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This report describes the theory and execution procedure for AIM-Plate and AIM-Prism.
AIM-Plate performs the same functions as a standard moment method code for analysis of
planar conducting scatterers but with drastically reduced memory requirement and solution
time. This reduction is accomplished by incorporating the Adaptive Integral Method (AIM)
in an iterative solution of the Electric Field Integral Equation (EFIE). AIM-Prism performs
the same functions as a Finite Element-Boundary Integral (FE-BI) program for radiation
and scattering analysis from planar cavity-backed antennas. However, incorporation of AIM
in boundary integral computations alleviates memory and execution time requirements con-
siderably thus enabling the analysis of antenna configurations which result in large numerical
systems.

1 Working principle of AIM-Plate

A metallic scatterer can be considered as a special case of a resistive body with the resistivity
R, = 0. A resistive body is modeled using the resistive boundary condition [1]

i x (E' + E°) = poR,J (1)
Consider a resistive body illuminated by an incident plane wave of unit amplitude given by
Ei — (é cos o + (%Sin Ot) ejko(a:sint?icosq&ﬁysin& sin ¢;) (2)

where kg is the free space wavenumber, « is the polarization angle and (6;, ¢;) indicate the
direction of incidence. The scattered field E® can be determined from the surface current J
according to

E°=—jwA -V¢ (3)
where the magnetre vector potential A is given by -. |

e—jkoR

A) =12 //S J(x')—ds’ (4)




with S being the surface of the body. The scalar potential ¢ is given by

o(r) = — [[ o) s, (5)
e, JJs R
where R is the distance between observation and source points, viz.
R=lr—r|= /e -+ -y)+ (-2 (6)
The continuity equation is used to relate the surface charge density and the current
V,-3=—juo (7)

Enforcing (1) on S yields the electric field integral equation for J
E,, =(jwA+V¢)un+nRJI r € S (8)

To model the current, the scatterer is discretized into triangular patches. The current is then
expanded in terms of vector basis functions [2] which are especially suited for triangular
domains. Each basis function is associated with an interior (nonboundary) edge, and is
nonzero only on the two triangles sharing that edge. Figure 1 shows the n®* interior edge
shared by triangles T'F and T of area A} and A;, respectively. A point in the triangle pair

th
n edge

Figure 1: Local coordinates for the n* edge

can be designated by either the global position vector r, or local position vectors p,* = r—r.
The basis function f,(r) for the n* edge is defined as

In E, r n T,j'

2{13_ '
fn(r) = 2:; Pn, T N Tn— (9)
0, otherwise
The current J on S is approximated by
N
J 2N LLf(r) (10)
n=1
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where N is the number of interior edges and the unknown coefficients I, represents the
current density flowing across the n'* edge of the mesh shared by the T} and T, triangles.
To solve for the basis coeficients, Galerkin’s technique is applied to (8) giving

//SEi.fmdS:jw//SA-fmdS—//SgﬁVs-fmdS+no/erJ-fmdSm:1,...,N. (11)

Using (9) in (11) yields the N x N system of linear equations, V = ZI where [, is the Ntk
basis coefficient, Z,,, is the impedance matrix whose elements are computed from

. nolmln l / 1 + ) L/ e_jkoRd ,
Lo = { [ s ot ) S as'as
—jkoR

-~ on? //Ti //T:t Z;nzi - ds'dS

b [ ) 0 ds} )

where €,, and €, are the positive current reference signs for edges m and n, defined as

41l ran T} .
Em ‘{ 1 rin T (13)
and
41 v in T _
n ‘{ ~1 v in T (14)
The elements of the interaction matrix can be computed directly from (12). However, a more
convenient way of evaluating these elements is to consider a pair of faces and compute all
nine interactions between edges contained by this pair. This enables the loops for assembly
of the matrix elements to be over faces, instead of edges, thus speeding up the assembly

process. For an observation face p paired with a source face ¢, the quantity Z?9 is computed
for all mn edge pairs as

zm, - el I /Tq ) 1) o as'aS
- 5l //Tq s
+ RS // ot (x dS} (15)

The positive current reference signs, €, and €,, are now assigned according to

+1, if TP is T}
{ ~1, if TP s T (16)

and
+1 if T? is TF
q — ) n
6”_{ -1, of T%4s T (17)



The integrals in (15) are evaluated for near and self cells by the techniques detailed in [3].
It should be noted that in (15) T, = T,t + T, and Ty = T, + T, thus computation of Zf,
involves summation over four triangles. The elements of the excitation vector are given by

i A A
V., = b () (fcosa + ¢sina)

2 Jrx At
ejko(xsino,- cos ¢;+y sin ; sin ¢;) ds. (18)

The N x N linear system can be solved either by direct methods such as matrix factorization
(which would mean an execution time of O(N?)) or iterative methods involving an operation
count of O(N?)/iteration.

The Adaptive Integral Method is an algorithm which reduces the computationally com-
plexity of moment method solutions. In the case of AIM, the CPU reduction is achieved by
mapping the original MM discretization onto a rectangular grid and exploiting the Toeplitz
property of the Green’s function on this grid. That is, the Fast Fourier Transform (FFT)
is invoked to compute the matrix-vector products in the iterative solver. For an arbitrary
three dimensional body, a three dimensional FFT is required and as can be understood, this
calculation is very time consuming. For planar scatterers the dimensionality of the FFT is
reduced by one, thereby significantly accelerating the solution. In this report, we examine
the benefits of AIM when the body is not electrically large, but is highly tessellated owing to
its intricate construction, thus leading to a large unknown count. We show that significant
savings in CPU and memory can be achieved by AIM and examine its accuracy for near field
and far field computations.

1.1 AIM for Planar Scatterers

In this report, we describe the application of AIM to planar scatterers. Following the stan-
dard moment method discretization procedure, we begin with the linear system

[Z{1} = {V} (19)

with [Z] being the elements interaction matrix, whereas {I} is the vector of the unknown
coefficients and {V'} is the excitation vector. The matrix [Z] is fully populated, demanding
O(N?) storage, and each [Z]{I} matrix-vector product requires O(N?) multiplications.

Fast algorithms such as FMM and AIM are used to reduce the operation count from
N? down to N®, where o < 1.5. Both algorithms work on approximating the far zone
interactions. In the case of AIM, the CPU reduction is achieved by first splitting the matrix
as

(2] = (2] + [27] (20)

based on a threshold distance referred to as the near-zone radius. The matrix [Z"**"] contains
the interactions between elements separated less than the threshold distance, whereas [Z/"]
contains the remaining interactions. The elements of [Z"¢*"] are evaluated with the exact
MM while those of [Z/%"] and the product [Z79"]{I} are evaluated in an approximate manner
as prescribed by the AIM procedure [4].

