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AWE Technique in Frequency Domain Electromagnetics
Yunus E. Erdemli’, C.J.Reddy” and John L. Volakis’

Abstract:

This paper presents fast radar cross section (RCS) computations using the
Asymptotic Waveform Evaluation (AWE) technique in conjunction with Method of
Moments (MoM) and hybrid Finite Element (FEM/MoM) implementations. In its
traditional form, AWE constructs a reduced-order model of a given linear system by
Taylor series expansion with respect to specific values of the system parameters
(frequency, angle, etc.). Thus, AWE permits the prediction of the frequency response
from a few frequency calculations. In this paper we modify AWE to instead employ a
rational function (Pade approximation) representation for the system parameters. Using a
Pade rational function instead of a Taylor series, the accuracy of the analysis is increased
to a wider frequency range. AWE is also extended to allow monostatic RCS pattern
prediction using again a few pattern values, thus eliminating a need to resolve the system
when an iterative solver is employed. To demonstrate these extensions of AWE,
numerical examples of three-dimensional metallic bodies and cavity-backed apertures are

considered.

" Y. E. Erdemli and J.L. Volakis are with Radiation Laboratory, University of Michigan, Ann Arbor MI, USA.

el Reddy is with Department of Electrical Engineering, Hampton University, Hampton VA 23668, USA.



1. Introduction

Numerical methods such as the Method of Moments (MoM), Finite Element
Method (FEM) and hybrid FEM/MoM techniques have gained wide acceptance due to
their flexibility to model arbitrarily shaped objects involving complex materials [1,2]. In
all these methods, a matrix system is formed and solved to obtain the desired system
parameters using a direct or an iterative solver. For electrically large problems, the
solution of the matrix system is computationally intensive and must be repeated for each
frequency. Also, certain analyses and designs may require both temporal and frequency
responses placing additional computational burden in generating these responses. To
speed-up computations for large-scale simulations, iterative techniques which incorporate
fast algorithms such as the Fast Multipole Method (FMM) and Adaptive Integral Method
(AIM) [3,4] have been introduced. When incorporated into MoM or hybrid FEM/MoM
codes, these algorithms have allowed the solution of practical problems [5-7]. However,
the solution must be independently carried out for each excitation (incidence angle).
Monostatic RCS calculations are therefore computationally intensive and therefore for
iterative methods, asymptotic waveform evaluation (AWE) or the extrapolation methods
become attractive for CPU reduction.

In this paper, we investigate the application of AWE in conjunction with MoM and
hybrid FEM/MoM techniques for rapid frequency response calculations. We also present
a new implementation of AWE for rapid monostatic pattern fill calculations when an
iterative solver is employed.

AWE provides a reduced-order model of a linear system that has already been

successfully used in VLSI and circuit analyses to approximate the transfer function



associated with circuit networks [8,9]. We note that a similar method was used by Burke
et al [10,11] under the name of Model Based Parameter Estimation (MBPE). Both AWE
and MBPE are identical in nature. The AWE technique has also been applied for FEM
based problems by Gong et al [12] and Polstyanko et al [13] used AWE for the efficient
analysis of dielectric waveguides.

In this paper, a detailed analysis of AWE applied to hybrid frequency domain EM
techniques is presented for the first time. We also extend AWE to include a rapid
monostatic pattern fill in the case of large problems which invariably depend on iterative
solvers. In the AWE technique, the unknown variable (electric field/current) is expanded
in a Taylor series about the frequency or angle. These moments of the Taylor series are
then mapped to a Pade approximation. The latter has a much larger range of convergence.
Thus, it provides a larger frequency or angular region of extrapolation.

This paper is organized as follows. In section 2, the AWE implementation for
MoM and the combined FEM/MoM technique is presented for obtaining a frequency
response. The AWE procedure for monostatic RCS fill using iterative techniques is also

described in section 2. Numerical results for various examples are presented in section 3.

