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Background and Executive Summary

The University of Michigan activity on the electromagnetic
characterization of jet engine inlets began in January 1993 with the
goal of developing robust hybrid methods for the electromagnetic
analysis of cavities terminated with jet engines, i.e. cavities
terminated with an array of blades which normally form the
compressor of the engine configuration. Since high frequency
techniques cannot be used for the characterization of the complex
engine face, our method of analysis called for a hybrid approach.
Specifically, we proposed to use a numerical method for modeling the
engine face and a well known high frequency method for
propagating the fields to and from the engine face. Among some of
the obvious challenges to be confronted in this implementation were

. Large Computational Domains (actual engine is 10-50A in
diameter).

. Complexity of the Engine Face.

. Lack of Experience in Interfacing a Numerical and High

Frequency Methods.

. Lack of Validation/Reference Data.

Thus, it was obvious from the start of this analysis that a simplified
computational model had to be developed for a characterization of
practical jet engine configurations. Nevertheless, confronted with no
physical insight on the reflectivity of realistic jet engines, we began
with the development of a rigorous hybrid finite element-modal
method (FEM-Modal). In parallel with this effort, a more traditional
mode matching approach was used for the analysis of a few canonical
configurations. The purpose of this analysis was to develop
reference data to validate the rigorous FEM-Modal approach. Below
we summarize our progress and different stages of our study. We
discuss the developed codes as well as their capabilities and
accuracy. Also, future work is outlined. The reader is referred to the

main body of this report and the previous progress reports of this
activity for a more detailed account.



Hybrid Finite Element Code Development

The development of this code began last year as the first rigorous
attempt for a characterization of the jet engine scattering. As
noted above, this hybrid technique utilizes the FEM to model the
engine and a ray/modal method to trace the fields from the
engine mouth to the engine face and back. More recently, a
similar hybrid FD-TD technique is being developed at Ohio State.
However, as usual the FD-TD is limited in geometrical adaptability
unless excessive zoning is imposed. In the case of blade modeling,
the FEM offers unique advantages in its geometrical adaptability
and field representation.

The first three dimensional FEM code was completed at the end of
January 1994 and this code was validated using a number of
benchmark geometries. As part of this code, we developed a new
artificial absorber for terminating the finite element mesh and
several difficulties had to be overcome as relates to the element
selection, system stability, imposition of the boundary conditions,
geometry data preprocessing, data rendition and so on.

Nevertheless, it became apparent during the development of this
hybrid FEM code that the simulation of realistic jet engines would
require excessive computation time without using special
techniques aimed at reducing the CPU requirements. With this in
mind we began looking at a number of ways for the purpose of
developing a practical code which can be interfaced with XPATCH.
The proposed generalized transmission line formulation is began
as an alternative approach which holds a great promise in
developing a practical code, albeit approximate. However, our
search of ways to speed-up the FEM code was also very fruitful.
Specifically, we found that in modeling the engine, only a single
blade need be modeled. This approach is very similar to that used
for the analysis of Bodies of Revolution(BOR) and its
implementation consumed our effort since the early part of this
year(FY94). As is well known, in the case of BORs the incident
field is decomposed into modes and for each mode the 3D problem
is reduced to an equivalent 2D problem. Thus, the computational
demands are reduced from those of a 3D problem to those of a 2D
problem. The only drawback is that the "2D" analysis must be
repeated for each mode. However, this is required for the
generation of the scattering matrix.



The formulation for slicing the computational domain is described
in this report and a code has been implemented on the basis of
this formulation. Perhaps the most troublesome part of this
implementation dealt with the periodic boundary conditions
which must be imposed across a three dimensional boundary
outlining the starting and ending surface of a single periodic cell
comprising the compressor. This was overcome but required a
rather involved implementation. As of the moment only
preliminary results have been generated which prove the validity
of the model.

A most important outcome of the periodic FEM formulation is the
realization that in the case of engine terminations comprised of
many blades (positioned symmetrically around the stator), there
is very limited mode coupling as explained in this report. That is,
the incoming mode couples only to a few (known apriori) modes
and this can be exploited to further reduce the computational
demands of the FEM-Modal solution. Moreover, it can be used to
develop a simplified model for computing the scattering by engine
terminations. It should be also remarked that the limited mode
coupling had already been observed in our earlier scattering
matrices but to date no rigorous proof was available (see main
body of the report). It is certainly our intent to fully exploit the
simplifications resulting from this observation.

The following summarizes the status of the FEM-Modal code
development

+ Completed and validated the first FEM-Modal code.
Code incorporates special artificial absorber for terminating the
mesh; Uses nodal elements; Accepts actual geometry in facets
or other curvilinear patches; Generates scattering matrix; Can
be readily interfaced with any high frequency method; Has
been validated; Does not exploit engine's periodicity and does
not take advantage of limited mode coupling; Requires 20,000

unknowns per unit volume and its application is consequently
limited to small cavities.

» Developed a new FEM-Modal formulation and associated code
which exploits symmetry and mode periodicity.
Implementation employs new phase boundary conditions; Only
one slice (volume between blades) need be modeled, thus



reducing the CPU demand by a factor of Ng=number of blades;
Limited mode coupling identifies important modes apriori
leading to additional computational efficiencies; Preliminary
validation has been completed.

» Future work will concentrate on developing FEM-Modal
formulation using solution-aware basis.

+ Generalized Telegraphist Equation-Mode Matching Method
(GTE-MM Method)

As mentioned above, in parallel with the rigorous FEM-Modal
formulation and code development, we also proceeded with the
development of analysis codes specialized to specific canonical but
engine-like configurations. Indeed, codes were developed for the
analysis of two reference configurations as discussed in the report.
These configurations proved quite important since they provided
to the entire community reference data for validating the various
approximate and rigorous codes under development.