Application of AIM requires that the whole geometry be enclosed in a regular rectangular
grid. Basically, the fields of each interior edge is re-expressed using a new expansion based



on delta sources located at the nodes of the uniform AIM grid as depicted in Figure 2. For
the m** edge, this new expansion has the form

M
=) 6(z = Tmg)8(y — Ymg)[A7,,E + AT, 9] (21)

where r,,, are the position vectors of M? points on the square surrounding the center of the
edge and §(z) is the usual Dirac delta function. The coefficients A7Y are suitably chosen so
that the new expansion is equivalent to the original representation using triangular elements.
A similar expansion is used for the divergence of the basis functions

M2
= 3 8 200 — YA, @)

To find a relation between the AZ¥ and I, coefficients, we equate moments of the two
expansions up to order M. Specifically, we set

M" =F" (23)

91,92 91,92

where

M2, = [ [ (e - w)(y - ) ndedy for 0< g <M
M2

= D (Tmg — Ta)" (Ymg — Ya) 2 [AT & + Abgdl] with ¢=q + ¢ (24)
g=1

Fio / / (z = 2a)" (Y — ya) " dzdy (25)

Similarly, by equating moments of V,-J; with the new expansion (22), we establish a relation
between A2 and I,,. That is, we set

Ditg2 = Hyl 2 (26)
where
M2
Dy = [ [T vhie 2ty - v dedy = Y (amg = 20)" (g — 00, (20
g=1
= [ [ 90 (e = 2y = )" dody (28)

(23) and (26) give three M2 x M? systems yielding the equivalence coefficients as the solution.
This process is depicted pictorially in Figure 2.

Were we to use the equivalent expansions to represent the currents everywhere, the
resulting impedance matrix will be of the form

(2151 = Z[A] [GIIATY (29)

In this, [A]; are the sparse matrices containing the coefficients of the expansion (21 ) and
(22) whereas [G] is the Toeplitz matrix whose elements are the free space Green’s function
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Figure 2: The process of transformation from the original MM grid onto the AIM grid

evaluated at the grid points. It has been shown in [4] that [Z%}3}] is not of sufficient accuracy
for modeling the interactions between the nearby current elements. To take advantage of
the Toeplitz structure of [G] and sparsity of [A] we can still use [Z{%] to represent the far
element interactions. However, we will retain the exact interaction matrix elements for the

near element interactions. That is, we rewrite [Z%2}] as

(215150 = (2035 + (2030 (30)
Comparing this to (20) and setting [Z]7*" ~ [Z]i%, we can rewrite the original [Z] matrix
as

1)~ (27 (2530 + 12155 &
12) 18]+ YIAHGINT )

where [S] = [Z]"*" — [Z]%4; is a sparse matrix corresponding to the difference between the
near field interactions computed by MM and AIM. The Toeplitz property of the Green’s
function, defined on the regular grid, enables use of the FFT to accelerate the computation
of the matrix-vector product. The sequence of operations involved in the construction of
the coefficient and Green’s function matrices are indicated in Figure 3(a); those for the
matrix-vector product execution are outlined in Figure 3(b). In the computation of the
matrix-vector product, the initial step of transforming the currents from the original MM
grid onto the uniform AIM grid is comparable to the grouping operation of the FMM. While
the FMM relies on grouping to reduce the number of scattering centers, the sequence of
operations in AIM can be interpreted as a realignment of scattering centers onto a regular
grid. Although, this process does not reduce the number of scattering centers, the regularity
of their location enables use of the FFT for fast computation of matrix-vector products.

1.2 Results

When examining the merits of a fast integral algorithm such as AIM, of importance is
the memory and CPU requirements, both contrasted to the delivered accuracy. Although
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Figure 3: (a) Matrix build operations and (b) Matrix vector product computation in AIM

approximate analytical expressions have been derived in [4] for some of these parameters,
these refer to implementations involving cubical grids and the three-dimensional FFT. Our
goal in this chapter is to assess the accuracy of AIM in treating small details within an
aperture/surface and to provide the reader with quantitative measures on the performance
of AIM when implemented with the two dimensional FFT. The near-zone radius or threshold
distance has a dramatic impact on the CPU requirements since it controls the non-zero
element population of the system matrix. In the case of AIM, because of the inherent
mapping to a uniform grid, we are highly interested in examining its suitability to model
small and fine details embedded in much larger scale structures. The calculations for the
plate configurations given next are intended to address this issue by examining the method’s



performance for a number of representative and practical situations. All of the included
results were generated using single precision arithmetic on an HP9000/C-110 workstation
with a rated peak speed of 47 Mflops (the level 4 optimization option was also used). In all
cases, a third order (M=3) multipole expansion was used with a grid spacing of 0.05.

Figures 4-8 depict the 00 and ¢ polarization radar cross section patterns (¢ = 0° cut)
as calculated by AIM for the different threshold distances indicated on the figures. The
first circular plate has no holes and was used to validate the method. From the pattern
comparisons, it is clear that AIM recovers the exact result very well. As given in Table 1
and 2, AIM achieves this with at least a factor of five less memory thanthe traditional MM,
even though the geometries are still rather small to demonstrate the full impact of AIM.
Also, Table 2 shows that a near zone radius of 0.3X is sufficient to maintain good accuracy
(below one dB in RMS error [5]).

The advantage of AIM is more pronounced when gaps are inserted into the plate’s surfaces
and this is the primary reason that one may prefer AIM over other fast integral methods for
planar structures. As depicted in Figures 5 and 6, AIM maintains its accuracy for the same
threshold criterion even though the gaps/slots have a dominant effect on the RCS pattern as
shown in Figure 5. In the case of narrow slots (or thin ridges in the plates) of width 0.03),
the memory requirements of the traditional MM increase quickly due to the higher element
density. For the geometry in Figure 7, AIM yields memory saving of 79% and the CPU
time is reduced by a factor of 12 while retaining the monostatic pattern accuracy to within
a tenth of a dB. This is achieved by using a uniform AIM grid density of 20 points per linear
wavelength even though the cell density of the original plate mesh is much greater due to
the narrow slot. One may assume that this change in grid density will affect the near zone
field. However, our observations indicate that the surface current is equally accurate. For the
configuration in Figure 7 the average current density error is 7.3% for a threshold distance of
0.2) and 6% for a threshold distance of 0.4A. The currents for the geometry in Figure 7 along
the center narrow strip are plotted and compared in Figure 9. These results demonstrate
the important feature that the near zone threshold criterion is not affected by the specific
geometrical details, leading to tremendous memory savings. Moreover, the accuracy of the
results provide a convincing argument that AIM can efficiently handle highly irregular and
resonant (i.e. antenna) geometries as well as smooth scatterers. At the same time, the
convergence rate of the AIM system is unaffected indicating that the system condition is
unchanged. This is of critical importance for fast iterative solutions, since an increase in the
iteration count would annul the faster computation of the matrix-vector product.

