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Brief Description of Performed Research

Complex antenna and circuit problems including their package on wafer require very
intensive calculations due to the need to accurately simulate the underlying high-frequency
effects and account for all the parasitic mechanisms. As part of this project, we have
successfully applied a novel frequency domain scheme recently developed at the University
of Michigan that allows for the very successful and computationally efficient solution of
complex antenna problems. This technique has been applied to a variety of circuit and
antenna problems and has demonstrated the capability to provide accurate solutions in a
much more efficient ways than the conventional techniques. The whole idea in this
approach is the use of wavelets in the expansion of the unknown functions. The use of
wavelets allows for the computation of the values of the derivatives of the unknown field
quantities in addition to the average values of the field. This allows for the development of

novel space-adaptive schemes with unique capabilities.

In previous years the Battle-Lemarie based MRTD Technique has been applied to a variety

of homogeneous microwave problems and has exhibited significant savings in memory and



execution time. Nevertheless. the most important advantage of this new technique is its
capability to provide space and time adaptive gridding without the problems the
conventional FDTD is encountering. This is due to the use of two scparate sets of basis
functions, the scaling functions and wavelets and the capability to threshold the filed
coefficients due to excellent conditioning of the formulated mathematical problem. This
year a space/time adaptive gridding algorithm based on the MRTD scheme was proposed
and applied to inhomogeneous waveguide problems. As examples, the propagation of a
Gabor pulse in partially-filled parallel plate waveguide and a parallel plate filter was
simulated and the S-parameters have been calculated for validation of the theory. Wavelets
were placed only at locations where the EM fields have significant values, creating a space-
and time-adaptive dense mesh in regions of strong field variations, while maintaining a
much coarser mesh elsewhere. A mathematically correct way of dielectric modeling has
been presented and evaluated. The proposed adaptive gridding offers extra economy in
memory by a factor of 30%-40% for the 2-dimensional case. This algorithm has been
extended to three dimensions and has been applied to the numerical modeling of evanescent

mode waveguide band-pass filters.

To extend the capabilities of the Battle-Lemarie based MRTD scheme, an entire-domain
algorithm has been proposed and applied to the numerical analysis of nonlinear circuits
including diodes. The frequency spectrum of a mixer diode has been calculated and verified
by comparison to reference data. In comparison to Yee's conventional FDTD scheme, the
proposed scheme offers memory savings by a factor of 2-6 pre dimension maintaining a
similar accuracy. Especially in the approximation of time derivatives, the use of entire
domain expansion basis would require very high memory resources for the storage of the
field values everywhere on the grid for the whole or a large fraction of the simulation time.
This problem does not exist in the approximation of the spatial derivatives since the filed
values on the neighboring spatial grid points have to be calculated and stored no matter
what expansion basis are used. For that reason, Harr basis functions have been utilized and
a time-adaptive time-domain technique based on intervalic wavelets has been proposed and
applied to various types of circuit problems. The scheme has exhibited significant savings
in execution time and memory requirements while maintaining a similar accuracy with
conventional circuit simulators. Numerical experiments have shown that the use of an
absolute threshold of 10-6 and a relative threshold of 5x10-4 offered an extra economy of

25%-35% in comparison to MRTD schemes based only on scaling functions.



Another research topic for 1997 was the investigation of the stability and the dispersion
performance of entire-domain basis MRTD schemes for different stencil sizes and for O-
resolution wavelets. Analytical expressions for the maximum stable time-step were derived
for both scaling only and scaling-wavelet algorithms. It has been observed that larger
stencils decrease the numerical phase error making it significantly lower that FDTD for low
and medium discretizations. Stencil sizes greater than 10 offer a smaller phase error that
FDTD even for high discretizations. The enhancement of wavelets further improves the
discretization performance for discretizations closer to the Nyquist limit (2-3
cells/wavelength) making it comparable to that of much denser grids, though it decreases
the value of the maximum time-step guaranteeing the stability of the scheme. In the

following copies of the submitted/presented papers are included for further information.
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Abstract

The recently developed Multiresolution Time Domain (MRTD) technique is applied
to the modeling of shielded microwave circuit problems. The technique demonstrates.
excellent accuracy and efficiency in the calculations with savings of one order in compu-
tation times and of two orders of magnitude in memory compared to the conventional
The enhancement of wavelets provides very efficient computations of the characteristic
impedance and effective dielectric constant of a variety of printed lines operating in a
shielded environment.

I Introduction

Despite the wealth of available codes for analysis and design in microwave frequencies , many
problems in electromagnetics and specifically in circuit and antenna problems have been left
untreated due to the complexity of the geometries and the inability of the existing techniques
to deal with the requirements for large size and high resolution due to the fine but electri-
cally important geometrical details. The straightforward use of existing discretization methods
suffers from serious limitations due to the required substantial computer resources and ure-
alistically long computation times. As a result, during the past thirty years the available
techniques are almost incapable of dealing with the needs of technology leading into a quest
for fundamentally different modeling approaches.

Recently a new technique has been successfully applied [1, ?, 2] to a variety of microwave
problems and has demonstrated unparalleled properties. This technique is derived by the use
of multiresolution analysis for the discretization of the time-domain Maxwell’s equations. The
multiresolution time domain technique (MRTD) based on Battle Lemarie functions has been
applied to linear as well as nonlinear propagation problems and has demonstrated savings in



time and in memory by one and two orders of magnitude respectively. In addition to time and
memory, the most important advantage of this new technique is its capability to provide space
and time adaptive meshing without the problems encountered by the conventional FDTD [3].
The capability to provide adaptive meshing is connected with the use of two separate sets
of basis functions, the scaling and wavelet functions, and the capability to threshold the
field coefficients due to the excellent conditioning of the formulated mathematical problem.
This advantage and capability of the technique is demonstrated herein by performing a space
adaptive meshing.

For the derivation of the MRTD scheme, the electromagnetic fields are represented by an
expansion in cubic spline Battle-Lemarie scaling and wavelet functions [4], [5] with respect
to space. For this type of basis functions, the evaluation of the moment method integrals
is simplified due to the existence of closed form expressions in spectral domain and simple
representations in terms of cubic spline functions in space domain. The use of non-localized
basis functions cannot accomodate localized boundary conditions. To overcome this difficulty,
the image principle is used to model perfect electric and magnetic boundary conditions. Pulse
functions are used as expansion and test functions in time-domain. In this paper, a 2.5D
MRTD scheme is proposed and applied to a variety of shielded of transmission line problems.
Specifically, propagation constant, characteristic impedance and field patterns are derived for
shielded and open transmission line structures and compared to FDTD results.

II The 2.5D-MRTD scheme

For simplicity, an overview of the 2.5D-MRTD scheme is presented for a homogeneous medium.
The derivation is similar to that of Yee’s FDTD scheme [?], which uses the method of moments
with pulse functions as expansion and test functions. The magnetic field components are shifted
by half a discretization interval in space and time-domain with respect to the electric field
components.

Using the approach of [6], Maxwell’s curl equations for a homogeneous medium with the
permittivity € and the permeability 4 can be written in the following form

OE, 0H,

& = 3y + BH, (1)
OE. O0H,

G = o »
0E, _ OH, OH,

“o = oz dy ’ (3)

where J is the propagation constant and j = /-1. The electric and magnetic field components
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incorporated in these equations are expanded in a series of Battle-Lemarie scaling and wavelet
functions in both x- and y-directions. For example, E, can be represented as:

+00
Ez(I, Y, t) = Z kEf;ﬁz,mhk(t)¢l+1/2(I)¢m(y)
k,l,m=-o00

+ 2 E El+l/2m k() Bre1/2(7) Yim(y)
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where ¢n(z) = ¢(£ — m) and Y ;m(z) = %i(Z — m) represent the Battle-Lemarie scaling
and i-th order resolution wavelet function respectively in space and hy(t) represent rectangular
pulses in time. ¢ Ef;;” and x412H};, with £ = z,y,2 and u,v = ¢, are the coefficients for
the field expansions in terms of scaling and wavelet functions. The indices /,m and k are the
discrete space and time indices related to the space and time coordinates via z = [Az,y = mAy
and t = kAt, where Az,Ay are the space discretization intervals in x- and y-direction and
At is the time discretization interval. For an accuracy of 0.1% the above summations are
truncated to 18 terms. Upon inserting the field expansions, Maxwell’s equations are sampled
using pulse functions as time-domain test functions and scaling and wavelet functions as space-
domain test-functions. Following the procedure of [1], the 2.5D MRTD scheme is derived. As
an example, let’s consider the discretization of eq.(1). For simplicity, it is assumed that the
fields have been expanded only in scaling functions summations. Wavelets can be added in a
straightforward way. Applying the Galerkin’s technique, the following difference equation is
obtained for a homogeneous medium with the permittivity e,

m+8 .
é(k"'lEf-ﬁ?Z,m —k fﬁ/bmm) = Kla('_l_; ga(i')k+1/2Hf-!’-"lb?2,i'+l/2) +B k+1/2Hlll-;4{72,m , (5)
with the coeficients a(i') defined in [1]. The unit cell of the 2.5D-MRTD scheme is identical
to the unit cell of the conventional Yee’s FDTD scheme. However, due to the different field
expansion functions, the field components in the two techniques have a different physical
meaning. Deriving MRTD and FDTD using the method of moments, the field components
have to be interpreted as field expansion coefficients. From the different field expressions, it is

clear that the field expansion coefficients of the FDTD scheme represent the total field value
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at a specific point, while the field expansion coefficients of the 2.5D-MRTD scheme represent a
fraction of the total field. To calculate the total field at a space point, the field expansions are
sampled with delta test functions in space and time domain. For example, the total electric
field E;(zo, Yo, t,) With (k — 1/2) At < t, < (k +1/2) At is calculated by

Eulaotots) = [ [ [Ea@,v,1)6(c = 2)8(y o) 6t — 1) do dyd

= z kEﬁﬁ/gym’ ¢l’+1/2(xo) ¢m’ (yo) . (6)

I'm'=—00

Extending the dispersion analysis of [1] from 3-dimensional to 2.5-dimensional space, the
stability condition for the 2.5D-MRTD scheme results in

At < L )

" 1.568cy/(5)? + (552 + (5)?

with the wave propagation velocity c. It is preferable to choose At at least 2.5 time less than
the stability limit. In this way, much more linearity of the dispersion characteristics is achieved.

ITT Applications of the 2.5D-MRTD scheme to Shielded

Transmission Lines

In this paper, the 2.5D-MRTD scheme is applied to the analysis of shielded stripline and
microstrip lines to investigate propagation and coupling effects. Results for these shielded
structures are presented and discussed separately below.

A shielded stripline is a simplified version of a membrane microstrip shown in (Fig.1a). The
metallic shield has dimensions 47.6mm x 22.0mm and the central strip has length 11.9mm.
The stripline is filled with air (¢, = 1.). The analysis for the higher order propagating modes is
straightforward. For the analysis using Yee’s FDTD scheme, a 40 x 10 mesh was used resulting
in a total number of 400 grid points. When the structure was analyzed with the 2.5D-MRTD
scheme , a mesh 8 x 4 (32 grid points) was chosen reducing the total number of grid points
by a factor of 12.5. In addition, the execution time for the analysis was reduced by a factor
of 3 to 4. The time discretization interval was chosen to be identical for both schemes and
equal to the 0.8 of the 2.5D-MRTD maximum At. For the analysis § = 30 was used and 5,000
time-steps were considered.



Mode TEM Shield TE,g
Analytic values | 1.4324 GHz | 3.4615 GHz
8x2 MRTD 1.4325 GHz | 3.4648 GHz
Rel.Error 0.007% 0.095%
8x4 MRTD 1.4325 GHz | 3.4641 GHz
Rel.Error 0.007% 0.075%
16x4 MRTD | 1.4325 GHz | 3.4633 GHz
Rel.Error 0.007% 0.052%
40x10 FDTD | 1.4322 GHz | 3.4585 GHz
Rel.Error -0.014% -0.087%

Table 1: Mode frequencies for § = 30

From (Table 1) it can observed that the calculated frequencies of the two first propagating
modes for 3 = 30 by use of 2.5D-MRTD scheme are very close to the theoretical values, since
the largest error is less than 0.1%. The relative error of the 2.5D-MRTD calculated frequencies
is always positive, which corresponds to an overestimation of the resonant frequencies. This is
exactly what has to be expected from the dispersion behavior of the MRTD schemes.

The use of non-localized basis functions in the 2.5D-MRTD scheme causes significant effects.
Localized boundary conditions are impossible to be implemented, so the perfect electric bound-
ary conditions are modelled by use of the image principle. The perfect electric conductor is
replaced by an open structure with electromagnetic fields characterized by even or odd sym-
metry. Odd symmetry is imposed to the electric field components that are tangential to the
conductor in order to ensure zero electric field on the conductor and even symmetry for the
magnetic field components that are tangential to the conductor.

The non-localized character of the basis functions offer the opportunity to calculate the field
values in any point of the discretization cells. The field values at the neighbooring cells can be
combined appropriately by adjusting the scaling functions’ values and by applying the image
principle. For example, the total electric field E;(z,, yo, t,) with (k—1/2) At < t, < (k+1/2) At
is calculated by Eq.(6) by simply truncating the 1,m summation from -12 to 12 for each index.
That means that the summation based only at the 12 neighbooring cells from each side gives
the total field component values with good accuracy. In (Fig.2-4), the value of the E, field has
been calculated and plotted for the 4 cells exactly below the strip by use of the 2.5D-MRTD
scheme. The relative position of the strip is from 15 to 25 . For the TEM mode the pattern
obtained by use of the conventional FDTD scheme is plotted for comparison. For the shield



TE), mode, the analytically calculated pattern has been added for reference. All results are
normalized to the peak value. It can observed that the agreement of the MRTD calculated
field pattern with the reference data is very good for the shield T F;y mode, where the values
are changing slowly (sinusoidally) (Fig.2). On the contrary, for the TEM mode where the edge
effect is more prominent, the agreement is not good. In this case, wavelets of 0-Resolution are
added in both directions to describe the higher spatial frequencies. It can be observed from
(Fig.3) that the wavelet coefficients for the 8x4 grid have a significant contribution (> 10%)
close to the stripline. Increasing the grid size from 8 to 16 to the strip direction and/or from 4
to 8 to the normal to the strip direction improves more the accuracy of the field representation

(Fig.4).

The characteristic impedance Z, for the TEM mode of the stripline is computed from the
equation:

act ®)

where the integration paths C, and C, are shown in (Fig.1a). Since both of the schemes used in
the analysis are discrete in space-domain, the above integrals are transformed to summations.
For the FDTD summations, only one field value per cell is needed, due to the fact that pulse
expansion functions which are constant for each cell are utilized. On the contrary, for the 2.5D-
MRTD summation the field values for a number of subpoints along the integration path have
to be calculated, since the expansion functions are not constant for each cell. It can be observed
from Table 2 that the accuracy of the calculation of the characteristic impedance is improved
by increasing the number of subpoints per cell, at which the field values are calculated. An
accuracy better than 1% is achieved if the field values are computed for more than 9 subpoints
per cell along the integration path for the scheme including wavelets of O-resolution to both
directions. On the contrary, the value of Z, that is calculated from the scheme based only on
scaling functions is oscillating, thus indicating that a denser mesh is required. The analytical
value of the Z, is 95.58 Q [7].

The modification of the dimensions of the MRTD mesh (Table 3) shows that the accuracy of
the calculation of the Z, by use of the MRTD is much better than that of the Yee’'s FDTD
scheme with a 40x10 mesh (relative error -3.28%).

A similar procedure is used for the analysis of the shielded coupled-stripline geometry of
(Fig.1b) for the first even and odd mode. Both strips have a length of 11.9mm, the distances
between them is 11.9mm, from the top and bottom PEC’s are 11.0mm and from the left and
right PEC’s are 11.9mm. The structure is filled with air (¢, = 1.). For the analysis with the
conventional FDTD scheme, a 70 x 20 mesh resulted in a total number of 1400 grid pints. The



Subpoints/cell | Z2¢ (§2) | Relative error | Zy* () | Relative error
3 80.56 -15.71 % 84.04 -12.07 %
5 94.46 -1.17% 92.55 -3.17%
7 99.06 +3.64 % 94.59 -1.04 %
9 101.44 +6.13 % 94.96 -0.65 %
11 97.56 +2.07 % 95.01 -0.60 %

Table 2: Z, for different number of subpoints/cell (8x4 Grid).

