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Abstract

This report describes a finite element formulation for computing
the fields near the termination of a circular inlet. New node-based
divergenceless tetrahedral elements are developed with 12 degrees of
freedom and a new artificial absorber is described for terminating
the finite element mesh only 0.3\ away from the inlet termination.
The developed formulation and code are validated by employing it
to compute cavity resonances and the reflected mode coefficients in a
circular cavity with a circular stub termination.



1 Introduction

This report presents the current state of the jet engine cavity project that was
undertaken in January 1993. It was proposed that a hybrid finite element/
modal technique be used with the finite element method (FEM) applied to
the engine face and modal analysis used in the cavity (see Figure 1).

It is intended, for practical application, that the incident field on the
engine face (found by some other technique: ray tracing, GTD etc.) be de-
composed into its constitutive modes. Each of these modes will act as an
independent incident field, giving rise to a set of outgoing modes. The en-
gine face can therefore be considered to be an N-port network where N is
the number of travelling modes in the cavity. The FEM software will be used
to generate the scattering parameters which will fully describe this network.
The FEM analysis (which is computationally intensive) need only be done
once for a given cavity, and the results stored as a scattering matrix.

An important step in the validation of the method is the analysis of a
geometry for which there is a rigorous solution. For this, a simple, relatively
small inlet consisting of a concentric, circular, cylindrical termination (in-
stead of an actual engine face) was chosen (see Figure 2). This configuration
has been analyzed with a mode-matching technique for comparison with the
FEM/modal results.

In this report, the full, three-dimensional FEM formulation is given with
an explanation of how the numerical shape functions are derived. Numerical
shape functions allow the software to be written in a general way so that
different approximation functions (basis) can be employed in each tetrahedral
element. Among those tested was a new node-based, bilinear, divergence-
free element. It will be shown how the FEM formulation and software have
been validated by computing the resonant frequencies of metallic cavities
(eigenvalue problem).

The FEM software has been implemented for jet engine cavity analysis
on a mode-by-mode basis. That is, for a given face and a given incident
mode, the scattered field from the face is computed. The coefficients for the
outgoing modes are then extracted. Results will be shown for the simple test
inlet mentioned above.



2 Three-dimensional FEM formulation

Consider the geometry in Figure 2. The volume enclosed by the metal walls
of this geometry makes up the entire domain of the FEM solution. This
volume, to be denoted by {2, is enclosed by the surface I'.

The electric field in 2 must satisfy the weak form of the wave equation
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where
W :  weighting function
E°: scattered field
E™ : incident field
ko : free space wave number
I'y :  dielectric interface surface
nqg : normal to dielectric interface

Special consideration must be given to the second term on the LHS of (1).
Since we have chosen to use a metal-backed material absorber for terminating
the computational volume (i.e., the FEM mesh), the scattered field on I' must
satisfy the boundary condition

nxE'=-naxE onTl

Therefore, the additional unknowns V x E on I' will uncouple from the
system, and the second term on the LHS drops out.

As an alternative to the material absorber, we could have used an ab-
sorbing boundary condition (ABC).

An ABC is some differential operator D(-) that relates i x V x E® to E?
(tangential component of E), i.e.

i x V x E* = D(E?)
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One choice of D is [1]
D(E?) = aE? + AV x [4(V x E*),]8V(V - E?)

where a = jky, B = 7}5 and this ABC has been employed in [1] for 3D
scattering.

The choice to use a material absorber instead of an ABC is based on
the fact that a material absorber has been shown to behave more like free
space than an ABC [2]. Moreover, the artificial absorber avoids numerical
difficulties at the junction of the ABC with the metal surfaces. As part of
this study a new artificial absorber was designed and illustrated in Figure 3.
The effectiveness of this absorber was evaluated by placing it behind a three-
dimensional slot and observing how well the fields passing through the slot
are absorbed. For a perfect absorber the fields computed by the configuration
in Figure 3(b) must be identical to those of Figure 3(a). In Figure 4 we show
the scattering by each of the three configurations in Figure 3, and it is clear
that the proposed absorber is quite effective. These results were generated
by using an existing three-dimensional finite element-boundary integral code
described in [3, 4]. Note that the absorber is only 0.15) thick and its upper
surface is only 0.15) away from the structure.

Another possibility is to use a boundary integral to exactly model the in-
side of the infinite cylinder. In this case, the Green’s function for the interior
must be found. It was decided that this approach would be impractical due
to the complexity of the Green’s function for the interior of the cavity. Also,
in practice, the inlet cavity will not be circularly cylindrical, and the Green’s
function cannot in general be found.