2. Formulation

AWE is an extrapolation approach which provides a reduced-order model of a
linear system. On the basis of AWE, a Taylor series expansion of the matrix system
(MoM or FEM/MoM) is generated about a specific value of the system parameter
(frequency, angle etc.). The Taylor coefficients or moments are then used to extract poles

and residues of the system yielding a rational function (Padé approximation) of the system



parameter. Padé representations have a larger circle of convergence and can therefore
provide a broader extrapolation since it includes poles as well as zeros of the response.
This representation provides an extension of the region of convergence (RoC) of the

power series, thus increasing the accuracy of the analysis to a wider range.

2.1 Asymptotic Waveform Evaluation (AWE)

To illustrate the AWE method, let us consider a one-variable complex function

f(z). The Taylor series of f(z) at zo is

f@=Yele-a)  a=1G). (12
c, = f( (‘0) f(n)( 0)_ d" f(Z) (lb)

This expansion is the basic starting point for the Padé approximation given by

ial (Z - Zo)l
P(LIM) =22 - Q;(Z),
143 b (-2 TR

(2)

in which L and M are the orders of the zero and pole expansions. The coefficients a; and
b, of the numerator (Q;) and denominator (Ry,) polynomials, respectively, are found by
enforcing equality of (1) and (2), viz.,

L

>a(z- z,)

Yo (z-2z,)" =— +0(z"My (3)
1+ 302

m=1




Upon cross-multiplying and equating equal powers of z in equation (3), we get the linear

system [14]

CLAMH cL-M+2 CL—M+3 s CL bM CL+I

CL—M+2 CL—M+3 CL—M+4 CL+1 bM—I CL+2

cL—M+3 CL~M+4 CL~M+5 v CL+2 bM—2 =7 cL+3 (4)
CL CL+1 CL+2 CL+M -1 bl CL+M

which is of order M. This system refers only to higher powers of z, in particular z' with
i=L+1,L+2,....L+M. As a result, all equations involving a; are eliminated. The a
coefficients are found after solution of (4) for b, and by equating powers of z less than
L+1, giving [14]
min(L.M)
a,=c, . a=¢+hc, , a,=c,+he +bgc, ,...,a,=c, + Y be (5)
=
Typically, there exist optimum values for L and M so that a Pade representation
P (L/M) best approximate f{z) around z,.
Below we first describe the implementation of AWE into MoM for frequency
extrapolation and monostatic pattern fill. We then proceed with a similar implementation

for hybrid FEM/MoM systems.

2.2 Method of Moments (MoM)

MoM is a popular tool for accurate prediction of radar cross section (RCS)
calculations. Its implementation in connection with the Electric Field Integral Equation

(EFIE) involves a solution of the electric current surface density using a direct or some



iterative solver. With frequency (f) as the parameter of interest for extrapolation, the

discretized EFIE [15] results in the linear system

(2,0 AL 8.0, =V, k0.0, (62)
Z_ (k)= jkn, j j T, | j T.G,(R) ds'ds —-’% f[(v-T,) j j (V'-T.)G,(R)ds'ds , (6b)

Vm(k’¢’9) - J‘J.T"l ’ Emc(k; ¢19) dS K Emc(k;¢’ 0) = p; efk‘l' ’ (6C)

=Je-x) + (=Y Hz-2) (6d)

r=xx+jy+iz, R=|r-r

p, = X(cosé cosgcosa —sin gsin ) +

6e
y(cosBsin gcosa — cos@sin a) — zsin fcosa (6e)
ev]kR
k = (-xsin@cosg + ysin@sin g + zcosk , k =2z f /e, , G, (R) =R (61)
T
where we have expanded the unknown current density as

N

J)=2, 1,(k:4.0)T,(r) (7)
n=1

in which T,(r) denotes the subsectional basis function. Among the other parameters,
Vik; ¢ 6) is the excitation vector and Z,.(k) represents the weighted integral used for
generating the matrix. 7,(k; @ 6) is the unknown current and N is the number of unknowns.
Also, E,. denotes the incident electric field; p; is the unit vector representing the direction
of the incident electric field; (¢, 6) is the incidence angle; «is the polarization angle; k
represents the propagation direction of the incident wave; 1 is the intrinsic impedance of

the medium; r and r are the vectors defining the observation and source points,

respectively, and R is the distance between these two locations.