Figure 8 shows the monostatic RCS pattern for a grating structure which acts as a
“polarization filter”. The thin ridges in the grating cause a strong specular return for the
¢¢ polarization (almost 10 dB above the return in the absence of the gratings) as is evident
from the results in Figure 8(d). Of importance is that the MM triangular mesh in Figure 8
required a cell size of 0.02\ per linear dimension because of the narrow grating. However,
the overlaid rectangular AIM grid could be selected to have a much coarser discretization.
More specifically, we chose grid spacings of 0.05A and 0.1A for the AIM grid and, thus,
computational requirements of AIM were much lower. For the 0.1 grid spacing the solution
time was reduced from 2.75 minutes down to only 12 secs at the expense of some accuracy
(fraction of a dB). To further increase in accuracy, we employed a 0.05\ grid spacing and as
shown in Figure 8(b) the AIM curve is now indistinguishable from the reference MM result
(within 0.1 dB). From Tables 1 and 2, the AIM computational and memory requirements
are 8 times and 9 times less, respectively, without loss of accuracy. This is a significant



observation and we have found that both the convergence rate and condition of the AIM
system remains essentially unchanged from the original moment method system. The original
discretization for the geometry in Figure 8 and the equivalent AIM grids are pictorially
depicted in Figure 10. It should be noted that even though the size of the discretization is
very small, retaining the self-cell term alone in the moment method system introduces huge
error (Figure 11), thus emphasizing the importance of non-self terms.

1.3 Summary

The performance of AIM is much improved when applied to scattering from flat complex
scatterers and scatterers with high discretization rates. Thus, the reduction of solution time
is considerably more for the geometries depicted in Figure 12(a) and 13(a) than for the ge-
ometries in Figure 12(b) and 13(b). A memory reduction of 5 to 10 times over traditional MM
was observed without compromise in accuracy when using a threshold radius of 0.2X. This
CPU reduction is achieved without resorting to parallelization or optimization techniques
(as is known AIM is particularly amenable to such improvements). More importantly, the
AIM algorithm is capable of modeling very small details in large bodies with a high degree
of accuracy, while simultaneously saving considerable memory. This is of importance when
modeling broadband antennas (spirals or log-periodics) and gratings which are both large
in overall size but can contain features as small as A/100 in size. Application of AIM for
analysis of cavity-backed antennas is described in the next section.

Discretization

Geometry | Facets | Edges | Unknowns | MM memory (MB) | MM solution time
96 pol (6 = 0° inc.)

Figure 4 | 586 908 850 5.51 32 secs

Figure 5 | 554 890 772 4.54 29 secs

Figure 6 | 1130 | 1806 1584 19.14 4 mins 50 secs

Figure 7 | 1036 | 1667 1441 15.84 4 mins

Figure 8 | 1038 | 1957 1157 10.21 2 mins 45 secs

Table 1: Solution CPU time and memory requirement of the moment method

1.4 AIM-Plate execution

The execution of AIM-Plate is done in a three step process

1. Convert the meshed geometry file from IDEAS Master Series 2.1 into a format required
by the code. This is done with the help of two mesh-processing programs - ms21_u2c.f
and c2p_fast.f and the transcript of a session with these programs with reference to
the geometry of Figure 8 is indicated below

[ 271 ] PlateFreqAIM.dir -: ms21_u2c
Name of universal file 7
P1118slotss025.unv



AIM Data
Geometry | Threshold | Non-Zeros | Memory Solution time RMS Error(dB)
(A) in Near Z | (MB) |86 pol (6 = 0° inc.) | 0 pol | ¢¢ pol
0.3 59928 0.68 23 secs 0.1718 | 0.0755
Figure 4 0.4 100182 1.14 25 secs 0.1490 | 0.0693
0.7 257390 2.94 28 secs 0.0728 | 0.0490
Figure 5 0.4 79030 0.9 21 secs 0.0728 | 0.0583
0.6 157994 1.8 27 secs 0.0721 | 0.0520
Figure 6 0.7 283774 3.24 3 mins 32 secs 0.8017 | 0.5185
Figure 7 0.2 296250 3.39 20 secs 0.1063 | 0.0949
0.4 649556 7.43 31 secs 0.0548 | 0.0632
Figure 8 0.2 120220 1.37 18 secs 0.0469 | 0.0469

Table 2: Solution CPU time, memory requirement and RMS error of AIM (all entries in this
table were computed with an AIM grid spacing of 0.05)

Name of converter file 7
cnv

Encountered header

There are 912 nodes.
There are 1038 elements.
[ 273 ] PlateFreqAIM.dir -: c2p_fast
Name of data file?
P1118slotss025Dat
Finished reading in data
There are 912 nodes
There are 1038 elements
Be patient #x!7/#@x!!!
100 elements done

200 elements done

300 elements done

400 elements done

500 elements done

600 elements done

700 elements done

800 elements done

900 elements done

1000 elements done

Max. no. of edges emanating from a node = 6
1957 1957

Edge count = 1957
Finding free edges

There are 800 free edges

2. Run the AIM preprocessor program to determine the appropriate dimensions to be
set in the file dim.inc. The transcript of a session with PreProc.f is indicated below
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again with reference to the geometry of Figure 8

[ 262 ] PlateFreqAIM.dir -: PreProc
Input name of mesh file (Note: Dimensions
are assumed to be in CENTIMETER) !

