli

+ (Glsmnalspq = atamna:qu)(qa

= (GlimnGgipg + QtimnQlipg)qeiii

~ (GlamnQisp, + GtsmnQispg)dtsdls

+ ((aumna:,pq + atsmnafipq)

+ (Atsmn@ipg + Qtimnlspg))(QtiQts + Qiiges)

+ ((alimnaf,pq + alsmnal*ipq)

= (@timnt,pq + GtsmnGiipg))
(

X (quiqis + geiges)| I22} (A.57)

’2":/0 (ag(f)> Jo(qe€)e™ 9+ (1=rEedg  (AS8)

oo 2
1222/ (%) P - a-worgas (a0
0 Qt

This term represents the expected power in a particular direc-
tion due to the correlation of slope of the surface at one point
to the slope at another point. This term is significant for cross
polarization in the plane of incidence, and when the angle of
incidence is near the Brewster angle for the mean surface.
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E. Evaluation of the I Integrals for
Common Correlation Functions

The remaining integrals can be further simplified if we
assume a form for the correlation function p(€). In particular,
252
if it is Gaussian, i.e., p(€) = e"¢/"", then

(‘123)% [Fe
I = w2~ %" ZTe' (o (A.60)
=1 :
© . 2(i-1) o212 2)2
_ 9p-q2 i(g:8) w1 - e
a0 = 2¢ Z(z+l) Gi+1)° a(i+ 1)
(A6])
1 . (i-1) 212
=~ R Cay) A.62
Iy, 216 Z(z z+1)e (A.62)

or, if the correlation function is exponential, i.e., p(£) = P
then

00 21
Io = 2rl2e= 9% (g:3) A.63
o= ;(i—l)!(i2+q,212)% (A.63)
_22 e (i +1)(gys)2¢-1)
Iy=etd 30 A.64)
w=e €v~<i~1>!u2+q§m% ‘
Iy = 902 _qz,zi (¢80 D(/(E+1)2 + g2 - (i + 1))
— (- DY+ 1)+ giR) i
y 2 212 _ (;
) (1o Hal-G+D) o

2212

F. Special Case: Forward Scattering in the Specular Direction

For forward scattering in the specular direction, 6, —
6,A¢ — 0, and g, — 0, and the general expressions above
simplify considerably:

2
1 7': 7 (SmnSp)er = k" 0omnagpglo (A.66)
k2
dr A, (Smns"q)sl = (A.67)
2 4.4
oSS0l = Tl (timn + Gt g + )
+ (atimn + Gtamn)(@fipg + 0fepg) 20
(A.68)
where
aghh = —2Rpg cosd (A.69)
Qovh = Aoy =0 (A.70)
Qgyy = —2Ryo cosd (A.7])
Qliyy + Qlspy = —2R,1 sinf cosf (A.72)
Qlivh + Glsvh = Qtihy + Qishy =0 (A.73)
Qiinh + Qishn = —2Rp1 sinf cosf (A.74)
Qtivh + Qesuh = —2(Rpo cos? 0 + Ry)cosf (A.75)
Qtihy + Gty = 2(Ryo cos? 0 + Rpo) cost (A.76)
Qtivy T Gtsyy = Qtinh + Gtshh = 0 (A.77)
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Io = 2me™ %" / %O jede (AT8)
0
o 6p(£)>2 —q%s?(1-
I :/ <_ e~ 1=e€) ¢ g
20 0 6{

For the principal linear polarizations pg = hh, hv, vh, v,
the incoherent specular scattering coefficient can be obtained
by setting mn = pq in (A.66) and (A.68) and the resultant
expressions in (A.38) This process leads to the expression
given in 920.

(A.79)
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Abstract - Remote sensing of soil moisture using microwave sensors require accurate
and realistic scattering models for rough soil surfaces. In the past much effort has been
devoted to the development of scattering models for either perfectly conducting or ho-
mogeneous rough surfaces. In practice, however, the permittivity of most soil surfaces
is nonuniform, particularly in depth, for which analytical solution does not exist. The
variations in the permittivity of a soil medium can easily be related to its soil moisture
profile and soil type using the existing empirical models. In this paper analytical expres-
sions for the bistatic scattering coefficients of soil surfaces with slightly rough interface
and stratified permittivity profile are derived. The scattering formulation is based on a
new approach where the perturbation expansion of the volumetric polarization current
instead of the tangential fields is used to obtain the scattered field. Basically, the top
rough layer is replaced with an equivalent polarization current and using the volumet-
ric integral equation in conjunction with the dyadic Green’s function of the remaining
stratified half-space medium, the scattering problem is formulated. Closed form analyt-
ical expressions for the induced polarization currents to any desired order are derived
which are then used to evaluate the bistatic scattered fields up to and including the
third order. The analytical solutions for the scattered fields are used to derive the com-
plete second-order expressions for the backscattering coefficients as well as the statistics
of phase difference between the scattering matrix elements. The theoretical results are
shown to agree well with the backscatter measurements of rough surfaces with known
dielectric profiles and roughness statistics.

1 Introduction

Soil moisture, and its temporal and spatial variations are influential parameters in
both climatic and hydrologic models. Soil dielectric constant at microwave frequencies
exhibits a strong dependence on the soil’s moisture content. At L-band, for example, the
real part of the dielectric constant ranges from 3 for dry soil to about 25 for saturated soil.
This variation can result in a change on the order of 10 dB in the magnitude of the radar

l



backscatter coefficient [1]. With the advent of the polarimetric synthetic aperture radar
(SAR), radar remote sensing of soil moisture has attained significant prominence in the
past decade. SAR systems are capable of producing the backscatter map of the terrain
with high resolution from an airborne or space-borne platform. From the electromagnetic
point of view, remote sensing of soil moisture, in the absence of vegetation cover, can
be modeled as an inverse scattering problem, where the dielectric constant and surface
roughness statistics are to be determined from a set of backscatter measurements.

The problem of wave scattering from random rough surfaces has been the subject
of ongoing research over the past several decades because of its arises in many areas
of science and engineering. Generally speaking, the available electromagnetic scattering
models can be categorized into three major groups: (1) analytical, (2) empirical, and
(3) numerical. The analytical scattering solutions for rough surfaces apply when the
roughness dimensions of the surface are either much smaller or much larger than the
wavelength. For surfaces with small surface rms height and slope, the small perturbation
model (SPM) is the most commonly used formalism [2, 3]. In this approach, the surface
fields are expanded in terms of a power series in the small roughness parameter and
then, using either the Rayleigh hypothesis or the extended boundary condition [4], the
expansion coefficients are obtained recursively. The scattering formulations based on
SPM exist for dielectric and perfectly conducting rough surfaces. For these surfaces,
only first-order expressions for the co-polarized and second-order expressions for the
cross-polarized backscattering coefficients are reported [5]. On the other hand, if the
irregularities of the surface have relatively small slopes and large radii of curvature, the
Kirchhoff approximation (KA) can be used [6]. In this approach, the surface fields at a
given point are approximated by those of the local tangent plane. In the past two decades,
many attempts have been made to extend the validity region of SPM and KA. Among
these, the phase perturbation method (PPM) [7] and the unified perturbation expansion
(UPE) [8] for extending the low-frequency techniques, and the integral equation method
(IEM) [9] for extending the high-frequency techniques, can be mentioned. In the PPM,
the perturbation solution is obtained by expanding the phase of the field instead of the
field itself, whereas in the UPE method, the solution is obtained by expanding the field
in terms of a parameter (momentum transfer) that remains small over a region larger
than the perturbation parameter used in SPM. Scattering formulation based on PPM and
UPM are reported only for one-dimensional rough surfaces. The scattering solution based
on [E method is obtained by inserting the KA into the surface field integral equation.
This method is significant in that it reduces to the SPM solution, thereby seemingly
bridging the gap between the low- and high-frequency solutions [10].

In this paper, no attempt is made to extend the validity region of the existing meth-
ods; instead another practical aspect of the scattering problem is investigated. In most
practical situations, the soil moisture content as a function of depth is non-uniform in
depth. The soil moisture profile is usually a complex function of soil type, temperature
profile, surface evaporation and moisture content [14]. For radar remote sensing of soil



moisture, the effect of the inhomogeneity in the complex permittivity of the soil surface
on its backscatter must be understood. For this purpose, analytical expressions for the
bistatic scattering coefficients of a slightly rough surface with inhomogeneous dielectric
profile are derived. Using the classical perturbation expansion of the electric field, a
new volumetric integral equation approach is used to obtain the iterative scattering solu-
tions. In what follows, the theoretical formulation for the scattering problem is given and
the closed-form complete second order soiution for backscattering coefficients and phase-
difference statistics are derived. In Section 3, the theoretical solution will be compared
with experimental backscatter measurements collected using the University of Michigan’s
bistatic indoor facilities.

2 Theoretical Analysis

Consider an inhomogeneous half-space medium with a rough interface as shown in
Fig. 1. In the following derivation, it is assumed that the medium is stratified, that is,
the relative permittivity is only a function of z, and is given by

&(,y,2) = €(2) .

Suppose a plane wave is illuminating the rough interface from the upper medium and,
with a very high probability, the surface height variation is small compared with the wave-
length of the incident wave. To make the solution tractable, the permittivity of the top
layer down to a depth of d is considered to be uniform, where -d < min{surface profile}.
Denote the surface height profile by the function z = Af(z,y), where f(z,y) is a zero-
mean stationary random process with a known autocorrelation function, and A << A is
a small constant known as the perturbation parameter. The incident wave can be written
as -
Ei(f) — Pi eikok'-r ,

where P; denotes the polarization of the incident wave, ky = 27” is the free space prop-
agation constant, and k' is the unit vector along the direction of propagation, given

by
k' = sin 6; cos ¢;% + sin 0; sin iy —cosb;z .

In the absence of the top homogeneous rough layer (with thickness d), the incident wave
would be reflected at the smooth interface between the free space and the inhomogeneous
half space soil medium. The reflected wave can be expressed by

E(7) = P, ekt |

where k" is the direction of propagation of the reflected wave, given by



and P, is the polarization vector of the reflected wave, which can be obtained from
P, = ry(P; - 6;)0, + ra(P; - hi)h,

Here r, and r;, are the F resnel reflection coefficients, and the horizontal and vertical unit
vectors are given by

’ v,=iz,xlE, ’ (1)

where the subscript s can be ¢ or r for the incident and reflected waves. In presence of the
homogeneous rough layer, the incident and reflected waves induce a polarization current
within the top dielectric layer which is the source of the scattered field. The polarization
current in terms of the total field and the permittivity of the layer is

J(r) = —ikoYo(e — 1)E* , (2)
where Y = Zlo is the characteristic admittance of the free space, and
E'=E'+E +E°.

The scattered field E* can in turn be expressed in terms of the polarization current and
is given by

E’ = ikoZo / G(r,r')- I(r') dv' |, (3)
Vatab
where é(r, r') is the dyadic Green’s function of the half-space inhomogeneous medium

(in the absence of the top rough layer). Substituting (3) into (1), the following integral
equation for the polarization current can be obtained:

1 o0 d+Af(z'.y')
—_ s i r 2 ~ n. ' '
—3(r) = —ikoYo(E' + E) + &3 _/! 0/ G(r,r') - J(r') dv' . (4)

An approximate solution for the integral equation can be obtained using a perturbation
technique. By breaking the 2’ integral into two integrals, one with limits from 0 to d and
the other with limits from d to d + A f(z',y’), and noting A f(z',y’) is a small quantity,
up to the Nth order in A, (4) can be written as

oo d
1 . i r ~ ’ ’ g0 g 0
J(r) = - ikoYo(E' + B )+k§///G(r,r)-J(r)dzdydz

6_

-o00 0
N-1 & n+1 n
[Af a A !/ ! 1 g1
tho ?:—o / n+ 1 3o (G I} da'dy’ , (9)



where r; = z'% + y'y + dz. Taking the two-dimensional Fourier transform of both sides
of (5) and noting that the integrals in z’ and y' are of convolution type, it can be shown
that

1
6—

lj(kl,z) = — i47r2koy()5(kl _ kl) [Pie—ikiz + Preikizl

d _ _ N-1 n (R)ARt!
+ K2 / G(kyiz,2) - I(ky,2)de' + K 3 Y T — f)ar
0

nsom=o (m+1)!
m . an-—m n+l
L Glhind): | il QR0 @

where * is the convolution operator, F(k,) is the Fourier transform of f(z',y’), ® rep-
n

resents n-fold self-convolution (éF =F+Fx--xF), ki = kycosb;, and C:;(I}l; z,2') is
the Fourier transform of the Green’s function, given by
§(z—-2')
k2
{[rhh :k,z + il(_kz)e—ik,z] . il(—kz)eik‘zl
+ [rvv eiksz +6(—k,)6_ik‘z] -13(—/5:,)6“‘“'}
z2< 2,

(:}(ki_; 2,2')= -3z

2kz ( ) [rhil(_kz)eik:z’ + il(kz)e-ik‘z'] eikxz

+ d(k:) [rod(—ke)e® + d(k,)e| eiher)

z> 2.

\

In (7), k. = \/k — k2 — k2, ky = k;% + k,j, and h(%k.) and 5(k,) can be obtained
from (1) with k, = (k.3 + k,§ £ k.2)/ko.

Since the surface height variations are much smaller than the wavelength (A << ),
the induced polarization current on the top rough layer closely resembles that of a smooth
layer with the same dielectric constant and thickness d. Under this assumption, the
polarization current may be expanded in terms of a convergent perturbation series in A,
and is given by

J(r) = f: Ja(r)A

where Jo(r) is the induced polarization current in the unperturbed layer. Then by sub-
stituting this expansion into (6) and collecting terms of equal powers in A, a recursive



set of equations for the components of the polarization current can be obtained, and is
given by

i 130(1&, 2) = — idnkoYob(ky — k') [Pie™* 4 P,e*v?]
d -~

+ R / G(ky;z,2') - Jo(ky,2') d2" C®)
0

1

€ —

d . )
le(kL,z) =k / G(ky;z,2) In(ky,2)dz' + RG(ky;2,d)- Vi . (9)
0

Here Vi is the source function for the Nth-order integral equation with a closed form
representation

N-1N-n-1 -n- 2’C N-n-m-1 N-n
Wy 3 (" )()-) '[aZ’)”' Tk d)| * @ F(ky)

The integral equations so obtained are Fredholm integral equations of the second kind,
for which analytical solutions can be obtained. Note that the solution of the zeroth-order
equation is the source function for the first-order equation and the Nth-order equation
has an excitation function which consists of N-1 lower order polarization currents. To
solve (8), let us first split the integral into two integrals : one over the interval [0, z] and
the other over the interval [z,d]. Extending the integration limits of the second integral
over the entire interval [0, d] by adding and subtracting an integral over the interval [0, 2]
and noting h(k,) = h(—*.), (8) can be written as

1 ok, 2) = ~ idnkoYob(ky — ki) [Pie™* + Pre| — 22 - Jo(ky, 2)
6 —

ik}
2k,

+ [6(k,)ﬁ(k,)e"ik‘("“’) — B(—k,)D(—k,)e* ")]} o(ky,2")dz’

{h(k )h(k,) [ —iks(2'~2) _ eik.(z’—z)]

+ Z—Zz{[r eter 4 emke] Rk, )h(k:) + [roeo(k,) + e *emi(—k,)|
d
-k,)}. / Jo(ky, ') d" . (10)

Noting that the second integral in (10) is a constant function of z and that the first
integral is of convolution type in z, (10) is recognized as a vector Volta integral equation
that can be solved analytically using the Laplace transformation or Picard’s Process of
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successive approximation [15]. Since the involved integral in (10) is explicit in terms of
variable k , it can be shown that Jo(kL, ) is of the form

Jo(ky,2) = (2r)?8(ky — k') Jo(2).
The polarization current can be decomposed into its principal components, given by
Jo(2) = Jon(2) h(KS) + Jou(2) {(KS) + Jos(2) £

where i(k!) = 2 x h(k). Evaluating the inner product of (10) with A(k}), {(ki) and 3,
three uncoupled scalar Volta integral equations are obtained. Solutions to the resulted
integral equations for the three components of current are of the following form:

JOh(z) = AO elk“z + Bg e—ik;,: ,
JOt(z) — AO :k“z_*_BSe—ik:‘z ,

k L
Joz(2) = —-El— {Aoe'klzz Bge"k"z} . (11)

After a long algebraic manipulation, closed form expressions for the zeroth-order polar-
ization current are obtained

2ok ST
Jon(2) = k' yry Yo(e—1) Cy(k', 2) [P'. . h(kz)] e ,
. 2kok* ki, ' I
Joi(2) = k.—(cm Yo(e — 1) CY(K', 2) [P; - 5] e~k
= . 2k0kl lk'
JOz(Z) - CIC' + k YO( ) ( [Pl Z]
where
1 . 1 . ; kl _ k:z ,' ek' _ k'z
e = ko\/m, k, = kosin;, R) = ki + Icl R, = eki + kl
C,’:(k,z) — (“1)" (Rh - rh).eikuz + (thh — 1) e'—lklzz |
Rh (Rh - rh) eik],d + (thh - 1) e—lk“d
—-1\n — thy.z _ —iky,z
Colle, ) = C 00 = Ro)eiet 4 (Ryr, — 1) emiber

Rv(R—u —-r )C'k“d'f'(R,,Tu - 1) —iky.d

The source function of (9) can be written as

kaG(ky;z,d) -V 2 —ikeY, (QN:’C—ik'z + QNreik") , (12)



where

awi = g2t (k) Vin) (k) + (o) V) o=k}
an: = —fk"zﬁe"k«d {(h(k.) - Vn) h(k.) + (3(=k.) - V) (k:)}

Noted that the vector integral equation (9) and the source function for the Nth-order
polarization current are identical to those of the zeroth-order polarization.current, and
therefore a similar solution can be easily obtained. By decomposing the Nth-order po-
larization current in terms of its three principle components, it can be shown that

~ k2 - “
JNh(kJ_,Z)—z—k—-(:i:'lT)Co(k [VNh(’C;)] )

- kokys (e—1) ., _—
JNt(k.L,z) =-l—k£6-k1—-*(_6h—)co(k,2) [VN -v(—kz)] ’
~ kok, (e — 1 -
Ina(ky,z) = %_) Ci(k,2) [V - i(—k.)| -

2.1 Scattering Coeflicients

Once the polarization current is obtained, the scattered field in region z > d can be
obtained from (3). Assuming that the surface perturbation is localized and the observa-
tion point r = r(sin @, cos #,Z + sin 8, sin @,y + cosb,z2) is far from the scatterer, the far
field approximation can be used to find the scattered fields. Using the stationary phase
approximation in the far fields region, the Green’s function is reduced to

G(r,r)

tkor . . rat

= { [BkR(kD)rs + (k2o ( k)] e
+ [R(kR(R) + a(K2)o(k)] 7'} (13)
Substituting (13) and the polarization currents into (3) and expanding the integral similar

to those used in (5), the Nth-order scattered field is given by a power series in A f(z,y)
(similar to (3)). In this process, the Nth-order scattered field components are found to

be

R eikor , N-1N-n-1 N-n-1) (i psym
w(r) - h(k2) =ikoZo AN — e~ 2 Z_Z ( )(l ) [R;+(—1)’"]
Ch(k*,d aN"?“mj—(k’ )] N"F(k
m( ’ ) a(z/)N—n—m—l ni™L (14)



Ej(r)- v(k’)_zkoZoANeko DYDY

n=0 m=0

N-1N-n-1 (N-n-1) (rpsym
( )();) {[R:—(—l)m]

. Cl(K*,d) cosB, i(K2) + [R: + (=1)™] Clayy (K, ) sin 6, 2}

N-n-m-1
a_(‘?_)n—_mJ (K%, ]* QR F(ky) - (15)

The polarimetric response of a target can be obtained from its complex scattering inatrix,

defined by
tkr

SE' .
r

€

E' =

The elements of the bistatic scattering matrix can simply be computed by setting P; =
h(ki) and P; = 9(k) in (14) and (15). For distributed targets, such as rough surfaces,
the quantities of interest are the elements of the differential covariance matrix, defined
by

. A4r . ..
ol = Allm — <S.'j5,,q> , % J, b, ¢ € {h, v}. (16)

Here (-) denotes ensemble averaging. These elements are in general complex quantities,
except when ¢ = p and j = ¢, in which case the elements are the usual scattering
coefficients. In the perturbation analysis, each element of the scattering matrix can be
evaluated up to the Nth-order, that is