However, the most important outcome of this effort was the
realization that the modes guided by a pair of engine-like curved
blades can be described in analytic form. This can be done via the
generalized Telegraphist equation(GTE) method as described in
the report. The development and use of the GTE for this
application was of great importance because it opened the way to
construct an approximate but simple, efficient and sufficiently
accurate mode matching(MM) code for the analysis of jet engines.
Since the early part of this year, we have proceeded to develop of
a GTE-MM code with the goal of interfacing this code with ray
techniques. As of this moment, the status of the GTE-MM is as
follows:

+ Developed a GTE-MM code for a single-stage compressor
Back face of compressor can be characterized by another
scattering matrix; Code was shown to reduce to the relevant
canonical configuration; Limited validation because of lack of
reference data. Code was written to utilize minimum resources;
Code is simple and has been successfully run for up to 5A
radius inlets. Larger geometries do not pose a major
computational challenge.



Generalized single stage GTE-MM code to multiple compressor
stages. Code involves several small matrix inversions.
Generated results and compared them with the GOl measured
data; Agreement was quite reasonable given the difference
between the measurement and computational model, as well as
the uncertainties associated with the measured data.

Future work will concentrate on:
Further validation and optimization of the GTE-MM code.

Exploitation of limited mode coupling to reduce matrix size and
CPU requirements
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Abstract

The Mode Matching Technique is applied to the evaluation of the
Radar Cross-Section of cylindrical inlets which include multiple stages
of curved blades mounted on a perfectly conducting cylirdrical hub.
The wave propagation in the grooves formed by the curved blades is
analyzed via generalized transmission line theory. The mcJel closely
approximates the structure of a realistic jet engine inlet. The numer-
ical results yield an approximate value of the Radar Cross-Section of
a realistic engine inlet, and they can also be used as a reference so-
lution for the validation of codes based on more versatile numerical
techniques, such as the Finite Element Method.



1 Introduction

In a previous report [1] we used the Mode-Matching Technique to compute
the Radar Cross-Section (RCS) of cylindrical inlets with two different kinds
of terminatiors: Initially we investigated the case of a perfectly conduct-
ing cylindrical hub placed on a flat metal plate which terminates the inlet.
Furthermore, we mounted an array of sectoral metal blades on the hub and
performed the same analytical techniques to evaluate the RCS of the new
geometry. Numerical results showed good comparison with other methods
and direct measurements.

In reality, though, any jet engine has very few (if any) blades with planar
boundary surfaces. Usually the blades are curved in a complicated man-
ner which makes the rigorous analysis of the geometry very difficult, if not
impossible. In this report we will show how the problem can be solved in
a formally exact way, provided that some conditions hold true. The elec-
tromagnetic propagation in the vicinity of the curved blades is analyzed via
generalized modes in the context of the Generalized Telegraphist’s Equations
method (G.T.E.). The conventional Mode Matching Technique is somewhat

modified so that it can handle these generalized modes. The RCS of the
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cavity is evaluated in a way identical to [1].

Moreover, in this report we will show how to apply the results of our
Mode Matching technique to inlets with multiple stages. We will show that
in such a geometry it is straightforward to evaluate the overall modal scatter-
ing matrix in a recursive manner, starting from the termination and moving
backwards to the open end. This allows a successive evaluation of the scatter-
ing matrices which correspond to the interfaces between the various sections.
The algorithm is fairly general, and it can be applied to any geometry where
either conventional or generalized modes can be defined.

A code has been written on the basis of the G.T.E. method and the
cascading scheme to analyze multiple compressor stages. Because of the
G.T.E. method used in representing the fields between compressor blades,
it is expected that the code will handle geometries which closely resemble
actual engine configurations. Preliminary results are presen*ed which show
reasonable agreement with the measured data of the GO1 model. However,

more accurate data are necessary for an acceptable validation of the multiple

stages code.
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2 Propagation Inside an Array of Curved
Blades

In [1] we dealt exclusively with a special class of termination geometries.
None of these tepresents a realistic jet inlet, but nevertheless they proved
useful for validating other techniques, such as the Finite Element and Finite
Difference methods, applied to the same problem. With the goal of charac-
terizing the scattering of more realistic jet inlet terminations, in this report
we present a mode matching solution for an inlet termination consisting of a
special class of curved blades.

We can conceptualize the curved blades geometry as a generalization, or
perturbation of that shown in fig. 1. Let us assume that the array of straight
blades in these figures consists of J grooves, which are essentially cylindrical
(pie-shell) sectors. We shall also assume, without loss of generality, that the
rightmost edge of the first groove makes an angle ¢, with the x-axis, and
consequently, the rightmost edge of the k" groove will form the angle

2w

¢n=¢1+(f€—1)7 (1)

with the x-axis, where ¢,, is the angular extent of each groove. The fields in
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the k' groove are explicitly given in Appendix I (also see [1]).

To obtain a more reasonable model for the curved blades structure we
opt to modify the geometry in fig. 1. Basically, each blade is allowed to be
curved with the :restriction that its base still remains perpendicular to the
hub at any point of intersection (see fig. 2) However, the angle formed by
the rightmost edge of the boundary of the blade and the x-axis is allowed to
vary. Specifically the blade or the groove boundary is now allowed to make

an angle

Be(2) = b+ (5= )T+ F(2) ©)

with the z axis, where F' is an arbitrary function of the longitudinal coor-
dinate z (it is essentially a variable angle measured in radians). If zq is the

location of the face of the fan, obviously the condition

F(Zo) =0 (3)

should be satisfied, so that at the face of the fan

#1 (Zo) = ¢ (4)
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Note that ( 2) is valid provided all blades have the same z-dependence,
resulting in grooves of constant width for any z; that is each pair of blades
is assumed to form an identical guiding region as in the case in practice.
Our goal is to modify the exact solution of the straight blade geometry
to help us analyze the curved blade geometry. This is feasible since the two
geometries share some common characteristics. For any given z the cross-
section of any curved blade pair is identical to that of a straight blade pair,
with the only difference being the rotation about the z axis. Obviously, the
modes described in Appendix I (eq. ( 25)-( 28)) still satisfy the appropriate
boundary conditions, provided ¢, satisfies ( 2). It is therefore safe to assume
that the transverse fields within the x** groove (i.e. the waveguide region
between the (k — 1) and the x** blades) can be expressed as a superposition

of the aforementioned generalized modes, i.e.