3 Nodal-based numerical elements

Standard node-based FEM element expansion functions are of the form

N
= a“:ZNa(:r,y,z)E
+yZN T,Y,z )E

a(2,9,2
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where E? is the ¢th component of the scattered field at node a, and N, are
referred to as the element shape functions.

By choosing Wy, = (& 4+ § + 2) Ny(2,y, 2), i.e. weight and basis functions
are the same, we can proceed with all of the same arguments normally used
in variational methods to prove convergence, accuracy etc. [5].

Assuming that we are using tetrahedral elements (to facilitate mesh gen-
eration), we proceed with the derivation of the shape functions by approxi-
mating the field in the ¢th tetrahedron as

E! = a1 + ayz + azy + a4z (2)

where ¢ denotes z, y or z.
Next we assign E? the value E? at each of the four nodes (a = 1,2,3,4).
In matrix form,

i Il 27 n1 = a
Ezz 1z oy oz as
El3 1 T3 Y3z 23 as
E:I 1 Ty Y4 24 ay
or,
{E"} = [F){a;}

Solving for the a, coefficients yields

{an} = [F]7{£"}

and upon substituting into (2) and grouping terms we obtain

4
Z o(z,y,2

{Nu(z,y,2)} = (1F17) {filev9, 2} 3)

The superscript T' denotes the transpose of the matrix [F]™!

fl(-T,y’Z) = 13 f2($7y7z) =T
f3(xayaz) =Y, f4($,y,z) =z

)



It is noted that the above procedure for deriving the shape functions can
be generalized for any set of {f;(z,y,z)}. Specifically, if we set

N
E; =Y q; fi(z,y,2)
i=1

by following the same procedure we find

[ Ezl ] [ fl(wl,yl,zl) f2(x1,y1,21) f3($1,y1,21) [ et ]
Ef f1($2,y2, 22) f2($2, Y2, 22) fa(l'z, Y2, 22) < a’
Ef’ = fl(3337 Y3, 23) f2($3, Y3, 23) f3(333, Y3, 23) cee a’®
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or {E™} = [F]nxn {an}. The shape functions are then found from (3).

One of the problems that have been found in three-dimensional FEM
analysis is the occurrence of spurious modes due to the existence of non-
divergenceless solutions to (1). If the shape functions can themselves be
made divergence free, this difficulty is eliminated. This is the motivation
behind edge-based elements [6].

Edge-based elements, however, are awkward to work with since they do
not conform to standard FEM pre/post-processing techniques. Furthermore,
their use doubles the unknown count.

It is possible to construct nodal-based divergence-free elements by enforc-
ing the divergenceless condition in the construction of the numerical shape
functions as outlined above.

This was first attempted by coupling the three field components together
such that V - E° = () using standard linear elements. While this technique
works at the element level, after assembling all elements and enforcing con-
tinuity, it was found that the elements lock. That is, the enforcement of
the divergenceless condition completely (or almost completely) consumes all
degrees of freedom associated with the wave equation. This phenomenon has
also been observed in the field of incompressible fluid flow [7].

A set of divergence-free nodal-based shape functions that do not lock was
created by adding an additional node at the center of the element and using
the expansion

E: = a1+ ax + a3y + asz + asyz
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E, = a¢+arr+agy + a9z + ajorz

E, = an+ a1z + a1y + a14z + a157y
The divergence-free condition for this expansion is
az+as+a;z=10 (4)

and it should be noted that the coeflicients of the bilinear terms do not affect
the divergence-free condition.

To enforce (4) along with the nodal equations, one of the 15 degrees
of freedom must be discarded. Arbitrarily, the z-component of the field at
the center can be considered redundant with the divergence-free condition.
Consequently, the equations that we solve for generating the shape functions
are

E,l, 1L 2y y1 o= (?hzl) a
E: 1 29 y2 22 (y222) ay
Eg = 1 z3 y3 =23 (yazs) as (5)
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The shape functions are now vectors and can be written as
N =2N;+gN!+:iN;

for a = 1,2,3,4,5 except that N} = 0. They are obtained as before by
inverting the system of equations listed in (5)-(8). Specifically,

{NZ) [ )
{nve} b= (1F7)" 4 447
{N?) {13}

in which [F] denotes the matrix of the system implied by (5)-(8),
flrzla f;:‘ra f:f:y, ff:za fsx:yz

fi=1 fi=z, fi=y, fi=2 [fi=22
and

fi=Y, fi==z, fi=y, fi=z fi=zy

In practice, the degrees of freedom associated with the node at the center
of an element can be statically condensed at the element level so that only
12 degrees of freedom remain.