Equation (6a) is typically solved at a specific frequency fo (with wavenumber k)
either by a direct or an iterative method. The advantage of a direct method is that
[Zm(ko)] needs to be decomposed or inverted only once and subsequently the much less
CPU intensive forward/backward substitutions (LU decomposition) are performed to
obtain the solution for J(ko; ¢, 6) for each excitation. However, if J or the RCS response is
needed over a frequency band, the evaluation of [Z,,.(k)] and its decomposition must be
carried out repeatedly at each frequency. Since this may be an O(N') operation for each
frequency point, use of frequency extrapolation techniques, such as AWE, are very

attractive for CPU reduction.

2.2.a Frequency Extrapolation

In this section we introduce AWE to evaluate 7,(k; @ 6) at multiple frequency points.

We begin by expanding {/,(k)} as

(s) s
IR XV SR VR SRV

dk’ ®

k=k,

The “moments” {M',} can be evaluated in closed form using the relation

s (9) 5—q
9\45}:[Zmn<ko)r{{m )S(,"")} > 5")[2”’” (k“)]{M }} (%)

q=0

d’ l (k) d'z,, (k)

(q)
Ik =

k=k,

( )
mY \)) -

I g=0
, Og = 0 0 (9b)
o g%

Here Z9,,(k) is the ¢" derivative of Zm(k) with respect to k. This evaluation is
unfortunately a lengthy process but requires much less time than a direct decomposition of

[Zm(k)]. Actually, the derivatives can be obtained by successive differentiation of the



previous derivatives of Z,.(k). It can be shown that an explicit and compact
representation of Z'?,,,(k) is

ZW )= jkn, [T, [T, <—(1R)‘{1 - ]kiRj G, (R)ds'ds .

q

Sy ' \d q' ~ ' e
_T”(V.Tm)ﬂ(v .T,)(=jR) [,,Z) (q_p)!(ij)p](fk(R)dsds |

Similarly, the expression for the s™ derivative of 7,(k) with respect to & is readily given by
Vi) = [[T,-p(k 1) eds (11)
Substituting equations (10) and (11) in (9a), we generate the AWE moments. These
moments are subsequently introduced into (8) to yield {/,(k)} at frequency points around
ko. Note that this process requires the decomposition of [Z,.(k)] only at the reference
frequency ky. However, the accuracy of (8) quickly deteriorates as k£ moves away from k.
Thus, we instead consider an alternative expansion based on Padé approximants.
The Pade approximation can be obtained by using the procedure described in section

2.1. Each entry of the vector {/,(k)}xx1 1n (8) can be thought of as a complex function of

k and can be expanded as

1) =S M-k (12)

5=0

Using this notation, the Padé representation for each /,(k) (n=1, 2, ..., N) is then given by

L
2. a,(k—k,)
P(LIM)=—= : (13a)

M

1+ 6" (k—k,)"

m=1

ZM;’(k—kO)S =P(LIM)+Ok""y . (13b)

5=0



The unknown coefficients, @, and 5", appearing in the Padé approximation satisfy the

linear system
1
S M =M L+1<I<L+M , 1>M:b] =0, (14a)
j=1

i
a, =M, ,a,=>M’b] 1<I<L,l1<n<N, (14b)

Jj=1
and these are similar relations to those found in (4) and (5) but stated in a different

manner. The Padé coefficients are determined from a solution of (14). We can write

{1,y 2AR(LIM)Y, (15)

2.2.b Pattern Fill

For monostatic pattern evaluations it is necessary to carry out the matrix vector
product [Z,..(k)]"'{Vu(#.6)} for each excitation {V,(4.6)}. AWE can again be employed
for calculating the angular variations of a monostatic pattern using only a few pattern
points, thus eliminating a need to carry out the backsubstitution repetitively. For iterative
solvers, the proposed pattern fill procedure eliminates repetition of the iterative solutions
altogether except for a few pattern points.