E. = ZVM )exi(p, ¢; 2) (5)
Hi = ZIM M p3¢) z) (6)

It can be shown [2] that the coeflicients V, ;(z), I«i(z) satisfy the following

infinite system of differential equations:
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92 [ o s »

B is the propagation constant, z; is the impedance of the :** mode and S, (2)
is the cross-section of the «* groove at z. Given F(z), analytical evaluation
of == 8e,‘, is feasible. In ( 8) the ¢ integration can be performed in closed form,
but the p integration has to be performed numerically.

Under some assumptions, system ( 7) can be solved in closed form. Since
the cross-section of all grooves remains invariant in shape along the axis,
the propagation constants and the impedances of the modes do not depend
on the longitudinal coordinate z. Therefore, eq. ( 7) can be written in the

following compact form:



where

(=
P
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o .
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N
S—

(10)

[M (z)] = [D] _ [P]T F (Z) (11)
[D] = diag[-j51, —5...] (12)
and
aeni
PijE_//S,‘(z)en'j. 8¢;d25 (13)

Given the explicit expressions of e.; in Appendix I, it is obvious that P;;
does not depend on z. We observe in ( 11) that the dependence of [M] on
z is due to the presence of F'(z), that is if F'(2) is a constint, [M] becomes
independent of z and this can be exploited to obtain a closed form solution

of {U, (2)}. Specifically, it follows that if F'(z) is linear, the explicit solution

for {Ug (2)} is
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{Ux(2)} = exp (2 [M]) {U, (0)} (14)

where {U, (0)} is the value at z = 0. Although this is an explicit solution,
the numerical evaluation of the matrix exponential is not an easy task. The
standard approach is to find the eigenvalues and eigenvectors of [M]. If );

are the eigenvalues and [K] is the matrix of the eigenvectors, then

Ml — [K] diag [ez’\l,ez'\z,...,ez’\"] [K]—l (15)

In theory, matrix [M] is infinite, but for numerical purposes one has to trun-
cate it, taking into account only the traveling and the most significant evanes-
cent modes. Since the available techniques for the evaluation of the eigen-
values of general, full matrices are not reliable for very large dimensions of
the matrix, it is evident that the truncated matrix must be reasonably small.
Moreover, an additional problem of instability occurs due to the existence of
eigenvalues with vary large real parts (in absolute value). This problem is
easily overcome, Jue to the following property of matrix [M] (see Appendix
IT for the proof):

If X is an eigenvalue of [M], — A is also an eigenvalue of [M].
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This is an expected property, since within each guided region identical
paired modes should propagate along the +2z and the —z directions. Also,

due to this property, the eigenvalues of [M] can be seperated into two sets

and the solution to ( 7) can be written as

(i) R Bl

0 oAk

ol ] {30}

(16)

where
[A] = diag [\, ..., A, (17)
Re()) > Oor (18)
Re(A) = 0,Im()\) >0 (19)

The impedances Z, ; have been incorporated to the current functions I ;.
Expression ( 16) is very helpful in applying the Mode-Matching technique
to the geometry. Following the analysis in Appendix III, the scattering matrix

of the compressor at its interface with the hollow portion of the cylinder is

derived to be
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[S] = (W] + @)™ (W] - 1) (20)

where

J
W] = ; (L) [F) [Ga] ™" L] (21)
(I} is the unit matrix,
[Fi] = [Ku]+ [Kio][Ry] (22)
G« = [Kau]+ [Ka] [Re] (23)
R = e ™MW K™ [So [Ki]e (24)

[So.] is the scattering matrix of the termination of the x** groove, [ is the
length of the compressor and [L,] is the matrix which represents the coupling
among the modes of the two regions of the inlet (for the explicit definition
of [L] see Appendix III). It is evident that since the real part of the el-
ements of [A] are chosen to be nonnegative, (an immediate consequence of
the aforementioned property concerning the eigenvalues of [M]), no numerical
instabilities occur. Finally, it is straightforward to show that the above ex-
pressions reduce to those for the straight blades (see Appendix IV for proof).
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The case of the straight blades corresponds to setting F'(z) = constant. Of

course, the only allowable constant is 0, due to ( 3).

3 Numerical Results for a Circular Inlet Ter-

minated by a Cylindrical Array of Curved
Blades

In fig. 3 and 4 we present numerical results for the RCS of an inlet terminated
by an array of curved blades. For the results in these figures the outer radius
of the inlet 1s b = A, the hub radius is @ = 0.5), the length of the first
(hollow) region is I; = 5\ and the length of the fan is [, = A. Also, there are
4 blades attached to the hub, the angular width of each groove is ¢,, = 80°
and the angular location of the first groove is ¢; = 0. Three separate plots
are presented for each polarization: the solid line corresponds to straight
blades (no twist angle); the dotted line corresponds to a total twist angle of
10° and the dashed line to a total twist angle of 30°. Note that in this case

“twist angle” denotes the value of F(z) at the back end of the fan.
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4 Cascaded Configuration

The expressions developed so far dealt with the simple geometry of a circular
cylinder terminated by a single compressor stage, consisting of an array of
blades. Nevertheless, they are in a rather general form and this permits us to
extend them into inlets terminated by multiple sections, as illustrated in in
fig. 5. To analyze this geometry, we start from the last termination and then
successively compute in a recursive way the scattering matiices relevant to
each interface. Specifically, using the termination scattering matrix and the
formulas developed either in this report or in [1] (according to the geometry),
we compute the scattering matrix at interface n — 1. The latter scattering
matrix plays the role of the “termination” matrix for region n —2. Therefore,
following the same procedure, we evaluate the scattering matrix at inteface
n — 2 and so on, until we finally reach the open end. The RS is calculated

by the standard procedure described in [1].