Z, (9) | Relative error
Analyt. Value | 95.58 0.0%
8x4 MRTD 95.01 -0.60%
8x8 MRTD 95.19 -0.41%
16x4 MRTD 95.71 0.14%
40x10 FDTD | 92.44 -3.28%

Table 3: Z, for different mesh sizes (11 subpoints/cell).

same accuracy is achieved by an MRTD mesh 14 x 4 (56 grid points) resulting in an economy
of memory by a factor of 25. The space distribution of the tangential-to-stripline E is plotted
in logarithmic scale in (Fig.5) for the even mode.

The 2-D MRTD technique is also used for the analysis of a shielded microstrip (Fig.1c) with
width 9.9mm on a dielectric substrate with ¢, = 10.65 and thickness 11mm. The microstrip
is placed in the center of a rectangular shield 69.3mm x 44mm. The same accuracy for the
characteristic impedance calculation (Theoretical Z, = 50 Ohms) is achieved by an FDTD
mesh 140 x 80 and an MRTD mesh 28 x 20resulting in an economy in memory by a factor of
20.

IV Conclusion

A multiresolution time-domain scheme in 2 dimensions has been applied to the numerical anal-
ysis of shielded striplines and microstrips. The field patterns and the characteristic impedance
have been calculated and verified by comparison to reference data. In comparison to Yee's
conventional FDTD scheme, the proposed 2.5D-MRTD scheme offer memory savings by a



factor of 25 and execution time savings by a factor of about 4-5 maintaining a better accu-
racy for characteristic impedance calculations. This indicates memory savings of a factor 5
per dimension leading to two orders of memory savings in three dimensions. Compared to
2.5D-FDTD, 25 times less cells in MRTD require about 5 times less running time, thus the
computation time per cell is increased by a factor of 5. This leads to computation time savings
of more than one order for 3 dimensional structures. For structures, where the edge effect is
prominent, additional wavelets have to be introduced to improve the accuracy when using a
coarse MRTD mesh.
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Figure 2: Shield TEy, E, pattern.
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I Abstract

The stability and the dispersion performance of the recently developed Battle-Lemarie MRTD schemes is
investigated for different stencil sizes. The contribution of wavelets is enhanced and analytical expressions for
the maximum allowable time step are derived. It is observed that larger stencils decrease the numerical phase
error making it significantly lower than FDTD for low and medium discretizations. The addition of wavelets
further improves the dispersion performance for discretizations close to the Nyquist limit, though it decreases
the value of the maximum time-step guaranteeing the stability of the scheme.

II Introduction

Finite-Difference Time-Domain numerical techniques are widely used now-a-days for the analysis of various
microwave geometries and for the modelling of EM wave propagation. Though many of them are very simple to
implement and can be easily applied to different topologies with remarkable accuracy, they cause a numerical
phase error during the propagation along the discretized grid. For example, the numerical phase velocity in
the FDTD can be different than the velocity of light, depending on the cell size as a fraction of the smallest
propagating wavelength and the direction of the grid propagation. Thus, a non-physical dispersion is introduced
and affects the accuracy limits of FDTD simulations, especially of large structures.

In addition, it is well-known that the finite-difference schemes in time and space domain require that the used
time step should take values within an interval that is a function of the cell size. If the time-step takes a value
outside the bounds of this interval, the algorithm will be numerically unstable, leading to a spurious increase
of the field values without limit as the time increases.

Though the stability and the dispersion analysis for the conventional Yee’s FDTD algorithm has been thor-
oughly investigated, only a few results have been presented concerning MRTD schemes based on cubic spline
Battle-Lemarie scaling and wavelet functions [2]. The functions of this family do not have compact support,
thus the finite approximations of the derivatives are finite stencil summations instead of finite differences.
In this paper, the effect of these stencils’ size as well as of the enhancement of wavelets is investigated and
comparison with 2nd-order and higher-order FDTD schemes displays difference in their respective behaviors.



II1 Stability Analysis

Following the stability analysis described in [1], the MRTD [2] equations are decomposed into separate time
and space eigenvalue problems. Assuming an expansion only to scaling functions (S-MRTD), the left-hand side
time-differentiation parts can be written as an eigenvalue problem

k+1/2H., -1/2 = k-1/2Hi:,j—1/2

kr1/2HY g i = k-2 HY )y
1/2 JAt 1/2,j = A kHi‘:j—l/2 (2)

k1 E]j —kEf;
adiah LR S kr12E; . (3)

At
In order to avoid having any spatial mode increasing without limit during normal time-stepping, the imaginary
part of A, Imag(A), m ust satisfy the equation
-Ait < Imag(A) < Zt . 4@
For each time step k, the instantaneous values of the electric and magnetic fields distributed in space across the
grid can be Fourier-transformed with respect to the i- and j- coordinates to provide a spectrum of sinusoidal
modes (plane wave eigenmodes of the grid). Assuming an eigenmode of the spatial-frequency domain with k.
and k, being the x- and y- components of the numerical eigenvector, the field components can be written

Ei;, = E,e/kel0ztkJdy
Hi; 10 = H, eitkelbz+ky(J-1/2)8y
H;'-1/2,J = Hyoe"“‘-(’-ll2)Az+k,JAy

Substituting these expressions to (1)-(3) and applying Euler’s identity, we get

na—1 na—-1
#c[(m)z ("Zo (i")sin(k. (i + 1/2)Az))? + By )2( Z_;) a(j')sin(k,(j + 1/2)Ay) )2]

Thus, A is a pure imaginary, which can be bounded for any wavevector k = (k, k;):

ng—1 1
Z_o la(s") ‘/ (Az)2 (A 7 < < Imag(A)

fa—1 ) 1
< 2 (Z_%pz ")) (Az)2 taE (5)

where ¢ = \/—L—_; is the velocity of the light in the modeled medium.

Numerical stability is maintained for every spatial mode only when the range of eigenvalues given by (5) is
contained entirely within the stable range of time-differentiation eigenvalues given by (4). Since both ranges
are symmetrical around zero, it is adequate to set the upper bound of (5) to be smaller or equal to (4), giving:

At< ! . 6)

(520" 1)) 1/ ok + by
For Az = Ay = A, the above stability criterion gives
A A
Ats_mrTD < — =85S . 7
S e RV )




It is known (3] that

1
Atrprp < = = , (8)
c B + [-Kd
which gives for Az = Ay = A
A
Atpprp £ —= . (9)
cvV2

Equations (7)-(9) show that for same discretization size, the upper bounds of the time-steps of FDTD and
S-MRTD are comparable and related through the factor s. The stability analysis can be generalized easily to
3D. The new stability criteria can be derived by the equations (7) and (9) by substituting the term v/2 with

V3.

More complicated expressions can be derived for the maximum allowable time-step for schemes containing
scaling and wavelet functions. For example, the upper bound of the time-step for the 2D MRTD scheme with
O-resolution wavelets to the one (x-direction) or two directions (x- and y-directions) is given by

1
¢ |/ (S0 1ol T 1bo@)] +4(Thsg leol@)?) + oy (T laG))?

Atw,s-MrTD <

and
1

¢ i + i Vi o) So 1@ + AT eo®)])?
For Az=Ay=A, the above equations give

Atw,w,-MrTD <

A

Atw,s-MRTD,maz = 3wosm

with
V2
SWos = T eneml| o anel (i Ne—1 NI\2 Na—1
Loz 18" oo 1Bo()] + 405y leo(@))?) + (Thy la(i)))?

d

- Al o B

WoWo—MRTD,maz ~ 8W,W, C\/i
with

=0 =0 =0

na-1 np—1 ne—1
SWoWo = \J D 1al)] Y lbo)] +4( Y leoi))?

It can be observed that the upper bound of the time step depends on the stencil size 4, ny, n.. This dependence
is expressed through the coefficients sss, sw,s, sSw,w,, which decrease as the stencil size increases. Figure 1
shows that sgs practically converges to the value 0.6371 after n, > 10 and 8w,s = 0.4872 and sw,w, ~ 0.4095
for ng = ny =n, > 10.

IV Dispersion Analysis

To calculate the numerical dispersion of the S-MRTD scheme, plane monochromatic traveling-wave trial solu-
tions are substituted in the discretized Maxwell’s equations. For example, the E, component for the TM mode
has the form



kE; ; = Ez ej(k. IAz+k,JAy—ukAt)
where k. and k, are the x- and y- components of the numerical wavevector and w is the wave angular frequency.
Substituting the above expressions into the Equations (1)-(3), the following numerical dispersion relation is

obtained for the TM mode for the S-MRTD Scheme after alge braic manipulation

Na—1
[in(EOP = [ (Y ald)sin(ks(i +1/2)A2)
ne—1
+ [{;(Za(j')sm( S +1/2) Ay (10)
3'=0

For square unit cells (Az=Ay=A) and wave propagating at an angle ¢ with respect to x-axis (k. = k cos¢
and k, = k sing), the above expression is simplified to

A “ At et

[E sin(—)* = (Z (') sin(k cos¢ (i' +1/2) A))®
=0
na—1
+ (D a(j') sin(k sing (' +1/2) A))? (11)
j'=0

This equation relates the numerical wavevector, the wave frequency, the cell size and the time-step. Solving
this numerically for different angles, time step sizes and frequencies, the dispersion characteristics can be
quantified.

Defining the Courant number ¢ = (cAt)/A and the number of cells per wavelength n; = Agrpar /A and using
the definition of the wavevector k = (2r)/Anyp the dispersion relationship can be written as

ng—1

[% sin(r g /m)? = [Z (i') sin(m u (2i' + 1) cosd /ny))?
=0
na—1

+ [ a(f") sin(z u (25 +1) sing /n;))? (12)

i'=0

where u = Appar/ANum is the ratio of the theoretically give n to the numerical value of the propagating
wavelength and expresses the phase error introduced by the S-MRTD algorithm. To satisfy the stability
requirements, q has to be smaller than 0.45 (= 0.6371/+/2) for the 2D simu lations.

The above analysis can be extended to cover the expansion in scaling and O-resolution wavelet functions in x-,
y- or both directions.

The general dispersion relationship is

'(0405 + 0506)2 (Cl Co+ 0203)2
=t T

B4 2 g1 1 21 _
+(E) (C1C; + C2C3)*(C4Cs + C5Cs) (5+35) 7 =1 (13)

% (C1C1 + C3C3 + C4Cy + C5Cs) + (%)2[



Scheme | C, | Co | C3 | C4 | Cs | Cs
SS #01| 0 0 |#0(| 0 0
WoS | #0]| O 0 |#0|#0]#0
SWo |#0[#0|#0|#0]| O 0

WoWo |#0 [ #0|#0|#0|#0|#0

Table 1: Coefficients C; for Different MRTD Schemes

with
1 1
F=1 - @G +a0)I S - [EC0+ 60 5
[%(0202 + C3C3 + CsCs + CsCs) (14)

=1-§aa+aa+@@+aa)

= 1-£@6 + 00+ CiCi+ C05) (15)
. The C; are defined by
C ES:%EUEE:MjsmMA]+UﬂA)
C; = mzco(.? )sin(kyj'A)
C; = —;‘Kﬁ;—mzboU')sin(k,U'+l/2)A)
Ci = mza(g )sin(kz (' +1/2)A)
ca=-mm%mﬁzmmwmm
Cs = WZM )sin(kz (i’ +1/2)4) (16)

Eq.(13) can be applied to the dispersion analysis of SS (only scaling functions), WpS (0-resolution wavelets
only to x-direction), SWp (0-resolution wavelets only to y-direction) and WoW, (0-resolution wavelets to both
x- and y- directions) following Table 2. In case the C; # 0, it can be calculated by Eq.(16).

The above equation is solved numerically by use of Bisection-Newton-Raphson Hybrid Technique for different
values of ng, ny, nc ny, ¢ and q. Fig.(2)-(5) show the variation of the numerical phase velocity as a function
of the inverse of the Courant number 1/s=1/q for stencil sizes n, = ny = n. = 8,10, 12, 14. For each figure,
three different discretization sizes are used: 10 cells/wavelength (coarse), 20 cells/wavelength (normal) and
40 cells/wavelength (dense). The results are compared to the respective values of conventional FDTD. It can
be observed that the phase error for F.D.T.D. decreases quadratically. The variation of the phase error in
M.R.T.D. exhibits some unique features. Though for any stencil size the numerical phase error for M.R.T.D.
discretization of 10cells/]\ is smaller than that of the F.D.T.D. discretization of 40cells/), the M.R.T.D. error
doesn’t behave monotonically [4]. It decreases up to a certain discretization value and then it starts increasing.
This value depends on the stencil size and takes larger values for larger stencils. For example, this value is



between 10 and 20 cells/A for stencil equal to 10, between 20 and 40 cells/X for stencil=12 and very close
to 40 cells/A for stencil=14 and can be used as a criterion to characterize the discretization range that the
M.R.T.D. offers significantly better numerical phase performance than the F.D.T.D.

The phase error caused by the dispersion is cumulative and it represents a limitation of the conventional FDTD
Yee algorithm for the simulation of electrically large structures. It can be observed that the error of S-MRTD
is significantly lower, allowing the modeling of larger structures. FDTD is derived be expanding the fields in
pulse basis. As it is well known the Fourier transform of the pulse is a highly oscillating Si(x). On the contrary,
the Fourier transform of the Battle-Lemarie Cubic spline is similar to a low-pass filter. That "smooth” spectral
characteristic offers a much lower phase error even for very coarse (close to 3-4 cells/)) cells.

By using a larger stencil n,, the entire-domain oscillating nature of the scaling functions is better represented.
Thus, smoother performance for low discretizations (Fig.(6)) and lower phase error for higher discretizations
(Fig.(7)) is achieved as n, increases from 8 to 12. Wavelets contribute to the improvement of the dispersion
characteristics for even coarser cells (close to 2.2-2.4 cells/)) as it is demonstrated in Fig.(8)-(13). For dis-
cretizations above 4 cells/) the effect of the wavelets is negligible. (Fig.(11)) and (Fig.(13)) show clearly that
the phase error has a minimum for a specific discretization (17 for n, = 10 and 25 for n, = 12).

Fig.(14)-(17) show that for discretizations smaller than 30cells/) the choice of the Courant number affects
significantly the dispersion performance which starts converging to the minimum numerical phase error (0.8
deg/\ for n, = npy = n. = 10 and 0.2 deg/X for n, = np = n. = 12) for 1/q close to 10. On the contrary, the
F.D.T.D. dispersion is almost independent of the Courant number (Fig.(18)-(19)).

It has been claimed in [5) that the SSMRTD Scheme is slightly oscillating and its performance is only com-
parable with the 14** order accuracy Yee’s scheme. Though this is true for the S-MRTD schemes with stencil
size of 8, the comparison of the dispersion diagrams of Yee’s FDTD scheme, Yee’s 16th order (H.F.D.-16)
and 22th order (H.F.D.-22) and S-MRTD and Wo-MRTD schemes with different stencils leads to interesting
results. For comparison purposes, the values of At = Aty,,./5 and Atpg, = 0.368112A1/c have been used and
all the dispersion curves are substracted by the linear dispersion relation for 1D simulations. Fig.(20) shows
that the S-MRTD scheme with stencil 10 has a comparable performance to the 16th order Yee’s scheme. The
enhancement of the wavelets for the same stencil improves significantly the dispersion characteristics of the
MRTD scheme increasing the dynamic range of w by approximately 90% and comparing favorable even to
the 22th order Yee’s scheme. This is expected due to the fact that the scaling+wavelet basis spans a larger
("more complete”) subspace of R than the scaling functions alone. Both SSMRTD and Wo-MRTD schemes
have identical numerical phase errors up to the point that the S-MRTD scheme starts diverging (Fig.(21)). As
the stencil size of the Wo-MRTD scheme is increasing from 6 to 12 (Fig.(22)—(23)), the oscillatory variation
of the phase error is diminishing to a negligible level generating an almost flat algorithm similar to the higher
order Yee’s ones.

As a conclusion, due to the poor dispersion performance of the FDTD technique even for 10 cells/wavelength
a normal to coarse grid is always required to avoid significant pulse distortions especially for the higher-
spatial-frequency components. MRTD offers low dispersion even for sparse grids very close to the Nyquist
limit.