To show how AWE can be applied, we begin by restating the system

@0, =2, &), 1,0.0)}, (16)
where we observe that [Z,,(k)]" is not a function of the incidence or observation angles.
Assume now that {/,(¢,6)} has already been computed at a given direction (¢, ). Thus,

we can use a Taylor series to express /,(¢,6) as



(9,0 o1 (4,6 >

160 =1,6.0)+ LD (p-9)sZED (0-0)s 37000 (-4
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T2 e ¢:¢0(9 oy 0406 ¢:¢0(¢ hIO=6u). (7

Next upon making use of (16) we can eliminate the derivatives of /,(¢,6) to obtain the

more explicit expression

{fn<¢,e>}=[Zm,,<k(,)F{{Vm<¢o,9o>}+ij[ 06,6)10-4)

(18a)
ooy zy {V,ia;?wo,eo)}(qzﬁ—¢0)”(0-90)“}
W (45 012 Va0 R A A (X))
V0= 5= v =gorf). V5 0,0,)=1 T (18b)

0

Note that the differentiations have now been transformed to the excitation column since
[Zw(ko)] 1s by its nature independent of (¢4,6). For one-dimensional calculations, the

dependence in ¢ can be further eliminated giving

<1 d (6
U.0)= [Zm(k(,ﬁ‘{{Vm(eo)}Jr >—pe@fe-or } yoe) =20 )
o q de’ |, 6,
As an example, let us consider the case of an incident plane wave with
E,(0)=)F©), F@)=e" """, (20)

obtained from (6¢) by setting a= 90° and ¢= 0°. Inserting this into the expression for

V.(6) in (6¢) yields the excitation vector whose ¢" derivative is needed in (19). We have

d'F(0)

V”('q)(go) = .”T"’ .)“,F(@(go)ds i F(q)(eo) = T

(21a)

=9,

10



q-1
FO8,) = jkx) S O)F"(6,)CL, | (21b)
p=0
-1
cro = WU ooy oo, (21c)
T plg-1-p)
S(8,)=sin6, , S“P(6,)=Relj* ? Jsin 6, + Im{j* * Jcos6), . (21d)

Substituting these derivatives into (19), {/,(6)} can be expressed in terms of the AWE

moments {M?,} as

(1,0)=[2,, )] 1, 0)}+ T 2 o-6,) {M;’}:;j—,[zm,xkoﬁ‘mi‘”(en @)

g=1
Note that the moments {M?,} can now be trivially calculated and therefore one could
increase the order of the expansion as needed to extend the validity of the approximation
to a greater angular sector. Moreover, the Pade representation of {/,(6)} can instead be
used to ensure better convergence. In this case equations (12)-(15) are applicable

provided £ is replaced by &, and &by 6.

2.3 Hybrid Method: FEM/MoM

Being a frequency domain analysis, the hybrid FEM/MoM technique may not be
appealing for broadband frequency computations. To obtain, for example, the frequency-
dependent antenna parameters, it is necessary to execute the analysis at very fine
frequency increments. Needless to mention, this is a computationally intensive procedure
which may be avoided using AWE.

In this section, we describe how AWE can be applied to calculate the parameters

of a cavity-backed aperture antenna over a band of frequencies using the combined

11



FEM/MoM technique.  Although the hybrid analysis presented in this paper is not
restricted to any specific input feed structure, we only present the formulation for the
coaxial line feed structure as shown in Figure 10.