5 Numerical Results for the Cascade Con-
figuration

Numerical results for the cascade configuration were compared to measure-
ments of the GO1 engine model taken at the Ohio State University [3]. The
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geometry of the GO1 model is depicted in fig. 6, 7, 8. Two configurations
were tested. The short version had the engine directly connected to the inlet
(fig. 7), while the long version had a hollow cylinder (see fig. 8) between
the engine and the inlet. Measurements were taken at 2, 3 and 4 GHz. The
model for the Mode Matching cascade code is depicted in fig. 9. Only two
stages were taken into account, and the diameter of the cylindrical hub in
the computational model was set equal to the average diameter of the GO1
hub. Point L' corresponds to the median of L and K in the GO1 geometry,
i.e. its distance from the nose of the engine (point M) is equal to the average
distance of L and K from the same point. Furthermore, point J’ is the median
of J and I, point H' is the median of H and G and point F' is the median of
F and E. The model was backed by a perfectly conducting lid. The blades
were all straight. In the first stage (region L'J’), the width of each blade
was equal to 1.54° while in the second stage (region H'F') each blade had a
width of 1.85°. In the mathematical model, unlike the GO1, all blades were
assumed to touch the inner surface of the duct.

Comparisons between measurements and numerical results are shown in
figs. 10-13. Given the different geometrical characteristics of the mathemati-
cal model and the GO1 structure, the agreement is considered satisfactory at
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this preliminary stage. One should take in account the fact that the relative
positions of the blades in the GO1 model were not known when the measure-
ments were taken. An arbitrary relative position was used in the numerical
results. Also, part of the disagreement is due to the hub scattering. As
shown in fig. 6, the hub of the GO1 model was tapered to a tip, whereas in
the computational model the hub was abruptly truncated causing additional

scattering.
6 Summary and Conclusion

In this report w= have used the Mode Matching Technique in conjunction
with the G.T.E. for the characterization of configurations which closely re-
semble realistic jet engine inlets. We found a closed form solution for the wave
propagation between the curved compressor blades and the Mode Matching
technique was employed to obtain the mode scattering matrix. The latter
was used to evaluate the RCS of a cylindrical cavity terminated by a class
of engine compressors. The method was also generalized t¢ handle multi-
ple stages of compressors. A computer code was developed to generate the
mode scattering matrix of single and multiple stage compressors situated in

a cylindrical inlet. The results generated by this code were compared with
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corresponding data based on a Finite Element and Finite Difference methods.
Since these metiiods can only handle small size inlets, we had to resort to the
limited measured data available at this time. Specifically, our calculations via
the G.T.E. - M.M. method were compared with the the measured RCS data
of the GO1 model collected at Ohio State [3]. Although the GO1 geometry
was not precisely that of the calculation model, fairly good agreement was
observed and this is a preliminary demonstration of the code’s accuracy and

capability. Nevertheless, better measurements and better testing is required.

7 Appendix I: Explicit Analytical Expres-
sions for the Modes within the Termina-
tion:

Region 2, «'* groove (groove array termina-
tion).

eI = M Y, (Ma) T, (viM ) = I, (iMa) Y, (32 0)] -
o B .
NI 25 i (5 — )], +
+ ‘Z [Y,, (7{%61) Jy (%T,Tnfqp) -J (%T,,qua) Y, ('y;;r ﬁ,p)] :

™
wg2 22 cos v (¢ = gu)] ug (25)
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and
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> Y. (viMa) g (vM0) - J, (Vi) Yo (v324.0)] -

© Nymgcos[v (¢ —a)]u, -

2,mq

YVomg (Yo (vimta) I, (v7M0) - J, (Voma) Y, (47 )] -

. NZT,%; sin [v (¢ — éx)] uy (26)

% ¥V (VE,a) (VEp) — J (47 Ea)Y, (+/E, o)

VI sinlu (6 - gul]u, +

Yoma |V (1B E,a) J. (Vomar) = I (+1E,a) Y (2 E,0)] -

© Nymgcos[v (46— gu)luy (27)

Vomea |Ye (BE,a) I, (ViEp) = J. (+E,0) Y, (E,0)] -
TE

NI sl (g g, -

. NTE 2,

2,mq

% Y. (15maa) Ju (VEap) = I, (VEE,0) Yo (+E,0)] -
TE

2,mq w:;q sin [V (¢ - ¢'€)] P ¥) (28)
T

Jo(Ymg @)Y (12g"0) = Jo(AEMB)Y, (vIM ) = 0 (29)

T (Vg )Y, (h28) = JL(YEE®)Y, (vTEq) = (30)
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v = E—’ m € Ny (31)
™ _ _ wel/[¢ _fm (72""1 ) °
NTE = L1 [%w (3 —€m) { (72mqa) ( )2 _
ama 2 2 (72 mq ) 72 mq
- [1 - (%TL’%) J I (33)
. 2 m=0
fm = { 1 m#0 (34)

8 Appendix II: The Eigenvalue Symmetry
Property of the G.T.E. Matrix

The following property holds for matrix [M] of eq. ( 11):
If X is an eigenvalue of [M], —) is also an eigenvalue of [M].
The proof is based on the three following Lemmata:
Lemma 1: For any matrix [A], det [A] = det [AT]
(Proof well-known)

Lemma 2: Let [A;;] be n x n complex matrices. Then

I[All] [A12]
[Ag1] [Az)]

:l [An]  —[As)
—[Azn]  [Az)]
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Proof: Let [I] be the n X n unit matrix. Evidently

[ =8 S ) ]

Given that

0 (o [_
o |- o

and that the determinant of a product of matrices is equal to the product of
their determinants, the proof of the lemma is obvious.
Lemma 3: Let [A], [B], [C] be n x n complex matrices. Then
l 4] [C] 1 _ l B] [C] )
[C] [B] [C] [A]