V Conlusion

The stability and the dispersion performance of the recently developed Battle-Lemarie MRTD schemes has been
investigated for different stencil sizes and for 0-resolution wavelets. Analytical expressions for the maximum



stable time-step have been derived. Larger stencils decrease the numerical phase error making it significantly
lower than FDTD for low and medium discretizations. Stencil sizes greater than 10 offer a smaller phase error
than FDTD even for discretizations close to 50 cells/wavelength. The enhancement of wavelets further improves
the dispersion performance for discretizations close to the Nyquist limit (2-3 cells/wavelength) making it
comparable to that of much denser grids, though it decreases the value of the maximum time-step guaranteeing
the stability of the scheme.
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Figure 10: Wavelets Effect on the Dispersion Characteristics of MRTD for n,=10 (Coarse Grid).
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Figure 11: Wavelets Effect on the Dispersion Characteristics of MRTD for n,=10 (Denser Grid).
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Figure 12: Wavelets Effect on the Dispersion Characteristics of MRTD for n,=12 (Coarse Grid).
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Figure 17: Effect of the Courant Number on the Dispersion Characteristics of Wy — MRTD for
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Abstract

A novel Time Adaptive Time-Domain Technique based on the Haar expansion basis is proposed and
applied to various circuit problems. This scheme offers improved time resolution in comparison to con-
ventional Time-Domain schemes (F.D.T.D.) while maintaining a similar accuracy with commercial circuit
simulators.

I Discussion on the Expansion Basis Choice for MRTD

It is well known that the method of moments provides a mathematically correct approach for the discretization
of integral and partial differential equations. Since it allows for the use of any complete and orthonormal set, the
choice of an appropriate expansion set may lead to different time domain schemes. For example, the expansion
of the unknown fields using pulse functions leads to Yee's FDTD scheme. In a MRTD scheme (?, ?] the fields
are represented by a two-fold expansion in scaling and wavelet functions with respect to time/space. Scaling
functions guarantee a correct modelling of smoothly-varying fields. In regions characterized by strong field
variations or field singularities, higher resolution is enhanced by incorporating wavelets in the field expansions.
The major advantage of the use of Multiresolution analysis to time domain is the capability to develop time
and space adaptive grids. This is due to the property of the wavelet expansion functions to interact weakly
and allow for a spatial sparsity that may vary with time through a thresholding process.

MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions have been successfully
applied to the simulation of 2D and 3D open and shielded problems [?, ?, 2, ?]. The functions of this family
do not have compact support, thus the MRTD schemes have to be truncated with respect to space. Localized
boundary conditions (PECs, PMCs etc.) and material properties are modelled by use of the image principle
and of matrix equations respectively. However, this disadvantage is offset by the low-pass (scaling) and band-
pass (wavelets) characteristics in spectral domain, allowing for an a priori estimate of the number of resolution
levels necessary for a correct field modelling. In addition, the evaluation of the moment method integrals
during the discretization of Maxwell’s PDEs is simplified due to the existence of closed form expressions in
spectral domain and simple representations in space domain. Dispersion analysis of this MRTD scheme shows
the capability of excellent accuracy with up to 2 points/wavelength (Nyquist Limit). However, specific circuit
problems may require the use of functions with compact support. Epsecially in the approximation of time
derivatives, the use of entire domain expansion basis would require very high memory resources for the storage
of the field values everywhere on the grid for the whole or a large fraction of the simulation time. This problem
does not exist in the approximation of the spatial derivatives since the field values on the neighboring spatial
grid points have to calculated and stored no matter what expansion basis are used. For that reason, Haar
basis functions have been utilized and have led to [?]. As an extension to this approach, intervalic wavelets
(Fig.1) may be incorporated into the solution of SPICE-type circuits. Results from that new technique will be
presented in this Chapter .



II Applications in SPICE problems

For simplicity, the 1D MRTD scheme will be derived. It can be extended to 2D and 3D in a straightforward
way. In addition, only the O-resolution of wavelets is enhanced. The Voltage and the Current are displaced by
half step in both time- and space-domains (Yee cell formulation) and are expanded in a summation of scaling
functions in space and scaling (¢) and wavelet (1p) components in time

[o o]

Yo Y (Vi) + VEwos(t) ém(2)

Mm=-—00 i=—00

I(z,t) = E Z (i—0.512 _0.50i-05(t) + i=05I% 0 s¥0.i-05(t) dm-0s5(z) (1)

M=-00 i=—00

V(z,t)

where ¢;(t) = ¢(t/At — i) and 1y ;(t) = to(t/At — i) represent the O-order intervalic scaling and O-resolution
wavelet functions. The conventional notation xV;, is used for the voltage component at time ¢ = kAt and
2z = mAz, where At and Az are the time-step and the spatial cell size respectively. The notation for the
current [ is similar.

Due to the finite-domain nature of the expansion basis, the Hard Boundary conditions (Open/Short Circuit)
can be easily modeled. If a Short Circuit exists at the z = mAz, then both scaling and wavelet voltage
coefficients for the m — cell must be set to zero for each time-step k.

VE=, V¥ =0, £=0,1,2,.. (2)

Similarly, an Open Circuit at z = (m — 0.5)Az can be modeled by applying the conditions

k—O.SI,t_os = k-0.5 mo._o.s = 0, k = 0, 1, 2, cen (3)
The alternating nature of the O-resolution wavelet function guarantees the double time-domain resolution
of the MRTD scheme. Assuming that the voltage scaling and wavelet coefficients at m = Az for a specific
time-step k, two values can be defined for the time span [(k — 0.5)At, (k + 0.5)At] of this time-step

pViotehl = Ve 4,V te[(k-0.5)At, kAt (4)
JVioteh?2 = ye _ yve se kAL, (k+05)Af . (5)

II.1 Distributed Elements
II.1.1 Lossless Line

The ideal transmission line (Fig.2) equations are given by

dav dI
o - Tleg
dI av
& = ey o )

where Lyg;,, Cyis are the distributed inductance and capacitance of the line. Inserting the expansions of Eq.(1)
and applying the Method of Moments, the following MRTD equations are derived

Cai 1
1;'; (k1 VE-eVP) = s (k40515405 — k+0510_05) (7




C 7] 1
ALt (k1 Vwe =, V¥0) = " (k+051%° 0.5 — k+051%0 o 5) (8)
L4 1 ,
Adt. (k40512 o5 —k-05I2_o5) = X (Ve -V2_) (9)
L 1
d" (k+0 5”-0 5 — k=0. 5[‘b 0s) = ~Az AR kV,f‘ll) (10)

It can be observed that Eqs.(7) and (9) updating the scaling coefficients only are independent of the Eqs.(8)
and (10) updating the wavelet coefficients. To create an efficient time adaptive algorithm, all four equations
must be coupled. An efficient way is to apply the excitation in a physically correct manner. If the excitation
has the time-dependence g(t) at the location z = m.Az, then the scaling and wavelet coefficients for this cell
have to take the values

(k+0.5)At
km,=/ o(t) () dt
(k—0.5)At

(k+0.5)At
km3=[ ot) You(t) dt . (1)

k—0.5)At

To validate this approach, the MRTD algorithm was applied to the simulation of a lossless transmission line
with (Lgis, Cais) = (20nH/m,3nF/m) for a Gabor excitation and time-step dt = dtnas/1.01. Fig.(3) which
displays the Voltage Scaling and Wavelet Coefficients evolution at z = 200Az for the first 800 time-steps of
the simulation, shows that the wavelet coefficients have the correct shape (significant values only at areas
with significant scaling function values) and are close to the 12% of the respective scaling functions. Fig.(4)
which compares the total voltage value at z = 200Az calculated by FDTD (Sc.ONLY) and MRTD (Sc.+Wav.)
for the time-steps 357-362 demonstrates the ability of this MRTD scheme to double the conventional FDTD
resolution in the time-domain by providing two values for each time-step. The fact that the wavelet coefficients
take significant values only for a small number of time-steps allows for their thresholding by comparing them to
a combination of relative to the respective value of the scaling coefficient (5.e-4) and absolute (1.e-6) thresholds.
Fig.(5) proves that up to 60% of the maximum number of wavelet coefficients are necessary for an accurate
simulation, offering an extra economy in memory by a factor of 20%.

I1.1.2 Lossy Line

The lossy transmission line (Fig.6) equations are derived by the ideal transmission line equations (Eq.(6))
adding the Conductor Loss Rg4;, and the Dielectric Loss Gg;,

dav dI
el =R, —Lda'rd—t
dI dv
ZZ. = -GdiaV - CI“IE . (12)
Following a procedure similar to the previous section, the following MRTD equations are derived
C-C C,
eVi= - (—152:—2 At (e40.5I0 105 — k-0515_o5) + o] At (k405805 = k-0512 4 5)
— ()2 2
+ (Cl CCQ% + Cg) kV,ﬁ g? V\bo (13)
C Ci+C
Ve = - E: At (10500405 — k-0.51%_05) — (—lczl—L) At (k40510005 = k05120 5)
2
- g: e+ G %i") s gt (14)
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with

Ci=Cy4i,Az , Cy3=0.5Gg4,Az At,
Cs = L4i;Az , C4 =0.5 Ry, Az At,

For this type of transmission line, the equations giving the scaling and wavelet coefficients for voltage and
current are coupled. Nevertheless, the condition (11) has to be applied in order to satisfy the physical boundary
condition at the excitation cell(s). It has to be noted, that Eqs.(13)-(16) can be used only for lossy lines with
low to medium Loss Coefficients. The threshold C; < 4C, for G4, (Cy < 4C; for Ry;,) gave satisfactory
results for all simulations. For higher loss coefficients, the Loss can be modeled in an exponential way similar
to [?]. For example, for large values of Ry, (Cs4 > Cs3), Egs.(15)-(16) have to be replaced by the following
uncoupled expressions

-Ry. At -0.8R At

k0500 o5 = € Tais o5l o —e Tain (kV¢ Vi) (17)
—Ry: At —0.5R .. At At

k0505 = € Taie k- 051,?,9_05 —e Lais G (VAN ACH! (18)

Using this procedure, a termination layer similar to the FDTD widely used PML layer can be easily modeled.
The Rgis, Gais should have a spatial parabolic distribution with very high maximum value and they should
satisfy the condition G4is = RaisLdis/Ciis for each cell of the layer. In this way, one matched transmission
line can be simulated by choosing the appropriate Rg;,,Gg4i, that satisfy the specified numerical reflection
coefficient (usually smaller than -80dB).

For validation purposes, the propagation of a Gabor pulse along a lossy line with Ry, = 500/m has been
simulated and the scaling and wavelet voltage coefficients have been probed at the positions z = 140Az and
2 = 160Az. Data for the first 200 time-steps (At = 2At/3) have been plotted in Fig.(7). The maximum value
of the wavelet coefficients (approximately 7% of the respective scaling coefficient) is smaller than that of the
lossless line. By applying a thresholding procedure using an absolute threshold of 10~ and a relative threshold
of 5e — 4, an extra economy of 29% is achieved, since only 60% of the voltage and 25% of the current wavelet
coefficients take values above the thresholds throughout the simulation time (Fig.(8)).

II.2 Lumped Elements

II.2.1 Passive Elements

Lumped Passive Elements such as Capacitors, Inductors and Resistors can be modeled in a similar way with the
Distributed ones by numerically distributing them along one cell. For example, if one lumped Capacitor Cjypm is
located at z = mAz along a lossy line with (Rgis, Gais, Ldis, Cdis), the voltage coefficients x4+ V2, g1 VY0 will



still be given by Eqs.(13)-(14). The only difference is that the constant C; will have the new value C) = CiotAz
with

(19)

I11.2.2 PN-Diode

To model lumped active elements such as a PN-diode, their nonlinear equation has to be discretized after
inserting the voltage and current expansions. The MRTD equations are not linear and require the use of
numerical solvers for nonlinear systems. The combined Newton-Raphson/Bisection solver has provided stable
solutions for PN-diode simulations with I < l.e — 104, though sometimes diverges for larger values. The
voltage scaling and wavelet coefficients for the diode cell are updated by inserting the voltage and current
expansion in the equation

Ipiope(V) = Io (e"/*T - 1) (20)

adding the diode capacitance C; to the Cyi, and applying the moments method, thus giving the nonlinear
system for a diode positioned in parallel

At
(Cs + Cais) iVE + Cs kVY +(Cs = Cais) k-1VE = Cs x-1VY + E(k—0.5m+o_5 - k0512 _o5)

+ 0.5AtCj(etT/alo (h-1V2 =21 V®) 4 okT/g Io (VA + ..Vn'.’°)) =0 (21)
At
—Cs V2 - (Cs— Cuis) £V +Cs 1-1VE = (Cs + Clum) 1-1V;¥* + Z—;(k—o.sf,?&oj = k—05I0m " 05)

+ 0.5At Cj(e"T/Q Io (h-1VE —a-1Va®) _ ekT/a o (V2 +..V,,‘f°)) 0 (22)

with

Cs =05 At Gium - (23)
To validate the algorithm, the rectifier topology of Fig.(9) is analyzed using FDTD (Scaling Only) with
At = Atpmaz /4.4 and MRTD (Scaling+wavelets) with double time-step At = Atpmaz/2.2. A lossless line with
(Ldis; Cdis) = (20nH/m,3nF/m) and a PN-Diode with I = 3pA are used in the simulation. The probed total
voltage is plotted in Fig.(10) and the agreement is very good. The use of an absolute threshold of 106 and a
relative threshold of 5e — 4 offers an extra economy of 35% for the MRTD algorithm.

IITI Conclusion

A Time Adaptive Time-Domain Technique based on intervalic wavelets has been proposed and applied to
various types of circuits problems with active and passive lumped and distributed elements. This scheme
exhibits significant savings in execution time and memory requirements while maintaining a similar accuracy
with conventional circuit simulators.
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I Introduction

Recently the principles of the Multiresolution Analysis have been successfully applied 1, 2]
to the time-domain numerical techniques used for the analysis of a variety of microwave prob-
lems. New techniques have been derived by the use of scaling and wavelet functions for the
discretization of the time-domain Maxwell’s equations. The multiresolution time domain tech-
nique (MRTD) based on Battle Lemarie functions has been used for the simulations of planar
circuits and resonating structures. The conventional FDTD absorbers (e.g. PML) have been
generalized in order to analyze open planar structures. MRTD has demonstrated unparalleled
savings in execution time and memory requirements (2 orders of magnitude for 3D problems). In
addition to time and memory, MRTD technique can provide space- and time- adaptive meshing
without the problems that the conventional FDTD variable grids are encountering (e.g. reflec-
tions between dense-coarse regions). This unique feature stems from the use of two separate sets
of basis functions, the scaling and wavelets. Due to the excellent conditioning of the formulated
mathematical problem, MRTD offers the capability to threshold the wavelet field coefficients.
This advantage of the MRTD Technique is demonstrated herein by performing a space-/time-
adaptive meshing.

In this paper, a space-/time- adaptive meshing algorithm based on the MRTD scheme is pro-
posed and validated for a specific waveguide problem. Wavelets up to the second resolution
are placed only at locations where the EM fields have significant values. These locations are
changing with the time as the pulse is propagating inside the waveguide and with the space as
the pulse is approaching regions of discontinuities. The proposed algorithm offers the oppor-
tunity of a space-/time- adaptive mesh with variable resolution of the field representation. In
this way, significant memory and execution time savings can be achieved in comparison to the
conventional variable-mesh FDTD algorithms.



