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Abstract

In this report we consider the computation of electromagnetic scat-
tering by electrically large dielectric nose radomes. The surface of the
radome is modeled using planar triangular patches and the fast mul-
tipole method (FMM) is applied to the electric field integral equation
(EFIE) for the solution of the discrete system. By virtue of the FMM’s
O(N'5) operation count per iteration substantial solution speed ups
and memory reductions are achieved and therefore the method can
be used to model realistic size radomes. Results from typical nose
radome geometries are presented along with validation data. For very
large geometries, comparison is provided with a body of revolution
code. Several calculations are presented and some of these include the
interaction of the antenna with the nose radomes and demonstrate the
effect of the radome on the antenna pattern.



1 Introduction

Nose radomes serve as enclosures for antennas and are generally pointed
to reduce aerodynamic drag. The performance of a radome is generally de-
scribed by parameters [1] which include the far-field radiation pattern, power
transmittance, boresight error and boresight error slope. Approximate meth-
ods for treating the propagation of the plane wave through a radome include
high frequency techniques which typically consider the radome to be locally
plane and omit guided waves as well as interactions between the radome sec-
tions. Also, treatments of the higher order interactions between the radome
and the antenna have so far been of little attention. Clearly, a more accu-
rate approach is to employ an exact analysis method such as the moment
method technique [2] which is capable of including all first and higher order
phenomena. However, due to the traditional O(N?) storage and O(N?) CPU
requirements the method of moments approach can only be used for small
radome structures. Recently though techniques have been introduced which
can reduce the CPU requirements down to O(N'-*) or less for large scale sim-
ulations. The fast multipole method (FMM) [3] is one of these techniques and
accomplishes the CPU reduction by lumping the far zone moment method
elements into groups. The groups are subsequently interacted (rather than
the elements) to achieve the purported CPU reduction. In the FMM imple-
mentation, the near-zone and self-cell elements are evaluated unaltered and
thus the accuracy of the original method of moments formulation is retained.

2 Formulation

For this application, the thin dielectric radomes were modeled using the
resistive boundary condition [4]

i x (E' + E*) = noRJ (1)

where R is the resistivity, J is the surface current, and E is the incident field
which is a plane wave of unit amplitude given by

Ei — (é cos o + qAﬁsina) 6jko(1:sin0,'cos¢,'+ysin0,'sin¢i) (2)

where ky is the free space wavenumber, « is the polarization angle and (6;, ¢;)
indicate the direction of incidence. The scattered field E° can be determined



from J according to

E°=—-jwA-V¢ (3)
where the magnetic vector potential A is given by
0 / e kol !
A(r):%/SJ(r) —ds (4)
with S being the surface of the body. The scalar potential ¢ is given by
1 , e TkoRt ,
o) = o [ o) s’ (5

where R is the distance between observation and source points given by

R=lr—r|=\a=aP+{y—y)+(z-2) (6)

The continuity equation is used to relate the surface charge density and the
current

V,-J = -jwa' (7)
Enforcing (1) on S yields the electric field integral equation for J
Ei,, = (jwA+Vé¢)un+nRI ron S (8)

To model the current, the scatterer is discretized into triangular patches.
The current is expanded in terms of vector basis functions [5] which are
especially suited to triangular domains. Each basis function is associated
with an interior (nonboundary) edge, and is nonzero only on the two triangles
sharing that edge. Figure 1 shows the n' interior edge shared by triangles
T+ and T, of area A} and A; respectively. A point in the triangle pair can
be designated by either the global position vector r, or local position vectors
Pt =r —r*. The basis function f,(r) for the n'* edge is defined as
2—2};5, r in TF
fr)=1 adpm T I (9

0, otherwise

The current J on S is approximated by
N
J2Y Lf(r) (10)
n=1
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Figure 1: Local coordinates for the n* edge

where N is the number of interior edges and the unknown coefficients I,
represent the current density flowing across the n'* edge of the mesh which
is showed by the 7't and T, triangles.