Proof: Similar to Lemma 2. Note that

EEIREHIET R
and consequently ( 38) holds since

0] 0| _
l 1 (o] ‘_:{:1 (40)

and since the determinant of a product of matrices is equal to the product

of their determinants.
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Using the above three Lemmata, we can develop the proof of the eigen-
value symmetry property as follows:

Proof of the Eigenvalue Symmetry Property:

Let

_[1a]
M=o _ar ] )

where [D] is a diagonal matrix. If A be an eigenvalue of [M], then by definition

WM_AN [D]
D]  —[A]"-A[Q

. =0 (42)

Further, by using Lemma 1, and since [D] is diagonal, we have

[A]" =AM (D]

Rl N B ‘3
or, equivalently

A +2m -D) |_

A =0 “
Next, from Lemma 2, ( 44) yields

( - [A]T + A [I] [D] =0 (45)



and finally Lemma 3 gives

Al4AD D] |
D] A +am |7 (46)

This result shows that —A is an eigenvalue of [M], Q.E.D.

9 Appendix III: Application of the Mode
Matching Technique to the Generalized
Modes within the Compressor

In this section we apply the Mode Matching Technique to the geometry of
Fig. 2 in order to evaluate the scattering matrix of the curved blades array.

In Region 1 the transverse fields are given as a superposition of cylindrical

waveguide modes [1]:

o0}

El = 2 [aperpexp {jBrp2} + byerpexp {—jPr1p2}] (47)
p=1

H = ) [ahi,exp{jBipz} + bohyexp{—jfi,2}] (48)

p=1
where ay, b, are the coefficients of the incident and the reflected fields due to
the termination. Similarly, according to ( 6) the transverse fields in the x'*

of region 2 are expressed as superpositions of the generalized modes:
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(o e]

Etz’n = ZVN,,-(z)ez’R,,-(p,qS;z) (49)

=1
)

Hy, = ) Li(z)hyni(p, 6;2) (50)

1=1

From ( 16) we deduce that in the k™ groove

(Vi) = [Kule®™ {c} + [Kig] e {d,} (51)

{L} = [Kule™{c )+ [Ka]e M {d,} (52)

where {c.}, {d.} are vectors of arbitrary constants.

To evaluate {b} = {b;,by,...}7 in terms of {a} = {ay,as,...}" we must
impose the continuity of the tangential fields at the interface. Furthermore,
the tangential electric fields must vanish on any PEC surfaces.

Let us locate the origin of the coordinate system at the interface between
the two regions. Enforcing continuity of the tangential electric field at the

interface yields

Et1|z=0 = Et2|z=0 (53)
P, = HY|.—0 (54)
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Vp € [a,b],Vé € 4. (0), ds (0) + 4], V& € {1, ..., J}

On combining ( 53) with ( 47) and ( 49), taking the dot product with the

modes e; ;, and integrating over the whole interface, we obtain the system

[U]({a} + {b}) = >_ [M] ([Kn] {ex} + [Kiz] {d,}) (55)

k=1
where
b réxtduw
Me = [ [ eseq- e1ppdpds (56)
b p2r
Umn = 5‘mn// el,m'el,npdpd¢ (57)
0 Jo

and 4,,, is the Kronecker delta.
In a similar way, on combining ( 54) with ( 48) and ( 50), taking the
dot product with the modes h, ., and integrating over the portion of the

interface common to both regions, we obtain the system

[Qx]({a} — {b}) = [V.]([Ka] {ex} + [Kna] {ds}) Ve =1,...,d  (58)

where
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b réctdw
Qn,qp = ‘/a / h2,n,q'h1,ppdpd¢ (‘59)

Vm n

b 27

S / / ho,m - ho npdpdd (60)
a JO

and d,,, 1s the Kronecker delta.

If [So,x] is the scattering matrix of the termination corresponding to the

" groove, then, by definition,

(K1) €™ {d,} = [So,] (Kui] e {c,} (61)
where [, is the length of the second region. Expression ( 61) provides a
relation between {c.} and {d.}. To find {b.} we must solve systems ( 55),
( 58) and ( 61). Obviously, {b.} will be a function of {a,}, and to avoid
repeating the solution for every excitation, it is customary to instead compute

the scattering matrix [S] defined by

{b.} = [S]{ax} (62)

To help define the scattering matrix, we introduce some auxilliary definitions:

Re = e ™2 [K;y) ™ [So. [Kig)e (63)
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[F = K]+ [Ki] [Rd] (64)
(Gx] = [Ka] + [Kao] [Ry] (65)

LJ = [V Q] (66)

Then, from ( 55), ( 58), ( 61) and ( 62) it follows that

[S] = ((W]+ 1)~ (W] - [1)) (67)
where
W] = 3 L] (£ (G L] (69

and [I] is the unit matrix.

10 Appendix IV: The Exponential Matrix
Solution of the Generalized Telegraphists
Equations.

In this Appendix we give an explicit form of the matrix exponential appearing
in ( 14) when the blades are straight. It is shown that the well-known solution
of the conventional Telegraphist’s Equations is recovered.

In the case of straight blades, F'(z) = 0. Hence
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One observes that

2 _ [ D 0] ]_iap
= | ok | =t
where
_ | (D] 0]
Ql [[01 [D]]
Thus

exp[M] = [1]+[M]+§1—![M]2+§—![M]3+...

(71)

- {{1] + %[Mf + % M + } + M)+ % P + % M+

= {0+ glQr+ g lQr+ b i{ial+ g ar + g lar + el

= cosh [Q] + [M]sinh [Q] [Q]_l

o -l

The latter equation, in conjunction with ( 10) and ( 16) yields
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Vn,i = cn,ie]ﬁiz'*'dn,ie—Jﬂ‘z

ZOIn,i = cn,iejﬁiz - dn,ie-jﬁiz
where
1
Cr,i = 5 [Vn'i (0) + ZOIn,i (0)]
1
dei = §[Vm (0) — Zol,i (0)]

(75)

(76)

This is the well-known solution of the conventional Telegraphist’s Equations.
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Figure 1: Cylindrical inlet terminated by an array of straight blades.