P1118slotss025Dat
maxx= .5

minx= -.5

maxy= .5

miny= -.5

Input frequency at which the structure will be
analyzed (GHz)
30

Enter AIM grid step in WAVELENGTHS (0.05 suggested)
Note: The main AIM code has been hard-wired for
0.05 lambda but can be easily changed to 0.1 lambda
by changing the variable step

.05

nx in main progam to be= 25

ny in main progam to be= 25

FFT order along x (iFFTx in main pgm) 64
FFT order along y (iFFTy in main pgm) 64
Total number of elements= 1957

maxnod= 2700

maxedg= 8100

maxtri= 5400

nmax= 4
nintedg= 1157
ntris= 1038

Order of system = 1157
No. of triangular elements = 1038

Enter near field threshold in CENTIMETER
Note: This is related to the Maximum

number of non-zeros in the near-field matrix
Recommend this to be 0.2-0.7 times the
wavelength in centimeter. This is a
empirical quantity and needs to be
determined by trial & error
0.2

Set number of nonzeros in Near Z = 60110

3. Now the AIM program is executed and a sample session is indicated below
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[ 259 ] PlateFreqAIM.dir -: FltrcAIM
Enter mesh file name:

P1118slotss025Dat

Enter surface type (1-pec):
1

Enter output file name:
Opfile

Enter pattern (1-bistatic, 2-backscatter):
2

Enter E-field polarization angle alpha (in degrees):
0

Number of cuts

1

Enter cut specificatioms...

Fix (1-phi, 2-theta):

1

Enter fixed observation angle phi (in degrees):

0

Enter start observation angle theta (in degrees):
0

Enter stop observation angle theta (in degrees):
90

Enter number of observation points:

91
Enter Frequency (GHz)
30
--------------- Files -—-=-===-===---—=--
Mesh: P1l118slotss025Dat
Output: Opfile
------------ Surface Type -----=-----
PEC
------------ Pattern Type ---=--------
Backscatter
-------- Observation Angles =---------
Number of cuts : 1
Cut # 1
Phi: .00 deg.
Start Theta: .00 deg.
Stop Theta: 90.00 deg.

--- Number of Observation Points ----

12



91
---Frequency of analysis: 30.0 GHz--

Above data 0.K. (1-Yes, 2-No)?
1

Finished reading nodes
Finished reading elements
Interior edges = 1157
No. of triangular facets = 1038
50 triangles done

100 triangles done

150 triangles done

200 triangles done

250 triangles done

300 triangles done

350 triangles done

400 triangles done

450 triangles done

500 triangles done

550 triangles done

600 triangles done

650 triangles done

700 triangles done

750 triangles done

800 triangles done

850 triangles done

900 triangles done

950 triangles done
1000 triangles done
Equivalence coefficients computed now
50 elements done

100 elements done

150 elements done

200 elements done

250 elements done

300 elements done

350 elements done

400 elements done

450 elements done

500 elements done

550 elements done

600 elements done

650 elements done

700 elements done

750 elements done

800 elements done

13



850 elements done

900 elements done

950 elements done

1000 elements done
1050 elements done
1100 elements done
1150 elements done
Toeplitz G calculation

Enter near field threshold in CENTIMETER
Note: This is related to the Maximum
number of non-zeros in the matrix
Recommend this to be 0.2-0.7 times the
wavelength in centimeter. This is a
empirical quantity and needs to be
determined by trial & error

0.2

The output will then appear in the following format indicating the angles of observation
(Phi & Theta), Backscatter RCS and number of BCG iterations for convergence.

Phi Theta Alpha=0 BCG Iter
0.00 0.00 0.074222 484
0.00 1.00 0.068417 148
0.00 2.00 0.047878 168
0.00 3.00 0.013304 161
0.00 4.00 -0.036448 161
0.00 5.00 -0.097169 161
0.00 6.00 -0.171789 171
0.00 7.00 -0.258932 185
0.00 8.00 -0.356277 178
0.00 9.00 -0.463876 172
0.00 10.00 -0.581200 191
0.00 11.00 -0.704883 194
0.00 12.00 -0.832557 179
0.00 13.00 -0.972245 203
0.00 14.00 -1.111443 198
0.00 15.00 -1.254094 184
0.00 16.00 -1.397070 189
0.00 17.00 -1.541648 177
0.00 18.00 -1.684258 141
0.00 19.00 -1.823769 140
0.00 20.00 -1.961649 142
0.00 21.00 -2.096322 146
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.830948
.226508
.638626
.069971
.519878
.988374
476139
.982099
.510056
.058821
.628474
.220427
.832880
.473590
.137205
.827974
.545870
.293951
.073139
.887245
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147
149
177
156
148
147
146
148
148
147
171
172
189
167
132
180
150
150
148
150
150
155
194
162
150
185
172
173
179
172
178
191
185
168
138
170
171
178
178
173
177
178
178
188
186
195
184



.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
Phi

O O O O O O O O OO O O O OO O O O O O o o

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O O O O O O O O O O O O O O O O O O
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o

N NN B R s s S s S s
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-19.737566
-20.627750
-21.561594
-22.543802
-23.579075
-24.673714
-25.835037
-27.072275
-28.397873
-29.824045
-31.369724
-33.056828
-34.916584
-36.988480
-39.333023
-42.032391
-45.216888
-49.106750
-54.116230
-61.165161
-73.211105
-121.335602

Alpha=90
.583014
.568883
.518059
.430880
.306488
.144302
.945677
.706966
.431199
.115008
. 755467
.357507
.914128
.427933
.893502
.314169
.680663
.998905
.262678
.468545
.620582
.712998
.246950

O L N W Whd U101 OO0 N N 00 00 00 0 W W W W W O

1
o
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186
185
191
190
179
215
211
304
258
297
231
297
227
304
258
298
251
297
273
340
810
810
BCG Iter



O OO O O O O O O OO O O OO OO OO O OO OO O OO OO0 O OO O OO OO OO OO O O O O O

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

23.
24.
25.
.00
27.
28.
29.
30.
.00
32.
33.
34.
.00
36.
37.
38.
39.
40.
.00
.00
43.
44 .
45.
46.
47 .
48.
.00
.00
51.
52.
53.
54.
.00
.00
57.
58.
59.
.00
.00
.00
63.
64.
65.
.00
67.
68.
69.