These elements have been implemented, and tested successfully for the
eigenvalue problem (see next section). They do, however, suffer from an
inherent ill-conditioning when two of the elements nodes lie on the z, y or
z axis. If, for example, we consider the z-axis, then the z-component of the
field at these two nodes will exactly specify the factor

ION?®
0z

everywhere on the element. Consequently, the enforcement of the divergence-
free condition at the central node leads to a singular system. It is then
necessary to use a different coordinate system for each element so as to avoid
this phenomenon.



The judicious choice of a coordinate system for each element can become
a very intensive task, and no good scheme for doing this has been developed
yet for large-scale problems (hundreds of thousands of elements).

An alternate technique for eliminating the non-divergenceless modes is to
add the term |

/ —(V-W)(V-E*)dv
Q fr

to the LHS of (1). This has the effect of shifting the frequency of the
nondivergence-free modes up beyond the sampling rate of the mesh. Con-
sequently, the spurious modes do not affect the solution [8]. This technique
has also been successfully implemented using linear elements.

4 Validation/resonance computations

The finite element method can be used to calculate the resonant frequencies
of closed metal cavities by writing (1) as

([K] = AIM]){p} = 0

where

(K] = / {—I—VXNa-VXNb} dv
Qe | iy

/ &N, - N, dv
Qe

=
I

Q° :  element domain
A= kg = w2/l,0€0

The term [ u—lr(V + No)(V - Ny)dv can be added to [K] so that the

eigenvalue () corresponding to a non-divergence-free eigenvector {4} will be
shifted up beyond the sampling rate of the mesh. In this way, conventional,
node-based elements can be used.

The above was implemented for bi-linear divergence-free elements and
conventional linear elements. It was found that with the added expense of
finding an appropriate coordinate system for each bilinear element, conven-
tional elements are the preferred choice for large practical problems.



The eigenvalues for a rectangular cavity with dimensions 1A x 0.5 x 0.75)
were found (122 degrees of freedom) (0.2) mesh size) with no spurious modes
present.

bi-linear (divergenceless) linear
Mode | analytic calculated calculated
TEi01 5.236 5.26 5.6
TMi10 7.025 7.35 7.8
TEon 7.531 7.43 8.7
TEz0 7.45 8.7
TMin 8.179 8.10 9.6
TE1n 8.12 9.6
TMa210 8.886 8.96 10.6
TE102 8.947 10.49 10.6

Another example run with our preliminary code pertains to the inlet
termination displayed in Figure 2. As seen, the termination is a circular
stub of radius b = 0.503). The outer radius of the inlet is a = 1.66),
and the artificial absorber’s face was placed A\/3 away from the stub. This
circular inlet termination was excited with the TES**" mode, and the finite
element code was used to compute the total fields everywhere within the
“cavity”. Given the total field, the reflected mode coefficients were computed
by evaluating the inner-product of the cross-sectional fields with the circular
inlet eigenmodes. The table below compares the mode coefficient amplitudes
as computed by the finite element code and the (exact) mode-matching code

described in [9].

Amplitudes of the reflected mode coefficients
for the inlet in Fig. 2 with b = 0.503\ and a = 1.60\

Mode | Finite element | Mode-matching
TEy; | 0.632 0.625

TE;, | 0.512 0.49

TE3 | 0.22 0.20

TEy4 | 0.105 0.05

TE:s | 0.04 0.01

As seen, the mode coefficients are in good agreement, and this provides
a validation of the finite element code.
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5 Future work

The goal of this project is the development of a general-purpose finite ele-
ment code for computing the fields reflected by jet engine inlet terminations.
At this stage, we have developed and provided a basic validation of the code.
Over the next few months our intent is to provide a more extensive valida-
tion of the code and to further enhance its user-oriented features. Specifically,
we will exercise the code in computing the mode scattering coefficients as-
sociated with more complicated inlet termination which better represent a
typical engine face. A reference code will be developed for this purpose to
validate the finite element code. Perhaps even more important tasks are:
(a) an assessment of the code’s computational demands for modeling large
size inlets; (b) a study on the (minimum) parameters required for a com-
plete characterization of the field reflected by the jet engine termination;
and (c) development of techniques for coupling the finite element fields to
different ray techniques.
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(a) FE-BI Solution (Slot Code Used)
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Figure 3. Geometries referred to in Figure 4.

NOTE: All the slots mentioned in this report have square apertures.
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Figure 5. Comparison of the RCS data generated by the finite element slot code using the
boundary integral (exact) and the artificial absorber for truncating the mesh cavity data (slot
with PEC bottom) have been included to illustrate the amount of energy absorbed by the

artificial absorber. (a) Backscattering by a rectangular slot 0.525A x 0.525A and 0.075A
thick; (b) backscattering by a rectangular slot 1A x 1A and 0.2 thick.