In accordance with the FEM/MoM procedure [16] the cavity-backed antenna in
Figure 10 is formulated using the finite element method for the fields within the cavity and
the boundary integral for mesh truncation across the aperture. For the fields within the
cavity, we enforce the “weak form” of the equations, giving

.m(V><T)-(ﬂLV><E]dv—kzng‘HT-Edv—_ja),u(,H(Txﬁ)-Hap ds
14 N/ 14 Sap

' (23)
= jou, [ T-@xH,,)ds

Sinp

Here, T is the vector testing function, " is the cavity volume, H,, and H,, are the
magnetic fields at the aperture surface S,, and at the input surface S,,,, respectively, and n
represents the outward unit normal for each surface; & and g denote, respectively, the
relative permittivity and permeability of the cavity filling. For a solution of E using (23), it
is necessary to eliminate H,, and H;,,. For H,, this is done by introducing the integral

equation

N

ap ap

jau, j j (Txm)-H,, ds = 2° | j T [ [[MG,(r) ds'J ds
S“‘” ) (24a)
—2H(V-T)[”(V’-M)Gk(R)ds']ds ,

. e
T =Txn, G (R)=
N Jk( ) 47Z'R

s k=2 fieeupu , M=Exz (24b)

proving a relation between E and H on the aperture.

12



To eliminate H,,,, we assume that only the dominant TEM mode and its reflection
exist at the coaxial cable aperture S,,,. That is, the electric field across S, can be

expressed as

Einp =€ e_]k\/az + eref ejk \/Z;: > (25&)
_p[/ /27{6)] , P=Xcosg+psing , p=q/x*+y* | (25b)
P h

=], e

_ o ke
{W_?”E(jd } @9

where 7, and 7, are the outer and inner radius of the the coaxial line, respectively; &. is the

e

ref

relative permittivity of the coaxial line and T’y represents the reflection coefficient of the
TEM mode at z=z; (ie. at S=S;,,). On the basis of waveguide theory,

H,, = (j/au,)V xE,  and therefore the right hand side integral in (23) can be written as

jwﬂogﬂT.(ﬁmep)ds—Mﬂfl;l/j, {”T( ]dSHHE( ] }
| 2kfe, e M T-[éjds.

\/27rln rﬁ/r) K P

inp

Discretization of (23) using tetrahedrals in the volume and triangles on the

aperture [17] in conjunction with Galerkin’s method yields the system

A(k)e(k) = g (k) (28a)

2]k\/—7€ Jk\/‘—srcl ﬁ ,
g(k) = Py jSjiT-[; ds

(28b)

13



where A(k) i1s a partly sparse, partly dense complex symmetric matrix, g(k) is the
excitation vector, and e(k) is the unknown electric field coefficient vector. We can express

A(k) as the sum of four matrices:

A(k) = A (k) + A, (k) + A, (k) + A, (k) (29a)

Al(k):mL(VxT)-(VxE)dv—kzg,ﬂ T-Edv , (29b)
vH, v

4, (k) ==2k* [[ T, [ j j MG, (R) ds'] ds | (29¢)

A (k) =2[[ (V- TJ{ j j (V'-M)G, (R) ds’J ds (29d)

S LI

Clearly, the solution of (28) must be repeated for each frequency /. Using the

solved fields on S;,, (z;=0) we can compute the reflection

e o

which can then be used for the input admittance evaluation. We have
V=t (1)

where ¥;, is the input impedance and Yo=1/Z, is the free space admittance. Typically, of
interest is the evaluation of Y, over a frequency band. AWE can therefore be employed to
achieve this using only a few frequency points. We describe AWE for this application in

the next section.