Figure 2: Cylindrical inlet terminated by an array of curved blades.
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Reference
Plane

Blade Row (1); Inlet vanes; 17 blades
Blade Row (2); Compressor rotor; 20 blades
Blade Row (3); Compressor stator; 44 blades

: Z Cormhpressors

Pont| Al B|C|DJ|E|F|G|HI|I J K| L| M| N
Axial | .90 | .90 | 2.35]|2.55[2.4512.95|4.95{4.55|5.30|5.45{8.30|9.70|11.75} 12.1
Diameter | 9.15{13.30] 8.20 {13.30{ 8.10 {13.25| 5.00 {13.15| 4.75 {13.40{ 2.80 {13.80] - |[13.8

All dimensions are in inches.

Figure 6: Some dimensions of the GO1 model.
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Overlapping Modal and Geometric Symmetries
in the Stmulation of Jet Engine Inlet Scattering

Daniel C. Ross, John L. Volakis and Hristos T. Anastassiu

Radiation Laboratory
University of Michigan
Ann Arbor MI 48109-2122

abstract -- By examining the solution for the scattering from a cylindrical inlet terminated by
a fan-like structure possessing discrete angular symmetry, it is found that only a very limited
amount of inter-modal coupling can possibly occur. By exploiting this fact in a hybrid finite
element/modal scheme, a very efficient solution is developed where only one sector of the
geometry need be considered. It is shown that a phase boundary condition at the interior
walls of the mesh is sufficient for the complete solution of the problem. The implementation of
this phase boundary condition is detailed for the full three-dimensional case and important
numerical considerations are given which if overlooked can lead to an illconditioned system.

A simple example is shown for the hybrid finite element/modal scheme to validate the
method.
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1.0 Introduction

The use of a hybrid finite element/modal technique to model the radar scattering from jet engine
inlets was described in [1]. In brief, the finite element method (FEM) was used to generate a
modal scattering matrix for the engine face while some high frequency or mode technique was
used to trace the fields in and out of the inlet. It is necessary to perform the FEM analysis once for
each traveling mode in the inlet.

While the method was validated in [1] for an engine-like termination consisting of straight blades,
the electrical sizes considered were small (approximately 1A radius) with respect to a realistic sit-
uation where the inlet can have a radius of 10\ and greater. To apply the method directly to such
large structures would invoke computational costs that are indeed staggering. Consider that the
number of elements (and number of degrees of freedom) in the mesh must grow as the radius
squared. Also, the number of traveling modes (analysis must be done repeated for each mode) and
the size of the scattering matrix, grow as the radius squared. For the inlet configurations consid-
ered in [1] approximately 50,000 elements were needed with about 20,000 degrees of freedom
and the analysis was repeated approximately 10 times, once for each mode. Given this, an inlet
10 in radius would require 100 times the computational resources (5,000,000 elements) and the
analysis would need to be done 100 times over (2,000,000 degrees of freedom, 1,000 times), thus,
increasing the total computational cost by about 10,000. In effect, the computational cost must
increase as the radius to the fourth power.

Obviously, some physically derived simplification is needed to scale the problem to a workable
size. Given the cyclic, geometric symmetry which exists in an engine face, it will be shown that it
is possible to reduce the entire problem down to that of a single unique slice of the geometry. For
example, if the engine face has 40 blades, then the FEM analysis need be carried out for only a
single sector with encompasses one 40’th of the total volume.

Computational scaling can only be done for modal field excitations and not for arbitrary excita-
tions. This is because to achieve scaling, both the angular symmetry of the modes, and the geo-
metric symmetry are exploited. Of course, once the modal scattering matrix is created, any field
which is incident on the mouth of the inlet can be decomposed into its modal constituents and the
scattering pattern found. The combination of the modal and geometric symmetries gives rise to a
very limited set of possible scattered modes and it turns out that all of these possible scattered
modes have equal phase shift across the width of one slice. This physical sifting of the modes by
the engine face is similar to the discrete spectrum of frequencies that are present in the Fourier
Transform of a periodic signal. From a computational point of view, since the scattered modes all
have equal phase shift across the slice, a phase boundary condition can be imposed at the two inte-
rior faces of the FEM mesh to bound the problem. This technique has been used successfully in
[2] and [3] and is extended to 3-dimensions in this report.

Section 2.0 of this report justifies the scaling of the problem to one slice by showing that the over-
lapping modal and geometric symmetries give rise to a limited set of scattered/reflected modes
and furthermore these modes can be modeled with a phase boundary condition on the interior
walls of the mesh for a single slice of the whole geometry.Section 3.0 shows the implementation
of the phase boundary conditions for the full three-dimensional problem including some impor-
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tant numerical considerations that if overlooked can lead to an illconditioned system. Section 4.0
shows results for the hybrid finite element/modal analysis making full use of the overlapping
modal and geometric symmetries. The last section introduces a new ‘limited mode method’ for
approximating the scattering from potentially large inlet structures. This method uses the proceed-
ing analysis to justify the use of a very simple and efficient scheme that is shown to predict the
scattering from a relatively complex inlet/engine configuration with surprising accuracy.

2.0 Overlapping Modal and Geometric Symmetries

Although in [1] it was convenient to use cylindrical waveguide modes whose angular dependance
was either cos (n¢) or sin (n¢), in order to exploit the symmetry of the engine face, the modes
must now be defined as having e”/"? dependance. It is the angular phase shift across a sector that
will make it possible to exploit the geometric symmetry.