2.1 Integral equation solution

To solve for the basis coefficients, Galerkin’s technique is applied to (8) ob-
taining

/Ei-fm ds :jw/ Af, dS—/ ¢Vs-fmd8+no/ RIf£,dS, m=1,..N.
S S S S (11)

Using (9) in (11) yields the N x N system of linear equations, V' = ZI where
I, is the N** basis coefficient, Z,,, is the impedance matrix whose elements
are computed from



B noll e~ikoR ,
Zm'n - { /Ti/TiAiAipm()pn() R deS

€ —JkoR

o2 /Ti /Td: ;:Zli ds'dS

+
b [ i) ﬁ(r)dS} 1)

where €, and ¢, are the positive current reference signs for edges m and n,

defined as

41l rin T}

em —{ -1 rin T, (1)
and / N
+1 ' T

“n ={ —1 v in T; (14

The integrals defining Z,,, are evaluated for near and self cells by the tech-
niques detailed in [6]. The elements of the excitation vector are given by

i A A
V., = %T%&"Ag—)-(é?cosa-{-q%ina)

ejko(xsine,' cos ¢;+y sin 0; sin ¢;) ds (15)

The N x N linear system can be solved either by direct methods such as
matrix factorization (which would mean an execution time of O(N?)) or it-
erative methods involving an operation count of O(N?)/iteration. To make
use of the FMM to speed-up the solution it is necessary to employ iterative
methods. In this case it has been shown that the FMM [7] can reduce the
operation count down to O(N'®)/iteration, a substantial reduction. A de-
tailed study of the parameters affecting the accuracy and solution time of
this method is given in [8]. To employ the approximate version of the FMM,
the unknowns are divided into groups with M unknowns in each group and
thus the number of groups will then be % For large source to observation
distances, the kernel in (12) is approximated by using the large argument
expansion as
e~ IkoR o =Jkoryy
~ e k0T e~ koTin Ty (16)
T




where rp; is the distance between the center of the test group [ and the center
of the source group I'; rj is the distance between the jth source element and
its group center and r; is the distance between the ith test element and its
group center (see figure 2). It is important to note that for large source to

~

~.
‘~y/

J Group
K

Figure 2: The process of grouping unknowns - two groups are in the near
field of each other if the distance between their centers ry; is less than dp;,

observation distances integration over the triangular domains is accomplished
by mid-point integration; thus the source and observation co-ordinates in
(12) are replaced by the centroid of the triangular domain of integration.
Also, while the magnitude terms represented by the basis functions are more
easily approximated because of their non-oscillatory nature, the phase term
in the kernel needs to be accurately computed. The decoupling of test-source
element interactions in the kernel as in (16) enables the computation of the
matrix-vector product for far-field groups with a reduced operation count
as detailed in the following sequence, where we have considered only the

oscillatory term in the kernel.

1. For each test group, the aggregation of source elements in a single
source group involves M operations, corresponding to the number of



elements in the source group. The aggregation operation corresponds
to
M
b = 3" LeHurinns )
j=1
. Since the above aggregation operation needs to be done for all source
groups the operation count becomes O(££ M) ~ O(N), where ¥ 57 Tepre-
sents the total number of groups. Also this operation, being dependent
only on the test group rather than the test element, needs to be re-

peated for & 37 test groups leading to a total operation count of O(% 2)
for aggregation.

. The next step would be a translation operation corresponding to

e‘jkorl’l

blll (18)

an =
T
Since this needs to be done only at the group level, it involves O( )
operations for all possible test and source group combinations and 1s
the least computationally intensive step.

. The final step in the sequence would be the process of disaggregation
corresponding to the operation
N/M

Iy= ) cueorin (19)
I'=1

Conceptually, this process is the converse of aggregation. Since this
operation involves only the source group instead of the source element
it needs to be done for each source group thus implying an O( ) opera-
tion to generate a single row of the matrix-vector product. To generate
M rows corresponding to a test group the operation count would be
O(N). With LV— test groups, the operation count would be of O(N—z)

. The near field operation count being of O(NM) and the far field being
O( ) gives a total operation count of

N2
Op.count ~ C;NM + Cg——— (20)

Typically, we can set the elements in each group, M = v/N and as a
result the total operation count is O~ N1,



3 Results

The formulation was first validated for resistive plates. The validating code
employed was based on the resistive boundary condition and representation
of the fields employing the Stratton-Chu integral equation [9]. Figure 3(b)
shows the backscatter RCS of a 1.16A x 0.85)\ plate in the ¢ = 0° plane
for the ¢¢ polarization. Results for a metal plate and a resistive plate with
normalized resistivity of 2.12 — 70.2 are shown and comparison between the
two sets of data is very good. Figure 3(c) shows the corresponding plots for
the 60 polarization.