N
Si; =Y 8Man, i,7 € {h, v}. (17)

n=1
It turns out that simple expressions for the first-order elements can be obtained and are
given by

k2K kS (e — 1) ei(ke+hi)d . .
(1 _ Ch k*,d Ch k', d) cos(¢s — i) F(k® — k') ,
Wl R (R oGl D el g Pl k),

kokikzki, (€ — 1) e ithiM

L LLAGE ChK*,d) C¥(K', d) sin(¢, — K, - ki
r(h By Ry colodeladm@. el ),
K k2k:, (e — 1) e—i(ki+kz)d . ' _
5(1)_150 2z 1z - - Cch k',d) Cy(k*,d) sin(¢, — ¢;) F(k] = k'),
W(Gk; + kfz)(k; + kiz) 0( ) 0( ) ( ) ( 1 J.) (20)
Kiki, (e — l)e‘i("i+k;)d : eksk*k!
(1) —_zz _ _ LSS V(18 vt 4. z%Vp™p
vv W(Cki + kiz) (Ek: + ki’z) kzklzCO(k ’d)CO(k ’d) COS(¢, ¢!) kiz
- cr(k’,d)c:(k*',d)] F(ki - k). (21)
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In these expressions F(k) — k') is the only indeterministic factor and therefore the
elements of the differential covariance matrix can easily be obtained by noting that
. 1 .2 .
Jim < (|aFa - kD[ ) =W - ki) (22)
where W(k,) is the power spectral density of the surface.
To examine the validity of the first-order results, a special case is considered. In the
case of backscattering (ki = —k') and for a homogeneous profile where R, = r, and
Ry, = r4, the first-order backscattering coefficients are given by

4 .12 .
ORuws = —kf cos* 6 |Ri| w(-2ki),
(k2 — k3) (K2, + k2 sin®6,
(i, + eki)’

4
0% = —cos'l;
T

vvuvvy

2
e,

o _ .0 _
Ohvhy = Ouhuh = 0,

which are in agreement with the results reported in the literature [5]. Before we proceed
with the higher order scattering solutions, the following observations are in order. The
analysis is simplified if we assume that the surface height profile f(z,y) is a Gaussian
random field. There is some evidence that this assumption is reasonable for some surfaces
of practical importance [1]. Since Fourier transformation is a linear operation, F(k, ) is
also Gaussian. It is well known that the following identities hold for a zero-mean jointly
Gaussian random vector {Xj,..., X, }:

(XiX;Xe) =0, (23)
(XiX; X X1) = (XiX;) (X Xt) + (XiXi) (X; X0) + (X Xa) (X Xy) - (24)

On the other hand, it can be shown that
S « F(ky - ki), (25)
5P / dky F(k% -k, )F(ky - k) IP(ky) (26)
S o [[ diidi, (ki ~ ko) F(ks ~ K)F(<, - k) [Pk, k), (21)

where I,~(J-2) and I,(Js ) are functions of polarization currents (see (18)~(21) and Appendix
A). For the evaluation of the covariance matrix, we confine our interest in perturbation
terms up to A*. Substituting (25)~(27) in (17) and then using (23), the elements of
covariance matrix simplify to

(555,) = (SPS0) A2 4 [(Sff’s,‘,ﬁ") +(SP50") 4 (Sff>5,€,;)‘>] A* 29
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Noting that property (23) is valid for any odd number of random variables, the elements
of covariance matrix are only functions of even power of A. Therefore the next higher
order of approximation in calculation of <S,~j5;q> can be obtained by inclusion of products
of the first and the fifth, the second and the fourth, and the third-order scattering terms.
However, evaluation of high-order scattered fields such as fourth and fifth order are rather
complex and tedious. Noting that A is a small quantity compared to the wavelength,
the benefit of inclusion of A® term is not significant. This argument cannot be used for
the second order solution (A* term), since this term is the dominant factor for some
important scattering parameters such as cross-polarized backscattering coefficient and
co-polarized degree of correlation.

The scattering matrix elements up to third order are derived. These expressions
are very lengthy and are not included in this paper. Interested readers are referred to
reference [11]. Using these expressions in (28), the elements of the covariance matrix can
be obtained. The ensemble averaging process can be carried out easily using (24), and

AYF(ky)Fr(K))) = O F(ky)F(-kL)) = (20)" 8(ky —k)W(ky) . (29)
Using the above mentioned properties, and noting that in backscatter direction (¢5 =

¢;i+m 0, =06) 5,(:,) = S',(,,l‘) = 0, the cross-polarized backscattering coefficients can be

obtained and are given by

o _ o0 _M |(1 - R;) (1+R;) Cé‘(k‘,d)Cg(k‘,d)r

O hvhv vhuh = 1673
[ Wlkes — KW (ks + K )sin*(9 - 6 cosX(6 - )
ko Ch(k,d) — —’“‘-k-‘-’-—cv(k d) 2dk (30)
kz+klz 0 H klz+€kz 0 ) Y

which satisfies the reciprocity condition. To examine the validity of (30), a homogeneous
profile is considered having Ry = r, and R, = r,. In this case

. . 2
0, =% == ko(,k;)zk;z (k] - kg):).
hvhv vhvh 3 (kgkiz + kfk;) (k; + kiZ)
f (Kiky — kik.) (kik, + ki,
(k)2 (k3ki, + K2k,)

2

Wik, - k)W (k, +ki)dk, |
(31)

which is in agreement with result reported in [5].

2.2 Phase Statistics

Traditionally, scattering models for rough surfaces provide formulations for co- and
cross-polarized scattering coefficients. With the advances in the development of polari-
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metric radar, the statistics of the phase difference of scattering matrix elements can be
measured and used in inversion algorithms to retrieve the target parameters. In a po-
larimetric backscatter measurement, apart from the backscattering coefficients, the co-
and cross-polarized phase differences, defined by ¢. = @nn — ¢y, and ¢; = Gry — oo,
are two additional independent parameters which can be used in an inversion process.
In a recent paper [12], it was shown that the statistics of the phase difference can be
derived from the elements of the target covariance matrix ((S;;S,,)) and that the pdf of
each phase-difference can be fully determined in terms of two parameters : (1) coherent
phase difference () and (2) degree of correlation (a). The coherent phase difference is
the phase difference at which the pdf assumes its maximum. The degree of correlation
is a real number that can vary from 0 to 1 and is proportional to the spread of the pdf
around (, where a = 0 corresponds to a uniform distribution and a = 1 corresponds to
a delta function. In terms of covariance matrix elements, ( and « are given by

Y 1 (C755) B J( [(SuSel @)

Re[(S;S;,)] 15515 (1w |?)

where subscript 17 = hh for co-polarized and :j = vh or hv for cross-polarized phase
difference respectively. Referring to (18)—(21) it can easily be shown that a, = 1 and
a; = 0 for the first-order scattering solution. Hence a. and a,; do not contain any
information about the surface power spectral density or the surface dielectric constant.
Noting that to the first-order solutions, elements of the covariance matrix are linearly
proportional to the power spectral density, (. is only a function of the surface dielectric
profile.

To characterize the dependency of a. and a, on the surface power spectral density,
we have to resort to the second-order scattering solution. Combining the first-order
solution given by (18)—(21) and the second-order and third-order solutions, closed form
expressions for the parameters of phase-difference statistics can be obtained. It is found
that o, vanishes when the surface power spectral density is azimuthally symmetric, that
is, if W(kz,ky) = W(y/k2 4+ k2). This is usually the case for most practical situations,
which implies the co- and cross-polarized backscattered fields are mutually uncorrelated.

3 Data Simulation and Experimental Results

In the previous section, an analytical model for predicting polarimetric scattering
behavior of inhomogeneous rough surfaces based on a perturbation expression of induced
polarization current was obtained. Here, data simulation based on the complete second-
order analytical model is carried out to investigate the sensitivity of the radar backscatter
measurements to physical parameters of the surface, such as the surface dielectric pro-
file and surface power spectral density. Also, polarimetric backscatter measurements
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were conducted to examine the significance of the second-order solution on the overal]
backscatter response as a function of surface parameters and radar attributes.

Figures 2a and 2b demonstrate the significance of the second-order solution, where the
ratio of the first-order to the complete co-polarized second-order solutions (¢%!)/¢%?)
are plotted versus incidence angle. An exponential correlation function given by

plz,y) = s?e (33)

where s is the rms height and [ is the surface correlation length, is used-in these sim-
ulations. In Figs. 2a and 2b, ks and kl are varied as free parameters, and the soil
surface is assumed to be a homogeneous medium with € = 8.0 + i 2.51. This dielectric
constant corresponds to a moist soil surface with volumetric moisture content m, = 0.2
and is computed using the empirical formula given in [13] at 1.25 GHz with S = 0.1 and
C =0.3. It is shown that the second-order scattering term is more sensitive to variations
in rms height(s) than it is to the surface correlation length (I). The sensitivity to s is
higher at lower angles of incidence for ¢2,, unlike 09,,,. Figures 3a and 3b show the
ratio of the first-order to the complete co-polarized second-order solutions of the homo-
geneous rough surface as a function of soil moisture at 6 = 45°. Here it is shown that as
the soil moisture increases from 0.01 (e = 2.21 +:0.002) to 0.4 (¢ = 14.68 + i 7.5), the
contribution from the second-order scattering term to the overall backscattering increases
slightly. This effect is more pronounced for ¢%,,,. Figures 2 and 3 demonstrate that the
inclusion of the second-order solution is more important for calculation of ¢%,,, than
for 03,,,. Figures 4 and 5 show the co-polarized coherent phase difference (e calculated
from the first-order and complete second-order solutions for the homogeneous surface as
a function of incidence angle and soil moisture. To the first order, (. is independent of
surface roughness parameters, however, the second-order solution shows a weak depen-
dency on ks and kl. It is interesting to note that the sensitivity to roughness parameters
disappears for incidence angles larger than 50°. As shown in Fig. 5, (. is relatively
insensitive to moisture content for a homogeneous surface.

As mentioned before, the second-order solution is the dominant component for the
cross-polarized backscattering coefficient. of,,, is directly proportional to the square
of the rms height, thus the dependency to s is not examined. Figure 6 shows Opuny Of
the homogeneous surface as a function of incidence angle for different values of kl and
m, while ks = 0.2 is kept constant. Note that o9 , increases with increasing dielectric
constant and decreases with increasing surface correlation length. The co-polarized de-
gree of correlation is another potential parameter that can be used in retrieval of surface
physical parameters. The first-order scattering solution predict a. = 1 independent of
the surface physical parameters. Figures 7 and 8 show a, for the homogeneous rough
surface as a function of incidence angle and dielectric constant for different values of ks
and kl. Note that a., in general, has a decreasing trend with increasing incidence angle,
rms height, and soil moisture. It is also noted that a. increases when k! is decreased.
The total dynamic range of . as a function of the surface parameters is rather limited.
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Next we examine the sensitivity of the polarimetric backscatter data to the surface
dielectric inhomogeneity. Three dielectric profiles are considered here: (1) exponentially
increasing moisture with depth, (2) exponentially decreasing moisture with depth, and
(3) a two-layer step profile, as shown in Fig. 9. The exponential profiles are chosen
according to [14] and are given by:

m,,(z):{ mua+Amu:_—p;2__+l -d<2<0,
my(z) = m,(—d) z2< —d

where m,, is the surface moisture content and Am, is the increment of moisture at
a depth d below the surface. The moisture content below depth d is considered to be
uniform. In all cases the backscatter parameters are compared with a homogeneous profile
having a dielectric constant equal to that of the inhomogeneous profile at the interface.
Figures 10 and 11 show the backscattering coefficients for a surface with the increasing
and decreasing exponential dielectric profiles and having ks = 0.2, kl = 2. Note that
the backscattering coefficients are insensitive to moisture profiles, and the backscattering
coefficients are basically indistinguishable from those of the homogeneous profile having
the same dielectric constant as that of the inhomogeneous profile at the interface. This is
due to the tapered impedance matching nature of the profile. However, this is not the case
for the step profile as shown in Fig. 12. The difference in ¢°, depending on the incidence
angle, can be as high as 10 dB. The only sensitive parameter to moisture variations in
depth for continuous profiles is the co-polarized coherent phase difference as is shown in
Fig. 13, where (. for the homogeneous, increasing, and step moisture profiles are shown.
(. does not shown any sensitivity for decreasing profiles. It should be pointed out that the
calculation of the complete second-order solution involves numerical evaluation of two-
fold integrals. To provide a feeling for the required computation time, the calculation of
backscattering coefficients and phase difference statistics for one incidence angle would
take about one minute on a Sun workstation Ultra 2.

The validity of the analytical results are also examined by conducting backscatter
measurements. The backscatter measurements were performed polarimetrically using
the indoor bistatic facilities of the Radiation Laboratory at the University of Michigan
[16]. The backscatter data were collected from a rough layer of sand above a perfectly
conducting ground plane at center frequency 9.25 GHz with a bandwidth of 1.5 GHz.
A 6' x 6’ sand-box on top of a computer controlled turntable was used to contain the
sand layer. The antenna footprint covered an area of about 0.27 sec § m? on the sand-box
and collection of independent backscatter data was facilitated by rotating the sand-box
at steps of 5°. The wide bandwidth of the radar system was used to range-gate the
possible unwanted radar backscatter from the sand-box walls and edges. A simplified
block diagram of the measurement system is shown in Fig. 14.

An uniform sand with maximum particle dimension of 0.15 mm was chosen to mini-
mize the effect of volume scattering from the sand layer. The effective dielectric constant
of the sand medium was measured to be ¢, = 2.7 + 10.05. The radar was calibrated
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polarimetrically using STCT [17]. To generate a desired roughness over the sand surface
repeatedly, a template was made. The imprint of the template on the surface generated a
rough surface with almost an exponential auto-correlation function with ks = 0.122 and
kl = 2.69. The surface roughness statistics were measured using a laser ranging system
with a range resolution of 0.1 mm. The backscatter measurements conducted for two
layers having thicknesses d = 2.52 cm and d = 3.53 cm over the angular range 20° ~ 50°.

Figures 15a and 15b show the measured and simulated ¢° versus incidence angle.
All the measured results are shown to be in a very good agreement with the complete
second order solution except for the cross-polarized responses at # = 50°. For these cases
we were limited by the system noise floor. Figures 16a and 16b show the response of
the co-polarized coherent phase difference as a function of incidence angle. Both the
first-order and second-order solutions are shown and it is obvious that the second-order
contribution is insignificant at angles below 40°.

Figures 17a and 17b compare the measured and theoretical ratio of 0,,/a%, . ver-
sus incidence angle. Here it is shown that at high incidence angles first-order results are
incapable of accurate prediction of backscattering coefficients whereas the second-order
solution provide satisfactory results. Figures 18a and 18b show the the measured and cal-
culated co-polarized degree of correlation versus incidence angle, where a relatively good
agreement has been obtained considering the difficulties in the accurate measurement of

a (18]

4 Conclusions

In this paper, a bistatic polarimetric scattering model for random dielectric surfaces
with inhomogeneous permittivity profiles and small surface roughnesses is developed
using a perturbation expansion of volumetric polarization current. A complete second-
order solution for the backscattering coefficients and the statistics of the phase difference
between the elements of scattering matrix is obtained. The validity of the model is
verified in a limiting case, where it is shown that the formulation for surface with inho-
mogeneous permittivity profile reduces to the known formulation for hemogeneous rough
surfaces. Also, polarimetric backscatter measurements from rough surfaces with known
dielectric profiles and roughness statistics were collected and compared with the theoret-
ical calculations. Comparisons with the measured data show excellent agreement. The
sensitivity analysis in terms of the surface physical parameters is also performed. It is
shown that, in general, the backscatter parameters, such as backscattering coefficients
and phase-difference statistics, are more sensitive to ks than kl. The contribution of
the second-order solution for calculation of ¢3,,, is more significant than that for the
calculation of 07,,,. The contribution of the second-order solution to overall o¢,,, can
be as high as 2 dB for ks < 0.3. It is shown that for continuous inhomogeneous pro-
files, the backscattering coefficients are insensitive to the variations of moisture content
as a function of depth. In the other words, the backscattering coefficients of a surface
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with a continuous soil moisture profile are equal to those of a homogeneous surface hav-
ing a moisture content equivalent to that of the inhomogeneous profile at the interface.
The only backscatter parameter sensitive to moisture profile is the co-polarized coherent
phase difference ({.). However, both the backscattering coefficients and phase-difference
statistics are very sensitive to step discontinuities in moisture profile.
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mogeneous and increasing exponential moisture profiles for a rough surface

with ks = 0.2 and kl = 2.
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Figure 11: Comparison of backscattering coefficients calculated for the ho-
mogeneous and decreasing exponential moisture profiles for a rough surface

with ks = 0.2 and kl = 2.
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Figure 12: Comparison of backscattering coefficients calculated for the ho-
mogeneous and step moisture profiles for a rough surface with ks = 0.2 and
kl =2.
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Figure 13: Co-polarized coherent phase difference calculated for the homoge-

neous, increasing exponential, and step moisture profiles for a rough surface
with ks = 0.2 and &l = 2.
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Figure 14: Simplified block diagram of the experimental setup.
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Figure 15: Comparison of the measured and the complete second-order sim-
ulated backscatter for a sand layer of thickness 2,52 cm (a) and 3.53 cm (b)
above a perfectly conducting ground plane at 9.25 GHz. Symbols represent
the measured quantities and the lines are the theoretical calculations.
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Figure 16: Comparison of the measured and the calculated co-polarized co-
herent phase difference for a sand layer of thickness 2,52 cm (a) and 3.53 cm
(b) above a perfectly conducting ground plane at 9.25 GHz.
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Figure 17: Comparison of the measured and the calculated o}4,4/07,,, for
a sand layer of thickness 2,52 cm (a) and 3.53 cm (b) above a perfectly
conducting ground plane at 9.25 GHz.
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A Numerical Simulation of Scattering from
One-Dimensional Inhomogeneous
Dielectric Random Surfaces
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Abstract—In this paper, an efficient numerical solution for the
scattering problem of inhomogeneous dielectric rough surfaces is
presented. The inhomogeneous dielectric random surface repre-
sents a bare soil surface and is considered to be comprised of
a large number of randomly positioned dielectric humps of dif-
ferent sizes, shapes, and dielectric constants above an impedance
surface. Clods with nonuniform moisture content and rocks are
modeled by inhomogeneous dielectric humps and the underlying
smooth wet soil surface is modeled by an impedance surface. In
this technique, an efficient numerical solution for the constituent
dielectric humps over an impedance surface is obtained using
Green’s function derived by the exact image theory in conjunction
with the method of moments. The scattered field from a sample
of the rough surface is obtained by summing the scattered fields
from all the individual humps of the surface coherently ignoring
the effect of multiple scattering between the humps. The statistical
behavior of the scattering coefficient ¢° is obtained from the
calculation of scattered fields of many different realizations of
the surface. Numerical results are presented for several different
roughnesses and dielectric constants of the random surfaces.
The numerical technique is verified by comparing the numerical
solution with the solution based on the small perturbation method
and the physical optics model for homogeneous rough surfaces.
This technique can be used to study the behavior of scattering
coefficient and phase difference statistics of rough soil surfaces
for which no analytical solution exists.

I. INTRODUCTION

NVESTIGATION of the radar scattering response of natural
surfaces is an important problem in remote sensing because
of its potential in retrieving desired physical parameters of the
surface, namely its soil moisture content and surface rough-
ness. Soil moisture is a key ingredient of the biochemical cycle
and an important variable in hydrology and land processes.
Although the problem of electromagnetic wave scattering
from random surfaces has been investigated for many years,
because of its complexity, theoretical solutions exist only
for simple limiting cases. Among the existing theoretical
models the small perturbation method (SPM) [1] and the
Kirchhoff approximation (KA) [2].can be mentioned, which
are applicable for homogeneous surfaces over a restricted
regions of validity. Numerous techniques based on the basic
assumptions of the SPM and KA have been developed in
past in an attempt to improve the region of validity of these
Manuscript received November 15, 1994. This work was supported by
NASA under Contract NAGW 2151.
The authors are with the Radiation Laboratory, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI

48109 USA.
Publisher Item Identifier S 0196-2892(96)00996-5.

models; however, they all have the basic limitations of the
original models [3). Other theoretical models such as the phase
perturbation technique {4] and the integral equation method
[5] are not applicable, for inhomogeneous surfaces and their
regions of validity have not been fully determined yet. A
scattering formulation for rough surfaces with variable surface
impedance exist [6); however, the solution is not applicable to
soil surfaces with low dielectric constant. Several numerical
solutions of the scattering problem have been proposed to
identify the region of validity and accuracy of these theoretical
models. Scattering solution for a perfectly conducting random
surface using the method of moments has been suggested by
Axline and Fung [7]. In this method a tapered incident field is
used as the excitation to eliminate the edge effect contribution.