Consider an engine-like termination as shown in Figure 2. Let ¢_ be the angular extent of the

. . : 2n :
unique slice of the geometry. For any fan-like structure ¢ = N where N is the symmetry num-
)

ber (number of blades.) Since the incident field will be a cylindrical mode with angular depen-

ijninq)

dance of e , the boundary conditions that will be imposed on each slice will be the same but

tjn,,

with a progressive phase shift of e ¢‘. That is, the FEM system resulting from a solution of the

entire problem would take the form

r Kl 7 EAI. f
tin.
K E fo i
+2in.
IS B =] g et (1)
! KN ]\ g (N, = 1) jnjnd,

s fe

where EF is the unknown scatterel(:]\?lcctric field in slice k. Because the geometry is the same in
eachsslice, K! = K*> = K3... = K" and the unknown scattered fields must all be equal to within
a phase factor. That is
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and consequently, tllc scattered field is a periodic function in ¢ with period ¢ and a progressive
phase advance of ¢ """ in each period (slice.) To find which scattered modes can make up such
a field, we consider the Fourier Transform of such a function where the variables ¢ and n , are a
Fourier Transform pair. That is, by examin+ing the spectral content of a signal which is periodic in

. . tjn,9, . . ,
¢, but with a progressive phase advance e T"in% the set of possible outgoing modes n,,,’s can be
found.

Consider a signal S (¢) which is periodic but with a progressive phase advance.

20 2" 28 2P N D g
S (6) |
Lq)
-
O,

This signal can be considered to be a sum of N signals, each with an angular offset and a phase
shift from a reference signal S, (¢) where

£0 Z£0

So () l A

- —
2T

Mathematically, we have

N, -1 _
S(@) = Y So(o+ko) e "
o 3



and the Fourier Transform (¢ <> n,,,) of such a signal can be found directly using the properties
of shifting and linearity to give

N,-1

po pe .k(nin— oul) s

S (o) = So(nyy) 3 & a "o 4)
k=0

Examination of the sum in (4) reveals that only if

out = NipEmN m: any integer (5)

is this sum nonzero. Thus the spectrum of S (¢) is made up of a limited set of modes, given by

(5.

The implication of (5) are that for a given N s (number of blades), only certain scattered modes
can exist for a given incident mode. For example, if there are 17 blades and the incident mode is
associated with n;, = 1, then only scattered modes which have n_,, = 1, 18, -16,35,-33... can
exist. For n;, = 2 only scattered modes with n,,, = 2, 19, -15,36,-32... will be present in the
scattered field. With this property in mind, it is worthwhile to consider if any additional physical
insights can be gained into this complex scattering problem.

First we discuss the physical insights that can be gained due to the limited mode property. For an
inlet termination with axial symmetry (a body of revolution, such as a circular stub, a cone, a bulb
etc.) the symmetry number N goes to infinity. Thus only coupling as n,,, = n;, can occur. This
is consistent with what is known from classical body of revolution theory. An important practical
implication of (5) is that as the number of blades increases, the higher order scattered modes will
be pushed up farther. Coupling to these higher order modes will become impossible if the modes
are highly evanescent. However, even if these higher order modes do propagate, they will be of
such a radically different nature so that coupling must again be very weak. Thus, for structures
with many blades the dominant scattered modes have an index of n,,, = n;,.

An important result is that coupling does not occur to modes having n,,, = n;, £ 1 since a sym-
metry number of 1 is physically impossible. This fact will turn out to be of great importance for
establishing boundary conditions on the axis of the FEM solution. To consider more of the effect
of the limited mode property on the FEM solution, note that all of the possible scattered modes
share a common phase shift from symmetry face 1 to symmetry face 2, (see Figure 2.) Thus, all
scattered modes are related, on a cut of constant z, from face 2 to face 1 by

+.
2 _ 1 _]nin¢s
Ep = Epe
+.
2 _ rl Hnin®s 6
Eq) = Eq,e ( )
*in. 0
Ef = E;e mes
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where EZ is the field on face 2 and E! is the field on face 1. This fact was first exploited in [2] to
efficiently compute eigenmodes within a cyclotron using FEM. For the jet engine scattering prob-
lem then, a phase boundary condition can be used to bound the FEM solution region to only one
slice of the original problem. The implementation of the phase boundary condition for three-
dimensional FEM analysis of the engine face is explored next.

3.0 Phase Boundary Conditions for 3-D FEM

In the previous section it was shown that the only condition needed to relate the fields on the two
symmetry faces is a phase boundary condition, given by (6). The implementation of this condition
is complicated because it must be enforced over a a surface which includes the axis. The imple-

mentation of phase boundary conditions on the axis cannot be avoiding because of the presence of
a material absorber designed to absorb modal fields. Also, the phase boundary conditions enforce

the cylindrical components of the field while the FEM solution is in terms of the cartesian compo-
nents.

The FEM mesh which is generated to model the slice must have coincident nodes and elements on
the two symmetry faces. Therefore for each degree of freedom on face 2 (Ei,Ei, Ef), there is a

corresponding degree of freedom on face 1 (Ei,Eg, Ef). During assembly of the FEM system,

degrees of freedom on face 2 can be discarded in favor of degrees of freedom on face 1 by enforc-
ing the phase boundary condition as

1.2 ¢)1c tjn,0, -1 1 2 ¢; Hin,b, 1
px—py P e Ex+ py—py @ e Ey
y y

1 . 1 .
[een(G)emere ()| M
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1 1 2 2 -
where p @2 Py 2 and p (5 y.2)° q>(x’ y2) &€ the components of the polar unit vectors at face
1 and 2 respectively.

The hybrid FEM-Modal formulation given in [1] makes use of a special broadband absorber
designed to absorb outgoing cylindrical waveguide modes. This absorber was designed specifi-
cally for this problem because the standard finite element mesh truncation schemes were not
found to be effective. Since this material absorber occupies part of the mesh and must be placed at
some distance in front of the engine face, the space between the engine face and the absorber must
include the axis of the guide. Consequently, some degrees of freedom are located on the axis and
this fact introduces a complication to the slicing scheme not been previously encountered. While
the transverse, polar field components cannot be defined on the axis, the transverse cartesian com-
ponents can be defined. This fact is a motivation for leaving the finite element formulation in
terms of cartesian components rather than polar components.