26

31

35

41
42

49
50

55
56

60
61
62

66

00
00
00

00
00
00
00

00
00
00

00
00
00
00
00

00
00
00
00
00
00

00
00
00
00

00
00
00

00
00
00

00
00
00

.256379
.294207
.348589
.366242
.294078
.052021
.583304
.852431
.862307
.692267
.396056
071772
.737149
.425569
.151746
.928895
.758909
.633798
.560894
.530453
.537940
.588966
671724
.792987
.940162
.117064
.299952
.510026
.739635
.962952
.203727
.439026
.685131
.921620
.147860
.370139
.572776
.765730
.939365
.096338
.241356
.370316
.479603
.574388
.656987
. 726567
.788289
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585
291
303
563
298
300
333
471
336
299
437
367
333
461
302
436
281
261
461
273
469
444
373
370
474
261
485
381
455
257
481
549
361
539
495
256
505
473
448
511
553
965
455
394
531
477
403



0.00 70.00 -8.845181 486
0.00 71.00 -8.884315 549
0.00 72.00 -8.905354 387
0.00 73.00 -8.954330 564
0.00 74.00 -8.979956 502
0.00 75.00 -9.005004 541
0.00 76.00 -9.016927 242
0.00 77.00 -9.042066 540
0.00 78.00 -9.054319 244
0.00 79.00 -9.071721 459
0.00 80.00 -9.083326 242
0.00 81.00 -9.100692 461
0.00 82.00 -9.104582 650
0.00 83.00 -9.114861 595
0.00 84.00 -9.124923 241
0.00 85.00 -9.128168 388
0.00 86.00 -9.142673 238
0.00 87.00 -9.138368 151
0.00 88.00 -9.140660 151
0.00 89.00 -9.148211 331
0.00 90.00 -9.147070 140
Cut # 1done

2 Working principle of AIM-Prism

In this section, we review a finite element - boundary integral formulation for analyzing
three dimensional cavity-backed antennas. The finite element discretization is in the form of
triangular prisms. Such prisms are the element of choice for modeling planar antennas with
fine detail (as small as 50 or 100*" of a wavelength) as they require only surface discretization
information. In contrast to tetrahedral elements [6], this eliminates the need to generate
volume meshes which could be tedious and also removes the possibility of ill-conditioned
systems due to degraded mesh quality. In general, for modeling planar configurations the
prism element also requires lesser number of unknowns than tetrahedral elements. However,
very small details and consequently dense meshes can still lead to boundary integrals with
extremely large computational requirement. In the previous section it was shown that AIM
reduces the computational requirement considerably. In this section, we present the key
elements of a three dimensional finite element - boundary integral formulation with emphasis
on the boundary integral computation. For details on the prism element the reader is referred
to [7].

Consider a cavity-backed antenna recessed in a ground plane as depicted in Figure 14.
To solve for the E-field inside and on the aperture of the cavity, it is necessary to extremize
a functional, which for radiation and scattering problems may be generalized as

F(E) = %///V{(VXE)-E,.“I-(VxE)—kSE-é-E}dV
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+ /// (RoZod +V x 571 M) dV

+ jkeZo / / .(H x #)dS (33)

where €, and /i, denote the relative tensor permittivity and permeability of the cavity filling,
So represents the non-metallic portions of the aperture and Sy denotes the junction opening
to the feeding structures. The volume Vj refers to the volume occupied by the impressed
sources J; and M;. Also, H denotes the magnetic field on Sp or Sy and 7 is the outer normal
to these surfaces.

For a unique solution of E we require knowledge of H over Sy and Sy . In the case of
St, H is determined by the feed excitation while that over the non-metallic portions of the
aperture is determined by the boundary integral equation

H = H” + 2jkoYo / /S G(r,r') - (2 x E(r)) dS' (34)

where G is the electric dyadic Green’s function of the first kind such that i x G=0is
satisfied on the metallic platform. For the cavity recessed in a ground plane, G becomes the
half space dyadic Green’s function

e—ikoR

_ _ 1 (
6= (14 Lvv) 22 .

with R = |r — r/| and I is the unit dyad. For this problem, H% is equal to the sum of the
incident and reflected fields for scattering computations and zero for antenna analysis. To
discretize (33) the volume region is subdivided using prismatic elements. The field in each
prism is approximated using a linear edge-based expansion as

Z EsVe = [V]T{E) (36)

where [V], = [{V.},{V,},{V.}] and {E°} = {E%, ES,..., ES}T. On the aperture, since the
top and bottom faces of the prism are triangles, we have a corresponding representation for
the aperture fields as

Z E:S3(r) = [S]F{E*} (37)

where [S]s = [Sz, Sy)-
To generate a linear system for the solution of Ef, (36) and (37) are substituted into
(33). Subsequent minimization of the functional yields

OFV Ny
{aEe} —Z:A]{Ee}+Z[B]{Es}+Z{Ke}+Z{LS }=0 (38)

where N, and N; indicate the number of volume and surface elements, respectively. The
matrix elements are given by

- ///ve{(v X Vi) it (VX V)= kVi-&-V;}dV (39)
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K= ///V Vi [jkZd +V x iV x M| aV (40)

B = - / /S / . 2k3S:(r) - S5(r')Go(r, x')dSdS’
o f[ [V xS0 x 850 Galr,r)dSdS’ a
(=Y - (H x 2)d 42
L; 2J790Z()//5852 (H' x 2)dS (42)

The boundary integral equation in (41) is discretized using basis functions defined on the
top face of the prism as

Si = 5-1;1—62: X (I' — I‘i) (43)
similar to the function defined in (9). Substitution of (43) into (41) gives the discretized
boundary integral which is treated using the procedure outlined in Section 1.

Several cavity-backed antennas contain small features and details which may necessitate
high discretization. This could take the form of very narrow slots which may be a fiftieth
or hundredth of a wavelength in width. Discretization of such geometries could lead to very
large numerical systems even if the size of the antenna is not electrically very large. To
efficiently treat such systems, the properties of an algorithm based on an iterative solver,

should include the following

e It is of paramount importance that the “threshold” distance (distance beyond which
interactions are treated as of the far zone variety) is as small as possible.

o It should be capable of characterizing small perturbations in an otherwise smooth
surface.

o It should be capable of modeling near fields accurately.

o If the algorithm incorporates a process by which very small discretization details can be
“mapped” onto a different domain which is less dense than the original, computation
of the matrix vector product in this domain would simulate the effect of a reduced
number of unknowns.

Figures 8 and 9 depict two planar configurations analyed by the AIM from which it can
be gleaned that all the above criteria are met. Unlike FMM, which carries out the matrix
vector product on the original moment method discretization, the ability of AIM to map
the small details onto a sparse grid and still retain accuracy makes it the method of choice
to analyse such antennas. For efficient modeling of the cavity we employ FEM with its low
O(N) storage and execution time. Triangular prisms are used for discretization of the cavity
volume for the reasons described in [7].