I MRTD Formulation

Without loss of generality, the 2D-MRTD scheme for the T M, modes will be described herein.
To derive the scheme equations, the field components are represented by a series of cubic spline
Battle-Lemarie scaling and 1-order wavelet functions along the z-direction, while pulses are used
for the time representation. Wavelets of higher-order can be included in a similar way. After
inserting these series expansions in Maxwell’s equations and sampling them with pulse functions
in time and scaling/wavelet functions in space domain, we derive the following equations for
the electric field:
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T . .
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where kDﬁfn, kE and ; HfY, with £=¢ (scaling),3 (wavelets) are the coefficients for the electric
flux, electric a.nd magnetic field expansions. The indices /,m and k are the discrete space and
time indices, which are related to the space and time coordinates via r = I{Az,z = mAz and
t = kAt, where Az,Az are the space discretization intervals in x- and z-direction and At is the
time discretization interval. The coefficients a(z), b(), c(i) are derived and given in [1]. For an
accuracy of 0.1% the values m; = ms = 8, my = m3 = my = mg = 9 have been used. The
indices /; have to take similar values to achieve tha same accuracy in the summations.
The use of non-localized basis functions in the 2D-MRTD scheme causes significant effects. Lo-
calized boundary conditions are impossible to be implemented, so the perfect electric boundary
conditions are modelled by use of the image principle in a generic way. The implementation of
the image theory is performed automatically for any number of PEC, PMC boundaries. The
material discontinuities are represented in terms of scaling and wavelet functions resulting into
a linear matrix equation as explained in [1, 3] where this technique was used in the modeling of
anisotropic dielectric media. In addition, the total value of a field component at a specific point
of the mesh is a summation of the contributions from the neighbooring non-localized scaling
and wavelet functions. The field values at the neighbooring cells can be combined appropriately
by adjusting the scaling and wavelet function values and by applying the image principle.
The demand for the simulation of open structures led to the generalization of the perfectly
matched layer (PML) technique [4], so as it can be used in the MRTD simulations. The con-
ductivity is expanded in terms of scaling functions instead of pulse functions with respect to



space. The amplitudes of the expansion scaling functions follow the PML spatial conductivity
distribution. In our simulations, the parabolic distribution was used, though the realization of
other distributions (linear, cubic, ...) is straightforward. For example, if we assume that the
PML absorbing material (e, p, 0£) extends to the z-direction, substituting

D(i)z,Z(I, 2, t) = b(i)z,z(z’ z, t)e-afz)t/( (1)

and
HO¥(g 2, t) = AOV(g, 2, t)e 0¥ (2)
for i=¢, 9, leads to the following equation:
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Following a procedure similar to the one used for the derivation of the non-PML region equa-
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tions, we get for D, components
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The finite-difference equations for D(#¥)2 and H(®¥ are similar. For all simulations, a parabolic
distribution of the conductivity o is used in the PML region (N cells):

a{;",,';{,,_a“( > form=0,1,.N, (4)

with o7 the maximum conductivity at the end of the absorbing layer. As in [5], the " magnetic”
conductivity o¥ is given by:

E H
Tman) _ Tmd)  por 01, N (5)
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and the MRTD mesh is terminated by a perfect electric conductor (PEC) at the end of the
PML region. This PEC is modelled by applying the image theory.




III Space/Time Adaptive Meshing

The wavelet components’ amplitudes have negligible values away from the discontinuities or at
regions where the excitation pulse has not propagated yet. There are numerous ways of taking
advantage of the above feature. The simplest one is to threshold the wavelet components to a
fraction (usually < 0.1%) of the scaling component at the same cell (space adaptivity) for each
time-step. All components below this threshold are eliminated from the subsequent calculations
for the same time-step (time adaptivity). This procedure offers only a moderate economy in
memory (factor close to 2). Also, this algorithm allows for the dynamic memory allocation in
its programming implementation, while maintaining a low complexity.

The above space-/time- adaptive meshing scheme is applied to the analysis of the partially-
loaded parallel-plate waveguide of (Fig.1) for the frequency range 0-22.5GHz. The waveguide is
half-filled with air and half-filled with dielectric with ¢, = 2.56. An FDTD 16 x 640 (10240 cells)
mesh and an MRTD 2 x 80 (160 cells) mesh (160 grid points with dz = 0.18),, dz = 0.3)\, -
close to the Nyquist Limit for f = 22.5GH?2) are used for the Time-Domain simulations (3,000
time-steps). The 160 grid points of the MRTD mesh express the number of the used scaling
functions. The number of the wavelets is varying with time and depends on the predefined
threshold. For consistency, the time step for both schemes is chosen to be equal to the 1/8 of
the FDTD maximum At.

The waveguide is excited with a Gabor function 0-22.5GHz along a vertical line for the FDTD
simulation and for a rectangular region of 12 cells to the longitudinal direction (due to the
non-localized character of the Battle-Lemarie scaling and wavelet functions) for the MRTD
simulations. Other excitations (e.g.Gaussian) can be applied i a straightforward way. For both
cases, a PML region of 16 cells and 6Z,,=0.4S/m absorbs the waves in the front and back open
planes. The capability of the MRTD technique to provide space- and time- adaptive gridding is
verified by thresholding the wavelet components to the 0.1% of the value of the scaling function
at the same cell for each time-step. The accuracy achieved by using only the wavelets with
values above the threshold is equal to what would be if wavelets were used everywhere. Though
this number is varying in time , its maximum value is 36 out of a total of 160 to the z-direction
(economy in memory by a factor of 52 instead of 32). In addition, execution time is reduced
by a factor 4-5. For larger thresholds, the ringing effect due to the elimination of the wavelets
deteriorates the performance of the algorithm. For example, using a threshold of 1% (13 out of
a 160 wavelets to the z-direction) increases the error by a factor of 2.1.

The results for the Reflection Coefficient for 10 GHz are validated by comparison to the theoret-
ical value |R| = 0.231 (=(/2.56-1.0)/(v/2.56+1.0)). MRTD gives the value 0.2296 and FDTD
gives 0.2304 (similar accuracy). The normal electric field is probed at a distance 10 cells away
from the source and is plotted in (Fig.2) in time-domain. Similar accuracy can be observed for



the FDTD and the MRTD meshes.

Fig.3 demonstrates the space- and time-adaptive character of the meshing algorithm. It is
clearly shownw that the wavelets follow the propagating exciation pulse before and after the
incidence to the dielectric interface and can be omitted elsewhere. The location and the number
of the wavelet coefficients with values above the threshold (”effective wavelets”) are different
for each time-step, something that creates a mesh with high resolution ("dense”) in regions of
strong field variations, while maintaining a much lower resolution (”coarse”) for the rest cells.

IV Conclusion
A simple space- and time- adaptive meshing algorithm based on an MRTD scheme has been

proposed and has been validated for a parallel-plate waveguide problem. The electric field value
and the reflection coefficient have been calculated and verified by comparison to reference data.
The proposed scheme exhibits memory savings by a factor of 52 in 2D, as well as execution
time savings by a factor of 4-5, while maintaining a similar accuracy with Yee’s conventional
FDTD scheme. In addition, this algorithm doesn’t increase the programming complexity and
can be effectively extended to 3D problems.
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Abstract- The MRTD scheme is applied to the
analysis of waveguide problems. Specifically, the field
pattern and the S-parameters of a dielectric-loaded
parallel-plate waveguide are calculated. The use of
wavelets enables the implementation of a space- and
time-adaptive gridding technique. The results are
compared to those obtained by use of the conven-
tional FDTD scheme to indicate considerable savings
in memory and computational time.

I Introduction

Recently a new technique has been successfully ap-
plied [1-4] to a variety of microwave problems and
has demonstrated unparalleled properties. This tech-
nique is derived by the use of multiresolution analysis
for the discretization of the time-domain Maxwell’s
equations. The multiresolution time domain tech-
nique (MRTD) based on Battle Lemarie functions
has been applied to linear as well as nonlinear propa-
gation problems. The PML absorbing boundary con-
dition has been generalized in order to analyze open
planar structures. MRTD has demonstrated savings
in time and memory of two orders of magnitude. In
addition, the most important advantage of this new
technique is its capability to provide space and time
adaptive gridding without the problems that the con-
ventional FDTD is encountering. This is due to the
use of two separate sets of basis functions, the scal-

ing and wavelets and the capability to threshold the
field coefficients due to the excellent conditioning of
the formulated mathematical problem.

In this paper, a space/time adaptive gridding algo-
rithm based on the MRTD scheme is proposed and
applied to the waveguide problems. As an exam-
ple, the propagation of a Gabor pulse in a partially-
filled parallel-plate waveguide is simulated and the
S-parameters are evaluated. Wavelets are placed only
at locations where the EM fields have significant val-
ues, creating a space- and time- adaptive dense mesh
in regions of strong field variations, while maintain-
ing a much coarser mesh elsewhere.

II The 2D-MRTD scheme

For simplicity the 2D-MRTD scheme for the TM,
modes will be used herein. To derive the 2D-MRTD
scheme, the field components are represented by a
series of cubic spline Battle-Lemarie [5] scaling and
wavelet functions to the longitudinal direction in
space and pulse functions in time. After inserting
the field expansions in Maxwell’s equations, we sam-
ple them using pulse functions in time and scal-
ing/wavelet functions in space domain.

As an example, sampling 8D, /dt,= — 8H,/dz in
space and time, the following difference equation is
obtained
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where ;D% and HfY with £=¢ (scaling)
(wavelets) are the coefficients for the electric and
magnetic field expansions. The indices !,m and k
are the discrete space and time indices, which are
related to the space and time coordinates via z =
lAz,2 = mAz and t = kAt, where Az,Az are the
space discretization intervals in x- and z-direction
and At is the time discretization interval. The coeffi-
cients a(i), b(t), c(i) are derived and given in [2]. For
an accuracy of 0.1% the values m,
m3 = my = mg = 9 have been used.

=mg =8my =

For open structures, the perfectly matched layer
(PML) technique can be applied by assuming that
the conductivity is given in terms of scaling and
wavelet functions instead of pulse functions with re-
spect to space [4]. The spatial distribution of the con-
ductivity for the absorbing layers is modelled by as-
suming that the amplitudes of the scaling functions
have a parabolic distribution. The MRTD mesh is
terminated by a perfect electric conductor (PEC) at
the end of the PML region. Usually, 8-16 cells of PML
medium with 0, =0.4S/m provide reflection coef-
ficients smaller than -90 dB.

In order to use a pulse excitation at z = mAz with
respect to space and to obtain an excitation identical
to an FDTD excitation, we decompose the pulse in

terms of sca.lingkﬁyimav%et %gfbl%l& )
+4 +4
(Y colidgmss + Y colildmss) (3)

i=—4 t=—4
where the coefficients ¢4 (i), ¢y (i) are given in Table

1fori > 0. Fori < 0itis cy(—t) = cy4(i) and

ce (1) = ¢y (1 =1). Ep(0,kAt) is the time dependence
of the excitation. For |i| < 4, the above excitation
components are superimposed to the field values ob-
tained by the MRTD algorithm. For example, the
total E?

k,m+i

E? .. = Ep(0,kAt) cg(i) + E?

kimti | otal Mt

will be given by

Due to the nature of the Battle-Lemarie expan-
sion functions, the total field is a summation of
the contributions from the non-localized scaling and
wavelet functions. For example, the total electric field
E;(zo,20,t,) With (k- 1/2)At <t, < (k+1/2) At

is calculated in the same way with [2, 3] by
I
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where ¢ (z) = ( —m) and ¢; m(7) = '/’t o) _m)
represent the Battle-Lemane scaling and 1-r&eolution
wavelet function respectively. For an accuracy of
0.1% the values l; =l ; = 4 have been used.

There are many different ways to take advantage of
the capability of the MRTD technique to provide
space and time adaptive gridding. In DSP, thresh-
olding of the wavelet coefficients over a specific time-
and space- window (5-10 points) contribute signifi-
cant memory economy, but increase the implemen-
tation complexity and the execution time. The sim-
plest way is to threshold the wavelet components to
a fraction (usually < 0.1%) of the scaling function
at the same cell for each time-step. All components
below this threshold are eliminated from the subse-
quent calculations. This is the simplest threshold-
ing algorithm. It doesn’t add any significant over-
head in execution time, but it offers only a moderate
(pessimistic) economy in memory (factor close to 2).
Also, this algorithm allows for the dynamic memory
allocation in its programming implementation.

IIT Applications of 2D-MRTD

The 2D-MRTD scheme is applied to the analysis
of the partially-loaded parallel-plate waveguide of
(Fig.1) for the frequency range 0-30GHz. For the



analysis based on Yee’s FDTD scheme, a 16 x 800
mesh is used resulting in a total number of 14400
grid points. When the structure is analyzed with the
2D-MRTD scheme, a mesh 2 x 100 (200 grid points)
is chosen (dr = 0.24),, dz = 0.4), for f = 30GHz).
This size is based on the number of the scaling func-
tions, since the wavelets are used only when and
where necessary. The time discretization interval is
selected to be identical for both schemes and equal
to the 1/10 of the 2D-MRTD maximum At. For the
analysis we use 8,000 time-steps. The waveguide is
excited with a Gabor function 0-30GHz along a ver-
tical line for the FDTD simulation and for a rectan-
gular region for the MRTD simulations. In all cases,
the front and back open planes are terminated with
a PML region of 16 cells and 0£_, =0.4S/m. The lon-
gitudinal distance between the excitation and the di-
electric interface is chosen such that no reflections
would appear before the Gabor function is complete.

The capability of the MRTD technique to pro-
vide space and time adaptive gridding is verified by
thresholding the wavelet components to the 0.1% of
the value of the scaling function at the same cell for
each time-step. It has been observed that the accu-
racy by using only a small number of wavelets is equal
to what would be achieved if wavelets were used ev-
erywhere. Though this number is varying in time,
its maximum value is 22 out of a total of 100 to
the z-direction (economy in memory by a factor of
28-30). In addition, execution time is reduced by a
factor 4-5. For larger thresholds, the ringing effect
due to the elimination of the wavelets deteriorates
the performance of the algorithm. For example, us-
ing a threshold of 1% (6 out of a 100 wavelets to the
z-direction) increases the error by a factor of 2.5.

The normal electric field is probed at a distance 10
cells away from the source and is plotted in (Fig.2) in
time-domain. Comparable accuracy can be observed
for the FDTD and the MRTD meshes. In addition,
the reflection coefficient Sy, is calculated by separat-
ing the incident and the reflected part of the probed
field and taking the Fourier transform of their ra-
tio (Fig.3). The results for 5 GHz (TEM propaga-
tion) are validated by comparison to the theoreti-

cal value obtained applying ideal transmission line
theory [6] and are plotted at Table 2. The time-
and space-adaptive character of the gridding is ex-
ploited in (Figs.4,5) which show that the wavelets
follow the propagating pulses before and after the
incidence to the dielectric interfaces and have negli-
gible values elsewhere. The location and the number
of the wavelet coefficients with significant values are
different for each time-step, something that creates a
dense mesh in regions of strong field variations, while
maintaining a much coarser mesh for the other cells.

IV  Conclusion

A space- and time- adaptive gridding algorithm
based on a multiresolution time-domain scheme in
two dimensions has been proposed and has been ap-
plied to the numerical analysis of a waveguide prob-
lem. The field pattern and the reflection coefficient
have been calculated and verified by comparison to
reference data. In comparison to Yee’s conventional
FDTD scheme, the proposed scheme offers memory
savings by a factor of 5-6 per dimension maintain-
ing a similar accuracy. The above algorithm can be
effectively extended to three-dimension problems.
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Table 1: Excitation Decomposition Coeffs

i 0 1 2 3 4
ce(?) | 0.915 | 0.038 | 0.010 | -0.009 | 0.005
cy(?) | -0.103 | -0.103 | 0.121 | -0.030 | 0.015

Table 2: S;; calculated by 2D-MRTD

S () | Relative error
Analyt. Value [6] | 0.4298 0.0%
16x800 FDTD 0.4283 -0.3%
2x100 MRTD 0.4360 +1.4%
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Figure 1: Dielectric-loaded Waveguide.
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Abstract

The recently developed MRTD schemes are used for the development of a time adaptive time-
domain technique for circuit design. The new technique exhibits considerable savings in memory
and computational times in comparison to the conventional FDTD scheme.

I Introduction

Significant attention is being devoted now-a-days to the analysis and design of various types
of microwave circuits. The finite-difference-time-domain (FDTD) scheme is one of the most
powerful numerical techniques used for numerical simulations. However, despite its simplicity
and modeling versatility, the FDTD scheme suffers from serious limitations due to the sub-
stantial computer resources required to model electromagnetic problems with medium or large
computational volumes. In addition, the FDTD scheme cannot provide the accuracy required
for computer simulations of time-dependent electromagnetic interactions in electrically long re-
gions or in regions which contain non-linear materials. Such simulations are very important for
integrated device modelling, especially in relation to the design of non-linear photonic devices.
To alleviate these problems hybrid combinations of FDTD with other numerical techniques and
higher order FDTD schemes based on Yee’s grid have been proposed. MRTD (MultiResolution
Time Domain Method) [1, 2] has shown unparalled properties in comparison to Yee’s FDTD.
MRTD is not a new methodology. It is a correct and accurate generalization of the conventional
discretization approaches. It provides the correct mathematical frame for solving problems in
time domain and allows for the development of time/space adaptive grids.