A numerical solution for homogeneous dielectric random
surfaces has been reported [8] where again a tapered illumi-
nation is used to limit the size of the scatterer. The accuracy
of the numerical solution with tapered illumination decreases
with increasing incidence angle. To our knowledge, numerical
scattering solution for inhomogeneous rough surfaces does not
exist.

Analysis of microwave backscatter observations by Oh et
al. [9] reveals that the existing theoretical models cannot
adequately explain the scattering behavior of soil surfaces. The
deviation between theoretical predictions and experimental
data is attributed to three factors. First, the roughness param-
eters are often outside the region of validity of the theoretical
models. Second, the autocorrelation functions measured from
natural surfaces are very complicated and are not Gaussian or
exponential correlation functions. Finally, the most important
reason is that the natural surfaces are not homogeneous in most
cases, i.e., the moisture content is not uniform in depth. The
top rough layer which includes clods and rocks is usually dry
and the underlying soil layer is moist and smooth.

In this paper, we model a soil surface as an inhomoge-
neous dielectric random surface comprised of a large number
of randomly positioned two-dimensional dielectric humps of
different sizes, shapes, and dielectric constants all lying above
an impedance surface. At microwave frequencies, the moist
and smooth underlying soil layer can be modeled as an
impedance surface, and the irregularities above it can be
treated as dielectric humps of different dielectric constants and
shapes. For the field scattered by a single dielectric hump
over an impedance surface, we have an available efficient
numerical solution that uses the exact image theory for the

0196-2892/96$05.00 © 1996 IEEE
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Green’s function in conjunction with the method of moments
[10]. In the solution of a single hump, it has been shown
that the bistatic scattered field is very weak at points in
close proximity to the impedance surface; thus, the effects
of multiple scattering between humps can be ignored. In
this case, the scattered field from a collection of randomly
positioned dielectric humps can easily be obtained by summing
the scattered field of all the constituent humps coherently.
The scattering coefficients (¢°) is obtained by a Monte Carlo
simulation.

In Section II, we summarize the procedure for the numer-
ical solution of a single hump above an impedance surface.
Section II1 outlines the procedures used for generating the ran-
dom surfaces and for evaluating the statistics of the scattered
field. Numerical results and their comparison with theoretical
models are presented in Section IV.

II. SCATTERING FROM INDIVIDUAL HUMPS

In this section, we briefly review the procedure for the
numerical solution of scattering from a two-dimensional di-
electric object above a uniform impedance surface [10]. The
radiated field for a dipole source above a dissipative half-
space medium (Green'’s function) is usually evaluated using
the Sommerfeld integral {11]. This infinite integral, in general,
is highly oscillatory and computationally rather inefficient. In
[10], the Green’s function of an impedance surface was derived
in terms of rapidly converging integrals using appropriate in-
tegral transforms. The scattering problem was then formulated
by integral equations which were solved numerically using
the method of moments.

Suppose a dielectric object, possibly inhomogeneous, is
located above an impedance surface and is illuminated by
a plane wave. The incident field E* induces conduction and
displacement currents in the dielectric object which together
are known as the polarization current J,.. The polarization
current can be represented in terms of the total electric field
inside the dielectric object, which is comprised of the incident,
reflected, and scattered fields denoted by E', E", and E*,
respectively. Thus

J(p) = ~ikoYole(p) - 1][E'(P) + E"() + E*(P)] (1)

where ko = w,/Boco, Yo = y/€0/ o, and €(p) is the relative
dielectric constant of the object at the point = zZ + yj. The
fields E*, E7, and E° are, respectively, given by
E'(p) = (Ejhi + Ej:) explikok; 7]
E'®) =ikoza [ C.7)- 1)

2
3

@

where E? and E: are the horizontal (E-polarized) and vertical
(H-polarized) components of the incident field, respectively.
Ry, and R, are the horizontal and vertical Fresnel reflection
coefficients and G(7, 7') is the dyadic Green’s function of the
problem.

There is no known exact solution for the integral equation
given by (1). Hence, an approximate numerical solution of
this equation must be obtained using the method of moments.
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This is done by dividing the cross section of the dielectnc
structure into N, sufficiently small rectangular cells such that
the dielectric constant and the polarization current over each
cell can be approximated by constant values. Using the point-
matching technique, the integral equation can be cast into a
matrix equation of the following form:

[ZZI'] [zxy] O [Iz_] [[\/,] ]
(2y2] 2] 0 | |[T]]| = | (5)
0 0 [2.]] [[Zd] [V:]

where [Z,] is the impedance matrix, [Z,] is the unknown
vector whose entries are the values of the polarization current
at the center of each cell, and [V,] is the excitation vector with
p =z, y, or z. The entries of [V),] are simply given by

Up,n =ik0Y0[€(Inv yn) - 1]

: {[E';(xm Yn) + E;(-Tm yn)]} P (6
and the entries of [Z,,] can be evaluated from
2pgmn = —bpgbmn + k2[e(zn, yn) - 1]
: / [qu(zm Yn; Tm, ym)
ASm
+ G’Pq(zm Yni; Tm, ym)] dsm (7)

where 6p, and 6, are the Kronecker delta functions, and
»g=2zy, 0rz )

Explicit expressions for the elements of the impedance
matrix are given in [10] where off-diagonal elements are
obtained by approximating the Green’s function via its Taylor
series expansion around the midpoint of each cell and then the
integration over the cell surface is performed analytically. For
diagonal elements the free-space Green’s function is approx-
imated by its small argument expansion and then integration
is performed analytically. .

III. MONTE CARLO SIMULATION
OF ROUGH SURFACE SCATTERING

The Monte Carlo scattering simulation of rough surfaces
made up of a finite collection of dielectric humps involves in
five major steps as shown in Fig. 1. The first step is to choose
the type (size, shape, and dielectric constant, etc.) and number
of constituent humps. The second step deals with generating a
surface sample by positioning a large number of humps with
a prescribed probability. The third step in this algorithm is
to compute the inverse impedance matrices for all constituent
humps using the numerical method explained in the previous
section. Next the scattered field from the surface is computed
by coherent summation of the scattered fields from all of the
humps in the surface sample. Finally the scattering coefficient
o° is obtained by repeating the fourth step for a large number
of independently generated surface samples.

The types of constituent humps which in addition to their
probability of occurrence fully characterize the statistics of
a random surface. Fig. 2 shows the geometry and dielectric
profiles of different types of dielectric humps which can be
handled by this algorithm. For example, Fig. 2(a) shows a
typical hump for a dry clod above a moist and smooth under-
lying soil layer (€o < €1 < €2) and Fig. 2(b) shows the same
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Fig. 1. Flow chart of the Monte Carlo simulation for the rough surface

problem.

hump when the clod and underlying layer are both moist (a
homogeneous surface). The hump itself may be considered to
be inhomogeneous as shown in Fig. 2(c). Isolated irregularities
such as rocks above a flat surface can be represented by the
hump shown in Fig. 2(d) where the bump occupies only a part

of the total width allocated for an individual hump. When the -

surface is rough with a short correlation length, the geometry
of the humps are more complicated and two examples are
shown in Fig. 2(e) and (f). The profiles of Fig. 2(a)-(e) used
in this paper are given by the following functional forms

_ W 57z w w
y(z)—x cos (—W—/)’ “—2'5-'53 2
for (a)~(c) ®
2
y(z)=A<1—%3>, B<z<B,B<W,
for (d) )]
and
y(z) = AF1(z) + BFy(z)
with

w2

0<z<W, for(e) (10)

where A4 and B are constants, n and m are integers, and W is
width of a hump. The set of constituent humps for a surface can
be constructed by choosing a finite number of parameters in
the desired functionals and the desired dielectric constants. The
profile of Fig. 2(f) is very complicated and should be obtained

€0

PON

€2

(a) (b)

€ €

© ()
Fig. 2. Hump types considered in this paper.

numerically by the procedure outlined in [8]. In this procedure
the hump profile is obtained from a sequence of independent
Gaussian deviates with zero mean and unit variance which
are correlated by a set of weighting factors derived from the
desired correlation function.

Suppose the set of individual humps includes K different
humps (including size, shape, and dielectric constant) and the
profiles of the humps in the set are represented by fi(z),
t =1, ---, K. Then a sequence of random numbers ranging
from 1 to K, which is generated by a random number
generator with the prescribed probability distribution, is used
to position a large number of humps randomly to construct
a surface sample. If the total number of humps (M) in the
surface sample is much larger than the number of constituent
humps (K') and the random number generator has a uniform
distribution, the probability of the occurrence of each hump
in the surface will be about M/K. A functional form of the
generated surface profile can be represented by

M m-1
yz)=Y fin (z— Y w..,)
=1

m=1

(1n

where i, 4 € {1,---, K} and W;, represents the width
of the hump of the #th type. The roughness parameters,
rms height s, correlation length I, and rms slope m, can be
computed either numerically or analytically from the surface
profile given in (11). However, the analytical computation is
only possible for simple functional forms and simple probabil-
ity distribution functions. Assuming perfect randomness, the
average height of the surface can be computed from

K w;
W=7 n [ Ko
=1

where L = E,K:l p:W; and p; is the probability of occurrence
of the hump of ith type. The rms height s and the rms slope

(12)
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m, respectively, can be evaluated from

and

1/2
(14)

Assuming the surface has a Gaussian correlation function, the
correlation length [ in terms of rms height and rms slope is
given by

_ s (rms height)

| = V2 ——=—, (15)
m (rms slope)

It is often required to generate a random surface of given
rms height s and correlation length I. In that case the required
surface can be obtained by an iterative process where some
initial values for the hump parameters are chosen. Then
the roughness parameters are calculated and compared with
the desired ones. Depending on the difference between the
calculated s and [ and the desired s and ! the hump parameters
are modified and this process is repeated until the difference
is below a tolerable error.

Once the set of individual humps for a random surface
with given s and [ is formed the impedance matrices, [Z,,);,
i=1,---, K, can be computed using the method of moments
described in the previous section. Since the scattered field
of a hump near the impedance surface is very weak the
effect of multiple interaction between humps in a surface
sample can be ignored. Therefore, by inverting and storing
the impedance matrices of the constituent humps the scattered
field of any surface sample comprised of M humps (M >
K) and for any incidence and observation directions can be
computed very efficiently. For a given direction of incidence
the polarization current in the jth hump for the vertical and
horizontal polarization, respectively, are given by

Gl = Bl o
- [2); =[2::15 Vel (17)

where j € {1, ---, M} and i; € {1, ---, K} representing the
hump of the ith type. The excitation vector [V]; is computed
from (6) where the position vector 7 is specified by the
discretization procedure and the profile function (11). The
electric polarization current induced inside the surface sample
can be represented by

[jp]'—'[[l'p{a E) [IP??“
P=IT,9,2

Ty [IP]?\:!]Tv
(18)
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Fig. 3. Bistatic echo width of a squan:d-cosine hump of €; = 15 + i3,
W =0.72), H = 0.07 over an impedance surface of = 0.254 ~ i0.025
at (a) 6; = 0° and (b) 6; = 45° at f = 5 GHz for E- and H-polarizations.

where [Z,); is the p-polarized current inside the ith hump. The
radiated far field can be evaluated from

2

E, = p e‘(k°"":”/4)5p,, pp=hhorvy (19)
where Sy, is the far field amplitude given by
Shh = —%Z—o gl: Jo(Tn, Yn) AZn Ay, e~to 5in bizn
- Je~iko '::SIO,y,. + Rp(8,)et*o <0 6vm] (20)
S,y = kofo % Az, Ay, e=i%o sin 6:2n
n=1

. {Jz(zm yn) cos 6,
. ([e—iko cos 8,yn __ Ry(e,)e‘k° cos G.y,.)
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Fig. 4 Multiple scattering effect on the backscatter echo width of a surface segment consisting of three squared-cosine humps with €; = 15 + i3 at

f = 5 GHz for both (a) HH-polarization and (b) VV-polarization.

— Jy(Zn, yn) sin b,

. (e-iko cos buyn RH(g‘)eiko cos O.Vn)}. 21

Here N; is the total number of cell in the surface sample.
The statistical behavior of the scattered field are obtained
from the scattered fields E7, of many independent surface
samples. For sufficiently large N, surface samples the inco-
herent scattering coefficient is computed from
2

Zl AP - pr,

I=1 I=1

o0 = 2mp
PP p—'oo N,L,,

pp = hh, vv

where L,, = (1/N,) Zf:'l
jth random surface.

22)
L;, and L; is the total length of

IV. NUMERICAL RESULTS

To demonstrate the performance of the technique proposed
in this paper, we shall use it to compute the scattering for
some sample surfaces and then compare the results with
those predicted by the available theoretical scattering models,
when conditions apply. First, we consider a surface with
homogeneous dielectric humps as shown in Fig. 2(a). The
functional form of the humps are given by (8) where the
parameters A and W are varied to generate the set of the
constituent humps. Keeping A as a constant controlling the
height and varying W, a set of similar humps can be generated.
A random number generator with output i € {1,---, K}
selects the parameter W; = B\i, where B is a constant
controlling the width of the humps and ) is the wavelength. In
this example, the hump parameters were chosen according to
Table I and the random number generator was given a uniform
distribution with K = 10. Before presenting the statistical

scattering behavior of the surface, it is useful to demonstrate
the validity of the assumption regarding the significance of
the effects of multiple scattering among the humps. Fig. 3(a)
and (b) show the bistatic echo width of a squared-cosine
hump with W = 0.72), H = 0.07A, ¢; = 15 + :3 above
a surface with n = 0.254 — 0.025 (which corresponds to
€2 = 15 + 13) at 5 GHz when the incidence angle §; = 0°
and 6; = 45°, respectively. It is shown that the bistatic
echo widths at the large scatter angles (near the surface) are
very weak which implies that the effect of multiple scattering
between humps can be ignored. In order to illustrate the
effect of multiple scattering, a surface segment consisting of
three squared-cosine humps with ¢; = 15 + i3 above an
impedance surface with n = 0.254 — 0.025 was considered
(see Fig. 4). Dimensions of three humps are, respectively,
given by: Wy = 0.8, H; = 0.08); Wy = 1.0\, H; = 0.1),
and W3 = 0.6\, H3 = 0.06)\. The backscatter echo widths of
the surface segment were computed twice. In one case the
scattered field was computed from the polarization current
of isolated humps (ignoring the effect of mutual coupling)
and in the other case the polarization current of the three-
hump structure was obtained directly from the method of
moments solution (including the effect of mutual coupling).
Fig. 4(a) and (b) show that the effect of multiple scattering
is negligible for both polarizations. As long as the ratio of
mms height to correlation length of the surface (s/!) is small,
this approximation provides accurate results. For most natural
surfaces s/l < 0.3 which satisfies this condition [9]. However,
if the ratio (s/l) is relatively large, the hump type of Fig. 2(f)
must be used to include the effect of multiple scattering at the
expense of computation time.

The rms surface height s and the rms surface slope m for
this surface can be computed from (13) and (14), respectively,
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TABLE |
ROUGHNESS PARAMETERS CORRESPONDING TO CONSTANTS 4 AND B
Approx. t Exact } At 5 GHz
Case | A| B s l s l ks Kkl Remarks
in cm in em
1 130]0.20(0.115 2.21|0.115 2.03|0.12 2.13 | SPM region
2 |30(0.36|0.208 3.98 |0.207 3.63|0.22 3.80
3 |30(0.70 [0.405 7.74 |0.405 7.15|042 7.49 | PO region
t Approximation by equations (23), (24) and (15).
1 Numerical evaluation with 4000 humps,
s : rms surface height,
1 : correlation length.
TABLE I
CONSTANTS USED IN THE NUMERICAL COMPUTATIONS
Individual hump size No. of humps | Length of | No. of
Case Width Height for each surface | segments
No. | min. | max. | min. | max. surface segment for a
()1 )| () | (A) | segment (2) surface
1 0.2 | 2.0 |0.0066 | 0.066 40 4 100
2 1036 36 | 0012 | 0.12 40 79 100
3 0.7 | 7.0 | 0.023 | 0.233 40 154 100
and are given by of A, both the rms height and the correlation length increase at
X 1/2 the same rate with increasing B. Table I shows several values
1 3IWE W2 _ 2 of roughness parameters, s and I, corresponding to different
5‘[EZ(§F‘T-’/+W‘1’)} 23 values of A and B.
T =1 A random number generator was used to select and position
m= :/‘—‘2; (24) 4000 squared-cosine humps over the impedance surface (7 =
: 0.254 — 70.025). Then this surface was divided into 100
where segments to obtain 100 independent surface samples each
1 K having 40 humps. The length of the surface segment was
y= Z w? - chosen to be about 44 to 154\ depending on the correlation
2ALw i=1 length of the surface, corresponding to the size of individual
and humps. Table II summarizes the characteristics of the surfaces
K and their constituent humps used in the examples considered
Lw = Z Wi. in this study.

i=1

It should be noted that the rms surface slope m of this surface
depends only on the constant A. Therefore, for a fixed value

The backscattering coefficients for the surface at 5 GHz
with ks = 0.12 and k! = 2.13 (Case 1 in Tables I and II)
are computed by the Monte Carlo simulation technique for
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Fig. 5. Backscattering coefficient 0° of the random surface with

ks = 0.12, kl = 2.13, and €; = €2 = 15 + i3 as computed by the SPM
and the numerical technique. (a) HH-polarization. (b) VV-polarization.

a homogeneous surface with ¢; = e; = 15 + 3 (Fig. 2(b)),
and compared with the analytical results based on the SPM.
The comparisons are shown in Fig. 5(a) and (b). For the SPM
solution, the scattering coefficient o° is proportional to the
roughness spectrum (Fourier transform of the correlation func-
tion). Both the actual and Gaussian correlation functions are
used in the calculation of the backscattering coefficients using
the SPM. It is shown that the Monte Carlo simulation agrees
very well with the SPM prediction when the actual correlation
function is used. The discrepancies between the Monte Carlo
simulation and the SPM with Gaussian correlation function
indicate the importance of the tail section of the correlation
function in the estimation of o°.

The numerical simulation was also performed for a surface
at 5 GHz with ks = 0.42, kl = 7.49 (Case 3 in Tables I
and II), and ¢; = €, = 15 + 3. The roughness parameters
of this surface fall within the validity region of the physical
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Fig. 6. Backscantering coefficient ¢° of the random surface with
ks = 042, kl = 7.49, and ¢; = e = 15 + i3 as computed by the PO
model] and the numerical technique for HH-polarization.
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Fig. 7. The sensitivity of the backscattering coefficient o° to the dielectric
constant in case of ks = 0.22, kIl = 3.8, and €2 = 15 + 13 at § = 44°.

optics (PO) model; therefore, the numerical solution can be
compared with the PO solution. The scattering coefficient o7,
predicted by the PO model using the actual correlation function
agrees very well with the results computed by the numerical
technique (see Fig. 6). In this figure the PO solution using a
Gaussian correlation function with the same correlation length
as the actual correlation function is also compared with the
numerical simulation. It is shown that the agreement is good
only for low incidence angles (6; < 20°) and the discrepancy
between the two solutions becomes rather significant for higher
incidence angles. In this case, similar to the previous case
(SPM), it is shown that the tail of the correlation function
plays an important role in determining the angular patterns of
the backscattering coefficients.

With the success of the Monte Carlo simulation in predicting
the scattering behavior of rough surfaces in the small perturba-
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tion and physical optics regions. the numencal model can be
used to study complex surfaces with intermediate roughness
parameters and inhomogeneous dielectric profiles. For exam-
ple. the sensitivity of radar backscatter to the moisture content
of the top layer for the Case 2 random surface is shown in
Fig. 7 at § = 44°.

V. CONCLUSION

In this paper an efficient Monte Carlo simulation technique
is proposed for computing electromagnetic scattering by inho-
mogeneous one-dimensional rough surfaces. The surface irreg-
ularities are represented by inhomogeneous dielectric humps
of different shapes and the underlying layer is represented
by an impedance surface. A moment-method procedure, in
conjunction with the exact image theory, is used for calculation
of the field scattered by the dielectric humps. It was shown
that the scattered field near the impedance surface is weak,
and hence, the effect of multiple scattering between humps
can be ignored.