In practice, boundary conditions on the axis must be imposed differently for different modal exci-
tations. By considering the field behavior along the axis, and the limited mode coupling effect, a

consistent set of boundary conditions can be applied along the axis. First, consider the behavior of
the modes on the axis as shown in Table 1. As was previously observed, it is impossible for mode

coupling to occur as n,,, = n;, % 1, so there will never be a mode from column 1 and column 2
present simultaneously. If a column 1 mode can be present then the boundary conditions on the

axis are enforced as E, = Ey = (. If a mode from column 2 can be present then the boundary
condition E, = 0 is enforced. If all scattered modes are such that n,,, > 1 then the conditions

E, = E, = E = 0 areimposed.

TABLE 1. Behavior of modes on axis

n=0 n=1 n>1
TE =0 max. =0
E, Ey
™ =0 max. =0
E, Ey
T™E, max. =0 =0

Careful implementation of boundary conditions on conductors was neccessary so as to preserve

the condition of the system, and similar issues relating to the implementation of the phase bound-
ary conditions will be outlined next. In [1] a simple procedure for enforcing the boundary condi-
tions on a conductor in an optimum way was given. This procedure however cannot be used at the
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point where a conductor crosses one of the symmetry faces. The boundary conditions on a con-
ductor that crosses a symmetry face must be enforced so that during assembly, both the phase
boundary condition and the metal boundary conditioned are enforced. This can be accomplished
with the following procedure which is performed at the element level.

Given that a node lies on a conductor with normal 7 and on symmetry face 1:

i |33 > 0.15 then set By = o
o [0
else set 7] = ———
P> Al
R fX?l
.t2 = —
|2Xt1|

«Given the three local equations for Efc,E; and E‘ZY at the node

- find the largest component of #; (x, y or z) and replace the corresponding equation in

A

the element system with #; - E° = —; - E"™

- find the largest component of #, (x, y or z) and replace the corresponding equation in
the element system with 7, - E* = —%,- E"¢

For a node that lies on a conductor and on symmetry face 2, the procedure is the same except that
the largest component of the tangent vectors (#; and #,) must be found for the corresponding node
on face 1 and the local equations replaced accordingly. In this way, when (7) is used for assembly,
both boundary conditions (face 1 and face 2) will be enforced correctly and the condition of the
system will be preserved. It is noted however that if the slice angle ¢ - approaches 90 degrees, the
formulation breaks down as the boundary conditions on face 1 and face 2 become orthogonal and
cannot be enforced simultaneously and this can be seen by inspection of (7). This is not

considered an important limitation since real jet engine faces always have many more than four
blades.

4.0 Hybrid Modal/FEM Example

The advantages in using the overlapping symmetries becomes apparent as soon as the task of
mesh generation is undertaken. Only a fraction of the mesh for the entire structure is needed, and
the importance of this cannot be over stressed. With the level of sophistication currently built into
the FEM software, it is required that the mesh on symmetry faces 1 and 2 be coincident so only a
limited number of geometries can be analyzed: axial symmetric structures and straight blades. In
order to model curved blade structures, it will be necessary to impose the phase boundary condi-
tion across dissimilar mesh areas. This can be done by interpolating degrees of freedom on face 2
to a linear combination of degrees of freedom on face 1.

As an example, a short terminated inlet with radius of 0.66 is analyzed by using only a 4 degree
slice of the original problem. The absorber is place 0.5A from the short. In this case, any size slice
is sufficient, but a balance was achieved by considering that if the slice is too thin, more elements
will be needed as the element size must shrink to fill the narrow slice. While this geometry is in
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fact a body of revolution, it is a very important benchmark for validating the correct implementa-
tion of the phase boundary conditions, which is indeed quite a complex task. The calculated scat-
tered fields for two important modal excitations are shown in Figure 3 and Figure 4. The fields

calculated by the FEM are seen to have the correct modal behavior for a reflected mode from a
short.

5.0 Conclusions and Future Work

The physically derived phenomenon of limited mode coupling has been derived and shown to be
of use for scaling the hybrid FEM-modal solution for the jet engine inlet problem. Considerations
were made for the fact that the axis is included in the solution domain and important numerical
considerations for the proper implementation of the phase boundary conditions for 3-dimensional
FEM were given. The phase boundary conditions were shown to accurately predict the modal
fields scattered from a shorted inlet using only a 4 degree slice of the actual problem.

The method is currently being applied to straight blade structures and the method needs to be
extended to handle terminations with curved blades since the analysis of curved blades requires
the enforcement of the phase boundary condition across dissimilar mesh areas. An interpolation
from degrees of freedom on face 2 to degrees of freedom on face 1 must be done, making the
enforcement of the phase boundary conditions more complex.

As an outcome of this research, the possibility of creating a very simple and efficient ‘limited
mode model’ can be introduced. The limited mode model gives a physically justifiable reason
why the scattering matrix must be very sparse for terminations with many blades. Preliminary
studies show that even with a first order ‘limited mode model’, fairly accurate predictions of the
patterns from complex structures can be made. A first order model involves no modal coupling
and assumes that each mode simply reflects from a different location on the termination. The scat-
tering matrix can therefore be created very simply and efficiently even for large complex struc-
tures. Currently, studies are being done on the proper way to find the reflection points for each
modes and it is hoped that sufficiently accurate predictions can be made with this model so that
large, realistic structures can be analyzed in the near future.
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FIGURE 1. An inlet terminated in a ridged structure.
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FIGURE 2. A unique slice of an engine-like termination.
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FIGURE 3. Calculated scattered field Re (E p) for TMg; excitation of a shorted inlet using a four degree
slice.
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FIGURE 4. Calculated scattered field (Re (E ) )for TEy; excitation of a shorted inlet using a four degree

P slice
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