14



2.3.a Frequency Extrapolation

To apply AWE to the system (28a), we proceed in a similar manner as done in

section 2.2.a. The unknown field vector e(k) is again expanded as

e(k) =3 M, (k- k)" (322)

n=0

where the moments M, given by

M — A-I (k ) g(n)(ko) B i (l - 5q0)A(Q)(kO)Mn».q
' ' nl q=0 q'

(32b)
where A (ko) is the inverse of A(k) and for ¢>0, A9(ky) is the g™ derivative of the matrix
with respect to k evaluated at ko. Similarly, g”'(ko) is the n" derivative of g(k) with respect
to k evaluated at ko. As before, dy is the Kronecker delta function defined in (9b).
Explicit expressions for the derivatives of A(k) and g(k) are readily obtained and are given

by

q 4
A@("):%ZZAS” L q20 . AV(Kk)= A4, (k) - (33a)

m=1

AV k)= 2ks, [[[T-Bdv | 4700 = AV )k . A ()=0, g3, (33b)
v

Ak = -2[ T, { ™[k - jri]G, r) ds’] ds | (33¢)
AP (k) ==2f[ T, {HM 0,(R) Gk(R)ds’] ds, g>1, (33d)
0,(R)=—L_ (= jRY" + 2qk(~ )" + K*(~jR)" | (33¢)

(g-2)!

15



A7 (k) =2[] (V-Tg[ﬂ (V'-M>(1R>qu(R)ds'st gzl (33D

ap ap

AV) = A,(0)fk . ADH)=0, g22 ; (339)
g” (k)= (- je 21)[1— n }g(k),nzO. (33h)
re jk\/gzl

As done in 2.2.a, once the AWE moments are obtained, the electric field
coefficients at frequencies around the expansion frequency can be calculated by using
(32a). This expansion or its Padeé equivalent can in turn be used to compute the frequency

response of antenna parameters.

3. Numerical Results

In this section we present some numerical results to demonstrate the accuracy and
efficiency of the AWE implementation in connection with MoM and hybrid FEM/MoM
techniques. First, as frequency extrapolation applications, scattering by three-dimensional
metallic bodies (a PEC plate, a three-PEC plate, a PEC ring) and radiation by a circular
patch are examined. We then consider scattering by a metallic plate as an example of
pattern fill implementation. Note that all numerical computations for the results presented

here were done on an SGI-Indigo2 machine (150 MHz, IP22 processor).

16



3.1 Frequency Extrapolation

We present below four frequency extrapolation examples, one radiation and three
scattering problems. For the latter, the incident plane wave is edge-on incidence and only

the monostatic (backscattering) case is considered, that is, a=90°, "= 6°"=90°, and

¢IVZC - ¢SC&I :OO.

A. PEC Plate

Figure 1 illustrates a metallic plate with dimensions 1 cm x 1 cm. This square PEC
plate was discretized using triangular patches, thus yielding 603 unknowns. As a result,
the dense full matrix of the MoM system was 603x603 in size. The RCS frequency
response was calculated at 30 GHz and this was used as the expansion frequency to
generate Pade approximations with L=M=1,2 3 4 in the frequency range 25-35 GHz. As
shown in Figure 2, for L=M > 1, the convergence of this expansion is easily achieved. In
Figure 3, the RCS frequency response is plotted for the MoM solution, Taylor series
expansion with a order of 6, and Pade approximation with L=M=3. As seen, the AWE
solution is in good agreement with the exact solution. It is also observed that away from
the expansion point, the deviation from the exact response becomes apparent for the
Taylor series solution. The Pade approximation with L=M=4 calculated at 0.1 GHz
frequency increments resulting in 100 frequency calculations. In fact, AWE can virtually
generate the response at any fine increment with almost no cost. The AWE computations
were carried out in only 28 minutes while the exact MoM solution for 11 frequencies took
59 minutes (Table 2). This comparison proves that AWE can result in saving at least one

half of the CPU time required for the exact solution.