To check the validity of the Monte Carlo simulation, the
numerical results were compared with the existing analytical
solutions for surfaces at extreme roughness conditions. A
smooth surface that satisfies the validity region of the SPM
and a surface that satisfies the validity region of the PO model
were considered, and in both cases excellent agreements were
obtained between the analytical results and those computed
using the proposed technique. It was found that away from
normal incidence, the tail of the correlation function plays
an important role in the determination of the backscattering
coefficients.

The analysis presented in this paper is only for one-
dimensional surfaces and therefore is incapable of predicting
the cross-polarized scattering coefficients. A numerical
simulation for a two-dimensional rough surface using a similar
method is computationally tractable.
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Scattering from Dielectric Structures Above
Impedance Surfaces and Resistive Sheets

Kamal Saraband:i

Abstract—Interest in understanding of electromagnetic im.er-
action with rough surfaces has prompted the study of scattering
from typical dielectric humps over impedance surfaces. It is
shown that the Green’s function of the problem for a resistive
sheet resembles that of the impedance surface. Hence both
problems are considered here. In this paper a numerical solution
for the scattered field of a two-dimensional dielectric object,
possibly inhomogeneous, with arbitrary cross section above the
impedance surface or resistive sheet is sought. First the Green’s
function of the problem is derived based on the exact image
theory. This form of the Green’s function is amenable to numer-
ical computation. Then the induced polarization currents are
calculated by casting the integral equations into a matrix equa-
tion via the method of moments. Numerical problems in calcula-
tion of the Green’s function when both source and observation
points are close to the surface are discussed. Comparison of
numerical results for both transverse electric (TE) and transverse
magnetic (TM) cases with a perturbation solution shows excel-
lent agreement between the two methods.

I. INTRODUCTION

PPLICATION of electromagnetic waves as a means of

retrieving the desired surface parameters of the earth is
a matter of increasing concern. For example, soil moisture
content and surface roughness are two such parameters. The
problem of electromagnetic wave scattering by rough sur-
faces has long been studied and because of its complexity
satisfactory models exist only for a limited cases. The exist-
ing models are applicable to two extreme roughness condi-
tions. In the so-called small perturbation model both the
correlation length and root mean square (rms) height must be
smaller than a wavelength [1]. For the other extreme, known
as the Kirchoff model, however, both the correlation length
and rms height must be much larger than a wavelength while
the rms slope must be reasonably small [1]. To achieve
analytical expressions for the scattering coefficients, the ran-
dom surface medium is assumed to be homogeneous and to
have a Gaussian autocorrelation function.

Measurement of natural surfaces at microwave frequencies
shows that the existing models are inadequate to explain the
scattering behavior for two main reasons [2]. First, the
roughness parameters are usually outside the region of valid-
ity of the mentioned models. Second, natural surfaces are not
homogeneous, that is the moisture content in most cases is

Manuscript received March 26, 1991; revised October 3, 1991. This work
was supported by NASA under Contract NAGW-2151.

The author is with the Radiation Laboratory, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109-2122.

IEEE Log Number 9105277.

not uniform in depth. The top rough layer includes clods and
rocks that are usually dry and keep the moisture of the
underlying layer from evaporating. The moist smooth under-
lying soil layer at microwave frequencies can be modeled by
an impedance surface and irregularities at the top by dielec-
tric humps of different dielectric constants. To simulate the
electromagnetic scattering behavior of such surfaces, the
scattering solution of an isolated hump is needed.

In this paper we seek a numerical solution of a two-dimen-
sional dielectric object with arbitrary cross section above a
uniform impedance surface when the object is illuminated by
a plane wave. The geometry of the problem is depicted in
Fig. 1. Common practice in obtaining the Green's function
for scattering and antenna problems in the presence of a
half-space medium is through calculation of a Sommerfeld-
type integral [3]. These infinite integrals, in general, are
highly oscillatory and computationally rather inefficient. Al-
though many techniques have been developed to speed up

* their calculation for three-dimensional problems [4], [5] they

are of little use for two-dimensional problems. Numerical
solutions for two-dimensional scattering problems in the
presence of a half-space medium have been limited to small
scatterers or low frequencies mainly because of difficulties in
computing the Green’s function [6], [7]. Here, the Green’s
function of an impedance surface (or resistive sheet) is
derived in terms of rapidly converging integrals using appro-
priate integral transforms. Useful asymptotic expressions of
the Green’s function are also given. The scattering problem
is then formulated by integral equations which are solved
numerically using the method of moments.

II. DERIVATION OF GREEN’s FuNcTioN UsING Exact
IMAGE THEORY

The first step toward calculating the scattered field of an
object is to derive the dyadic Green’s function of the prob-
lem. Since the Green’s function is used in a numerical
solution of the scattering problem, it should be efficiently
calculable. An integral representation for the image of a line
source above an impedance surface or a resistive sheet is
derived using integral transforms similar to those employed
by Lindell and Alanen in derivation of the exact image theory
[8]. Interested readers are also referred to [9]-[11] for
detailed discussion of the exact image theory. The new
representation for the Green’s function has an excellent rate
of convergence for most practical purposes and can be com-
puted very easily.

The fields generated by a two-dimensional (3/dz = 0)
distribution of electric current (J(x, y)) in terms of the

0018-926X/92803.00 © 1992 IEEE
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associated Hertz vector potential are given by

2 2
E, = ki 1+Eﬁ)n,+axayn,,
E, = o I, + k2 1+ia—2)n, (1)
YT ayax ¥ ° ki ay*|
E, = k211,

The Hertz vector potential associated with an infinite cur-
rent filament located at point (x’, y’) in free space with
amplitude 7, and orientation p is of the form

”’(k \/ (x - x)

I,(x,y) =

y =) )b,

p=x,yorz (2)

where H{" is the Hankel function of the first kind and zeroth
order and Z, is the free space characteristic impedance. The
corresponding field components can be obtained by inserting
(2) into (1) and then by employing the identity

HP (ko v/ (x = x) + (v - »)?)
| =ik (x=x")

1 r+eeikyly-y
=¥ﬁw k

the resulting fields can be expressed in terms of a continuous
spectrum of plane waves. In (3) k, = Vki - k2 and the
branch of the square root is chosen such that =1

In the presence of the impedance surface or the resistive
sheet, when the current filament is in the upper half-space,
each plane wave is reflected at the interface according to the
appropriate reflection coefficient. It should be noted that the
incidence angle of each plane wave, in general, is complex
and is given by vy = arctan(k, /k,). The net effect of the
impedance surface or resistive sheet on the radiated field can
be obtained by superimposing all of the reflected plane waves
of the form R (y)e*s*»)=#«x=x) ‘where R (v) is the
reflection coefficient corresponding to incident polarization
q = E or H and the surface type. The total reflected field
can now be obtained by noting that

E;= -R,(V)E;, E;=Ry(v)E,, E;=

4k0

dk, (3)

y

RE('Y)E;

and since the direction of propagation along the y axis is
reversed for the reflected waves, the operator 3 /d y for the x
and y components of the reflected field must be replaced
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with —ad /dy. Thus. in matnix notation the total field in the
upper half-space can be represented by

G, G, 0 |1

E = Gl\‘x G_r} 0 1_\ (4)
0 0 G: < 11

where
Gur = - k°z°(1 + i—a—)
4 ks dx*
[V 5 -57) - 0]
G. = Z, a-.

¥~ " 4k, 0xdy

[H(”(ko \/(X -x) 4+ (y- )")2) + QHJ
. z, &
” 4k, dyadx

[ #8(ko V(x = 27

+(y—ff)—QJ

koZ, L
G = - + — —
yy 4 kg ayz)
-[Hé"(ko\/(x -x)V+(y- y’)z) + QH]
koZ
Gzz == 4 °

| #8(k Vi =27+ (= 27) + 0] (9

are the elements of the dyadic Green’s function
(G(x, y; x', y")) for the two-dimensional impedance surface
or resistive sheet problem. In (5) the quantity Q y is given
by E

1 te
Qu(x,y; x, y) = —/ Ru(7v)

E T/ g

eik,(y+y')-ikx(x-x’)
- dk,  (6)

Yy

and the expressions for the reflection coefficients of the
impedance surface and resistive sheet are respectively given
by [12]

ncosy — 1 cosy — 19

Re(y) = Ry(y)= =Y""1 (4

£(7) v #(7) oy T n (7)
Re(V) = ——o—  Ryly) = ——
V) = T2 Resy, RelV) = 1+ 2R secy

(8)

where 7 is the normalized impedance of the impedance
surface (n = Z/Z,) and R is the normalized resistivity of



SARABANDI SCATTERING FROM DIELECTRIC STRUCTURES

the resistive sheet. For example the resistivity of an infinites-
imally thin dielectric layer of thickness 7 and permittivity e
is given by [13]

i

R= ——
kor(e - 1)

If an electric current distribution J, occupies region S in
the upper half-space, the radiated electric field at any point in
the upper half-space can be obtained from:

E(x.y) = [ Glxyix.y) - Uxy)axay. ()

s

The first term within brackets in (5) represents the effect of
the current filament in the absence of the impedance surface
while the second term is due to the image of the current
filament. Unfortunately, the integral representing the contri-
bution of the image does not have a closed form and its
convergence rate is very poor. To achieve the image contri-
bution in an efficient way consider the following transforma-
tion:

/4’03 1
e-ove k" dy = :
0 a+ky

provided Re [a] > —Re[k,].

The choice of the branch cut for k, guarantees that Re [k,]
is nonnegative as k, takes any real number, therefore the
sufficient condition for (10) is

Re[a] > 0.

The expressions for the reflection coefficients can be writ-
ten in terms of &, by substituting cosy = k, /k,. For the
case of a resistive sheet with an E-polarized incident wave
we can define o to be k, /2R, noting that the above condi-
tion is satisfied (Re[a] = k37€”/2 > 0). In view of the
transformation (10) the integral representing the image con-
tribution in the upper half-space can be written as

eiky(y+y’)—-ik,(x—x') dk
x

[
k
= |1+ —l)k
( al”’
4+ + o eiky(y+y’+iv)—ikx(x—x’)
=/ - ae” / dk,|dv.
0 - ky

Employing the identity given by (3), the zz-component of the
dyadic Green’s function for the resistive sheet problem in the
upper half-space can be obtained from

-k Z
=22 B (ko (3 =T
+ o
—/ ae”™ ™
0

-Hé”(ko\/(x -V +(y+y+ iv)z) dv]. (11)

In a similar manner for the lower half-space the zz-compo-

+ _
Gzz—

+(r-7))

oy

nent becomes
-kyZ

Gim —— [”6"( koV (X = x4 (=y 437

4
_ /“ae—a.
0
AP (e el ]
(12)

This integral representation converges very fast because both
functions in the integrand are exponentially decaying. Also
from this representation it can be deduced that the image of a
line current above a resistive sheet is a half-plane current
with exponential distribution and is located in the complex
y-plane occupying the region —y’ — i <y < -y’ (see
Fig. 2).

Similarly by defining 8 = 2 Rk, for the case of H-polari-
zation the quantity Qg in (6) for a resistive sheet in the
upper half-space is given by

H"’(k0 \Fx x’)

+o
— ﬂe'B'
0

- HY (ko V(x-x)

In the corresponding case of an impedance surface the dyadic
Green'’s function can be obtained from (5) with the following
expressions for the quantities O and Oy

‘”(k \/ (x=x')
+
_2/

0

. Hé”(k0 (x-x) +

+(y+y) )

(y+y +i))dv. (13)

+(y+))

(y+y+ iv)z) dv (14)

On = Hél)(ko\/(" - x,)z ++ .V')z)

4+
-2 pe®
0

HP(kV (x = %) + (v 4y +iv)") dv. (15)
The quantities o’ and B’ in (14) and (15) in terms of the
normalized surface impedance are, respectively, given by
ko

a = —,

]

B = kon.

The validity of the new image representation can be checked
by considering some special limiting cases. For example
consider the resistive sheet problem for E-polarization. Sup-
pose the resistivity is very small (approaching perfect con-
ductivity) which implies that | a| 3 1. In this case contribu-
tion to the integral in (11) comes mostly from point » = 0
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and therefore

+®
/ ae“"Hé"(ko\/(x -x)+(y+y+iv) ) dv
0

+ o
ae”* dv

-~ Hg”(ko\/(x - x’)2 +(y +y')2)/

0

= HP (ko (x = x) + (7 + )}

which is the image for the perfectly conducting case. The
asymptotic behavior of the integral in terms of a convergent
series of inverse power of « can also be obtained by per-
forming integration by parts repeatedly, that is

+ o
/ ae-*"Hg”(ko V(x=-x)+ (y+y +iv) ) dv
0

- 5 () 0 o9

n=0\ «
where A‘(0) is the nth derivative of
H{ (k, \/(x -x) 4 (y+y +iv)’) with respect to v
evaluated at zero. The first order of approximation is

5 (22 w0

n=0\ «

= Hé‘)(ko\/;x -x)’ + (y +y - -:7)2)

which is a line image located in the complex plane at
y= =y +i/a. As it is important in the scattering prob-
lems, the other asymptotic behavior of interest is the far field
approximation where the point of observation is far from the
image point, i.e., p, = \[(x -V +(y+y) >N In
this condition

iv cos ¢, )

\/(x—x’)2+(y+y’+iv)2=p2(1+ ;
2

where we have assumed that p, » ». The validity of this

assumption comes from the fact that the integrand of (16) is

approximately zero if » > v, for some finite v, . Now by

using the large argument expansion of the Hankel function
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and then substituting for a we get

-+ 0o
lim / - ae ™
P J

: H(',"(l\'0 Vix=x)Y+ 4y +in) ) dv

2 -1
‘ euk(.p:-r LY
\ 7kop,

Note that the last term in the above equation is the plane
wave reflection coefficient for the E-polarization case. This
result is identical to the asymptotic value of the integral given
by (6) evaluated using the saddle point technique. In applying
the saddle point technique the poles associated with the
reflection coefficient function (R ,(v)) may be captured when
the contour is deformed. The contribution of these poles
gives rise to surface waves, but their effect can be ignored if
the surface is lossy and the observation point is away from
the interface. Also, the large-argument expansion of the
Hankel function can be used for the distant approximation.
Now it can easily be shown that for an electric current
distribution J,, the radiated far field does not have a 5
component and the far-field amplitude defined by

2 ei(kop- 1/4)S
wkop

has the following components:

koZ
S, = (; 2 {/s cos ¢J,(x’, y')

,e~ikosin¢x'[e—ikocos¢y’ _ RH(¢)eikocos¢y’] dx’dy’

14+2Rcoso

E=

—/ singJ,(x', )
s

,e—ikosin¢x’[e-ikocos¢y’ + RH(¢)eikocos¢y’] dxldyl

(17)
kOZO

E4 4 LJZ(x" y’)

. e—ikosinox'[e—ikocosdty’ + RE(¢)eikocos ¢y’] dx’ dyl

III. DERIVATION OF INTEGRAL EQUATIONS

Suppose a dielectric object, possibly inhomogeneous, is
located above an impedance surface (resistive sheet) and is
illuminated by a plane wave. The direction of propagation of
the plane wave is denoted by the angle ¢, measured from the

. normal to the surface. Therefore the incident wave for E-

and H-polarization cases may be represented by
i _ spiko(si -
E' = gefkotsin#ox-cos goy)
E'= (COS ¢o-i' + sin ¢Ojl)e”‘o(5in $ox—cos 9g))

The incident field induces conduction and displacement cur-
rents in the dielectric object which together are known as the
polarization current. The polarization current in terms of the
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total electric field (E’) inside the dielectric object is given by
J, = —ik,Yo(e(x. y) - 1)E’ (18)

where ¢(x, y) represents the relative dielectric constant of
the object. The total field is comprised of the incident,
reflected, and scattered fields which are, respectively. de-
noted by E’, E’, and E°, then

E'=E+E +E° (19)

In the E-polarization case where the electric field is perpen-
dicular to the plane of incidence the incident field excites a
z-directed polarization current, which leads to a scattered
field in the z direction. For the H-polarization case, how-
ever, the polarization current and the scattered field are in the
transverse plane and therefore the integral equations for E-
and H-polarization cases are decoupled. Using (9) for the
scattered field and (19) for the total field with (18) the
following integral equations for the polarization currents can
be derived

Jo(x,¥) = =ikoY(e(x, y) - 1){eiko,i..¢°,
.(e—ikocos¢oy+ RE(¢O)eikocos¢oy)
+ [ [ 9)6x yi . y) axay].
S (20)
J(x, ¥) = =ik Yo(e(x, y) - 1){cos g e'kosinGox

(e kocosdor Ry (o) e o™ #07)
+/ / [J(x, )G o(x, y; ¥, ¥)
)
+J,(x, V)G, (x,y; x', y')] dx’dy'} (21)

Jy(x,y) = —ikoYy(e(x, y) - 1){sin Bpe'kosin box
.(e—ikocos %oy 4 RH(¢0)eik°°°’¢0y)

+//[Jx(x” V)G, (x,y; %, y)
s
+J,(x', ¥)G,,(x, y; x', y')] dx’ dy'} . (22)

IV. THE METHOD OF MOMENTS SOLUTION

There is no known exact solution for the integral equations
that were developed in the previous section. In this section an
approximate numerical solution of these equations is obtained
by employing the method of moments.

Let us divide the cross section of the dielectric structure
into N sufficiently small rectangular cells such that the
dielectric constant and the polarization current can be approx-
imated by constant values over each cell. First consider the
integral equation (20), which corresponds to the E-polariza-
tion case. Using the point matching technique the integral

equation can be cast into a matrix equation of the following
form:

[2][5] =[]

where [ 2] is the impedance matrix. [ ¥ is the unknown
vector whose entries are the value of polarization current at
the center of each cell. i.e.. (x,.y,). and finally | ] is the
excitation vector whose entries are given by

(23)

Up = ikOYO(e(xn' yn) - 1)
. eikOSIn%Xn(e-IkomSOo)‘,. + RE(¢O)€‘A°°05°U~'~)'

The off-diagonal elements of the impedance matrix can be
obtained by approximating the Green's function via its Taylor
series expansion around the midpoint of each cell and then
performing the integration analytically. This technique allows
us to choose very small cell sizes without incurring too much
error because of the adjacent cells. For diagonal elements the
free space Green’s function is approximated by its small
argument expansion and then integration is performed analyt-
ically over the cell area. This allows us to choose rectangular
shape cells instead of squares that are approximated by
circles of equal areas in the traditional method [14]. In order
to give the expressions for elements of the impedance matrix,
let us define the following functions

q (1) 2
Umn = _HO (kof,zn)COS or‘r’m

 HOors)

Pave] (cos?8%, — sin62,) (24)
mn

- (1 202
Vrzn = —HO )(kOrI‘rlm) Sin 0:::»

, HOkurs)
kor?

0" mn

(sin?02, — cos?62,) (25)

where r7, and 67, are the distance and the angle from the
source, its mirror image, and its continuous image points to
the observation point which are given by

ifg=s

V(% = %) + (9 = 1)
Tan =V (X = %) + (9 +00)
\/(x,,,—x,,)2+(y,,,+y,,+iv)2, ifg=rc

ifg=i

Ym = In
Xy = X,
Ym + Vn
Xy = X,

arctan

, ifg=s

arctan

, ifg=i

mn

It Y+ iy

arctan , ifg=c.

Xm — Xp

The diagonal entries of the impedance matrix for resistive
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sheet are given by

1 koAx, Ay,
Gy = 1= —(elx,,) - 1) | S
kq - i 3
-ln(T\/Ax,z,+Ay;)+-y—?-—E
(kOAx,, : (Ay,,
+ arctan
Ax,
kody,\*[ = Ay,
+ — — arctan 26
EEA L (A))} (26

ik} ax, A
—_-o_n_yn(f(xn'yn) - 1)(1

4
: / e H{P(kort,) dv
0
and the nondiagonal entries are expressed by
ik3Ax, Ay,
Zmn = -—9—-4———-——(6(Xm, ym) - 1) [H(gl)(kor;m)
(ko AX,)’ (koAy,)’
+ —— —_— Vo
24 mn 24

-a / e”H"(korsy) dv} : (27)
0

Here, Ax, and Ay, are the dimensions of the nth rectangu-
lar cell and vy = 0.57721 is Euler’s constant. The entries of
the impedance matrix for the impedance surface can also be
obtained in asimilar fashion by adding the mirror contribu-
tion, replacing o with o’ and doubling the integrals in (26)
and (27).