II Introduction to MRTD

It is well known that the method of moments provides a mathematically correct approach for
the discretization of integral and partial differential equations. Since it allows for the use of
any complete and orthonormal set, the choice of an appropriate expansion set may lead to
different time domain schemes. For example, the expansion of the unknown fields using pulse



functions leads to Yee's FDTD scheme. In a MRTD scheme the fields are represented by a two-
fold expansion in scaling and wavelet functions with respect to time/space. Scaling functions
guarantee a correct modelling of smoothly-varying fields. In regions characterized by strong field
variations or field singularities, higher resolution is enhanced by incorporating wavelets in the
field expansions. Wavelets are introduced only at specific locations, allowing for a time/space
adaptive grid capability.

MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions (Fig.1) have
been successfully applied to the simulation of 2D and 3D open and shielded problems (1, 2, 3, 4].
The functions of this family do not have compact support, thus the MRTD schemes have to
be truncated with respect to space. Localized boundary conditions (PECs, PMCs etc.) and
material properties are modelled by use of the image principle and of matrix equations respec-
tively. However, this disadvantage is offset by the low-pass (scaling) and band-pass (wavelets)
characteristics in spectral domain, allowing for an a priori estimate of the number of resolu-
tion levels necessary for a correct field modelling. In addition, the evaluation of the moment
method integrals during the discretization of Maxwell’s PDE:s is simplified due to the existence
of closed form expressions in spectral domain and simple representations in space domain. Dis-
persion analysis of this MRTD scheme shows the capability of excellent accuracy with up to 2
points/wavelength (Nyquist Limit). However, specific circuit problems may require the use of
functions with compact support. For that reason, Haar basis functions have been utilized and
have led to [5]. As an extension to this approach, intervalic wavelets of higher order may be
incorporated into the solution of SPICE-type circuits. Results from that new technique will be
shown at the Conference.

IIT Time Adaptive MRTD Scheme

The major advantage of the use of Mutiresolution analysis to time domain is the capability to
develop time and space adaptive schemes. This is due to the property of the wavelet expansion
functions to interact weakly and allow for a spatial sparsity that may vary with time through
a thresholding process. The adaptive character of this technique is extremely important for
the accurate modelling of sharp field variations of the type encountered in beam focusing in
nonlinear optics, etc. The use of the principles of the multiresolution analysis for adaptive grid
computations for PDEs has been suggested by Perrier and Basdevant [6]. To understand the
fundamental steps of such an adaptive scheme for Maxwell’s hyperbolic system, let’s consider
Maxwell’s equations in 2D (1 for space and 1 for time):

ol 0 —e(z)1 L

= Al =

ot —u(x)'E 0

i, i=(E(z,t),H(z,t)T (1)

After manipulation, the above equation can be written as
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where Z,, T}, are half shift operators for space and time coordinates z,t and Z,I,T,I are their
Hermitian conjugates. Dy, D, are difference operators given by:
1 8 9 1 8
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where ay4,a, are the coefficients associated with the scalar and the wavelet functions respec-
tively. At each time step we keep both the wavelet field values that are larger than a given
threshold as well as the adjacent values. An adjacent wavelet field value is defined on the basis
of the wavelet resolution level(s) incorporated in the solution. Recently, an efficient space/time
adaptive meshing prosedure was proposed 7] for Battle-Lemarie expansion functions. In this
paper, intervalic wavelets are used for the expansion of the fields (Fig.2). The adaptive mesh will
be applied to a variety of circuit problems and results will be discussed during the presentation.

IV Conclusion

A Time Adaptive Time-Domain Technique based on intervalic wavelets has been proposed and
applied to various types of circuits problems with lumped and distributed elements. This scheme
exhibits significant savings in execution time and memory requirements while maintaining a
similar accuracy with conventional circuit simulators.
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I Introduction

The Multiresolution Time Domain (MRTD) Technique based on cubic-spline Battle Lemarie
scaling and wavelet functions has shown successful application to a variety of microwave prob-
lems and has demonstrated unparalleled properties in terms of memory and execution time
by one and two orders of magnitude respectively. This technique is used to model open and
shielded propagation problems [1, 3] and non-linear optical applications [2]. In addition to time
and memory, the most important advantage of this new technique is its capability to provide
space and time adaptive meshing without the problems encountered by the conventional Finite
Difference Time Domain(FDTD) [4] method. In this paper, an efficient non-split formulation
of the PML absorber [5] for the Battle-Lemarie based MRTD scheme is presented. This formu-
lation is validated and applied in the analysis of a two-dimensional parallel-plate waveguide
geometry offering a numerical coefficient of reflection below -90dB. Additionally, examples for
a three-dimensional patch antenna geometry are given.

II Derivation of the MRTD equations for the PML layer

Without loss of generality, the PML Absorber equations will be presented for a homogeneous
medium for TM propagation in 2D. The Absorber formulation for TE propagation is straight-
forward. Assuming that the PML area is characterized by (€,, y,) and electric and magnetic
conductivities (0g,og), the TM equations can be written

OE, oH,

€o ot +UEE:: = —-5-2— (1)
OF, _ oH,

€o 5 +o0gE, = 6_x (2)
oH, _ 0B, 0F,

ho gy * onll, = 0r 0z ' 3)



PML cells only to the z-direction are considered. Equations for PML cells in the x- and v-
directions can be derived in a similar way. For each point z of the PML area, the magnetic
conductivity o¥ needs to be chosen as [5]:

€ Ho

og(2) _ on(2) (4)

for a perfect absorption of the outgoing waves. A parabolic spatial distribution of og g,

oen(2) =0gg(1- g)’ , with p=2 for 0 < 2 < § = PML thickness (5)

is used in the simulations, though higher order distributions (e.g.Cubic p=3) can give similar
results. The PML area is terminated with a PEC and usually has a thickness varying between
4-16 cells. The maximum value 07** is determined by the designated reflection coefficient R at
normal incidence, which is given by the relationship

umuzs

R=¢e %c fdaE(z)dz = ‘_chmj . (6)

The electric and magnetic field components incorporated in these equations are expanded in a
series of Battle-Lemarie scaling and wavelet functions in both x- and z-directions. For example,
E; can be represented as:

+00
Ex(z,2,t) = ) kEf_;T;g,mhk(t)¢t+1/2(-’5)¢m(z)
k,l,m=~o00

+00
+ Y X kERSls m(2) b11/2(2) Yim(2)

i k,l,m—-oo

+ ) Z RELN bk (2) Yi141/2(2) b (2)

ik l,m_—-oo

+ Z Z k l-;-'f'/'/;,m )¢|l+1/2( )'wj,m(z) (7)
t,j klm=—oc0
where ¢ (z) = ¢(25 — m) and Ym(z) = ¥i( — m) represent the Battle-Lemarie scaling

and i-th order resolution wavelet function respectively in space and h(t) represent rectangular
pulses in time. E;,” and 41/2H; " with & = ,9,2 and p,v = ¢, 9 are the coefficients for
the field expansions in terms of scaling and wavelet functions. The indices !, m and k are the
discrete space and time indices related to the space and time coordinates via z = [Az,2 = mAz
and t = kAt, where Az,Az are the space discretization intervals in x- and z-direction and At is
the time discretization interval. For an accuracy of 0.1% the above summations are truncated
to 16-24 terms. For simplicity, expansion only in scaling functions will be considered. Wavelets
are implemented in a similar way. Upon inserting the field expansions, Maxwell’s equations



are sampled (3] using pulse functions as time-domain test functions and scaling functions as
space-domain test-functions and the following non-split formulation of the fields for the PML
region is derived:

B —  —0BAtle, pzT,H¢
e BT pm = € EN B
0semAtery 1 ”
-U. €, -/ Y,
- € e (— Z a(i )k+1/2Hl+1/2,i’+1/2)
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2,60 _ opt PAteo 2.0
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-0.507* 2 At/e, 1 & ]
+ e E (E Z a(i )k+1/2H'+1/2,m+1/2)
i'=1-9

VDM — - "‘At 0 1¢¢
k+1/2Hl+1/2,m+1/2 = ¢ TRAM k'1/2Hly+l/2,m+1/2
- ] L8 o m+8
-0.50T At -t Z,
T L MO - RS DTN )
i'=l-9 i'=m-9

where the terms oF ; are given by Eq.(12).

A parallel-plate waveguide of width d=48 mm, terminated at both ends by PML, is used to
validate the proposed algorithm. A TM source with a Gabor time variation is excited close to
one side of the waveguide. The benchmark MRTD solution with no reflections is obtained by
simulating the case of a much longer parallel-plate waveguide of the same width to provide a
reflection-free observation area for the time interval of interest. A quadratic variation in PML
conductivity is assumed for all cases, with maximum theoretical reflection coefficient of 10~° at
normal incidence. Numerical reflection is observed for the frequency range [0,0.9f7*] (TEM
propagation) where fT™ = £ = 3.125 (GH2) is the cutoff frequency of the TM; mode. It
can be seen from Figs.(1)-(2) that for 8 PML cells and 0**=0.4 S/m it is S;; <-65 dB and
for 16 PML cells and 0F**=0.2 S/m the reflection is smaller than -91 dB. Thus, the non-split
PML absorber can be used effectively in the simulation of antennas and active elements using
MRTD.

IIT Application of PML to the Analysis of Antenna Ge-

ometries

MRTD can successfully model both planar circuits [6] and resonating structures [7]. Recently
the techniques developed for the simulation of both structures are combined to model a three-
dimensional patch antenna geometry [8]. Full three-dimensional MRTD analysis is used, with
PML expanded through three coordinate directions. The procedure to derive an equation for the



At PML cells along z | 0Z2_ | Y, | oE:

mar mar marxr

FDTD (60 x 100 x 16) | 1.3297 - 10~13s 6 30 | 30 | 3.0
MRTD(30 x 50 x 9) | 1.6008 - 10~3s 2-6 3.0 | 3.0 |11.53
MRTD (20 x 20 x 9) | 1.3297 - 10~%3s 6-10 3.0 | 3.0 |11.53

Table 1: Computational Parameters.

three-dimensional MRTD scheme, with PML along all three coordinate directions is presented
in (8].

The patch antenna used in our simulations has the dimensions 12.45mm x 16mm, with a
microstrip line 20 mm long used as a feed. A Gaussian pulse 4 mm from the PML layer is used
to excite the microstrip. The substrate has a thickness of 0.794 mm and a relative dielectric
constant equal to 1. An FDTD mesh of 60 x 100 x 16 is compared to MRTD grids of 30 x 50 x 9
and 20 x 20 x 9, which exhibit savings of memory over FDTD on the order of 7.22 and 33
respectively. Note that these values do not include the PML layers. Figure 3 shows a comparison
plot of calculated S;; data for the three cases listed above. Six cells of PML are added along
the +z, +y and +z directions with 622, = 6£¥ = 3.0 and 022, = 11.53 for all cases. The time
discretization interval used for the MRTD 30 x 50 x 9 scheme is At = 1.6008 - 10735 while the
MRTD 20 x 20 x 9 scheme uses a time discretization interval of At = 1.42384 - 10~13s. FDTD
uses a time discretization interval of At = 1.3297 - 10~'3s. In all three cases the simulation is
performed for 10000 time steps. This information is summarized in Table 1.

Figure 4 shows a comparison of S;; data for different numbers of z-directed PML layers for an
MRTD discretization of 30 x 50 x 9. Note that the S;; values correlate very well even for only
2 PML layers in the z—direction. Figure 4 shows a comparison of S;; data for different numbers
of z—directed PML layers for an MRTD discretization of 20 x 20 x 9. Once again the values of
S11 show good correlation.

IV Conclusion

An efficient PML absorber in non-split formulation is presented for the MRTD Scheme based
on cubic spline Battle-Lemarie scaling functions. This absorber is used effectively to model
an antenna geometry providing extremely small numerical reflections. In comparison to Yee’s
conventional FDTD scheme, the proposed MRTD scheme coupled with the PML absorber
offer memory savings by a factor of 12-30 and execution time savings by a factor of about
3-5 maintaining a better accuracy for S-parameter calculations. For structures where the edge
effect is prominent, additional wavelets can be used to improve the accuracy when using a



coarse MRTD mesh.
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Abstract- The MRTD scheme is applied to the
modeling of nonlinear circuits. Specifically, the im-
plementation of passive and active elements is dis-
cussed. The results are compared to those obtained
by use of the commercial CADs to indicate consider-
able savings in memory and computational time.

I Introduction

Recently, the use of multiresolution analysis for the
discretization of the time-domain Maxwell’s equa-
tions has led to the development of the Multireso-
lution Time Domain Technique (MRTD). This tech-
nique has been applied to linear as well as nonlinear
propagation problems and has demonstrated savings
in time and memory of two orders of magnitude. In
addition, the most important advantage of this new
technique is its capability to provide a very effective
way for space and time adaptive gridding without en-
countering the problems that the conventional FDTD
has to resolve.

In this paper, an algorithm to model nonlinear cir-
cuits using the MRTD scheme is proposed and ap-
plied to diode problems. As an example, the har-
monic analysis of a diode enclosed in a metallic shield
and terminated with lumped resistors is performed
and a simple stripline mixer circuit using the same
diode is analyzed.

II The MRTD scheme

To derive the MRTD scheme, the field components
are expanded in a series of cubic spline Battle-
Lemarie [1, 2] scaling and wavelet functions in space

and pulse functions in time. The MRTD equations
are derived by applying the Method of Moments to
the Maxwell’s equations after inserting the field ex-
pansions.

For open structures, the perfectly matched layer
(PML) technique can be applied by assuming that
the conductivity is given in terms of scaling and
wavelet functions instead of pulse functions with re-
spect to space (3]. The MRTD mesh is terminated
by a perfect electric conductor (PEC) at the end
of the PML region. Unlike the FDTD, where the
consistency with the image theory is implicit in the
application of the boundary conditions, the entire-
domain nature of the wavelet and scaling functions
requires an explicit use of the boundary conditions.
In particular, image theory has to be applied for the
evaluation of the field component coefficients in the
vicinity of Perfect Electric and Magnetic Walls. Due
to the nature of the Battle-Lemarie expansion func-
tions, the total field is a summation of the contri-
butions from the non-localized scaling and wavelet
functions.

III Lumped Elements

Similarly to LE-FDTD technique [4], the basis of
the algorithm is given by a particular interpreta-
tion of the current density term contained in the
Curl(H) Maxwell’s equation. Let’s assume for the
rest of the discussion that all the lumped elements
are z-oriented.

aEz
ot

=2 =3(Vx H)+J* (1)



The current term can be considered as the superposi-
tion of two separate terms, one coming from the finite
conductivity of the medium J; and the other com-
ing from the presence of a lumped element Jj,. Eq.(1)
leads to the following general updating expression for
the E-field S-MRTD (Scaling-functions-based) coef-
ficients:
r+1E: x E¥
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€ e = :.(UxH)
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where an ideal dielectric medium with o = 0 has been
assumed. The discretization of the last term can be
obtained by expressing the constitutive relationship
of the related device in terms of electric field and
current density (instead of V-I relation as usual).

Since the field components are expanded in pulses in
the time-domain, the time discretization of the J-E

relation of the lumped devices is straightforward and
similar to FDTD.

III.1 Resistor

Assuming that the resistor is z-oriented and a pos-
itive voltage (with respect to the z-axis) is applied,
we have:

V. =-AzE,, I, =J,AzAy

Since the current flow due to a positive voltage is
negative with respect to the z-axis, Ohm's Law can
be written in the following form:

. _ AzE;
™ RAzAy @)
By discretizing equations 1 and 2 accordingly to the

S-MRTD scheme and assuming that no current den-
sity is supported by the medium we obtain:
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where
B= € Az € Az

At " 2RAzAy° ¢ = it 3RAzay

II1.2 Capacitor
The I-V Law of the capacitor is:

dv'(t)

1(t) = T
Expanding the E- and H- components in scaling func-
tions in space and pulses in time and applying the

Moments Method, the capacitor can be described by
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where the coefficient B is given by:
A
€+ CKszv
At

II1.3 Inductor

The constitutive relation of the inductor is:
It) =1L / V(t)dt

Following the same procedure described for the re-
sistor and the capacitor we obtain:
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where the coefficients 4, B, C are given by:
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III1.4 Diode with Junction and Diffu-

sion Capacitances
According to the model adopted in [5], the equivalent
circuit of the diode includes both the non linear junc-
tion and diffusion capacitances (C4;(V4) and C;(Vy))
and the total current can be expressed as:

Id = Ij + ch_. + ch



with ]
I =1Io (67’?""“ - 1) ,
dv, dv.
Ica = Cdi(vd)—dt_d , ch = C,(Vd)_a_t!