2.1 Implementation

The FE-BI formulation for three dimensional cavity-backed antennas using prismatic ele-
ments is described in the previous section. Substitution of (43) in (41) gives a discretized
boundary integral of the form in (15). The near and far zone terms are treated as outlined in
1.1. The FEM matrix and the near zone interactions of AIM are stored in a sparse storage
format, thus affecting significant savings in memory.
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2.2 Results

Figure 15 shows the radiation pattern for an annular slot computed in the elevation plane,
¢ = 5°. The reference FE-BI solution [7] is contrasted with computations of BI using AIM
(indicated as FE-AIM). It is seen that for this example, the threshold distance in AIM can be
reduced to 0.25\ without significant loss of accuracy. This enables the reduction of matrix
entries stored in the near field portion by a factor of three resulting in a corresponding
savings in memory as indicated in the tabulation of the near-zone non-zero entries. Figure
16 shows the radiation pattern for the same antenna in the ¢ = 90° elevation plane. The
normal direction in this plane, reveals the characteristic separation between co-polarization
and cross-polarization levels for the annular slot at observation angles close to normal in
the elevation plane. From this figure, it is gleaned that the threshold distance in AIM can
be reduced down to even 0.15) if an average error of a dB could be tolerated. From the
computation of near-zone matrix entries, such a threshold would result in a factor of five
saving in memory. Figure 17 shows a scattering cross-section for the same slot but at a
frequency of 0.73 GHz (at which the antenna is electrically even smaller) instead of the
previous 1 GHz. It should be noted that for a threshold of 0.4 (larger than the diameter of
the BI contour) the near-zone and far-zone entries for AIM cancel each other in accordance
with (31), thus yielding a very small error (0.00086 dB) in comparison to the FE-BI solution.
A quantity of vital importance in antenna computations is input impedance. Figure 18
depicts the input impedance of a very narrow probe-fed annular slot, computed using FE-BI
and FE-AIM. The probe is placed at y = 0. It is seen that evaluation of the boundary integral
with AIM enables the reduction of the near-zone non-zeros by more than half. Computation
of input impedance demands very high accuracy and the threshold distance was held constant
at 10.5 cm (corresponding to 0.35A at 1 GHz and 0.49X at 1.4 GHz - the corresponding
diameter of the entire BI contour varying from 0.513\ to 0.718)X). While, Figures 15-18
demonstrate the ability of AIM to translate very fine details such as a narrow slot onto
a coarser equivalent grid, Figure 19 and 20 indicate the importance of a low threshold
distance in modeling cavity-backed antenna arrays. Figure 19 and 20 indicate that for an
average error of less than a dB in scattering and radiation patterns it is possible to reduce
the number of non-zeros in the near-zone part of the impedance matrix by a factor of six,
resulting in substantial saving in memory. This is a consequence of employing a threshold
distance of 10 cm, which is about a fifth of the cavity diameter. It is necessary to note
that employing such a threshold distance results in a majority of the interactions between
different slots being treated with the AIM procedure. This is of paramount importance in
modeling antenna arrays and spiral antennas. While Figures 15-19 compare spatial domain
FE-BI and FE-AIM solutions, Figure 21 compares the spatial domain FE-AIM solution with
a spectral-domain FE-BI solution presented in [8] for the scattering by a cavity-backed patch
antenna.

2.3 Summary

AIM, with its low threshold distance, and ability to translate to an equivalent grid is capable
of saving a significant amount of memory and solution time for bodies which are finely
discretized even though they may not be electrically large. Its accuracy is preserved even
while performing radiation computations thus making it the method of choice for analyzing
antennas with intricate details.
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2.4 AIM-Prism execution

Computation of radiation with AIM-Prism is a three step process, however for the geometry
in Figure 18 step one and two have already been executed and are listed merely to aid future
development

1. Mesh the antenna geometry of choice. AIM-Prism requires just a surface mesh since
it employs prismatic elements. The surface mesh needs to have the following details

o Triangles in the slots need to be grouped.

o Nodes in the slots nees to be grouped.

e Boundary nodes belong to both metal and aperture groups.
e Corner nodes need to be grouped.

¢ Nodes between which probes are connected need to be grouped

A universal file (level 6 IDEAS) meeting these specifications is ring_slot.unv which
contains the geometry depicted in Figure 18. It is processed with the pre-processor
shell_level6.f toextract the above information. A dimension file DIM.INCalong with
other subsidiary files is written as a result of the pre-processing operation. DIM.INC
needs to be augmented with information from the AIM pre-processor executed in step
2 before it is complete. A transcript of the session with the IDEAS level 6 pre-processor
is indicated below.

[ 412 ] temp -: shell_level6
NAME OF UNIVERSAL FILE 7
ring_slot.unv

ENCOUNTERED HEADER

THERE ARE 270 NODES.

THERE ARE 512 ELEMENTS.

THERE ARE 96 NODES ON THE SLOTS

THERE ARE 96 ELEMENTS ON THE SLOTS

THERE ARE 26 NODES ON THE EDGE OF TOP

THERE ARE 2 PROBES IN THE SYSTEM

BE PATIENT !!! COUNTING EDGES...

EDGE COUNT = 781

PROCESSING SLOT FOR ON-SURFACE EDGES. ..
96 SLOT SURFACE-TRIANGLES.

THERE ARE 192 SLOT EDGES AND 96 NONPEC’S
685 EDGES ON THE PEC SURFACE

2. The AIM pre-processor determines dimension parameters related to the boundary in-
tegral. This program PreProcAnt.f produces the following output

[ 343 ] AIMPrism.dir -: !!