The integrals in (26) and (27) are evaluated numerically
using the Gauss-Legendre quadrature technique [15]. It should
be mentioned here that when the observation and source
points are both close to the surface (ko(y,, + ¥, <€1)
for some value of » = ), the distance function r,

= \/(x,,, - %)+ (Y + Y + ivg)’ becomes very
small. Consequently the integrand of the integral representing
the image contribution varies very rapidly around this point.
In order to evaluate the integral accurately, the contribution
of the integrand around », should be evaluated analytically.
The integrand achieves its maximum when the absolute value
of the distance function is minimum. This minimum occurs at

10= V (Xm = %) = (Im+7a)" -

If the argument of the square root in (28) is negative, then the
distance function takes its minimum at », = 0. Fig. 3 shows
the integrand function in (27) when both observation and
source points are very close to the surface. The analytical
evaluation of the integral around the point », can be per-
formed by using the small argument expansion of the Hankel

(28)

W L

dB

0.000

0.005 0.010

v
Fig. 34. The absolute value of the integrand function in (30) for R = 0.18
+i0.37 at 10 GHz, y,, + ¥, = 6 X 1073 )\, and five values of x,, — x,,.

function, i.e.,
vo+Av a
-ay c
/ e H{V(kyrf,,) dv
vo—Av

i2
= e“"°[2 AV(I + —7)

™

i2

+ — 1,
T
where

i
1, = '2‘(ym + Y + iv)
ré— AV = i280(y,, + ¥, + ivg)
“In
re = Av' + 2 Av(y,, + ¥, + ivg)

L Xm = % re+ Av? + 2 Av(x,, - x,)
n
2 re + Av: -2 Av(x, - x,)
k2
- AV[Z ~In=
4

'\/(rg - Av2)2 + 4Av2(y,,, +y,+ ivo)z].

For self-cell (diagonal element) calculation we note that
X,, = X,, which renders », = 0 and
i2y 2

Av
/ e H{"(kort,) dv = Av(l + —-—) + =1
0 T T

. where

Imt YV, +ily

L= (yp+y,)In ety

+ iAv|ln

ko( Y+ yn + iAv) 1]
2 - .

In the H-polarization case, using the same partitioning of
the cross section of the dielectric body, the coupled integral
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equations (21) and (22) can be cast into a matrix equation

similar to (23) where

1=[7) 11+
-

The elements of the excitation vector are given by (n =
., N)

v, = ikOYO(e(xn' yn) - I)COS %

. eik05'"°oxn(e"ikoc°s 0V — RH(¢0)eikocosooy,.)

FAN N
“|. and
J, 7,

n = ikoYo(e(x,, y,) = 1) sin &
. eikosmoox,,(e—ikocosooy,, + RH(¢0)€ik°ms°°:”’).

Here again the entries of the impedance matrix are obtained
by expansion of the Green's function over each cell as
explained in the E-polarization case. Since the Green’s func-
tion has a higher degree of singularity in this case, these
expansions are even more important to use in order to avoid
anomalous errors.

For the resistive sheet the nondiagonal elements of the
impedance matrix are given by

ik3Ax,Ay,

Zimn = "_'4_—(6().’,,,,)’,,,) - 1)
. {Af,,,, - A+ B/ e PAS, } (29)
ik2Ax,Ay,
L2mn = ——T—(e(xrm ym) - 1)
{ 4B - a/ ePB dy} (30)
ik?Ax, Ay,
2L3mn = _9_4———(6(X,,,,)’m) - l)

. {B,f,,, - B, + B/ e ®BS, dV; (31)
0

ikdAx, Ay,

zAmn =

{ +Ch -5/ “B’C,‘,,,,dv} (32)
where A7

wn> Bmn, and C7, are given in the Appendix.
Noting that cos 4, = cos 8, = Oandsinf,, = sinf;, = 1,
the diagonal elements are of the following form:

1

;(G(X", yn) - 1)[

kiax,Ay,
zl’l’lz _1- —4———

k i 3
-[ln(fo\/Axf,+Ay,2,) +y- = —]

2 2

Ay,
Ax,

+ 2 arctan

k(\A_\'n ):

-

|

]

Ax )

(elx,.¥,) = 1)

T
*| — = arctan
5

-

kg Ax, Ay,
+—_—
4

-!-A’M + a/ e-d'A;"dp}.
0

-{c,"m - 5/ e ?Ce, dv}.
0

Upon comparing (13) and (15) the expressions for the ele-
ments of the impedance matrix for the impedance surface can
be obtained by doubling the integral expressions, and replac-
ing B by B’ in (29)-(35).

The distance function in the integrand of all the integrals in
the elements of the impedance matrix assumes a very small
number when the observation and source points are both
close to the surface of the resistive sheet. Since the singular-
ity of the integrands in this case are much higher than the E
polarization case, analytical evaluation of the integrals around
the point », is even more critical. Fig. 4 shows the variation
of the integrand as a function of » for some typical values of
source and observation points, and also compares the inte-
grand with its approximation. It should be noted here that the
phase of the integrand varies very rapidly around »,, resulting
in a faster variation of the integrand than what is shown in
Fig. 4. If the integral in (29) around the Av neighborhood of
v, is denoted by S, then

(35)

S = e_Byo{Hél)(koro)(ym +y,+ i”o)z

iy 1) i kory
- —_— e —— — | - _ln____
(21r T 2 T 2
'[(X,,, - xn)2 - (ym +yn + ivO)Z]}I2

2i
- e-ﬁvo__z (xm - xn)2 -

.2
m Ve F i) | I
k2 (y y o)]s



dB

0.015
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v

Fig. 4. The absolute value of the integrand function in (38) and its
approximation for R = 0.18 + i0.37 at 10 GHz, y,, + ¥, = 6 X 107> ),
and five values of x, - x,.

where

rR-ar=-2(y,+y,+ iv0)2

(rg - sz)2 + 4Av2(y,,, +y,+ iAv0)2

1 ré + Av? +2(x,, - x,) Av
n .
4(x, - x,)°  ro+Aarv-2(x,-x,) A4y

+

In evaluation of the diagonal elements, we set x, = X,
which leads to », = 0 and the integral in (33) is approxi-
mated by

i2 i iy 1
S=—I’+ 1’ (—+———)Av,
Tk} 27 2
where
Ymt Y+ iy
L= —i + In ———
; (Ym + Ya) P
ko(yn+y, +idy
+iAvin 0( “ . ) - iAv
2
Ay

I = .
2T Umt ) (P + 3, + i AY)

To extract the contribution of the integrand in (30) around »,,
we use similar approximations as in (29). If this integral is
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denoted by S,. then

S,=e % (x, ~ v, o+ dvy)

i29
___1)
T

X )y, +
i
{[H”'(A ry) + (— -
T
2 kyr 4i
——ln——O—OJl + —1}
m 2 Tk

The integral in (31) around the point », is approximated by
S; where S; = S,, and similarly for the integral in (32) if S,
represents the integral around »,, then

5 = 6{ HO (ko) (x, - x,)
i iy 1 i koro}
+—-—=-=] - —In—
2T T 2) T 2

'[(xm - xn)z - ()’,,, +y, + iVO)ZJ}IZ

+ e‘ﬂ”" -x,) - (Y, + ivo)z] 1.

T k2 [
When x,, = x,, then », = 0 and this integral is represented
by

Once the system of linear equations for the polarization
current has been solved the scattered field from the dielectric
structure at any point in the upper half-space can be obtained
by means of (17) for both E- and H-polarization cases.

V. NUMERICAL RESULTS

In this section the results based on the numerical solution
are presented. As a verification of the numerical code we first

. compare the numerical solution of scattering echo width of a

dielectric hump over a resistive sheet with a perturbation
solution of the problem [16]. Consider a homogeneous di-
electric hump with dielectric constant ¢ = 36 + i17 over a
resistive sheet with resistivity R = 0.18 + i0.37. Suppose
the functional form of the hump is given by

w2

Y= w
and that the hump is illuminated by a plane wave at 10 GHz
(Ao = 3 cm). Figs. 5-8 show the bistatic echo width and the
phase of the far-field amplitude of the hump for A =
3N /1000, w = N, /15, and w = N, /25 at incidence angles
¢, = 0° and ¢, = 45° for both polarizations. In each figure
the results based on the perturbation technique are compared
with the numerical results. The agreement is very good in
spite of the fact that the perturbation solution is only a first
order one. For thicker dielectric humps (larger A) the pertur-
bation technique cannot be used and the moment method is
the only available method of solution.

With confidence in the numerical code we now consider
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Fig. 5. Bistatic echo width of a dielectric hump with e = 36 + i17, and
A = 3)\;/1000 over a resistive sheet with R = 0.18 + i0.37 at f =10
GHz for E-polarization.
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Fig. 6. Bistatic echo width of a diclectric hump with ¢ = 36 + i17, and

A =3\ /1000 over a resistive sheet with R = 0.18 + i0.37 at f= 10
GHz for H-polarization.

several examples with impedance surfaces. In all of the
following examples the impedance of the surface is taken to
be n = 0.21 - i.04 and the dielectric hump is assumed to be
an isosceles triangle with base w and altitude w/4. The
triangular humps are also considered to be homogeneous with
€ = 3 + il placed over the impedance surface. Figs. 8 and 9,
respectively, show the bistatic echo width and phase of the
far-field amplitude for two different sizes of triangular humps
at normal incidence (¢, = 0°) and A = 3 cm. The angular
dependency of the backscattering echo width of the same
humps is shown in Fig. 10.
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Fig. 7. Phase of far-field amplitude of a dielectric hump with ¢ = 36 + {17,
and A = 3\, /1000 over a resistive sheet with R = 0.18 + i0.37 at f = 10
GHz and ¢, = 0 for E- and H-polarization.
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Fig. 8. Bistatic echo width of triangular humps with ¢ = 3 + i1, over an
impedance surface with n = 0.21 - j0.04 at f= 10 GHz for E- and
H-polarization.

VI. CoNcLUSION

An efficient numerical technique has been developed to
compute the scattering behavior of inhomogeneous dielectric
cylinders of arbitrary cross section above impedance surfaces
and resistive sheets. The efficiency of this method is accom-
plished by deriving new expressions for the Green’s function
of the problem. Using an appropriate integral transformation
the ordinary integral representation of the Green’s function
containing a highly oscillatory integrand was transformed
into a new integral form that is rapidly convergent. Useful
asymptotic expressions of the Green’s function were also
derived. Analytical treatment for singular behavior of Green’s
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Fig. 9. Phase of far-field amplitude of triangular humps with € = 3 + il,
over an impedance surface with n = 0.21 — i0.04 at f= 10 GHz and
¢, = 0 for E- and H-polarization.
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Fig. 10. Backscattering echo width of triangular humps with e = 3 + il,
over an impedance surface with = 0.21 — i0.04 at f = 10 GHz for E-
and H-polarization.

function when both the source and the observation points are
close to the surface is given.

Several numerical examples are presented for resistive
sheet and impedance surface problems. The accuracy of the
numerical code is checked by comparing the numerical solu-
tion of scattering from a very thin dielectric hump above a
resistive sheet with a perturbation method. Excellent agree-
ment is obtained in all test cases.

APPENDIX

The following functions are defined to simplify the expres-
sions for the elements of the impedance matrix in the H-

polarization case

1 Y . H;l}t kl’r:m
Af = H'(kyrd,)sin" 65+ W
- (Ax,) | O
(" 2 _ _ N
(2cos= 67, - 1) + = (8.\': + kU,

(k()r:m)
(Ax,)” &° pe 4 B & ve
24 9xagy ™ 24 9xdy

H"(korl,)

2H{"(korg,) ‘
BY, = -Hg"(kors,) + ———" cos 62 ,sinb?

mn

-

0"mn

(kOrrSnn)
(Ax")’( 8?

Cl, = H{"(kor2

5
<049
0 mn) cos amn +

(2sin? 02, - 1) +

+ k5 |UZ,

24 |ay?

q
an

— + k¢
24 0

(ay,) [ @
+
dy?

where the derivatives of the functions defined by (24) and
(25) are given by

9 ! :
553 Usn = k3| H (kor,) | cos® ”in(z 05" 07 + 5)
2sin? 09,
e ")'2 (4cos? 67, - 1)
kOrmn
+H(Kord,) | 1 cos? 03, sin 03,
0" "mn
4sin’ 62
- s ); (4cos? 82, - 1)
Ormn
1
+ P (ko) - - cost 03,
sin? 02
+m(— 10 cos? 0,?,,, + 1)
Ormn
1
+HD o) |  cortog, 2ensoz, - 1)
32
=5 Unn = k§ | H$" (kor2,)|sin? 62 (l cos? 02, + l)
3y’ " "4 "8
2cos’ 92,
s ’;2 (1 - 4sin?62,)
0"mn
+H®(kors,)| - — cos’ 07, sin’ 07,
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+

1
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Abstract-

A Monte-Carlo simulation of electromagnetic scattering from one-dimensional perfectly
conducting random surfaces is considered in this paper. Surface profiles of desired statistics
are generated numerically using a standard procedure[1,2] and then the scattering solution
for the surface samples of finite length is calculated using the method of moments. A new
technique is used to reduce the effect of the edges of the finite surface samples. In this
technique the conductivity of the surface near edges are controlled by adding an appropriate
tapered resistive sheet. It is shown that the accuracy at large angles of incidence(6>500)
and the computation efficiency are improved significantly using this method when compared
to the standard tapered illumination method. Results based on this numerical approach are
compared with those based on the small perturbation and physical optics approximations in
their respective regions of validity.

1. Introduction

Numerical simulation of electromagnetic scattering from a one-dimensional perfectly
conducting random surface is of interest [1-7], for its application as a benchmark in evaluating
approximate theoretical models and a complementary solution to the theoretical models when
they fail. Although numerical solutions for scattering problems are considered to be "exact",
their accuracy becomes limited when applied to rough surfaces. Rough surfaces are targets of
infinite extent, hence approximations to the geometry or the formulation of the problem must
be considered to make the numerical solution tractable. The standard method to suppress the
effect of the edges of a finite surface sample is the tapered illumination approximation. In this
approach, the method of moments is applied to surface samples assuming that the incident
wave has a Gaussian amplitude variation and the scattering coefficients are calculated from the
second moments of the scattered field normalized by the illumination integral. The beamwidth
of the tapered illumination should be narrow to suppress the edge contributions at large angles
of incidence, which results in an inaccurate solution by excessive smoothing, specially for a



relatively smooth random surface with a large correlation length. Therefore the beamwidth of
the tapered illumination should be chosen carefully according to the incidence angle and the
sample width. The tapered illumination approximation is numerically inefficient because the
effective width of the sample surface contributing to the scattered field is much smaller than
the width of the surface used in the numerical calculation.

In this paper, the contribution from the edges of the surface samples to the scattered field
is minimized by controlling the conductivity of the surface near each edge by adding an
appropriate tapered resistive sheet. It is shown that the addition of a short length of a tapered
resistive sheet (1A) at each end of surface sample can suppress the edge contribution
significantly at even large angles of incidence. The validity of the numerical solution is
examined using the energy conservation and reciprocity tests. Scattering simulations based on
the new technique show a good agreement with the classical scattering models, the small
perturbation method and the physical optics model, at their regions of wvalidity. The
backscattering coefficient predicted by the new technique is accurate for incidence angles as
high as 80° while the angular validity range of the standard method is limited to lower
incidence angles. This is particularly the case for relatively smooth surfaces with large
correlation length (ks<1.0, k/>6.0 where k is wavenumber, s is the rms height, and / is the
correlation length).

2. Formulation

The statistics of the scattered field from a one-dimensional conducting surface is obtained
by a Monte Carlo simulation. Basically scattered fields from a large number of randomly
generated sample surfaces are computed numerically, and are used to estimate the
backscattering coefficient of the random surface. First, the surface current density J, on each
surface sample excited by a plane is determined using the method of moments (MoM). For a
horizontally polarized wave the electric field integral equation (EFIE) and for a vertically
polarized wave the magnetic field integral equation (HFIE) is used respectively which are
given by

i— koZo - T
E'(p)=— J 1,(p) H(kolp-p)al’, M
CixH(p)=-23,0) + 5 fix 1. x VHP(fp-Ay ®

Here k, is the wave number, Z, is the intrinsic impedance of free space, H g‘) is the zeroth-

order Hankel function of the first kind, and p and p' are the position vectors of observation
and source points, respectively. After a sample surface is discretized into sufficiently small
cells, (1) and (2) are cast into matrix equations using pulse basis function and point matching
technique.

The surface current induced by a horizontally polarized incidence wave exhibits the familiar
singularity near the edges of the surface, which has a significant effect on the backscattered
field away from normal incidence. However, this is not the case for the vertically polarized
incidence wave for a one-dimensional perfectly conducting surface. To suppress the singular
behavior of the current near the edges a tapered resistive sheet is added to each end of the
surface sample as shown in Fig. 1. Using the following boundary conditions for resistive
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sheets[8],
[AxE] =0, Ax(AixE)=-R]J, ©)

the integral equation for horizontal polarization becomes

E'(p) = R(p)J,(p) +

k°42° [1.000 80 (fp-P)ar, @)

where R is the resistivity of the resistive sheet. Equation (4) is also cast into a matrix equation
[Z] [1] = [V] using point matching technique. The elements of the impedance matrix can be
obtained from

2
fun R0, 8+ 22 [ B (b2, =5, Y+ 2,)) 1+(j") &
Ax, n
while the elements of the excitation vector [V] are given by
Vv, =exp [ik0 (sin 6, x,, — cos b, z,,) ], )

In (6) 5_, is the Kronecker delta function.

The small argument expansion of the Hankel function is used in the evaluation of the
diagonal elements of the impedance matrix, which is given by

. 2 dz 1_12 .
ow bty 2y (hrad) BN fhgsdlll )
4 ™ 4e 24 2 2 | 4¢h

where Ad = Ax,,[1+(dz,/dx,)", e=2.718--, and y=0.5772--- is the Euler's constant.
The non-diagonal elements, z_(m# n), are obtained by evaluating the integral in (5)

numerically using a four-point Gaussian-Quadrature integration technique.

The resistivity profile, R(x), plays an important role in suppression of the edge current. The
objective is to suppress the singular behavior of the current using a resistivity profile over the
smallest possible width. Using trial and error the following resistivity profile was chosen:

0, ,xl <—

R(x) = pe- D .. D ®
2H), 2

0.005 Zo(

R
where D is the width of the sample surface and D, is the width of the resistive section. In
order to illustrate the effect of edge current on backscatter, scattering from a flat conducting
surface with a width of 12A is considered. The radar backscattering echo width (two-
dimensional radar cross section) of the conducting strip is shown in Fig. 2a for both



polarizations. The effect of edge current on echo width becomes important away from normal
incidence for horizontal polarization. Figure 2b shows the backscattering echo width of the
same conducting strip when resistive sheet segments are added to both edges of the
conducting strip. In this case, the backscattering echo width for horizontal polarization
decreases with incidence angle in a manner similar to the echo width for vertical polarization
which clearly indicates the suppression of the edge currents.

Tapered resistive sheets were not used for the case of vertical polarization. For vertical
polarization where the electric field is perpendicular to the edges of the surface samples, the
surface current must go to zero near the edges. Therefore no significant backscatter can be
attributed to the edges of the finite samples for vertical polarization. It is known that for flat
strips a traveling wave is excited and its effect can be observed on the current distribution over
the strip particularly near grazing angles. The traveling wave manifests itself in terms of repels
superimposed on the physical optics current distribution. However, in the far-field region
where the scattered field is proportional to the weighted average of the current distribution,
the contribution from the repels are averaged out when the strip width is much larger than a
wavelength. Besides, for rough surfaces, the roughness perturbs the phase coherency required
for the excitation of traveling waves which would further suppress their effect in the far-field

region.
3. Numerical Results From The New Technique

In order to demonstrate the validity of the numerical simulation, the sample surfaces with
desired roughness statistics are generated using a standard approach[1,2]. First a random
number string is generated for a Gaussian height distribution with zero-mean and standard
deviation of 1. Then, the Gaussian distribution is correlated with a correlation function. In
this paper a Gaussian correlation function having a correlation length / is correlated with the
Gaussian distribution, N[0,1], and the desired standard deviation (rms height) s is multiplied
by the surface height distribution to get desired roughness ks and k/ where k is wavenumber.
Figure 3 is a typical segment of a computer-generated random surface with ks=0.3 and k/=3.0.
A surface of 1200 wavelength(A) wide, generated with the input data of ks=0.300 and
kI=3.000, gave the statistics of ks=0.301 and k/=3.007 which is very close to the input data.