In the above equations K is the Boltzmann constant,
T is the absolute temperature, Iy is the inverse satu-
ration current of the diode and 7 is the ideality factor
that will be omitted in the rest of the discussion. The
two non linear capacitances, in turn, are modeled by
the following equations:

(V) = 9 (e¥rVva_
Cai(Vy) = 1aly T (e 4 1)

C_,'(Vd) = Cj(O) (1 - gs) if Va> Fc¢0
C;(0 Va\™" .
oy = 49 (ps " %‘) if Va < Fudy

where F,, F;, F; are suitable coefficients, m is the
doping profile coefficient (usually 0.5 for abrupt junc-
tion), @y is the built-in voltage and C;(0) is the static
capacitance at V4 = 0.

The current equations are discretized in a similar way
with the other lumped elements and two E-field tran-
scedental equations are derived for V3 < F,.¢p and
Va > F,.¢o. These equations can be solved in an iter-
ative procedure (e.g. Newton-Raphson algorithm).

IV Applications of Nonlinear
MRTD

The modeled Schottky GaAs diode has the follow-
ing parameter values: Iy = 5.e — 11 A, n = 1.25,
R, =139, C;(0) = .29pF, 74=0,m = 0.5, F, = .5
For the analysis of the testing structure of Fig.(1),
we have set up a mesh of 8 x 30 x 6 cells with a cell
size equal to 30 x 60 x 30 pm (60 pum is A/10 at
about 135 GHz). The same structure has been also
analyzed, for comparison, with FDTD method. This
analysis has been performed by adopting two differ-
ent meshes: the same mesh described before and a
doubled mesh with the dimension: 16 x 60 x 12 and
A/10 at about 270 GHz. The structure has been ex-
cited at the center with an impressed current source
window. A sine-wave with a frequency of 45 GHz
has been used, while a probe at the center of the

structure has been considered. Figures (2),(3) and
(4) show the results obtained with the coarse FDTD,
the finer FDTD, and the MRTD respectively. The
MRTD simulation has adopted the same mesh used
in the coarsest FDTD analysis. The good agreement
between the FDTD simulation with the fine mesh
and the MRTD one, together with the fairly different
results obtained with the coarse mesh FDTD analy-
sis, put at the evidence the capability of the MRTD
to better predict the frequency behavior of this non
linear circuit. In particular, it is evident that with
a coarse mesh, MRTD, in contrast to FDTD, can
detect the harmonic null due to the location of the
probe in the middle of the structure (in this posi-
tion, in theory, no even harmonic mode should be
detected).

Figure (5) shows the geometry of a stripline single-
ended mixer, which is analyzed by use of MRTD. The
used Schottky diode has the characteristics described
above and is zero biased for simplicity. The LO and
RF excitation signals have frequencies 43 GHz and
45 GHz and powers 20 dBm and -20 dBm respec-
tively. The left (short-circuited) stub with length
900 pm is used as an IF signal block and the right
(open-circuited) stub with length 1640 um blocks
the LO/RF signals at the output section. For this
configuration, MRTD gives a conversion loss of -8.1
dB. LIBRA, a commercial EM simulator, calculates
the conversion loss at -8.8 dB. In addition, (Table 1)
shows that the relative output power of the harmon-
ics gets similar values for MRTD and LIBRA simu-
lations. These results emphasize the inherent capa-
bility of MRTD to describe efficiently the nonlinear
elements, which create a discrete but infinite spec-
trum. Moreover, the MRTD allows for a time adap-
tive scheme which offers significant computational
profit due to the iterative algorithm for the solution
of the nonlinear equations. It has to be pointed out
that LIBRA can give reliable results only for qua-
sistatic geometries such as Figure (5). On the con-
trary, MRTD can simulate efficiently structures with
multimodal propagation without the huge memory
requirements of the conventional FDTD schemes.



Table 1: Harmonics Power Distribution [dBm)]

Freq [GHz) | 2 | 41 | 43 | 45 | 88
LIBRA -28.8 | -56.1 | -33.2 | -40.1 | -36.3
MRTD -28.1 | -54.7 | -314 | -38.2 | -34.7

V  Conclusion

An algorithm for the modeling of lumped elements
with the MRTD scheme based on the Battle-Lemarie
basis has been proposed and has been applied to
the numerical analysis of a diode problem. The fre-
quency spectrum has been calculated and verified by
comparison to reference data. In comparison to Yee’s
conventional FDTD scheme, the proposed scheme of-
fers memory savings by a factor of 2-6 per dimension
maintaining a similar accuracy.
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Abstract- The MRTD scheme is applied to the anal-
ysis of evanescent waveguide filters. Specifically, a
space adaptive algorithm in 3 dimensions is imple-
mented by thesholding the wavelet values. The re-
sults are compared to those obtained by use of the
conventional FDTD to indicate considerable savings
in memory and computational time.

I Introduction

The Space Adaptive Gridding [1], based on the ap-
plication of the Multiresolution Analysis principles
to the discretization of the time-domain Maxwell’s
equations (2, 3], has been employed in the analysis of
linear and nonlinear structures. It has offered signif-
icant savings in memory and execution time require-
ments. The application of the wavelets improve the
conditioning of the simulating algorithm and allow
for a space adaptive grid by thresholding the wavelet
coefficients. This adaptivity is useful especially in
evanescent mode structures that require time-domain
simulations for a large time span in order to take into
consideration the slow wave propagation.

In this paper, a space adaptive grid is applied for
the analysis of evanescent-mode waveguide bandpass
filters [4, 5, 6]. These structures have found many
applications in satellite communication systems, as
preselectors or in multiplexers, due to several ad-
vantages over the conventional coupled resonator fil-
ters, such as compactness and wide stopbands. The
S-parameters of one specific geometry are calculated
and compared to results obtained by the conventional
FDTD.

I The MRTD scheme

The 3D-MRTD scheme can be derived by repre-
senting the field components as a series of cubic
spline Battle-Lemarie scaling and wavelet functions
in space-domain and pulse function in time. Applying
the Method of Moments to the Maxwell’s equations
results in the MRTD equations. Generally, the fea-
tures of the 3D-MRTD algorithm are similar to those
of the 2D-MRTD algorithm. Nevertheless, there are
some differences as far as it concerns the implemen-
tation of the excitation and of the PML absorber.

In order to use a pulse excitation with respect to
space at a specific grid point for a 2D geometry
and to obtain an excitation identical to that used by
FDTD, the pulse is decomposed in terms of scaling
and wavelet functions on a square surface around the
excitation point. For the 3D-MRTD algorithm, this
decomposition takes place in a cubic volume around
this point, since the excitation affects the amplitudes
of the scaling and the wavelet function in all 3 direc-
tions. It has been observed that 4 cells along each
direction around the excitation point provide an ac-
curate representation of the source for most cases.

The maximum allowable time step required for the
stability of 3D-MRTD algorithms has to contain the
effect of all three space discretizations. For a sum-
mation stencil of 9 terms per direction and for 0-
resolution wavelet expansion it takes the value

0.37 ¢
V1/(8z)? +1/(Ay)* +1/(Az)?

where c is the velocity of light. For larger stencils, the
maximum value of the time step takes lower values.

Atma: =



The size of the stencil affects significantly the dis-
persion characteristics of the used algorithm. Larger
stencil for the summations including scaling func-
tions coefficients improves the phase error perfor-
mance for medium and high sampling rates (dis-
cretization size < A/10). Increasing the stencil size
in summations of wavelet functions coefficients offers
a better dispersion performance for lower sampling
rates (between A/2.2 and A/5). In our simulations,
the used stencil size has had the value of 9 for a
phase error smaller than 1° for most discretizations.

The use of the non-localized Battle-Lemarie basis
functions causes significant effects. Localized bound-
ary conditions are impossible to be directly imple-
mented, so perfect electric and magnetic boundary
conditions are modelled by use of the image princi-
ple in a generic way. The implementation of image
theory in 3 dimensions is performed automatically
for any number of PEC, PMC boundaries.

Due to the nature of the Battle-Lemarie expansion
functions, the total field is a summation of the con-
tributions from the non-localized scaling and wavelet
functions in 3 directions. For example, the total elec-
tric field E;(Z,,¥o, 20,t,) with (k —1/2)At < t, <
(k +1/2) At is calculated

I E; (zm Yo,y 20y to) =

Z k l’il/2,m’,n’ ¢l'+1/2 (20) m (y0)¢ﬂ' (z0)+

I'm' n'=<l
la;

Z Z k l’fl/2,m’,n' ¢1’+1/2(Io) O (yo) ¢|’,m' (zo)

i Umni=—ly;

where ¢m(z) = ¢(F —m) and i m(z) = '/’.(ﬁ-m)
represent the Battle-Lemarie scaling and i-resolution
wavelet functions respectively. Only wavelets to z-
direction have been included for simplicity. For an
accuracy of 0.1% the values l; = I ; = 6 have been
used.

The purpose of a space adaptive grid is to use a
coarse mesh and implement a local magnification by
the selective use of wavelets. Wavelets are placed only
at locations where the EM fields have significant val-
ues, creating a space- and time- adaptive dense mesh
in regions of strong field variations without adding a
significant computational overhead. There are many

different ways to take advantage of the capability
of the MRTD technique to provide space and time
adaptive gridding. All of them rely on the fact that
the wavelet values can be thresholded without affect-
ing the accuracy of the algorithm. The simplest way
is to threshold the wavelet components to a fraction
(usually < 0.5%) of the scaling function coefficient at
the same cell for each time-step. All components be-
low this threshold are eliminated from the subsequent
calculations. This procedure doesn’t add any signifi-
cant overhead in execution time (usually < 12%), but
it offers only a moderate economy in memory require-
ments (round 28 — 35%). Comparison of the wavelet
values over a specific space window of scaling neigh-
boors (often equal to the stencil size) would offer a
more significant economy in memory, but would de-
mand more execution time. Another way of creating
a space adaptive grid is to use an absolute threshold.
This requires the knowledge of the spatial field dis-
tribution in advance, something that makes it inap-
propriate for simulations of complicated structures.
Generally, in 3D cases where both memory and ex-
ecution requirements are high, the first thresholding
algorithm offers an optimized performance.

III Applications of Nonlinear
MRTD

Without loss of generality, the space adaptive algo-
rithm used in all simulations presented herein in-
cludes one resolution of wavelets only to the z- (lon-
gitudinal) direction. For validation purposes, this
scheme has been used for the analysis of the testing
structure of Figure (1). This filter geometry contains
four bilateral E-plane fins in a single WR62 waveg-
uide housing (15.799 mm x 7.899 mm). The thick-
ness of the fins is t=0.9 mm and the gap width is
w=3.1mm. The agreement of data obtained from the
space adaptive grid for a relative threshold of 0.5%
and those obtained by use of mode matching [4] is
very good (Figure(2)).

Another evanescent-mode E-plane finned waveguide
bandpass filter geometry is shown in Figure(3). A
WRI0 waveguide (22.86 mm x 10.16 mm) is used
at the input and output stages and a rectangular



waveguide with a crossection of 7.06 mm x 6.98 mm
is used as the housing of the filter. Geometrical pa-
rameters of the filter take the values I} = I, =0.5
mm, I3 =7.75mm and l4=0.94mm. The width of the
fins is chosen to be equal to the waveguide side length
e = w =7.06 mm. The MRTD space adaptive grid
is used to optimize the geometry. An 20x20x389 grid
is used for the simulations and 85,000 time steps are
considered. A Gabor pulse from 10-18 GHz is used
as the excitation along a plane at z = 44. Front and
back waveguides are terminated with 8 PML layers
with R = 105, A relative threshold of 0.5% is em-
ployed and offers economy in memory at least by
32%.

In the geometry under study, we have different elec-
trical paths between the input and output ports;
one (the main path) is constructed with the coupled
TEyo — TE;o — TE;o modes, and the others (the
subsidiary paths) are constructed with the coupled
TEm —TEmo - TEm modes, where TEmo for m 2 1
express the higher order evanescent modes. These
modes play primarily an important role to produce
a desired off-passband performance, but it also af-
fects significantly the passband behavior. Therefore,
we can not use the conventional synthesis method.
The slow velocity of the evanescent waves, require
the use of very dense grids of the conventional FDTD
algorithm for a large number of time-steps (close to
150,000). For example, a grid of 90x20x778 has been
used for 135,000 steps to provide comparable results.
On the contrary, space adaptive MRTD algorithms
can use coarse grids everywhere except from the ar-
eas that the evanescent modes have significant val-
ues. Localized use of wavelets in these regions offer
the necessary grid magnification. This effect can be
observed in Figure(4) that shows the wavelet coeffi-
cients amplitude for an arbitrary time step after the
pulse has propagated along the whole structure. The
results from the optimization (Figures (5)-(7)) show
that as the used fins get wider and come closer, the
S21 gets higher values without affecting the signifi-
cantly the bandwidth of the filter.

IV Conclusion

A space adaptive 3D algorithm based on Battle-
Lemarie scaling and wavelet functions has been ap-
plied in the numerical modeling of evanescent-mode
waveguide bandpass filters. The S-parameters of one
specific geometry are calculated and offer memory
savings by a factor of 3-6 per dimension and exe-
cution time savings by a factor of 2.5 compared to
results obtained by the conventional FDTD.
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ABSTRACT

TIME-DOMAIN NUMERICAL TECHNIQUES FOR THE ANALYSIS AND

DESIGN OF MICROWAVE CIRCUITS

by

Emmanouil M. Tentzeris

Chair: Linda P.B.Katehi

This dissertation investigates the effects of the application of the principles of Multires-
olution Analysis (MRA) to time-domain numerical techniques used for the analysis and
design of microwave circuits. The improvement in the efficiency in terms of memory and
execution time requirements is quantified and the inherent capability of MRA to create a
mathematically consistent time/space adaptive gridding is exploited.

Initially, various aspects concerning the popular finite-difference time-domain technique
(F.D.T.D.) are investigated and a memory-efficient waveguide absorber based on analytical
Green’s functions is developed and applied to the optimization of a specific waveguide probe
geometry.

After reviewing the general principles of Multiresolution Analysis, novel time-domain
schemes based on space-domain expansions in scaling and wavelet functions are derived.
FDTD implementation schemes (excitation, hard/open boundary and dielectric interfaces)

are extended to Multiresolution schemes based on entire-domain expansion basis, while



maintaining similar performance characteristics. These schemes offer the unique oppor-
tunity of a multi-point field representation per cell. Battle-Lemarie functions are used
throughout the dissertation due to their special qualities.

These Multiresolution Time-Domain Schemes in 2D are applied to the numerical analysis
of shielded and open striplines and microstrips. The field patterns and the characteristic
impedance are calculated and verified by comparison to reference data. In comparison to
Yee’s conventional FDTD scheme, the proposed 2.5D-MRTD scheme offer memory savings
by a factor of 25 and execution time savings by a factor of about 4-5 maintaining a better
accuracy for characteristic impedance calculations.

The stability and the dispersion performance of the Battle-Lemarie MRTD schemes is
investigated for different stencil sizes and for 0-resolution wavelets. Analytical expressions
for the maximum stable time-step are derived in a way similar to the "magic step” of the
FDTD algorithm.

A dynamically changing space- and time- adaptive meshing algorithm based on a mul-
tiresolution time-domain scheme in two dimensions and on absolute and relativ e thresh-
olding of the wavelet values is proposed and applied to the numerical analysis of various
nonohomogeneous waveguide geometries offering additional memory economy.