17



B. Three-PEC Plate

In Figure 4, a configuration of three PEC plates is depicted with dimensions
specified in terms of the wavelengths (4;, i=1,2,3) at the corresponding frequencies (f,=3
GHz, ;=5 GHz, ;=7 GHz). For this geometry, the number of unknowns was 448 and the
system matrix was therefore 448x448 in size. Pade approximations with L=M=12,...7
were obtained in the frequency range 1-9 GHz by expanding the exact solution about 5
GHz. Figures 5 and 6 show the convergence of Pade expansion. As seen, after L=M=5,
the Pade solution' converges and it agrees with the exact solution very well. However,
Taylor series solution diverges as seen in Figure 7. In contrast to the Pade solution, as the
order of expansion increases, the Taylor solution severely deteriorates as going away from
the expansion point. Although both Pade and Taylor expansions use the same set of
moments, the Taylor series fails to extract the dominant poles and residues of the system,
unlike the Pade approximation, and therefore any additional term in the series
representation does not improve the convergence of the solution. Table 3 shows the CPU
comparison of AWE and exact solutions. As seen, the exact solution took 88 minutes for
17 frequency points. However, the Pade approximation with L=5 and M=4 at 80
frequencies was calculated in 19 minutes, which is about one fifth of the MoM solution
time. This result demonstrates noticeable performance of AWE in terms of CPU time

savings.
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C. PEC Ring

A metallic ring with inner radius and thickness of 3 cm and 0.3 cm, respectively, is
shown in Figure 8. The number of unknowns for this case was 425, yielding a dense full
system matrix of 425x425 in size. Pade approximations with L=M=4 were generated
using multiple expansion points in order to recover the RCS response in the frequency
band of 1-9 GHz. Figure 9 shows the Pade solution obtained using four expansion
frequencies: f1=2 GHz, ;=4 GHz, ;=6 GHz, and f;=8 GHz. The exact solution at each
expansion point was used to extrapolate the solution in the corresponding frequency band
designated by vertical lines as shown in Figure 9. These expansions frequencies and
frequency bands in which the Pade approximations bmatch with the exact solution as
optimum as possible were determined using the basic idea of the complex frequency
hopping (CFH) algorithm [18]. As seen, the AWE solution again agrees very well with
the exact MoM solution. For the CPU timing comparison as shown in Table 4, the
frequency band (2.3-5.3 GHz) with the expansion frequency 4 GHz was chosen. The
AWE solution for 30 frequency points was obtained in 18 minutes. On the other hand, in
order to recover RCS response properly in that band, we needed to run the MoM code for
10 frequencies in that band, resulting in the CPU time of 44 minutes. This result again

shows computational efficiency of the AWE implementation.

19



D. Circular Microstrip Patch Antenna

A cavity-backed circular microstrip antenna radiating into an infinite ground plane
is shown in Figure 10. The input plane S, is placed at z=0 plane and the radiating
aperture at z=0.16 cm. The discretization of the cavity volume resulted in 6,325
unknowns of which 469 were on the aperture. Thus, the dense submatrix was 469x469 in
size. The frequency response of the input impedance is calculated at 6 GHz and this was
used as the expansion frequency to construct a Padé approximation with =3 and M=2.
The frequency response from 5 GHz to 7 GHz is plotted in Figure 11. As seen, a very
good agreement is obtained between the Padé approximation and the exact solution over
the frequency range. The Padé expansion was calculated at 0.01 GHz frequency
increments resulting in 200 AWE frequency calculations. These were carried out in only
44 minutes whereas direct calculation of the input impedance at 13 frequencies required S
hours as shown in Table 4. This comparison clearly demonstrates the distinct advantage

of AWE for generating broadband frequency responses.

3.2 Pattern Fill

In this section we present an example of pattern fill application described in section
2.2.b. Figure 12 shows a square PEC plate (1) x Ao) upon which a plane wave with edge-
on incidence is impinged. In this case, the order of the system was 408. The monostatic
scattering pattern at a fix ¢=0 cut was calculated by Pade approximations with Z=M=2

and L=M=1 using three expansion angles of incidence, #"°=15°45°70°. As seen in

20



Figure 13, each expansion best approximates the exact RCS pattern in the corresponding

angular sector.