Figure 4 shows the bistatic scattering coefficient for a Gaussian surface with ks=0.3 and
k=3 .0 for both of VV- and HH-polarization at 300 incidence angle. This figure also shows the
effect of the length of the resistive sheet for the HH-polarization response. The solid and
dotted line curves show the bistatic response when a resistive sheet of length 1A and 3A are
used respectively. It is shown that the difference between the scattering patterns are negligible.
In the computation of the bistatic response, the sample width D = 30A and the number of
independent samples N = 40 were used. The sample surfaces in the following examples are all
loaded with a short tapered resistive sheet of width 1A. When the sample surface width is
301, for example, a surface of total length 32) including 1A-resistive sheets at both ends is
used for the computation of the surface current induced by the plane wave excitation. The
currents induced over the resistive sheets are excluded from computation of the scattered field.

One way of testing the validity of the numerical results is the test of energy conservation.
The incident energy is computed from the uniform plane wave excitation over finite length of a
surface sample. The scattered energy is obtained by integrating the scattered power density



over the surface of a cylinder enclosing the scatterer. Figure 5 shows the error in conservation
of energy vs. incidence angle for a surface sample with ks=0.3 and 4/=3.0 and the sample
width D = 23A. It is shown that the error is less than 1% and 2% for VV- and HH-
polarizations, respectively, for incidence angles as high as 800.

The small perturbation method (SPM) can be used to examine the validity of the
numerical simulation for slightly rough surfaces. The surface with ks=0.3 and kl=3.0 was also
used to generate incoherent bistatic scattering coefficients for VV- and HH-polarizations at
309 incidence in order to compare with the solution from the first-order small perturbation
method (SPM). Figure 6 shows that the SPM solution agrees well with the numerical solution
over the range of scattering angle -800 < §¢< 800 for both polarizations. Since the practical
interest in radar measurement is the backscattering direction, in the following examples the
behavior of the backscattering coefficients will be studied.

The SPM is known to be valid when ks <03, k/ <3.0, and m < 0.3. Here m is the
rms slope and is given by m = /2 s/l for a surface with a Gaussian correlation function. The

backscattering coefficients from a surface with ks=0.15 and k/=2.0 are computed using the
SPM and compared with the MoM solution as shown in Fig. 7. For the numerical
computation of the backscattering coefficients, the sampling interval Ax = 0.1A, the sample
width D = 14 and the number of independent samples N = 40 were used. Figure 7 shows that
the SPM solution agrees very well with the MoM solution for incidence angles as high as 80° .

The physical optics approximation (PO) can be used to examine the validity of the
numerical simulation at the other extreme roughness conditions. There are various PO
solutions in the literature. For example, the PO model appeared in [9,11] is formulated by
approximating the ensemble average within the diffraction integral by ignoring all local slope
terms. Another familiar form of PO model is given in [12], which is formulated by including
the first-order local slope term and ignoring "edge effect" contribution. Instead of using those
models, an exactly formulated PO model is used in this paper to be compared with the MoM
solution. The new PO model[13] is formulated by employing the spectral representation of
the delta function and the characteristic function of a Gaussian random vector. The final form
of the new PO model for a one-dimensional random surface is given in terms of a single
integral which can be evaluated numerically. In this method

1o () 225 s 1 ot o8 )
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which together with (9) are used to evaluate the desired incoherent backscattering coefficients
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The shadowing effect is also accounted for by incorporating the shadowing function given in
[14]. Since the PO solution of the surface backscattering is proportional to the Fresnel
reflectivity, the backscattering coefficients from a perfectly conducting surfaces computed by
the PO model does not show a difference between VV- and HH-polarizations as shown by
(9)-(11) and Fig. 8.

Figure 8 compares the backscattering coefficients as computed by the PO model and the
new MoM for both polarizations. The roughness parameters of the surface are ks=1.0 and
kI=8.0 which fall at margin of the validity region of PO model (/> A4, m<0.25 [9]). In this
numerical simulation the following parameters were used: Ax=0.2A, D=30A and N=40. The
PO solution agrees very well with the MoM solution over a wide range of incidence angles
(0° <6< 70°).

Since the MoM with resistive sheets agrees very well with the SPM and the PO model at
their validity region, it is reasonable to expect that the numerical simulation can accurately
predict the statistics of the scattered field for surfaces with intermediate roughness conditions.
It is known that the phase-difference statistics provides valuable information about the
scattering mechanisms. This numerical technique is used to compute the co-polarized phase-
difference statistics of the random surface of intermediate roughness, ks=0.62 and k/=4.6. The
distribution of the co-polarized phase-difference (®_= @, - @, ) statistics at 500 is shown in
Fig. 9a. Figure 9b shows that the standard deviation of the ¢@_ distribution versus incidence

angle. The existing theoretical models cannot predict the phase difference statistics properly.
The radar measurements of natural rough surfaces, however, show the phase-difference
statistics similar to the numerical results shown in Figs. 9 a-b [16,17].

4. Comparison With Other Numerical Techniques

In order to demonstrate the efficiency of the new numerical method a comparison with
existing numerical techniques is necessary. The most widely used numerica! technique is based
on the method of moments in conjunction with a tapered incident illumination [7]. The
backscattering coefficients of the random surface with ks=1.0 and £/=6.13 are computed using
the Gaussian-tapered illumination technique for comparing with the solution obtained by the
new numerical technique. Figure 10 shows the comparison between the new PO model and the
tapered illumination technique. In this comparison the taper function is given by [7]

B(7) =gl if Bl ow(p)] - EoZmO) | gy 2xmzme) /gL,
g (k g cosb)

where k . p=k,(sin @ x - cos @, z), 6;is the incidence angle and g is a constant parameter

controlling the tapering of the illumination. The resulting scattering coefficient is the ratio of
scattering cross section normalized and the effective surface width L, given by [7]



(13)
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Ly=n2g [1 -
In this numerical computation, g is chosen to be g=0.25D as recommended by [7], and
D=30A, Ax=0.2)\, and N=40. The backscattering coefficient computed by the Gaussian-
tapered illumination method agrees well with the new PO model at small incidence angles
(0° < 6 <50°), however, predict lower values for both polarizations at large incidence angles
(6, >50°) as shown in Fig. 10. Comparison of Figs. 8 and 10 clearly shows the new

numerical method is more accurate than the standard method over a wide range of incidence
angles.

Figure 10 shows that the backscattering coefficients are increasing over the angular range
75° < 6 < 90°. The reason for this is that the second term including (k, gcos@ )2 in (13) is

not small enough to be neglected at large incidence angles. In addition, at large angles of
incident the taper function could not eliminate the effect of the currents induced at the edges
significantly and therefore the backscatter contribution from the edges are observable.
Therefore, as the incidence angle increases, the sample surface width as well as the inverse of
g (1/g) should be increased, which makes the numerical solution inefficient.

It should be noted that the effective surface width of the tapered illumination technique is
much smaller than the physical width. For example, when g=0.25D is used in (13), L - is

about 31% of the physical width while the effective width of samples in the new simulation
with 1) resistive sheets is about 94% of the physical width when D=30A. The scattered field is
dominated by the contribution from the current induced over the effective width of a surface
sample. Figure 11 shows the comparison of the normalized current distributions on a typical
surface sample as computing by the new and the tapered illumination techniques.

Another drawback of the tapered illumination technique is the lack of a systematic
approach to select g. Figure 12 shows the comparison of ¢, between the new technique and
the tapered illumination technique for various values of the parameter g for the surface with
ks=1.0 and k/=6.13. The two numerical methods agree at low angles of incidence
(0° < 6, < 50°), however, the backscattering coefficients computed by the tapered illumination
technique predicts conflicting results for g, > 50° as the parameter g varies from 0.5D to
0.25D.

Finally, the effect of the sample surface width on the backscattering coefficients (o)
was tested for both numerical techniques at 9.;400 and 75° for the surface with ks=1.0 and
kI=6.13. Figure 13a shows almost no sensitivity in o, as computed by the new numerical

method where the surface width varies from SA to 45A for all incidence angles. Figure 13b
shows the results computed by the tapered illumination technique where the backscattering
coefficients changes drastically for § =75° when the surface width D<27A.

Worse results were obtained, when other types of tapering functions were used. We
examined the tapering function as suggested in [1]:

G(x-x,)= exp

- (x;;c) } with = Jz/2¢ (14)



where x_ is the coordinate of the illumination boresight on the surface. The tapering function
used in [2] was also tested:

G(x-x)= expl:— r-x) cosze,J with [ = Jr2g (15)

? cos 6,
where ¢, is the incidence angle.

5. Conclusions

A Monte Carlo simulation comprised of a random surface generator in conjunction
with the method of moments is developed to obtain the scattering statistics of one-dimensional
conducting random surfaces. A new approach is introduced which efficiently eliminates the
effect of edge currents on the finite sample surfaces. By adding a resistive sheet to each end of
the sample surface, the edge currents are suppressed. The numerical simulations using the
resistive loaded surface samples agree very well with the existing theoretical models (SPM and
PO) in their regions of validity. The new method offers two major advantages over the
standard tapered illumination method: (1) it is numerically more efficient, that is, for a given
accuracy the new method requires samples with smaller physical width, and (2) it has a wider
angular range of validity which is independent of ks, k/, and any uncertain parameter like 'g’
employed in the tapered illumination technique. In addition to the magnitude, the phase-
difference statistics was also computed by the new technique, and it was shown that the
standard deviation of the phase-difference distribution increases with the incidence angle.
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Figure 7: Comparison of backscattering cocllicients ( ol o) as computed by
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for a surface with £s=0.15 and 4/=2.0 (N=40, D=14A, Ax=0.1}).
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Microwave Scattering Model
for Grass Blade Structures
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Abstract—In this paper, the electromagnetic scattering solution
for a grass blade with complex cross-section geometry is con-
sidered. It is assumed that the blade cross section is electrically
small, but its length is large compared to the incident wavelength.
In a recent study it has been shown that the scattering solution
for such problems, in the form of a polarizability tensor, can be
obtained using the low-frequency approximation in conjunction
with the method of moments. In addition, the study shows that the
relationship between the polarizability tensor of a dielectric cylin-
der and its dielectric constant can be approximated by a simple
algebraic expression. The results of this study are used to show
that this algebraic approximation is valid also for cylinders with
cross sections the shape of grass blades, providing that proper
values are selected for each of three constants appearing in the
expression. These constants are dependent on cylinder shape, and
if the relationship between the constants and the three parameters
describing a grass blade shape can be determined, an algebraic
approximation relating polarizability tensor to blade shape, as
well as dielectric constant, can be formed. Since the elements of
the polarizability tensor are dependent on only these parameters,
this algebraic approximation can replace the cumbersome method
of moments model. The moment method model is therefore used
to generate a small but representative set of polarizability tensor
data over the range of values commonly observed in nature.
A conjugate gradient method is then implemented to correctly
determine the three constants of the algebraic approximation for
each blade shape. A third-order polynomial fit to the data is then
determined for each constant, thus providing a complete analytic
replacement to the numerical (moment method) scattering model.
Comparisons of this approximation to the numerical model show
an average error of less than 3%.

I. INTRODUCTION

cattering models of random media such as vegetation
Scanopies require knowledge of scattering behavior of the
individual vegetation constituents. To obtain efficient scatter-
ing formulations for the constituents such as branches, leaves,
needles, or stems the structure of these particles are usually
modeled by simple canonical geometries, such as circular
cylinders or discs [12]. As a result, the particles can be
characterized by a few specific geometric parameters, such
as length, diameter, or thickness. In addition, scatterers with
simple geometries often are amenable to analytic scattering
solutions. Due to the random nature of vegetation canopies,
scattering formulations for such media are quite complex,
thus the two characteristics of simple geometric specification
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and analyvtical scattering formulations are highly desirable to
provide a tractable vegetation scattering solution.

However, some structural characteristics not reflected in
the simplified geometry can significantly affect the scattered
response of a given vegetation constituent. That is, over-
simplification can degrade the fidelity and accuracy of a
canopy scattering model. To provide a greater degree of
model accuracy, other physical aspects of these vegetation
constituents may be considered, such as blade curvature,
branch roughness, or dielectric inhomogeneity (6], [7]. For
example, the constituents of a grass plant, such as stems and
grass blades, can be modeled as long thin circular dielectric
cylinders. The cross sections of grass blades, however, are
far from circular. As will be shown, the scattering response
of the actual shape is significantly different from that of an
equivalent circular cylinder. In addition, a radiative transfer
[9}-{11] canopy scattering model demonstrates the resulting
discrepancies in backscattering coefficients predicted using the
circular, rather than the actual grass blade geometries.

The scattering matrix of electrically thin cylinders with
arbitrary cross sections can be determined only with numerical
methods and can be expressed in terms of a polarizability
tensor. Such is the case for grass blade elements, however,
the numeric specification of grass blade shape, along with
the numeric scattering solution, are contrary to the desired
characteristics described earlier. Thus, the ideal solution would
define the blade shape with a few geometric parameters,
provide an analytic scattering solution which is a function of
these parameters, yet also comprehend and account for the
complex blade geometries which affect scattering response.

This is achieved by first approximating the general shape of
a grass blade with a collectior. of geometric parameters, and
then limiting the domain of these parameters to those found
in nature. The polarizability tenors are obtained numerically
for a representative collection of grass blade shapes located
throughout this parameter domain, then an analytic function
is determined which matches the numeric data and thus
approximates the complex polarizability tensor values across
the entire domain of shape parameters.

II. GRASS BLADE GEOMETRY

The fine geometry exhibited by most grass blades occurring
in nature can be approximated by a set of five description
parameters as shown in Fig. 1. These five parameters, thickness
t, width w, blade angle 6, radius of curvature r, and blade
length ! can be combined to produce five new independent
parameters, two of which describe the size of the blade while

0196-2892/93$03.00 © 1993 IEEE
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Fig. 1. Diagram of grass blade geometry including blade cross section
(showing width w, thickness ¢, and blade angle #) and overhead view (showing
radius of curvature r and length I).

TABLE 1
THE FIVE PARAMETERS DESCRIBING BLADE GEOMETRY, INCLUDING
TWO PARAMETERS (LENGTH I, AND AREA A) WHICH SPECIFY BLADE
SizE, AND THREE DIMENSIONLESS PARAMETERS (ASPECT RATIO a,
CURVATURE v, AND BLADE ANGLE §) WHICH SPECIFY SHAPE

’?unmeter symbol | expression
Area A = 2w
Length 1 1
Aspect Ratio a t/(2w)
Curvature v wfr
Blade Angle 0 0

the other three describe its shape. The first two of these
parameters, as shown in Table I, are the cross-sectional area
A and blade length [, which together specify the blade size.
The three remaining parameters are dimensionless quantities,
and thus specify only the blade shape. The first, aspect ratio
a, is defined as the ratio of blade thickness to blade width.
The second parameter, curvature v, is the arc angle in radians
of the arc formed by the curvature of the blade on either side
of the center rib. The final parameter, blade angle 6, is the
angle formed by the vector normal to the grass blade surface
at the center rib, and the vector tangent to the blade curvature
at the center rib. In addition, for purposes of the scattering
formulation, the grass blades are assumed to be both long and
thin, such that 2w <« A and [ > w.

III. SCATTERING FORMULATION

Given these blade parameters and assumptions, a formu-
lation is required to accurately predict the electromagnetic
scattering from grass blade structures, assuming an incident
electric field of arbitrary direction and polarization. To solve
this problem, the scattering formulation described by Sara-
bandi and Senior [5] shall be followed, a formulation which
predicts the scattering from long, thin dielectric cylinders of
arbitrary cross section.

Initially, the grass blade is assumed to be infinite in length,
eliminating the z dependence of the scattered field and essen-
tially reducing the scattering formulation to a two-dimensional

SONEELENMDE R v

Fip. 2. Cross section of grass blade showing the source point /. the

o - Sl o
observation point /', and angle ¢ = cox [ ==

problem involving only the grass blade cross section. If. in
addition, the blade cross section is electrically small, the
scattering formulation can be further reduced by employing
the low frequency or Rayleigh approximation, wherein the
higher order terms of the wave number ko are ignored [2].
[8]. Thus, the Rayleigh approximation essentially reduces the
scattering formulation to an electrostatics problem within the
region of the blade cross section.

The expression for the incident electric field after employing
the Rayleigh approximation (zeroth order of ko) is given as

E'=a=a,7+a,§+a.? (1)
which can be written in terms of the electrostatic potential ® as
E'=-V,® +a,3 )

where
' = —a,(z+ 1) - ay(y + ). 3)

Using superposition, the total (incident plus scattered) elec-
trostatic potential can be written as

b=0q,P, + ay<I>2 4)

where @, is the total electrostatic potential due to the fist
term of (3), and similarly ®, due to the second term.

As shown by Sarabandi and Senior [5], the integral equa-
tions specifying the two solutions, ®; and ®,, about the outer
surface of the blade are given as

€& +1 €& —1 cos 6’
z ®,(p) - | = ®,(p)———dc
< 2 ) 1(7) ( 2 )/c I
=-z-C %)
and
& +1 €& —1 cos 6’
z ®y(p) - [ = &y (p') ———dc’
( 2 ) i ( o )/c S
=-y-c (6)
where c; and c; are arbitrary constants and 6’ is defined in
Fig. 2.

These equations can be solved using the method of mo-
ments, thus determining the total electrostatic potential on the
surface of the grass blade. However, this potential must now
be related to the scattered electric field. As the scattered field
from a nonmagnetic Rayleigh scatterer can be attributed to
an electric dipole moment, the scattered field from an infinite
Rayleigh cylinder can be attributed to electric dipoles along
the infinite (2) axis, expressed as a dipole moment per unit
length. The magnitude and direction of this dipole moment is
related to the incident electric field vector as p = €oP-a, where
P is the polarizability tensor [1], [2] . Because the assumed
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Fig. 3. Geometry of a finite grass blade including incident angle .3.

grass blade cross section is symmetrical about the y-axis, the
polarizability tensor is a diagonal matrix. and the three nonzero
diagonal elements are given as [5]

Pro = (=) [ i a0 o
c

Py = (1) [ @il ®)
C

P..= (6 - ]')A (9)

It is important to note that these expressions specifying the
polarizability tensor are dependent on only the dielectric
constant and geometry of the grass blade. The direction and
polarization of the incident electric field does not affect the
values of the polarizability tensor, and enter into the scattering
formulation only when computing the electric dipole moment
(p = 60P . d)

As stated earlier, this solution was derived assuming an
infinite length grass blade. Obviously this is a nonphysical
assumption, and to determine the scattered field from a fi-
nite blade of length [, the physical optics approximation is
employed [4], [8]. The fields on the blade surface calculated
for the infinite case (constant with z) are likewise assumed
to be valid for the long but finite blade. Integration of these
truncated fields along the z axis leads to the familiar (sinz)/z
scattering response in the elevation plane of the blade structure.
The scattering intensities are thus given by the expressions (5]

K2 (cy 24 ) sinU
s_-E{k x k x[lP~a]} - (10)
where
kol /s, .
J= —|(k® 2 -
L 5 (k Z cosﬂ), 11)

with P being the polarizability tensor given by (7)+9), [ the
blade length, and 3 the incident angle in the elevation plane,
as defined in Fig. 3. Fig. 4(a) displays a typical scattering
pattern in the elevation plane, with the main lobe occurring
at the forward scattering cone. Although this physical optics
formulation is merely an approximation, it can predict the
major scattering behavior for blades with electrical lengths
as small as one A, although accuracy generally increases with
cylinder electrical length.

In the azimuth plane, the scattering response (Fig. 4(b)) is
that of an electric dipole, as expected for electrically small

(b)

Fig. 4. Scattered intensity in the elevation (a) and azimuth (b) planes
of a horizontally polarized wave incident on a finite dielectric cylinder
(6; = 60°,¢; = 45°, 1 = 2X, Py = 4.0, Py, = 2.0).

(Rayleigh) cross sections. It should be noted, however, that
except for the specific case of Py, = P,,, the radial electric
dipole moment will not align with the incident electric field
vector. Thus, the main forward and backscattering lobes will
not be aligned with the radial direction of the incident field
propagation vector.