In the last Chapter, intervalic wavelets are added in the time-domain. This Time-
Adaptive Time-Domain Technique is used for the analysis of various types of circuits prob-
lems with active and passive lumped and distributed elements. This scheme exhibits sig-
nificant savings in execution time and memory requirements while maintaining a similar

accuracy with the FDTD technique.
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“As you set out for Ithaka hope your road is a long one, full of adventure, full of discovery.

Laistrygonians, Cyclops, angry Poseidon - don’t be afraid of them: you’ll never find things

like that one on your way as long as you keep your thoughts raised high, as long as a rare
sensation touches your spirit and your body.

Keep Ithaka always in your mind. Arriving there is what you’re destined for. But don’t
hurry the journey at all. Better if it lasts for years, so you're old by the time you reach the
island, wealthy with all you’ve gained on the way, not expecting Ithaka to make you rich.
Ithaka gave you the marvellous journey. Without her you wouldn’t have set out. She has

nothing left to give you now. And if you find her poor, Ithaka won’t have fooled you.
Wise as you have become, so full of experience, you’ll have understood by then what these

”»

Ithakas mean.

K.Kavafis, “Ithaka” (1911)
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CHAPTER 1

Introduction

1.1 Time-Domain Techniques

With the advent of microwave circuits used in high-frequency communications, there
is a compelling need to develop efficient and reliable full wave simulation techniques for
the modeling process. Until 1990, the modeling of electromagnetic wave interactions was
dominated by frequency-domain techniques. Apart from high-frequency asymptotic meth-
ods [1, 2], electromagnetic simulations involved setting up and solving frequency-domain
integral equations [3, 4] for the phasor electric and magnetic currents induced on the sur-
faces of the geometries of interest. This Method of Moments (MoM) involves setting up and
solving dense, full, complex-valued systems of tens of thousands of linear equations using
direct or iterative techniques. Though MoM has been proven to be a very robust technique,
it is plagued by significant computational burdens, when it is used at very large geometries.
In addition, modeling of a new structure requires the reformulation of the integral equation,
a task that may require the very difficult derivation of a geometry-specific Green’s function.

On the contrary, techniques based on the partial differential equation (PDE) solutions

of the Maxwell’s equations yield either sparse matrices (frequency-domain finite-element



methods) or no matrices at all (time-domain finite-difference or finite-volume methods). In
addition, specifving a new geometry is reduced to a problem of mesh generation only. Thus.
time-domain PDE solvers could provide a framework for a space/time microscope permitting
the EM designer to visualize with submicron/subpicosecond resolution the dynamics of
electromagnetic wave phenomena propagating at light speed within proposed geometries.
Finite-Difference Time-Domain (FDTD) is a direct solution method for Maxwell’s time
dependent curl equations. It is based upon volumetric sampling of the unknown near-field
distribution within and around the structure of interest over a period of time. No potentials
are employed. The sampling is set below the Nyquist limit and typically more than 10
samples per wavelength are required. The time-step has to satisfy the stability condition.
For simulations of open geometries, absorbing boundary conditions (ABC) are employed at
the outer grid truncation planes in order to reduce spurious numerical reflection from the
grid termination.

In 1966, Yee [5] introduced the first finite-difference time-domain technique (FDTD)
for the solution of Maxwell’s curl equations. Interleaved positioning of the electric and
magnetic field components provided a second-order accuracy of the algorithm. Taflove and
Boldwin [6] presented the numerical stability criterion for Yee’s algorithm and Mur [7]
published the first numerically stable second-order accurate absorbing boundary condition
(ABC) for the Yee’s mesh. The perfectly Matched Layer (PML) ABC, introduced in 2D by
Berenger in 1994 [8] and extended to 3D by Katz et al. [9], provides numerical reflection
comparable to the reflection of anechoic chambers with values -40dB lower than the Mur
ABC. The FDTD technique has been applied to various High-Frequency simulations with
remarkable success. Taflove [10] and Umashankar [11] used FDTD to model scattering and

compute near/far fields and RCS for 2D and 3D structures. Waveguide - Cavity struc-



tures and microstrips were analyzed with FDTD by Choi [12] and Zhang [13] respectively.
Maloney [14] introduced the FDTD modeling of antennas and El-Ghazaly [15] applied this
technique to picosecond optoelectronic switches. Toland et al. [16] published the first FDTD
models of nonlinear devices (tunnel diodes and Gunn diodes) exciting cavities and antennas
and Sui et al. [17]modeled lumped electronic circuit elements in 2D.

Despite the numerous applications of FDTD, many practical geometries, especially in
microwave and millimeter-wave integrated circuits (MMIC), packaging, interconnects, sub-
nanosecond digital electronic circuits (such as multichip modules (MCM)) and antennas
used in wireless and microwave communication systems, have been left untreated due to
their complexity and the inability of the existing techniques to deal with requirements for
large size and high resolution. Multiresolution analysis based on the expansion in scaling and
wavelet functions has demonstrated a capability to provide space and time adaptive grid-
ding without the problems encountered by the conventional Finite Difference Time-Domain
schemes. As a result, it could be used as a powerful foundation for the development of very

efficient electromagnetic simulation techniques.

1.2 Wavelets-Multiresolution Analysis

The term ”wavelets” has a very broad meaning, ranging from singular integral opera-
tors in harmonic analysis to subband coding algorithms in signal processing, from coherent
states in quantum analysis to spline analysis in approximation theory, from multiresolution
transform in computer vision to a multilevel approach in the numerical solution of partial
differential equations, and so on. Considering the characteristics of time-domain numeri-
cal techniques for the solution of Maxwells’ equations, wavelets could be considered to be

mathematical tools for waveform representations and segmentations, time-frequency anal-



vsis and fast and efficient algorithms for easy implementation in both time and frequency
domains.

One of the most important characteristics of expansion to scaling and wavelet functions
is the time-frequency localization. The standard approach in ideal lowpass ("scaling”) and
bandpass ("wavelet”) filtering for separating an analog signal into different frequency bands
emphasizes the importance of time localization. The Multiresolution Analysis (MRA), in-
troduced by Mallat and Meyer [18, 19], provides a very powerful tool for the construction
of wavelets and implementation of the wavelet decomposition/reconstruction algorithms.
The sampling theorem can be used to formulate analog signal representations in terms of
superpositions of certain uniform shifts of a single function called a scaling function. Stabil-
ity of this signal representation is achieved by imposing the Riesz condition on the scaling
function. Another important condition of an MRA is the nested sequence of subspaces as
a result of using scales by integer powers of 2.

In the case of cardinal B-splines [20], an orthonormalization process is used to produce
an orthonormal scaling function and, hence, its corresponding orthonormal wavelet by a
suitable modification of the two-scale sequence. The orthonormalization process was in-
troduced by Schweinler and Wigner [21] and the resulting wavelets are the Battle-Lemarie
wavelets, obtained independently by Battle [22] and Lemarie [23] using different methods.
The only orthonormal wavelet that is symmetric or antisymmetric and has compact support
(to give finite decomposition and reconstruction series) is the Haar [24] wavelet [25]. Nev-
ertheless, these wavelets exhibit poor time-frequency localization. Throughout this Thesis,
Battle-Lemarie and Haar scaling and wavelet functions will be used as an expansion basis
for the E- and H- field components in spacé and time domain respectively, in order to derive

an efficient and fast Multiresolution Time-Domain Scheme for the numerical approximation



of Maxwell's equations in a way similar to {26].

1.3 Overview of the Dissertation

Chapter 2 gives a general overview of the FDTD Technique. Excitation topics and ways
of improving the algorithm performance are discussed separately. Next, FDTD is used in
the analysis of various planar circuits and waveguide probe structures. A new waveguide
absorber based on analytic modal green’s functions is developed; it is characterized by a
better performance in memory requirements than the PML absorber, while maintaining
similar accuarcy. The scattering parameters of the probe structures are calculated and
verified by comparison with FEM and experimental data. The effect of critical geometrical
parameters on the probe performance are investigated and the probe behavior is optimized.

Chapter 3 starts with a discussion on the need of development of novel time-domain
schemes which would alleviate the serious memory and execution time limitations of the
existing techniques. The basic principles of the Multiresolution Analysis as well as the tech-
nique of the construction of wavelet functions are presented. Analytical spectral expressions
for the linear and cubic cardinal splines are derived as an example. The 2D MRTD algo-
rithm based on Battle-Lemarie expansion basis is developed for a grid similar to that of the
FDTD. Hard Boundaries, such as Perfect Electric Conductors, and arbitrary excitations
are implemented in an automatic way. The principles of the PML absorber are extended in
split and nonsplit formulations providing a very efficient absorber. Notes on the total field
value calculation at every spatial point conclude this Chapter.

In Chapter 4, the MRTD scheme is applied to the numerical analysis of 2.5D shielded
and open striplines and microstrips. The field patterns and the characteristic impedance

are caluclated and verified by comparison to reference data. Simulations display memory



savings by a factor of 25 and execution time savings by a factor of 4-5. For structures
where the edge effect is prominent, additional wavelet resolutions have to be introduced to
maintain a satisfactory performance while using a coarse MRTD grid. The non-split PML
algorithm is evaluated for different cells sizes and its performance is comparable to that of
the conventional FDTD PML absorber.

Chapter 5 investigates the stability and the dispersion performance of MRTD for differ-
ent stencil (number of summation terms) sizes and for 0-resolution of wavelets. Analytical
expressions for the maximum stable time-step are derived for schemes containing only scal-
ing functions or combination of scaling and wavelet functions. It is proved that larger
stencils decrease the numerical phase error making it significantly lower than FDTD for
low and medium discretizations. The addition of wavelets further improves the dispersion
characteristics for discretizations close to the Nyquist limit, though it decreases the value
of the maximum stable time-step.

A mathematically correct way of dielectric modeling is presented and evaluated in the
first part of Chapter 6. A dynamically changing space- and time- adaptive meshing MRTD
algorithm based on a combination of absolute and relative thresholding of the wavelet values
is proposed. Different thresholding implementations are evaluated by the application of
the dynamically changing grid to the numerical analysis of various nonhomogeneous 2D
waveguide structures. This scheme offers memory savings by a factor of 5-6 per dimension
in comparison to FDTD.

The direct application of the principles of the Multiresolution Analysis to the time do-
main is presented in Chapter 7. A Time Adaptive Time-Domain Technique based on Haar
basis is proposed and applied to various tiypes of circuits problems with active and passive

lumped and distributed elements. The addition of the wavelets increases the resolution in



time. something that is very important especially in circuits with nonlinear devices such as
diodes and transistors. This scheme exhibits significant savings in execution time and mem-
ory requirements while maintaining a similar accuracy with conventional circuit simulators.

The Thesis closes with ideas for future work described in Chapter 8.



CHAPTER 2

The Finite Difference Time Domain Technique (F.D.T.D.)
and its Applications in the Analysis and Design of

Microwave Circuits and Waveguide Probes

2.1 Foundations of the Finite Diference Time Domain (F.D.T.D.)

Technique

Considering an area with no electric or magnetic current sources, the time-depen dent
Maxwell’s equations are given in differential form by

Faraday’s Law:

0B
-BT =VxF- Jm
Ampere’s Law:
oD
i VxH-J
Gauss’s Law for the electric field:
V:-D=0



Gauss's Law for the magnetic field:
V-B=0
Here, E is the electric field vector, D is the electric flux density vector, H is the magnetic
field vector, B is the magnetic flux density vector, J. is the electric conduction current den-
sity, J, is the equivalent magnetic conduction current density. In linear, isotropic nondis-
persive materials, B and D can be related to H and E, respectively, using the constitutive

equations:

B = uH

D

eE (2.1)

where p is the magnetic permeability and ¢ is the electric permittivity. To account for the
electric and magnetic loss mechanisms, an equivalent electric and magnetic current can be

introduced
Je. = oF
Jn = p'H (2.2)

with o the electric conductivity and p/ the equivalent magnetic resistivity. Combining

Egs.(2.1)-(2.2) with Maxwell’s equations, we obtain

0H 1 o'
_Bt = —;V X E - ; (23)
OF 1 o

The curl equations (2.3)—(2.4) yield the following system of six coupled scalar equations in

the 3-D rectangular coordinate system (z,y, 2):
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R Fa ]
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0E, _ 1 0H, 0H,
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0E, 1 0H, OH,
ot ! oz Oy - k) (2:3)

Eq.(2.5) forms the basis of the FDTD numerical algorithm for general 3-D objects. The
FDTD algorithm need not explicitly enforce the Gauss’s Law relations. This occurs because
they are theoretically a direct consequence of the curl equations. However, the FDTD space
grid must be structured so that the Gauss’s Law relations are implicit in the positions of the
electric and magnetic field vector components in the grid and the numerical space derivative
operations upon these vector components that model the action of the curl operator.

The above system of equations can be reduced to 2-D assuming no variation in the
z-direction. That means that all partial derivatives with respect to z equal zero and that
the analyzed structure extends to infinity in the z-direction with no change in the shape or

positionr of its transverse cross section. Eq.(2.5) will give in rectangular coordinates:

aaf? ) % (_aaiz S (2.6)
= - -sh) (28
aaF;'z _ % (8;3?; —oE,) (2.9)
@;}Ty _ %(_Oaﬂzz _oE,) (2.10)
8£z _ %(% _ 38_% _oE,) (2.11)

Eqs.(2.6),(2.7),(2.11) constitute the transverse magnetic (T'M?) mode; the rest the trans-
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verse electric (T E*) mode 2-D equations. The TE® and TM* modes are decoupled since
they contain no common field vector components. These modes are completely independent
for structures composed of isotropic materials or anisotropic materials having no off-diagonal
components in the constitutive tensors. That means that they can exist simultaneously with
no mutual interactions.

Equations for 1-D cases can be derived in a similar way assuming no variation in the x-
or y-direction in excess to no variation in the z-direction.

Yee [5] proposed a set of finite-difference equations for the time-dependent Maxwell’s
curl equations, solving for both electric and magnetic fields in time and space instead of
solving for the electric field alone (or the magnetic field alone) with a wave equation. In
this way, the solution is more robust and more accurate for a wider class of structures. In
addition, both electric and magnetic material properties can be modeled in a straightfor-
ward manner. In Yee’s discretization cell (Fig.2.1), E- and H- fields are interlaced by half
space and time gridding steps. The spatial displacement is very useful in specifying field
boundary conditions and singularities and creates finite-difference expressions for the space
derivatives which are central in nature and second-order accurate. It has been proven that
the Yee mesh is divergence-free with respect to its electric and magnetic fields, and thereby
properly enforces the absence of free electric and magnetic charge in the source-free space
being modeled. The time displacement (leapfrog) is fully explicit, completely avoiding the
problems involved with simultaneous equations and matrix inversion. The resulting time-
stepping algorithm is non-dissipative; numerical wave modes propagating in the mesh do
not spuriously decay due to a nonphysical artifact of the time-stepping algorithm.

Denoting any function u of space and time evaluated at a discrete point in the grid and

11



at a discrete point in time as

u(tAz, jAY, KAz LAL) = qu; jx

where At is the time step and Az, Ay, Az the cell size to the x-, y- and z-direction, the
first partial space derivative of u in the x-direction and the first time derivative of u are

approximated with the following central differences respectively

ou . . o %ig1/2,5k — 1%i-1/2,5k 2
az(zAz,]Ay,kAz,lAt) = s + 0[(Az)%]

0 ) Uik = 1=1/2Ui,j

a—':(mx, jAy, kAz,IAY) = HUETRE At‘ Y2k L of(at)?] (2.12)

Applying the above notation, the following FDTD equations are derived for 3-D geometries
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where 0; j x and p; ; , are the electric and magnetic loss coefficients for the (4, j, k)—cell. The
notation

laWip,jc,kg = 1—aUi=b,j—ck—d

is used for compactness.It can be observed that a new value of a field vector component
at any space lattice point depends only on its previous value and the previous values of
the components of the other field vectors at adjacent points. Therefore, at any given time
step, the value of a field vector component at p different lattice points can be calculated
simultaneously if p parallel processors are employed, something that demonstrates the fact
that the FDTD algorithm is highly parallelizable.