PreProcAnt
maxx= 8.075
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minx= -8.075
maxy= 8.06903
miny= -8.06903

Input frequency at which the structure will be
analyzed (GHz)
1.35

Enter AIM grid step in WAVELENGTHS (0.05 suggested)
Note: The main AIM code has been hard-wired for
0.05 lambda but can be easily changed to 0.1 lambda
by changing the variable step

.05

nx in main progam to be= 19

ny in main progam to be= 19

FFT order along x (iFFTx in main pgm) 64
FFT order along y (iFFTy in main pgm) 64
maxnod= 96

maxedg= 192

maxtri= 96

nmax= 50

nintedg= 96

ntris= 96

Order of system = 96

No. of triangular elements = 96

Enter near field threshold in CENTIMETER
Note: This is related to the Maximum

number of non-zeros in the near-field matrix
Recommend this to be 0.2-0.7 times the
wavelength in centimeter. This is a
empirical quantity and needs to be
determined by trial & error

10.5

Set number of nonzeros in Near Z = 2245

As a result of this the dimension file DIM. INC is augmented by the following few lines

Parameter (nonzero=2245)
Parameter (nx=19)
Parameter (ny=19)
Parameter (iFFTx=64)
Parameter (iFFTy=64)
Parameter (ordermax=10)

3. AIM-Prism is then executed and an example which produces the input impedance at
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1.35 GHz for the annular slot ring is depicted below

[ 347 ] AIMPrism.dir -: NewPrism
s*xx*kxk USER-ORIENTED DATA INTERFACE *¥%**x*
ok ok ok ok kK ok sk ok koK o ok ok ok ok sk ok ok ko sk sk ok ok ksl sk ok skok o sk ok ok ok ok ok

INPUT CAVITY HEIGHT AND NUM. OF SGMTS. ALONG Z
32

INPUT SEGMENT SIZE ALONG Z AXIS FROM TOP TO BTM.
ENTER THE HEIGHT FOR SEGMENT 1(1 REAL)

1.5

ENTER THE HEIGHT FOR SEGMENT 2(1 REAL)

1.5

INPUT NUMBER OF DIELECTRIC LAYERS (1 INTGR)
1

ASSUME THE LAYERS ARE COUNTED FROM THE BOTTOM, THUS
EP,EU (2 CMPLX) & NUM. OF SEMS. (1 INTGR) FOR LAYER 1
(1.35,0.) (1.,0.) 2

ENTER PATTERN (1-BISTATIC,2-BACKSCATTER,3-RADIATION):
3

ENTER FEED STYLE: (1-VERTICAL,2-HORIZONTAL)

2

ENTER FREQ. (IN GHz):

1.35

ENTER: 1-RADIATION PATTERN,2-INPUT IMPEDANCE,3-GAIN
2

ENTER TOLERANCE (eg. 0.0001) FOR BICG ITERATIONS:
.001

ABOVE DATA 0.K. (1-YES, 2-N0)?

1

TOTAL PEC EDGES: 1544

TOTAL NUMBER OF NON-PEC EDGES: 1339< 2400

TOTAL NUMBER OF EDGES: 2883< 4000

DONE WITH FEM MATRIX FILLING!

Equivalence coefficients computed now
50 elements done
Toeplitz G calculation

Enter near field threshold in CENTIMETER
Note: This is related to the Maximum
number of non-zeros in the matrix
Recommend this to be 0.2-0.7 times the
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wavelength in centimeter. This is a
empirical quantity and needs to be
determined by trial & error

10.5

50 elements done

DONE WITH BI MATRIX FILLING!

NS 2 3

FINISH COMBINING! START BICG ITERATION...
Iteration number 1 Residual .9794996
Iteration number 2 Residual 1.17442
Iteration number 3 Residual 1.21015
Iteration number 4 Residual .8353357

Iteration number 1146 Residual 4.96248E-03
Iteration number 1147 Residual 7.29750E-03
Iteration number 1148 Residual 2.34599E-03
Iteration number 1149 Residual 2.00533E-03
Iteration number 1150 Residual 1.48691E-03
Iteration number 1151 Residual 2.24077E-03
Iteration number 1152 Residual 1.99295E-03

1152 TIMES ITERATIONS!
1.35 59.84542 -67.166

2.4.1 Cavity-backed slot array analysis

For the slot array of Figure 20, the procedure for the single slot discussed above differs in a
few respects. The universal file is an IDEAS Master Series 2.1 which is converted with a new
pre-processor shellMSC.£. Also, for the radiation pattern each of the four slots is fed and
the file containing the probe feeds ESOURCE is correspondingly augmented. The transcript
of the slot array run is indicated below

**xxkkx JSER-ORIENTED DATA INTERFACE *kxxk¥x
sk sk okok koksk kol ok sk kol skl sk kol ok ok ok stk ok sk ok ok sk ok ok sk ok ok

INPUT CAVITY HEIGHT AND NUM. OF SGMTS. ALONG Z
1.51

INPUT SEGMENT SIZE ALONG Z AXIS FROM TOP TO BTM.
ENTER THE HEIGHT FOR SEGMENT 1(1 REAL)
1.5

INPUT NUMBER OF DIELECTRIC LAYERS (1 INTGR)
1

ASSUME THE LAYERS ARE COUNTED FROM THE BOTTOM, THUS
EP,EU (2 CMPLX) & NUM. (2,0) (1,0) 1
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OF SEMS. (1 INTGR) FOR LAYER 1

ENTER PATTERN (1-BISTATIC,2-BACKSCATTER,3-RADIATION):
1

ENTER FEED STYLE: (1-VERTICAL,2-HORIZONTAL)
2

ENTER FREQ. (IN GHz):

1

ENTER E-FIELD POLARIZATION ANGLE ALPHA (IN DEGREES):
0

ENTER ANGLES OF INCIDENCE...

PHI (IN DEGREES):

0

THETA (IN DEGREES):
0

ENTER CUT SPECIFICATIONS...

FIX (1-PHI, 2-THETA):

1

ENTER FIXED OBSERVATION ANGLE PHI (IN DEGREES):
90

ENTER START OBSERVATION ANGLE THETA (IN DEGREES):
0

ENTER STOP OBSERVATION ANGLE THETA (IN DEGREES):
90

ENTER NUMBER OF OBSERVATION POINTS:

90

ENTER TOLERANCE (eg. 0.0001) FOR BICG ITERATIONS:
0.001

ABOVE DATA 0.K. (1-YES, 2-N0O)?

1

TOTAL PEC EDGES: 4546

TOTAL NUMBER OF NON-PEC EDGES: 983< 2500

TOTAL NUMBER OF EDGES: 5529< 6000

Equivalence coefficients computed now
50 elements done

100 elements done

150 elements done

200 elements done

Toeplitz G calculation

Enter near field threshold in CENTIMETER
Note: This is related to the Maximum
number of non-zeros in the matrix
Recommend this to be 0.2-0.7 times the
wavelength in centimeter. This is a
empirical quantity and needs to be



determined by trial & error

10

50 elements done

100 elements done
150 elements done
200 elements done

FINISH COMBINING!