4. Conclusions

In this paper, we presented the implementation of the AWE technique in
connection with the frequency domain EM methods, namely MoM and hybrid FEM/MoM.
AWE was employed as a frequency or an angular extrapolator in this implementation for
the purpose of generating broadband frequency or angular reponses, respectively, using
only a few of exact solutions. The formulation of this analysis was first time introduced.
We presented some representative numerical results for scattering and radiation by three-
dimensional configurations to demonstrate the computational efficiency as well as the
accuracy of the implementation. As observed from these results, AWE can generate the
broadband responses quite accurately with a considerable CPU time saving. As expected,
the Pade approximation brings about much reliable representation of these characteristics
due to its larger circle of RoC when compared to the Taylor series expansion. In
particular, using AWE for pattern fill applications will have the advantage of CPU time

saving provided an iterative solver is used.
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Figure 2 : PEC plate; convergence of Padé solution (L=M=1,2,3,4); expansion
frequency, f,=30 GHz.
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Figure 3 : PEC plate; MoM vs. AWE: Pade(L=M=3), Taylor(6) .
Problem Method Matrix Fill LU Factor Total Time
(secs) (secs) (secs)
PEC Plate MoM
(11 freq. points) 3,333 187 3,520
Frequency band | Padé Approximation
25-35 GHz (L=M=4) 1,672 17 1,689
(/=30 GHz) (100 freq. points)

Table 1 : CPU timings of MoM and AWE solutions for the square PEC plate.
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Figure 5 : 3-PEC plate; convergence of Padé solution; expansion frequency,
Jfo=5 GHz. MoM vs. Pade (L=M=1,23.4).
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Figure 6 : 3-PEC plate; convergence of Pade solution; expansion frequency,
fo=5 GHz. MoM vs. Pade (L.=M=4,5,6,7).

Problem Method Matrix Fill LU Factor Total Time
(secs) (secs) (secs)
3-PEC plate MoM
(17 freq. points) 5,168 119 5,287
Frequency band | Padé Approximation
1-9 GHz (L=5, M=4) 1,110 7 1,117
(/=5 GHz) (80 freq. points)

Table 2 : CPU timings of MoM and AWE solutions for the 3-PEC plate problem.
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Figure 7 : 3-PEC plate; divergence of Taylor solution; expansion frequency,

fo=5; MoM vs. Taylor (N=1,2,...,10).

Problem Method Matrix Fill LU Factor Total Time
(secs) (secs) (secs)
PEC Ring MoM
(10 freq. points) 2,570 50 2,620
Frequency band | Padé Approximation
2.3-53 GHz (L=M=4) 1,097 5 1,102
(f=4 GHz) (30 freq. points)

Table 3 : CPU timings of MoM and AWE solutions for the PEC ring problem.
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Figure 9 : PEC ring; MoM vs. Pade (L=M=4) approximation using multiple
expansion points, f;=2 GHz, ,=4 GHz, f;=6 GHz, f;=8 GHz.
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Problem Method Matrix Fill LU Factor Total Time
(secs) (secs) (secs)

Circular Hybrid FEM/MoM
Microstrip (13 freq. points) 16,900 1,144 18,044
Patch Antenna
Frequency band | Padé Approximation

5-7 GHz (L=3, M=2) 2,535 88 2,623

(fo=6 GHz) (200 freq. points)

Table 4 : CPU timings of FE/MoM and AWE solutions for the circular microstrip patch
antenna problem.

Substrate (g, = 2.4)
2emX2cm)

™~ Circular Patch at =016
(radius=0.84cm)

508 coaxial feed

Figure 10 : Cavity-backed circular microstrip patch antenna.
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Figure 11 : Normalized input impedance of a cavity-backed circular microstrip
patch antenna.
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Figure 13 : PEC plate; pattern fill using multiple expansion points, 8,=15°,
6,=45°, 8:,=70°. MoM vs.Padé (L=M=2 and L=-M~-1).
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