To validate this scattering formulation, the backscattering
coefficient is determined as a function ofelevation angle using
an accurate three-dimensional numeric scattering model. If
f = 0 and v = 0, the grass blade shape reduces to a
flat dielectric strip. A flat, thin dielectric structure can be
modeled as a resistive sheet [13], [14], and therefore the
grass blade in this case is modeled as a resistive strip. Using
a moment-method code which provides a scattering solution
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Fig. 6. The real portion of the normalized polarizability tensor element Py, /A as a function of aspect ratio a and blade angle 6 for blade curvature
v=()0.2and (b) 1.5(e=304,9).

for an arbitrary resistive sheet, the backscattering coefficient
o versus elevation angle was calculated and the results are
given in Fig. 5, along with the data predicted by (10) using the
polarizabity tensor. Good agreement between the two methods
was found, with an error for o4, of less than 1 dB for all
incidence angles. The error for oy, is similar when close to
normal incidence, but becomes larger with increasing oblique
incidence as traveling waves (not accounted for in the physical
optics approximation) are induced. However, the cylinder of
Fig. 5 is just one ) in length, and the error at large oblique
angles diminishes as cylinder length increases.

IV. MODEL RESULTS

The effect of blade geometry on scattering from grass blades
was evaluated using the scattering formulation outlined in the
previous section. The parameter of interest in this case is
the normalized polarizability tensor P/A. Each element of
the polarizability tensor is directly proportional to the cross-
section area A, thus the normalized polarizability tensor P/A

is independent of A. Therefore, P/A is a function of only
the dielectric constant and the shape, as described by the
dimensionless shape parameters, curvature v, aspect ratio a,
and blade angle 6. In general, the elements P, and P,
are, respectively, proportional to the projected area of the
blade shape onto the (z,z) and (y,z) planes. Thus, the
parameter which most affects the normalized polarizability
tensor elements is aspect ratio, followed by blade angle and
then blade curvature. Fig. 6 demonstrates this dependence,
showing the effect of aspect ratio and blade angle on the real
part of P, /A for both a relatively flat and a relatively curved
grass blade geometry.

Although these figures demonstrate the dependence of po-
larizability tensor, and hence scattering on blade geometry,
the larger question of whether these shape parameters signifi-
cantly affect scattering from an entire grassland target can not
be inferred. Therefore, a radiative transfer scattering model
[9]-[11] was implemented which modeled a layer of scatterers
consisting of cylinders of a given length and cross-sectional
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for dry (a) and moist (b) vegetation as predicted by a radiative transfer based grassland model for blades of both grass blade and circular shaped

cross sections (@ = 0.45. § = 0. v =0.01. N = 2500/m3.1 = .5m. 4 = .03 cm? My = 0.3 (a) and 0.9 (b) ).

area. Two cases were examined; in the first case, the cylinders
were of circular cross section, while in the other a blade
shaped cross section (¢ = 0.045, § = 0, v = 0.01) of
identical area was implemented. Fig. 7 displays the results
of this model at two frequencies for two dielectric constants
and three incidence angles. The difference in the cross-section
shape results in a difference of as much as 5 dB in the value
of a5, This contrast is largest at lower frequencies and for
drier grass blades. Although this data represents a limited test
case, it does show that for electrically small cross sections,
blade shape, in addition to blade size, can significantly affect
the observed scattering from grassland targets.

V. ALGEBRAIC MODEL

For a cylinder of circular cross section, an exact analytic
solution to the integral equations of (5) and (6) exists, thus
leading to an exact solution of the normalized polarizability
tensor elements as a function of the complex dielectric constant

5], 8):
PII -
A A
As shown by Sarabandi and Senior [5], this equation can
be modified to provide an approximate algebraic solution for
cylinders of semi-circular, triangular, and square cross sections
which, although not an exact solution to the integral equations,

matches the numeric solution with exceptional accuracy. This
modified expression is given as

P(e) -1 e+a

A coe+1 €+

Py .e-1
====2—. 1
e+1 (12)

(13)

where the values of constants cg, ¢;, and co are unique for
each of the three cross sections. This expression is valid for
both P;;/A and P,,/A, although the three constants are of
course different for nonsymmetric cross sections (semicircular
and triangular).

To determine if the validity of this expression extends to
grass blade shapes, data was generated with the numerical
model for a given blade geometry across a wide range of
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Fig.8. Comparison of the predicted dependence of Re[ Py, /A] on dielectric

constant for both the numerical scattering model (lines) and the algebraic
approximation (marks) of (13) (a = 0.1, 6 = 28°, v = 0.01, ¢co = 1.753,
c; = 9.703, and co = 10.297).

complex dielectric constants. Three constants c;, ca, and c3
were then selected in an attempt to match (13) to the generated
numerical data. As shown in Fig. 8, constants were found
which provided a match with good accuracy between the
approximation of (13) and the numerical data. Thus, (13)
appears to be valid for not only simple geometrical cross
sections, but for more general cross sections (grass blades)
as well. The constants cg, ¢;, and co, denoted as vector c,
can therefore be selected to relate the dielectric constant to
the polarizability tensor for a given blade geometry. Since
these constants are dependent only on cross-section geometry,
and since cross-section geometry for a grass blade has been
defined by the three shape parameters v, a, and 6, a more
general algebraic approximation relating grass blade geometry,
in addition to the dielectric constant, can be hypothesized:

P, e-1 e+c1(,a,v)
A e+1 e+cab,a,v)

The expressions relating ¢ to the shape parameters v, a, and
6 must therefore be determined.

(14)

= co(8,a,v)
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TABLE 11
MODEL INPUT PARAMETEK SPact EsTiManing
THOSE VALUES GENERALLY OBSERVED IN NATURE

parameter min. | max.
aspect ratio (a) 0.015 ] 0.12
blade angle (6) 0.0 | 500
curvature (v) 0.01 | 2.0
dielectric constant (¢') | 5.0 | 45.0
dielectric constant (¢”) | 2 25

VI. COEFFICIENT ESTIMATION

To determine these relationships, the numerical model was
used to determine the normalized polarizability tensor P/A
for various dielectrics for each of 512 separate blade geome-
tries. These 512 geometries were uniformly selected from the
parameter space shown in Table II, describing the limited
domain of geometries and dielectrics which, in general, are
observed for grass blades. For a given geometry, six constants
cn must be determined, three for each P;;/A and P, /A.
Using the results of the numerical model at three distinct
dielectric constants, a non-linear system of three equations
(P(e1)/A, P(e2)/A, P(e3)/A) with three unknowns (cj, ca,
c3) is formed using (13). Thus, nonlinear inversion techniques
can be used to determine the three elements of ¢ [3, ch. 9].
However, because (13) is merely an approximation, and not
an exact solution for P/A, inversion techniques may lead to
erroneous results. Inversion techniques force a solution which
produces zero error at each of the three data points P(e;)/A,
P(e2)/A, and P(e3)/A, however, in so doing may severely
affect the accuracy of the approximation at other dielectric
constant values.

As an alternative solution, the polarizability tensor
elements were numerically computed at additional dielectric
constants (six were found to be sufficient), and the three
coefficients of ¢ were then determined by locating those
values which minimized the sum of the squared errors
between (13) and the numerical data at these six dielectric
values. Although the resulting algebraic approximation may
exhibit nonzero error at all six dielectric values, the solution
does match the numerical model results across the entire
range of dielectric values. To determine an optimum selection
of the vector ¢, the conjugate gradient technique [3, ch. 10]
was implemented which iteratively converges to the values of
¢1, €2, and c3 that minimize the total squared error equation:

6

en—1 e+ 2
)3 (P"“"‘(e")/A Tt et c2) 19

n=1

where Pnym(€n)/A is the polarizability tensor element
of a specified blade geometry with dielectric €,, as
determined by the numerical model. Fig. ¢ contrasts the
difference in the solutions obtained by using both an
inversion and a minimization technique on the same set
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Fig. 10. Histogram showing the distribution of the average rms error
resulting from the approximation of (13) determined at 512 test geometries.
The coefficients ¢ were selected using a conjugate gradient error minimization
technique.

of numerical data. The minimization (conjugate gradient)
technique selects coefficients ¢ which result in a model
matching all the numeric data points, whereas the inversion
(Newton-Raphson) method results in a range of dielectric
constants where (13) produces erroneous values for P/A.

Therefore, the conjugate gradient method was implemented
on the selected 512 geometries to provide two sets of vector
c (one set for each P,,/A and P,,/A) for each of the 512
cases. Fig. 10 shows a histogram over the 512 geometries
of the average rms error between the numerical model and
the analytic approximation, using the coefficients as selected
by the conjugate gradient technique. The average error for
P, /A was 0.07%, whereas the average error for Py,,/A
was determined to be approximately 0.7 %. For each of the
512 geometries, a set-of constants was found which provided
an accurate model of the relationship between the dielectric
constant and the polarizability tensor.

The conjugate gradient method converges to a set of co-
efficients ¢ which provide a model with a minimum total
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squared error. However, this minimum may not be the global
minimum, as the conjugate gradient may converge to any
number of local minima, depending on the initial value of
c used by the conjugate gradient routine. These minima can
be thought of as different ‘‘modes,” with each mode producing
a slightly different curve for (13), each matching the six
numerical data points (Ppum(€n)/A) in a slightly different
fashion. For instance, one mode may result in a model which
slightly underestimates the first three data points P(e¢)/A
and slightly overestimates the last three, whereas for another
mode the reverse may be true. Many of these modes may
produce acceptable accuracy, but the desired solution is the
mode associated with the smallest error (the global minimum).
However, the mode associated with the global minimum at
one geometry may not be the mode corresponding to the
global minimum at another. Since we are ultimately seeking an
expression relating c;, c2, and c3 to the shape parameters v, a,
and 6, a solution involving a single mode is required to avoid
discontinuities in ¢ across the domain of Table II. For example,
Fig. 11(a) shows a solution for constant ¢; versus aspect
ratio for various blade angle values. For blade angle values
from § = 0° to § = 35°, the minimum is associated with
a single mode, however for § = 42° and 49° the conjugate
gradient algorithm converges to a different minimum, resulting
in significantly different data and a large discontinuity in c;
versus 6. Fig. 11(b) shows the single-mode solution, a solution
which is well behaved and continuous across both aspect ratio
and blade angle.

If, for various regions of the blade shape parameter space
(Table II), the global minimum is associated with separate
modes, then the selection of the ‘‘optimum’’ mode becomes a
compromise between minimizing the average error across the
parameter space and minimizing the maximum error occurring
at any given point. In addition, forcing the conjugate gradient
routine to converge to the same mode for all blade geometries
may also prove to be difficult, as mode selection is determined
only by the initial value of ¢ of the conjugate gradient algo-
rithm. This initial value must be ‘“close’’ enough to the correct

solution for the conjugate gradient method to converge to that
minimum rather than to another. Since the correct solution
is unknown, selection of the initial values of ¢ for a given
geometry is problematic. Often several trials were required to
force the conjugate gradient to converge to the correct mode.
However, as ¢ was determined for a significant number of
blade geometries, an approximate relationship between the
elements of ¢ and the shape parameters v, a, and 6 was
inferred, and then used to properly determine an initial value
for a given geometry.

VII. POLYNOMIAL FIT

Once a single-mode solution for ¢ for both P,, and P,,
was determined for all 512 sample geometries, the mapping be-
tween c and the shape parameters v, a, and 6, could be replaced
with a polynomial expression used to estimate the values of ¢
across the domain of Table II. These polynomials can then be
used in (14) to provide a complete algebraic approximation of
the numerical scattering formulation of Section III.

To match a polynomial approximation to the data ¢, a
solution is assumed which is a linear combination of M basis
functions, each basis function being an expression involving
the parameters v, a, and 6. The number of basis functions
is a compromise between the complexity and accuracy of
the polynomial approximation, and for this application a
third-order expansion consisting of 20 basis functions was
chosen. For the polynomials associated with the normalized
polarizability tensor P, /A, the basis functions (as determined
by trial and error) are expansions of the parameters v, (1/a),
and cos@; the general polynomial approximations for ¢ are
therefore given as

v cos-’ 0

b ———

M

>

j=0

Cn = (16)

M-
Eod
I

0

such that ¢t + j+k < 3, m = 1,20, and n = 1,3. For
the polynomials of P,,/A, the chosen basis functions are
an expansion of the parameters v, (1/a), and sec, thus the
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TABLE 11l
VALUES OF THE 20 COEFFICIENTS b,,. FOR EACH OF THE SIx EXPANSIONS OF € AS GIVEN BY (17) asD (18)
P../A P,/A '
1,2,k | bm < o ) o o |
000 & | -11.18 13.29 17.82 -12.94 28.02 -9.268
001 | b | -0.8747 |-3.469E-02 | 1.769 0.2781 | 9.4470E-03 | -0.2167
0,0,2 | by |-1.307E-02 | -3.569E-05 | -1.466E-02 | -1.768E-03 | 2.574E-03 |-4.961E-03
0,03 | b | 1.031E-04 |-1.287E-06 | 1.108E-04 | 1.253E-05 | -1.111E-05 | 5.296E-05
0,1,0 | bs | 50.81 -24.15 -49.43 16.92 -16.94 21.39
01,1 | bs | 3444 | 9.537E-02 | -1.197 -0491 | -5.920E-02 | 0.595
0,1,2 | by | 5.384E-04 | 1.068E-04 | 8.748E-04 | 4.137TE-04 | -1.204E-03 | -1.098E-03
0205 | -8525 15.15 44.45 -0.9688 2117 -4.099
0,21 | & -1.611 -5.654E-02 | 0.5463 0.2635 -2.507E-02 | -0.1640
0,3,0 | & 46.74 -3.199 -13.91 -2.435 3.558 -1.006
1,00 [ &, [ -10.16 -0.3726 -1.273 24.61 -38.03 38.43
1,0,1 [ & | 0.5911 2.250E-02 | -0.3542 0.1876 -0.2218 6.614E-02
1,0,2 | &y | 6.520E-04 | -4.893E-06 | 5.482E-04 |-1.720E-04 | 7.368E-04 | 1.796E-04
1,1,0 | &, 42.69 -8.406 -1.913 -31.74 55.67 -54.33
1,1,1 | &y | -0.6183 |-2.045E-02 | 0.2870 -0.1915 0.1518 | -5.175E-02
1,2,0 | be | -31.18 8.512 10.01 12.74 -16.36 15.16
2,00 | by -3.462 0.6613 6.350 -0.5466 1.895 -1.887
2,0,1 | &4 | -6.594E-02 | -3.032E-03 | 5.077E-02 | 3.487E-02 | -1.413E-02 | -2.532E-03
2,10 | & 2.133 -5.807E-02 -4.617 1.855 -4.746 5.115
3,00 | by | 0.2449 4.645E-02 | -0.5782 -0.3788 0.7839 -0.9007
polynomials are given as 500 1T
3 3 3 i i r—'—
vtsec’ §
=32 D bn—p— (17) w} 1L ]
1=0 j=0 k=0 m=019%
. . o=25% __
suchthat i+ j+ k<3, m=1,20,and n = 1,3. 300. | - =
Using orthogonality principles, the values of the coefficients ]
by, are determined by solving the linear estimation equation 20 b E
[3, ch. 141]
XT-x)y-b=XxT.C (18) 00 b 3
where b is a 20 element vector containing the polynomial
1 —d

coefficients, C is a 512 element vector containing the conju-
gate gradient estimate of c, at the 512 test geometries, and
X is a 512 x 20 matrix containing rows of the 20 basis
functions evaluated at the 512 test geometries. The coefficients
b determined by this computation are given in Table IIL
Thus, (14), (16), and (17), along with the coefficients listed in
Table 111, provide a fast algebraic approximation to the slower
numerical model of Section III.

VIII. RESULTS

To test the accuracy of this algebraic approximation, 3125
test points, covering the range of shape parameters and com-
plex dielectric constants found in Table II, were selected and
used to determine the complex elements of the polarizability
tensor with both the numerical model and the algebraic ap-
proximation. The magnitude of the vector formed by P, and
Py, defined as:

[Pl = \/PezPz: + Puy P}y, (19)

was calculated for both models, and this data was used to
build the histogram of Fig. 12, showing the percent error

.000 .
-100 80 60 40 20 00 20 40 60 80 100

% error

Fig. 12.  Histogram showing the distribuiion of the error resulting from the
approximation given by (14), as determined using 3125 test cases covering
the range of parameters given in Table II.

of the algebraic approximation of |P| as compared to the
numerical model. As estimated from 3125 test cases, the
algebraic approximation exhibited little bias, with a mean error
of 0.2%, in addition to producing an acceptable rms error of
2.5%. Fig. 13 shows the accuracy typical of the approximation,
displaying the predictions of both the numeric and algebraic
models for Re[P;./A] versus aspect ratio at a number of blade
angle values.

IX. CONCLUSIONS

Using a numerical solution to solve the scattering problem
of cylinders with arbitrary cross sections, it was determined
that blade shape, in addition to blade size, can significantly
affect the scattering solution for a long, thin grass blade struc-
ture. Likewise, a simple radiative-transfer model demonstrates
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Fig. 13.  Comparison of the polynomial approximation to the numerical

model predictions for Re[ Pz /A] versus aspect ratio at various blade angles.

that the calculated backscattering coefficients for grassland tar-
get can also be significantly affected. The numerical scattering
model is required for characterizing scattering by complex
grass blade shapes. However, direct implementation of this
numerical model into a larger radiative-transfer solution for
grassland targets can result in a model of unacceptable com-
putation time and complexity, especially when the radiative-
transfer model is used in an inversion algorithm.

Although the complexity of the numerical model is neces-
sary to describe a cylinder of arbitrary cross section, the cross
sections associated with grass blades are not arbitrary but are
instead limited to those described by parameters a, v, and 4,
and by the domain of Table II. These limits greatly reduce the
information requirement of the numerical scattering model,
thereby allowing for its replacement by a relatively simple
analytical approximation. By combining the relationship of
P/A with € (13) and the relationship of c versus a, v,
and 0 inferred from a small but representative sample of
numeric solutions (16), (17), an analytic approximation was
developed that can predict the scattering response of blade
shaped cylinders both rapidly and accurately.
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A Scattering Model for Thin Dielectric Cylinders of
Arbitrary Cross Section and Electrical Length

James M. Stles. Member. IEEE. and Kamal Sarabandi. Senior Member. IEEE

Abstract—A scattering solution for long, thin, dielectric cylin-
ders of arbitrary cross section and electrical length is pre-
sented. The infinite-cylinder scattering formulation is shown to
be an asymptotic solution for the finite-cylinder case, regardiess
of cylinder electrical length or cross section. The generalized
Rayleigh-Gans (GRG) approximation for circular cylinders is
shown to be a specific case of this general formulation, and
therefore, the assertions of GRG are explicitly proven. A moment-
method (MM) solution for thin circular cylinders is likewise
presented and is used to examine and quantify the asymptotic
errors associated with this solution.

I. INTRODUCTION

N activities such as radar remote sensing, accurate scat-

tering models of elemental constituents are essential in
constructing robust scattering models of random media such
as vegetation. This challenge is often compounded by the
arbitrary and complex nature of these constituent elements. For
example, a type of element often encountered are long, thin
dielectric cylinders of arbitrary cross section, including grasses
and needle structures. In the microwave region, the radius of
these cylinders are usually very small compared to the incident
wavelength, whereas the electrical length may take any value.
This generality in structure precludes the implementation of
specific scattering solutions. The arbitrary value of electrical
length k¢ eliminates asymptotic solutions such as Rayleigh
(k¢ < 1) or physical optics (kf > 1), and the generally
noncanonical cross sections leave inapplicable solutions for
circular and elliptical structures. Thus, a scattering solution
is required which accurately comprehends these arbitrary
particles.

One relevant analysis is that of Sarabandi and Senior [1],
who explicitly derived the scattering solution of an electri-
cally thin, but infinitely long, dielectric cylinder of arbitrary
cross section. This work provides a general solution for the
internal electric fields and demonstrates that the far-field
scattering can be expressed in terms of a dipole moment
per unit length. Using the high-frequency approximation, the
scattering from a finite, but electrically long, (k¢ > 1)
cylinder can be approximated by truncating the solution of
the equivalent infinite length case. Although this solution

Manuscript received January 27, 1995; revised September 18, 1995.

The authors are with the Radiation Laboratory, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109 USA.

Publisher Item Identifier S 0018-926X(96)01211-2.

is correct for arbitrary cross sections, its validity can ap-
parently be justified only for cylinders of large electrical
length k¢.