Iteration number 1 Residual 1.22629
Iteration number 2 Residual 2.06872
Iteration number 3 Residual 2.49931
Iteration number 4 Residual 4.67545
Iteration number 5 Residual 10.21917
Iteration number 210 Residual 1.20682E-03
Iteration number 211 Residual 1.37842E-03
Iteration number 212 Residual 1.62599E-03
Iteration number 213 Residual 1.42027E-03
Iteration number 214 Residual 1.17562E-03
Iteration number 215 Residual 1.14276E-03
Iteration number 216 Residual 1.03158E-03
216 TIMES ITERATIONS!

.0 1.0 3.33673 3.33345 -27.88

1.01124 1.0 3.32997 3.32668 -27.8791
2.02247 1.0 3.30988 3.30659 -27.9024
3.03371 1.0 3.27648 3.27321 -27.95

4.04494 1.0 3.22976 3.2265 -28.0221

5.05618 1.0 3.16974 3.16652 -28.1189
6.06742 1.0 3.09644 3.09325 -28.2408
7.07865 1.0 3.00988 3.00673 -28.3883
8.08989 1.0 2.91008 2.90698 -28.5618
9.10112 1.0 2.79706 2.79403 -28.7618
10.11236 1.0 2.67086 2.6679 -28.9893
11.12359 1.0 2.53152 2.52864 -29.2448
12.13483 1.0 2.37908 2.37628 -29.5295
13.14606 1.0 2.21356 2.21086 -29.8444
14.1573 1.0 2.03503 2.03243 -30.1909
15.16853 1.0 1.84355 1.84106 -30.5706
16.17977 1.0 1.63916 1.63679 -30.9851
17.191 1.0 1.42192 1.41967 -31.4368
18.20224 1.0 1.19191 1.1898 -31.9281
19.21347 1.0 .9492078 .9472271 -32.4619
20.22471 1.0 .6938675 .6920296 -33.042
21.23595 1.0 .4259951 .4243047 -33.6726
22.24718 1.0 .1456651 .1441254 -34.359
23.25842 1.0 -.147019 -.148405 -35.1076
24.26965 1.0 -.451955 -.453187 -35.9264

START BICG ITERATION...
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25.
.29212 1.
27.
28.
.325683 1.
.33706 1.
.3483 1.0 -

26

29
30
31

32.
33.
34.
.39325
36.
37.
38.
.4382 1.0 -
.44944
.46067
47191
.48315
44 .
45.
46.
.52809
48.
.55056
.5618 1.0 -
.57304
.58427
53.
54.
.61799
.62923
57.
58.
59.
60.
.6854 1.0 -
62.
63.
64 .
65.
66 .
67.
68.

35

39
40
41
42
43

47

49
50
51
52

55

56

61

69
70
71

28089 1.

30336 1.
31459 1.

35954
37077
38201

40449
41572
42696

49438
50561
51685

53932

59551
60675

64046
65169
66293
67417

69664
70788
71912
73035
74159
75283
76406

.77529
.78653
19777

L = S S ST ST = [ T
O O O O O © O

T e O O O =Y
O O O O O O O © O ©

= s R e

.

O O O O O O O O O O

O O O O O O O O O O

0 -.769034 -.770111 -36.8255
0 -1.09814 -1.09906 -37.8173
0 -1.43913 -1.43991 -38.9179
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72.80901 1.0 -25.3852 -25.779 -36.0064

73.82025 1.0 -26.0418 -26.4986 -36.0485
74.83148 1.0 -26.7087 -27.2406 -36.0916
75.84272 1.0 -27.3875 -28.0095 -36.1351
76.85396 1.0 -28.0799 -28.811 -36.1784

77.86519 1.0 -28.7873 -29.6521 -36.2209
78.87643 1.0 -29.5111 -30.5419 -36.2621
79.88767 1.0 -30.252 -31.4919 -36.3015

80.89891 1.0 -31.0102 -32.5172 -36.3385
81.91014 1.0 -31.7837 -33.6386 -36.3728
82.92137 1.0 -32.5682 -34.8851 -36.404

83.93262 1.0 -33.3545 -36.2989 -36.4318
84.94385 1.0 -34.1269 -37.9457 -36.4558
85.95509 1.0 -34.8596 -39.9356 -36.4758
86.96633 1.0 -35.5149 -42.4744 -36.4915
87.97756 1.0 -36.0433 -46.0249 -36.5029

88.9888 1.0 -36.3905 -52.0628 -36.5098
90.00004 1.0 -36.5121 -80.0 -36.5121
141.03u 0.22s 2:33.22 92.1%
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v Self-cell only (¢ pol) [Avg. Error = 31.96 dB]
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Observation angle 6 (deg.)

Figure 11: Error introduced by retaining only the self-cell interactions of the moment method
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Figure 12: (a) Flat and (b) Curved plate with equal side lengths and discretization rates,
resulting in equal number of unknowns. While the moment method yields equal solution time
for both geometries, AIM would accelerate the solution for the geometry in (a) considerably
more than that for the geometry in (b)

Both geometries contain 1681 nodes, 3200 elements, 4800 edges
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Figure 13: (a) Geometry of a 1) square plate gridded at A/40 and (b) 4\ square plate gridded
at A/10. While the moment method results in equal solution times for both geometries since
they have equal number of unknowns, AIM would accelerate the solution for the geometry
in (a) considerably more than that for the geometry in (b) owing to the smaller FFT pad
for the geometry in (a)

38



Annular Slot

Ground plane

Cavity

Feed S ¢

Figure 14: Geometry of a cavity-backed annular slot antenna in a ground plane
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Figure 15: Radiation pattern from an annular slot in the ¢ = 0° elevation plane
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Figure 16: Radiation pattern from an annular slot in the ¢ = 90° elevation plane
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Figure 17: Bistatic scattering pattern from an annular slot; Normal incidence in the ¢ = 0°
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Figure 18: Input impedance of a very narrow annular slot computed with FE-BI and FE-AIM
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Inner radius of each slot = 7.325 cm
Cavity diameter = 49.4 cm

Cavity depth = 1.5 cm

Cavity filling ¢ = 2

Slot width = 1.5 cm

Frequency = 1 GHz (wavelength = 30 cm)
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Figure 19: Bistatic RCS at normal incidence (¢ = 90° plane) from a cavity-backed slot array
computed with FE-BI and FE-AIM
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Figure 20: Radiation from a cavity-backed slot array computed with FE-BI and FE-AIM in
the ¢ = 90° plane
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Figure 21: (a) Geometry and surface discretization of a cavity-backed patch antenna (b)
Monostatic RCS at normal incidence versus frequency - cavity filling has a €, = 2.2 — 70.002

and p, =1
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