To validate the typical nose radome geometry, available scattering data
for the Von Karman radome were used for reference. Although, thisis a BOR
structure, it should be remarked that our formulation was not specialized to
this class of geometries. The generating curve for this radome (see figure 4)
is given by [10]

r= % {cos_1 (1 — %Z) — %sin [2005_1 (1 - %)] }5 (21)

r=/22 (22)

and D is the diameter of the radome base whereas L is the length of the
radome. The thickness of the dielectric shell was A = 0.05m and the dielectric
constant was ¢, = 4.0. The resistive sheet condition (R = m) gives an
equivalent resistivity of -j1.061. Discretization of this geometry at twelve
points/wavelength, results in 187 nodes, 362 triangular facets and 549 edges
(unknowns) as shown in figure 4(b). The bistatic RCS with nose-on incidence
is shown in figure 4(c) and (d). Also shown in these figures is the comparison
with a surface integral formulation [2]. As seen there is very good agreement
between the two codes even though the RCS levels are very low at angles
away from forward scattering.

The incorporation of the fast algorithm alleviates the limitation on the
size of the bodies analyzed as can be inferred from the results shown in
figure 5. In this figure a metallic nose radome 10\ long with a circular base
of diameter of 1) is analyzed. Again, a body of revolution was the geometry
of choice because of the availability of validation data from CICERO [11].
Discretization of this radome results in 3120 nodes and 6204 triangular facets.

with
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Comparison of the backscatter RCS from the two codes (see figure 5) reveals
very good agreement for the 66 polarization while the ¢¢ polarization shows
some deviation particularly at the low RCS levels. The near group radius
employed in the FMM solution was 2) and the number of unknowns was 9324.
Solution times were 12 seconds/iteration for the FMM radome code while the
conjugate gradient solver employing the full, unreduced system would need
an estimated 60 seconds/iteration. Estimates from scaling smaller problems
indicate that LU decomposition would need a solution time of about five and
a half hours while requiring an unrealistic 0.67 GB of memory for storage of
the full matrix.

An important advantage of integral equation analysis for the nose radome
problem is that it avoids modeling the free space between the radome and
nose antenna (see figures 6 - 9) thus reducing the computational cost. Results
which include the interactions between the nose-antenna and the radome are
given in figures 6 - 9. Unlike the Von Karman radome which was generated
by an algebraic equation, the radome in figures 6 - 9 was generated from user
specified elliptical or circular cross sections, which were then interpolated
with cubic splines to generate the cross section at any intermediate point
along the axis. Figure 8 depicts the opy backscatter cross-section of the
dielectric nose radome alone and in the presence of a circular plate at the
base of the radome (nose antenna). The antenna is inclined with respect
to the plane perpendicular to the radome axis. The effect of the antenna
on the RCS is pronounced at incidence angles close to specular directions of
the antenna plate and this was to be expected. This is particularly seen in
figure 8 for the backscatter RCS patterns perpendicular to the plane with
respect to which the antenna is inclined. Specifically the large peak observed
in figure 8 at ¢ = 150° when the antenna is inclined at 60° with respect to
the x-z plane is due to the large specular return at that angle of incidence.

4 Conclusion

A version of the fast multipole method was employed to compute the elec-
tromagnetic scattering from electrically large nose radome structures. The
application of this technique while preserving to a great extent the accuracy
of the moment method, significantly alleviates the limitations on the size of
the bodies analyzed. In this work we analyzed nose radome shaped struc-



tures which were composed of metal or thin dielectric shells and in the case of
the latter the resistive boundary condition was employed. The hybridization
of a technique such as the finite element method will enable the treatment
of a wider class of materials and could thus handle radomes with frequency
selective surfaces. The application of such a technique to scattering from
material filled grooves has already been discussed in [12],[13].
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