A solution which is often employed to model circular
cylinders of smaller k£ is the generalized Rayleigh-Gans ap-
proximation (GRG) introduced by Schiffer and Thielheim [2].
In this approximation, terms of the Borne (or Rayleigh-Gans)
approximation are modified by the Rayleigh solution of a long,
thin, spheroidal particle. The GRG approximation is said to
be valid for electrically small, circular dielectric cylinders,
provided that their normalized length {/a is very large. No
constraint is explicitly placed on electrical length kf. The
GRG approximation was presented by first hypothesizing the
solution and then successfully comparing the results to the
asymptotic solutions known for both the long (k¢ <« 1) and
short (k£ >> 1) wavelength cases. On this basis, it was inferred
that GRG validity is independent of electrical length. Whereas
this presentation provides evidence as to the accuracy of the
GRG approximation, it does not prove its general validity;
the scattering from objects with dimensions on the order of a
wavelength is often quite different from either the short or long
wavelength cases. In addition, the analysis does not address
the issue of cylinder cross section, only circular cylinders were
considered.

In this paper, a scattering solution for the general case
of an electrically-thin dielectric cylinder of arbitrary cross
section and electrical length will be presented. The solution
will be explicitly shown to be the unique asymptotic solution
to the scattering problem as the electrical radius ka converges
to zero. A moment-method (MiA) solution will likewise be
implemented to quantify the convergence of this asymptotic
solution.

II. AN ANALYSIS OF THIN CYLINDER SCATTERING

Consider an infinite length dielectric cylinder lying along the
z-axis. This cylinder is illuminated by a uniform plane wave
E'(7F) = ée*ok' T where ¢- ki = 0,6 = e;d +elij+elz, and
k' is the propagation direction vector, ki = sinf3cos¢ % +
sin Bsin ¢ § + cos 3 2. As the electrical radius of the cylinder
approaches zero (ka — 0), the total electric field in the interior
of the cylinder is given by Sarabandi and Senior [1] as

E(F) = (-e; V1(p) — €}, V&5(p) + €., z)etkocsd= (1)

0018-926X/96805.00 © 1996 IEEE
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where ®,(p) and () are electrostatic potentials specified
as the solution to the following integral equations (1]

,(7)+ 1+ b = (—i—l/vmm Cllnfp -7 ds

1)/vl

The constants b; and b, are arbitrary, and A defines the area of
the cylinder cross section. Using the physical optics approxi-
mation, this solution can likewise be applied to finite cylinders,
provided its electrical length k¢ is sufficiently large. From
this formulation, the scattering solution for a thin cylinder of
circular cross section can be determined

)-Viln|p -7 dy.
(2)

() +y+ b=

2e 2¢! .
E(F) = T - Yy - i3 :kocosﬂz.
(F) (€r+lz+€r+1y+e,z>e 3)

This solution, derived from the infinite cylinder formulation,
is identical to that provided by the GRG approximation. Thus,
for a circular cylinder the two solutions resulting from each
formulation are in agreement. However, their general validity
regions are in conflict. The GRG approximation claims that the
above expression is valid for all electrical lengths k¢, whereas
the infinite cylinder approximation has only a high-frequency
justification of k¢ >> 1. The requirement for the normalized
cylinder length (£{/a > 1) is implied in the infinite cylinder
approximation (since ka < 1, then k¢/ka > 1), and explicitly
required by GRG.

If the assertions of the GRG approximation are correct,
it suggests that the validity limits placed on the truncated
infinite cylinder solution are too restrictive. That is, in addition
to the high-frequency limit (k¢ > 1), the infinite-cylinder
solution could likewise be applied to finite cylinders with
electrical lengths in the resonance (k! ~ 1) and Rayleigh
(kl <« 1) regions. However, given the heuristic nature of
the GRG approximation, this is strictly conjecture, particularly
with regard to noncircular cross sections. Thus, we seek to
determine under what conditions (1) and (2) define a valid
scattering solution for thin, finite dielectric cylinders. Are they
valid only for electrically-long cylinders, or does the validity
extend to cylinders of other k£? If so, is this true only for
circular cylinders, or is the solution generally valid for all
cross sections?

If a formulation E(7) is a valid electromagnetic solution,
then it will uniquely satisfy the integral equation which
describes the scattering problem, E(F) = E'(7) + E*(7),
where the scattered field E°(7) is given as

7) = k2 + V] /V (& ~ DEF)go(F~ 7)) &/ 4)

and go(|7 —7'|) is the free space Green’s function. For a given
type of scatterer (e.g., thin cylinders), a function E(7) may in
general satisfy the integral equation, or perhaps satisfy only
under specific conditions, such as a circular cross section or

infinite electrical length. Therefore. to determine the vahdity
of the truncated infinite-cylinder solution. (1) and (2) will be
inserted into the integral equation for a thin finite cylinder and
evaluated. The conditions under which the integral equation
is satisfied will then be determined. thus defining the vahdity
regions of this solution.

A. Transverse Components

Since (1) is a superposition of three terms, each proportional
to a single component of the incident electric field vector
(e‘,,e;,e’:), each term must individually satisfy the integral
equation in order for the total solution to be valid. We first
examine the transverse term proportional to e}, given as

E(F) = —€. V®, (p)etkocos b=, (5)
Inserting (1) into (4), evaluating the integrals and making the
substitution kr = ko, the scattered field E°(7) is given as

— (e —1 —

ES(kr/ko)=-e;(-‘———) / Vie®1(kp ko)

/ tkz cos,@eclkr—kr]
kt

Ik'r—-krl
(e =1 ¥ —
seille=l) / L Vudi(p ko)
k

* A4

tkz’ cos B ptlkr—kr | __

: / e (Fr-Fr)dk2 dkd
ke |kr—kr|?
i (€T - 1) ~/ !

-y ' - Vie®1(kp /ko)

us kC
tkz' cos ﬁezIF—F’]

€
-/kl kr —&r |3

The electrical length k¢ is finite but otherwise arbitrary, kc
defines the outer contour of the arbitrary cylinder cross section,
and k2 A similarly defines cross section area. However, since
the inserted solution (1) is valid in the limit as electrical
radius ke approaches zero, this constraint must likewise be
placed on the above equation. Therefore, we seek to eval-
uate the above integral in the limit as ka approaches zero
(bmga—o E*(kr/ko)).

Each of the three terms in (6) contain an explicit integral
of kz’, but none can be directly evaluated. However, since
the integration is over a finite region k£, the exponential term
can be approximated in the region —k{/2 < kz < k{/2 as its
Taylor series expansion

dkz’ k2

(kr — &r ) dk2' dkc'.
(6)

N o= n
ele—F’]+tkz' cos 8 ~ Z (‘le‘l‘ = kr ‘ + 1k2’ cos ﬁ) )
n!
n=0

where N is arbitrarily large. Inserting this series into the
kZz' integrals, the order of integration and summation can be
interchanged, since both NV and k¢ are finite. The integration of
each term can now be directly evaluated, resultmg in a series
whose coefficients are in terms of [kp— kp |. For example, the
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k2’ integral from the first term of (6) can be approximated as

e::;-F/ ~1kz"cos 3
/ —_—
kt tkr ~ kr |

_i/ (e/kr = | = k=’ cos )"
o0 J ke nllkr — kr |

~ €% I(Eiluc, (kl/2 - kz)]
+ Eijico(kl/2 + kz)] = 2(v + 1% /2)
— 2lnfsin B]Fp - k5 |/2]) + O(Fp =K' ) (8)

dk:’'

dk:z'

where ~ is Euler’s constant, ¢; = 14cos 3.¢c, = 1-cos [ and
Ei[z] is the exponential integral function defined as Ei[z] =
- fi(e't/t) dt. Discarding the higher order elements of

O(jkp - k_pll), (8) provides an accurate approximation to the
integral, providing 1 > ka> [kp - Hll. Fig. 1 graphically
displays this, showing both the approximation and a numerical
solution to a representative integral.

Similar approximations can be determined for the remaining
two k2’ integrals. Inserting these into (6), the scattered field
expression can now be evaluated in the limit as electrical
radius ka approaches zero. The first two terms of (6) vanish,
but the third terms remains nonzero, and the scattered field
reduces to

klimoE‘(F/ko)
- i(ef_ 1) tkz cos 8 At
= —e, o € /’;Cn
VL. (kp ko )-(k"—k”—) dkc
ko - ko |2
=_ei(__’;__l)_ lkozcosﬁv /VI
- 2
Viln[p - 7| . ©

The task remaining is to therefore evaluate the integral over
dA. Recall that the potential $;(p) is not arbitrary, but is
the unique solution to the integral (2). Notice the integral
appearing in both (2) and (9) are identical, and from (2) is
given as

~AV@AF%VHMﬁ—FM’= (@1(5) + 7 +by).

(10)

2n
(- =1)

This condition is now enforced by replacing the integral in (9)
with equation (10). The scattered field reduces to

E°*(F) = =L Vi(®1(p) + 7 + by Jetkoreos?

= —€;(Ve®1(p) + 2)etkor =P an
and the original integral equation is therefore
E() =E'(F) + E*(7)
" =elethozcosfy _ €.(V®1(p) + &)etkozcosp
=-¢.V,9,(p) = E(7). 12)

Insertion of the second transverse term —e: 5 V®2(p) leads to
an identical evaluation and result. Thus, the transverse terms
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Fig. 1. The real part of (8). both the exact numerical evaluation and the

analytic approximation (ka = 0.1.k{ = 2%.¢, = 10).

of (1) and (2) asymptotically satisfy the integral equation as
ka approaches zero.

B. Axial Solution

The remaining component of (1) is the axial, z-directed term
given as

E(—) - ze’ e;ko cos ﬂz (13)

Again, inserting this equation into (4), the scattered electric
field can be expressed as

E*(kr ko) =
el Y e

—e Yer = 1) /
4 k2A

(kr = %r) di2

i (fr—l)/
el T —-
¢ 4 k2A

(kr =Fr ) dK

cosﬂ e, -1) ke/2 ;kz cos ‘ee'“""" |
) /k?A/ke/z |kr -%r |2
(fr =Fr ) dk2' dk?

zcosﬂ e,—l / /kl/l"
k2A J-kt/2

(fr = Fr) dkz' dk2.

|kz cos ﬂez|kr—kr |
|kr - kr

_

ke/2 e:kz cos 6e=|kr—kr |

[kr —&r |2

r= 1 4
(¢ dkz' k2

—kt/2

— —
kt/2 etkz’ cos 6et|kr—kr |

—key2 kr=kr 3

tkz' cos ﬁe1|F—F, |
[fr ~ K7 2
(14)

The integrals involving k2’ are the same as those encountered
for the transverse case, therefore, their approximations can
again be implemented in (14). As in the previous section,
the limit for each term of (14) is determined as ka —
0. However, we find that for the axial case, every term
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vanishes. not a single nonzero term remains. The scattered field
is. therefore, approximately zero. and the integral equation
reduces to E(7) = E'(F). Since both E(F) and E'(F) are
equal 10 e’ ek <=3 ;  this equation is satisfied.

Thus. it has been explicitly demonstrated that the formula-
tion of (1) and (2) obtained from the infinite cylinder solution,
asymptotically sausfy the scattering-integral equation for a
finite-dielectric cylinder as ka — 0. It should be noted that
nowhere in the preceding analysis was any specific condition
or constraint required to satisfy the integral equation. No
restriction or assumption was placed on cross section or
electrical length. Thus, the infinite cylinder formulation is a
valid scattering solution for electrically thin, finite-dielectric
cylinders of all cross sections and electrical lengths. However,
the solution is only asymptotically valid as the electrical radius
approaches zero. Since k! is a fixed constant, as ka — 0,
the ratio ka/kl = a/l likewise approaches zero. Therefore,
ka must not only be numerically small (ka < 1), but small
compared to the electrical length, as well ka < k£. To satisfy
this last constraint, the normalized length {/a is required to
be large.

Finally, since this formulation is independent of k¢, it
is valid for Rayleigh cylinders where kf{ <« 1. Thus, the
electrostatic solutions ®(p), derived for infinite cylinders, are
likewise the asymptotic solutions for a Rayleigh cylinder as
£/a — oco. The GRG approximation which considers circular
cylinders is, therefore, a specific case of the more general
approximation defined by (1) and (2). As such, the validity
regions of the GRG approximation, being identical to the
requirements stated above (ka <« 1,ka < k¢ for all kf),
have been explicitly proven by the analysis of this section.

III. ASYMPTOTIC ERROR EVALUATION

As this solution is asymptotic, it will exhibit a finite error
which becomes diminishingly small as ka — 0. To evaluate
the asymptotic error of (1) and (2), a moment-method (MM)
solution was constructed to evaluate the scattering from a thin,
circular, dielectric cylinder. It was assumed that the electric
field in the cylinder is dependent on axial position 2z only;
that is, the fields are constant with respect to the transverse
dimension p. The interior field is therefore described as

2 fz(2) . ny(z)

(e +1)" V(e +1) (1)

E(T)=e, 7+ f:(2)2
where the expressions f(z), fy(z), and f,(z) are unknown
complex scalar functions. Comparing the above equation with
(3), the values of f,(z)(w € {z,y,2}) predicted by the
asymptotic scattering solution are f,(z) = e**0 <82 5o that
|fw(2)| = 1.0 for all ko, 3, and 2.

The ability of the MM solution to accurately reﬂect the
exact scattering solution depends on the general validity of
(15). To test this accuracy, the moment method code was
applied to a circular Rayleigh cylinder (k£ >> 1) at a variety
of dielectrics and normalized lengths £/a. The results were
used to determine the polarizability tensor elements for each
cylinder, and were then compared to the known values for
circular cylinders [5]. These results are presented in Fig. 2.
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Fig. 2. (a) The axial and (b) transverse polarizability tensor elements of a

circular cylinder, both the exact values and those determined using the MM
model.

The MM solution matches the Rayleigh values well over
all dielectrics and normalized lengths £/a, thus providing
evidence as to the accuracy of (15).

The MM solution was first used to evaluate the scattering
from a thin cylinder with a large normalized length {/a =
200. The magnitude of f(z) was determined at each point z
along the cylinder for various electrical lengths. The results
are given by Fig. 3, and show that the asymptotic solution
(|fw(z)| = 1.0) is valid at all points along the cylinder except
for small regions near the cylinder ends. As expected, this is
true regardless of electrical length k£. The error at the cylinder
ends is likewise independent of k¢, but is more pronounced
for the axial component f,(z).

The analysis was then reversed, fixing the electrical length
k¢ = n/2 and evaluating the MM solution at various nor-
malized lengths £/a. In contrast to k¢, the scattering solution
exhibits a strong dependence as a function of {/a (Fig. 4).
The result is a confirmation of the requirement that the
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Fig.3. (a) The axial and (b) transverse magnitude of the internal
electric field in a thin circular cylinder for various electrical lengths

(¢/a = 200,¢r = 5.0,8 = x/2).

normalized length {/a be large (ie., ka < kl) to ensure
a valid approximation. As the normalized length becomes
smaller, the MM solution greatly diverges from the asymptotic
approximation of |f(z)| = 1. The error at the cylinder end
expands as £/a is reduced, occupying an increasingly greater
portion of total cylinder length. Eventually, the formulation of
(1) and (2) no longer provide an accurate approximation to
the actual electric field E(7). Conversely, as £/a increases,
the error region will become diminishingly small.

To further examine its performance, the accuracy of the
solution is examined as a function of both incidence angle and
dielectric constant. Fig. 5 displays the MM solution calculated
for an oblique incidence angle (8 = =/8). Although the
solution f(z) is dependent on incidence angle 3, almost no
sensitivity to this parameter was detected in regard to approx-
imation accuracy; the error regions at the ends of the cylinder
remain constant regardless of incidence angle. Conversely,
accuracy is greatly influenced by dielectric constant ¢,.. Fig. 6
displays the MM solution for various dielectric constants.
It is quite evident that as the value of ¢, is increased, so
too does the region of significant error. This sensitivity to
dielectric constant is observed almost entirely for the axial

If (z)!

3 — =200
=50 b
------ =28
020+ ... Va2 -
0.00 . L . L
£05 03 -0.1 0.1 03 0S
normalized position (z/1)
(a)
P T T T T K
1.40 », b
120 BA°
N 5
7:,: 0.80 .
= —_— 200
0.60 -
ceseeseer Ypx80
040  eeeee Vs=25 “
ook T Va=125 |
0.00 . L L L
05 0.3 -0.1 0.1 0.3 05
normalized position (z/1)
()

Fig. 4. (2) The axial and (b) transverse magnitude of the internal
electric field in a thin circular cylinder for various normalized lengths
(k¢ = 7/2,¢ = 5.0,8 = 7/2).

f.(2)
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0.1 0.1 03 0.5
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Fig. 5. The axial magnitude of the internal electric field in a thin
circular cylinder for an oblique incidence angle (3 = 22.5). Both
the MM model and the infinite cylinder approximation are plotted
(k€ = %.£/a = 200,¢r = 5.0).

component f(z); the transverse components display only
minor sensitivity to €,.
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Using the MM solution as a standard, the validity limits of
the asymptotic solution can be inferred. From the numerical
results, we conclude that the accuracy of (1) and (2) are
dependent mainly on normalized length ¢/a and dielectric ¢,.
The MM solution likewise demonstrates that for all conditions
the axial component Z exhibits significantly greater error than
the transverse component. Therefore, the axial solution will be
used to define limits on {/a and ..

The far-field scattering is a function of the internal field
E(7) and the free-space Green’s function integrated over
the cylinder length. Therefore, the metric selected to define
accuracy is proportional to the average magnitude of the
internal electric field, defined by integrating |f.(2)| over
cylinder length ¢

L L
m=2/ 1fa(2)] dz Z/ E.()dz.  (16)
-¢/2 —t/2

The asymptotic solution yields a value of m = 1.0 for all
cases. As the solution breaks down, the actual value of m
(as determined from the MM code) will decrease from this
value. Placing an arbitrary error limit of 5% (m > 0.95), we
determine from the numeric solution the following criteria for
the validity of (1) and (2).

¢/a>20+/e,]. amn

In addition to the above requirement, the electrical radius ka
must likewise be small. The upper bound on ka is determined
by the error of the Rayleigh approximation, a topic which has
been addressed previously and, therefore, will not be examined
here [4, pp. 92-101].

IV. FAR-FIELD SCATTERING FROM THIN CYLINDERS

The far-field scattering from a long, thin, dielectric cylinder
can be determined by using the familiar far-field scattering
equation [4, p. 55]

E* = —k2k* x k* x II°(F)
where the Hertz potential I1¢(7)

(18)

) in the far field is given as

IkoT - -
II*(7) = - (e =) / EF)e™* KT g/, (19)

Since the cyhinder is electncally thn. the phase kernel
exp(tkpk® - ¥') is approximated as exp(:k:z’). Inserung (1)
and integrating over the cross section A. the electnc Herz

potenual can be succinctly written as

xkor

nF) = (20)

/P ae-lko k i=cos 3):’ d‘
4rr
where P is defined as the polarizability tensor per unit length.
whose elements can be determined from &(p) using the
formulation of Sarabandi and Senior [1].

Finally, integrating over the cylinder length £. the electric
Hertz vector potential is given as

!kor
IF) = e47rr (P- asul]/,b where
=¥(k’ 5~ cosf) @1

Therefore, the far-field scattering for a long, thin, dielectric
cylinder of arbitrary cross section and electrical length is
expressed as

E = sinU

x b x [¢P- a)} 22 @)

V. CONCLUSION

This paper has addressed the scattering from long,
electrically-thin dielectric cylinders of arbitrary electrical
length and cross section. As such, it provides a solution
which eliminates the additional constraints required by
methods which might otherwise be used on these thin cylinder
structures. For example, the Rayleigh approximation is limited
to small k¢ [5], physical optics to large k¢ [1], the Bomne
approximation to small ¢, [3], and generalized Rayleigh-Gans
to circular cross sections [2].

Equations (1) and (2) are the scattering solution for an
infinite cylinder (kl = oo) as ka — 0. Yet, this paper has
demonstrated that they also satisfy the integral equation defin-
ing the scattering from a finite-length cylinder with arbitrary
k¢, again as ka approaches zero. By definition, (1) and (2) are
therefore the asymptotic solution to this scattering problem as
ka — 0. The MM solution was constructed merely to evaluate
the asymptotic error associated with nonzero ka. Section II
alone provides the general proof of this paper’s hypothesis.
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