The exponential decay of propagating waves in certain highly lossy media is so rapid
that the standard Yee time-stepping algorithm fails to describe. Holland [27] has proposed

an exponential time-stepping. For example, for large values of o, the field component E, is

given by
E:z: = e i KAt/ 5k Enz _ L(e—a,—,,,kAt/q,j'k _ 1) .
0. 51.71 - 1-0. 5:J?k o
1,0,k
z z Y _ y
los Hi-o.s.jo.s,k - 10-5Hi-o.5,j-0‘5,k _ IHi-o.s,J}ko.s IH 1-0.5.J,k—0.5 2.19)
Ay Az
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instead of Eq.(2.16).
Stability analysis [57] has shown that the upper bound for the FDTD time step for a

homogeneous region of space (¢,,u,) is given by

At 1 frﬁl‘r 1
C\/ Bo? T @y T @Gy

for 3-D simulations and

At < —YThr

- 1
o\ @y + @y

for 2-D simulations. Lower values of upper bounds are used in case a highly lossy material

or a variable grid is employed. Discretization with at least 10-20 cells/wavelength almost
guarantee that the FDTD algorithm will have satisfactory dispersion caharacteristics (phase

error smaller than 5°/A for time step close to the upper bound value).

2.1.1 Overview of Numerical Absorbing Boundary Conditions

It is very common for the geometries of interest to be defined in "open” regions where
the spatial domain of the computed EM fields is unbounded in one or more coordinate
directions. Since no computer can store an unlimited amount of data, the field computation
domain must be limited in size. The computation domain must be large enough to enclose
the structure of interest, and a suitable absorbing boundary condition (ABC) on the outer
perimeter of the domain must be used to simulate its extension to infinity. ABC’s cannot be
directly obtained from the numerical algorithms for Maxwells’ curl equations defined by the
Yee’s finite-difference systems. This is due to the fact that these systems employ a central
spatial difference scheme that requires knowledge of the field one-half cell to each side of
an observation point. Central differences cannot be implemented at the outermost lattice
planes, since by definition there exists no information concerning the fields at points one-half

space cell outside of these planes. Backward finite differences are generally of lower accuracy
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for a given space discretization, so they cannot be used as a reliable solution. Several
approximate ABC’s have been proposed [28. 29, 30, 31]. In our FDTD simulations. 1st
and 2nd order Mur ABC [7], coupled with Mei-Fang Superabsorption [32] for complicated
structures, have been used to terminate open domains due to their simplicity and versatility
. Reflection coefficients close to —~60dB have been achieved for a wide range of incidence
angles and frequencies. For waveguide structures a new ABC based on Green’s functions
has been developed. Reflection coefficients obtained by the recently developed PML (8]

have been used as a reference for the validation of the novel ABC.

2.1.2 Excitation Topics

The first source to be modeled in FDTD was a plane wave incoming from infinity [5].
The plane wave source is very useful in modeling radar scattering problems, since in most
cases of this type the target of interest is in the near field of the radiating antenna, and the
incident illumination can be considered to be a plane wave.

The hard source [33] is another common FDTD source implementation. It is set up
simply by assigning a desired time function to specific electric or magnetic field compo-
nents in the FDTD space lattice. In this way, it radiates a numerical wave having a time
waveform corresponding to the source function. This numerical wave propagates symmet-
rically in both directions from the source point. However, this way of excitation has some
drawbacks. As time-stepping is continued to obtain either the sinusoidal steady state ér
the late-time impulse response, the reflected - from the discontinuities - numerical wave
eventually returns to the source grid location. Since the total electric field is specified at
the excitation point without regard to any possible reflected waves, the hard source causes a

spurious, nonphysical retroreflection of these waves toward the structure of interest, failing
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to simulate the propagation of the reflected wave energy. A simple way to avoid this prob-
lem is to remove the source from the algorithm after the pulse has decayed essentially to
zero and apply instead the regular Yee update. However, this approach cannot be used for
continuous source waveforms where the source remains active even after reflections propa-
gate back to it. It has been observed that much less error occurs for hard sources in 2-D and
3-D than in 1-D because the hard sources in 2-D and 3-D intercept and retroreflect much
smaller fractions of the total energy in the FDTD grid. Collinear arrays of hard-source field
vector components in 3D can be useful for exciting waveguides and strip lines.

The total field excitation eliminates the retroreflection problems of the hard source.
A proper field component is simply added to the field values given by the regular FDTD
equations. Let’s consider for example Eq.(2.16) for o; ;x = 0 and no field variation to the

z-direction

Z - z .
E* .. =,E* .. + At [los Hi—o.syjo.s,k lo.s Hi—o‘s,J-o.s.k
ll ‘—0.51Jvk =1 '—O.SVJrk 62 ] k Ay

In the total field implementation of the source, one time dependent term is added to the field
component of interest. Calling for simplicity this term As, E,; component at the excitation

cell is updated by

z 2z
ET = ,E ..+ At [los H"—o.s.jo.s.k s Hi—o.s,j-o.s,k A
l '.—O.Sijsk =1 i—O.SvJ,k etjk Ay + S

If the circuit and the position where the source is applied allow a conductance current to

flow, this term actually can be seen as an impressed conductance current density given by

As= %J;;“/?

On the other side, if a conductance current cannot flow, and thus only a displacement

current can exist (e.g. the excitation of an empty cavity by applying a point source in
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the middle), it actually works as if an additional term added to the E; component. The

modified discretized Maxwell equation can be written as:

L EF

1-0.5 »j.k -

1E

z .
"—0.51]|k

2z z

At [los Hi-o.syjo.s.k “los Hi-o,s»j-o.syk

- As=
€i 5k Ay

That corresponds to the following analytical expression

0E, ds(t) _0H,
ot dt Oy

€

Thus, the term added to the field component is the derivative of the waveform we want to
obtain. As a conclusion, if the circuit allows a conductive current density to be supported,
the desired waveformmust be simply added to the field component at the location of the
source; if only a displacement current can be supported by the structure, the derivative of
the desired waveform must be added instead. In the FDTD simulations reported in this
Chapter, a gaussian pulse (nonzero DC content) was used as the excitation of the microstrip

and stripline structures.The Gabor function
s(t) = e~ ((t=1)/(P0)) gip () (2.20)

where pw = 2 - 'ﬂ?ﬁ’ to =2pw, W= 7T(fmin+ fmaz), Was used as the excitation
of the waveguide structures, since it has zero DC content. By modifying the parameters pw
and w, the frequency spectrum of the Gabor function can be practically restricted to the
interval [fmin,fmaz). As a result, the envelope of the Gabor function represents a gaussian

function in both time and frequency domain.

2.1.3 Linear Predictors

It is very common, especially for high-speed circuit structures, to use a cell size A that

is dictated by the very fine dimensions of the circuit and is almost always much finer than
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needed to resolve the smallest spectral wavelength propagating in the circuit. As a result,
with the time step At bound to A by numerical stability considerations, FDTD simulations
have to run for tens of thousands of time steps in order to fully evolve the impulse responses
needed for calculating impedances, S-parameters or resonant frequencies. One popular
way to avoid virtually prohibitive execution time has been to apply contemporary analysis
techniques from the discipline of digital signal processing and spectrum estimation. The
strategy is to extrapolate the electromagnetic field time waveform by 10:1 or more beyond
the actual FDTD time window, allowing a very good estimate of the complete system
response with 90% or greater reduction in computation time.

The class of linear predictors or autoregressive models (AR) is the most popular time
series modeling approach due to the fact that an accurate estimate of the AR parameters
can be derived by solving a set of linear equations. Though Prony’s method [34] uses a
sum of deterministic exponential functions to fit the data, the AR approach constructs a
random model to fit a statistical data base to the second-order. Let’s consider the FDTD

impulse response p + 1 equally spaced time samples after at time-step n

+
fl?,j,k’ fl:;:]ta eey fl:J,lI:

This time series is said to represent the realization of an AR process of order p if it satisfies

the following relationship

flEik = —arfIEE} = o = gl f5E + g(n)

where the constants ay,...,a, are the AR parameters to be determined from the previous
values of f and ¢(n) is a white noise process whose variance has to be calculated before
carrying out the extrapolation of f. Once the AR coefficiemts have been determined, the

above equation permits the prediction of a new value of the time series from p known
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previous values. Numerous different approaches for the evaluation of a; have been proposed.
Three of them of the most widely used: the covariance method, the forward-backward
method and the nonlinear predictor. The covariance method involves setting up and solving

a p X p linear system of equations

crp(1,1) cpp(1,2) ... cpp(l,p) a; csf(1,0)
crp(2,1) ¢55(2,2) ... cs5(2,p) as _ cs7(2,0)
cri(p1) csp(p2) oo css(prp) )\ @y cs#(p,0)

where ¢y are the covariances defined by

ess(e.b) = 5 Z Sk + A58

n-.:p

The above matrix can be solved with Cholesky decomposition. The order p of the model is
very critical. The use of low order AR model causes the extrapolated waveform to attenuate
quickly in a nonphysical manner. However, a high-order model can cause divegence problems
in some cases because of statistical instabilities introduced by the large order. A coomon
way to estimate p is the use of the Akaike Information criterion [34].

Forward and backward prediction methods avoid these problems by working directly
with the time-domain data, rather than calculating the covariance functions of the data. It
solves the following (p + 1) x (p + 1) linear system
(r(0,0) r(O,p)\ / 1 \ (ep\

r(1,0) ... r(1,p) a 0

\ (2,0) ... r(p,p)/ \ % | \ 0

where for 0 < a,b < p,

N-p
M I=b ;M |- I} b 1
r(a,b) = Z( FIGRTT T fIGRTE  f MRS f Mty
=1
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4
ep = Zalr(O,I)
=0
Marple [35] reported favorable results for the forward-backward method versus existing
popular AR approaches such as the Burg and the Yule-Walker algorithms. It provided
more accurate spectra and its order was much lower (close to 10% — 15% of the order of
the other approaches). In addition, the forward-backward method is sufficiently robust and

fast, though it’s slightly less stable than the covariance methods.

2.2 Applications of F.D.T.D. to Planar Circuits

2.2.1 Open Circuit Design

The F.D.T.D. is initially applied in the design of a patch to be used as an open for
the frequency range from 0-6 GHz (Fig.2.2). The dielectric constant of the substrate is
€ = 5.46 and the dielectric thickness is 0.5 mm. The feeding microstrip line (104.86875 mm )
is excited by applying horizontally the Gaussian pulse 55 with pw = 8.333 - 1071},
dt = 2.9 - 107%sec, to = 3pw. The excitation is on for ¢t = 0,..,t,, time-steps with
tap = 6pw/At. During this period, a PEC (perfect electric conductor) is placed behind
the source at the vertical to the propagation plane. After t becomes larger than t,;, this
PEC is replaced with a 1st order Mur’s absorber and the results converge after 30,000 time
steps. After numerical experimentation, it is observed that the smallest vertical distance
the top-plane 1st order Mur absorber can work efficiently equals to 30 times the substrate
thickness. The front and the side absorbers are placed at a distance 49.35 mm and 7.7425
mm away from the patch respectively. In addition, the resonant frequency of the patch

antenna should be such that it would not cause any problems for the operating frequency

range. As a result, the almost square shape of the patch is maintained, but the dimensions
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have to be appropriately modified. After using a mesh with cell size dz = 0.1mm.dy =
0.20375mm.dz = 1.23375mm, the optimum performance patch dimensions are found to be:
7.4025 mm (length) x 7.335 mm (width). (Fig. 2.3) demonstrates that the performance of

the open is almost perfect since the reflection coefficient is larger than 0.97 for the whole

frequency range.

2.2.2 Viahole Analysis

The viahole transition between two bended microstrips (Fig.2.4) is another geometry
analyzed with F.D.T.D. The two microstrip lines are sandwiched on a dielectric substrate
with €, = 7 and the ground plane is placed in the middle of their distance. The top stripline
is excited by applying horizontally a Gaussian pulse 0-20GHz. The discretization cell has
dimensions 10um x 50um x 50um and the time step is 31ps. A forward-backward predictor
based on the first 4,300 steps with order p = 27 is employed to shorten the computation
time of the 18,000 steps. The S-parameters are calculated (Fig.2.5). (Fig.2.6-2.7) showing
the total E-field distribution along the top and bottom microstrip planes as well as along the
ground plane at frequency 10 GHz, demonstrate the capability of the F.D.T.D. technique
for an accurate spatial mapping of EM energy. Knowledge of the electric field intensity over
a microwave circuit is extremely useful in directly identifying microwave circuit problems
such as the existence of substrate modes, circuit radiation, device to device coupling. With
tighter control over line lengths and losses that may be derived from electric field intensity
(and phase), it may be possible to reduce the number of iterations during the design of
MMIC’s. Also, with a map of the electric field intensity above the substrate it would be
possible to define low electric field regions around a device that could be used for placement

of more circuitry, thus saving valuable chip real-estate.
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2.2.3 Filter Design

(Fig.2.8) displays the geometry of a three stage coupled line filter fabricated on Duroid
(,=10.8, h=635 um). All dimensions are in um. The bandpass filter has a measured
insertion loss of 2.0 dB in the passband from 8.0GHz to 10.5GHz and provides better
than -25dB rejection at 12GHz. (Fig.2.9) shows that good agreement is achieved between
measurements and FDTD calculations. The FDTD cell was chosen to be 52.9 um for the
vertical direction, 100 pm for the propagation direction abd 25 ym for the direction normal
to propagation. The time step is chosen to be 73 fsec to satisfy the stability criterion. These
choices result in a grid with 140x234x448 cells. The 1st-order Mur’s ABC is applied to the
boundaries of the computational domain and superabsorber is enhanced at the input and
output planes.

For wideband S-parameter extraction, a Gaussian pulse of 100 psec is used as the vertical
microstrip exciation. The source is applied 5 cells inside the feedline in the propagation
direction. Two simulations of pulse propagation along the microstrip line are made: one
simulation for the filter and one for a 50 2 microstrip through-line. The filter simulation
gives the sum of the incident and the reflected waveforms and the through-line simulation
gives only the incident waveform. By subtracting the incident from the total waveform,
the reflected waveform at the input port is derived, which permits the calculation of the
reflection coefficient S71. The transmission coefficient Sy is given by the ratio of the Fourier
transforms of the transmitted and the incident waveforms. The field probes are located at

distances far enough from the filter discontinuities to eliminate evanescent waves.
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2.2.4 Finite-Ground CPW Line Analysis

Coplanar waveguide with finite width ground planes (F.G.C.) (Fig.2.10) is characte rized
through measurements and F.D.T.D. to determine the optimum ground plane width. It is
found that the characteristics (attenuation, effective permittivity) of the Finite Ground
Coplanar Line are not dependent on the ground plane width if it is greater than twice
the center conductor width, but less than Ay/8 to keep the radiation losses and dispersion
small. Also, the field distribution plots show that the power that propagates along the
F.G.C. is concentrated on the surface of the substrate and the magnitude of this power
is inversely dependent on the ground plane width. For small finite ground plane, there
exists a significant amount of power on the surface of the substrate outside of the ground
planes.This is demonstrated by the distribution of the normal-to-strip magnetic field H,
for lines with ground plane widths of B=25 and B=100 um (Fig.2.11) and S = W = 25um
on Si wafers of ,=11.9 and of thickness of 400 ym. The field is approximately twice as
strong for the narrower ground plane, and decays away from the outer edge of the ground
plane. As a conclusion, coplanar waveguide with a finite ground plane width as small as
twice the center strip width may be used without adversely affecting the attenuation and
permittivity of the lines.

The 2.5-D FDTD algorithm is used in the simulations. The dimensions of the Yee’s
cell are chosen to be 2.5um for the direction parallel to the coplanar line and 25um for the
normal direction. The time step is 7.45 ps and the 1st-order Mur’s ABC is applied to the
top, left and right boundaries of the computational domain. The top absorber is placed at
a distance equal to 15 times the dielectric thickness and the side absorbers at a distance
equal to 7 times tl;e gap of the coplanar line. A delta function with even (odd) symmetry

is used for the excitation of the horizontal electric field across the gaps. The propagation

23



constant used in the simulations has the value 100.

2.3 Application of FDTD to Waveguide Structures

2.3.1 FDTD and Waveguide Probe Structures

Significant attention is being devoted now-a-days to the analysis and design of waveguide-
probes [36] - [563]. Many different configurations of waveguide probes are used either to sense
the modal propagation inside the waveguides or to mount active elements inside cavities.
The common design objective is to maximize the coupling between the probe and the
waveguide over the widest possible frequency range. The characterization of waveguide-
probes demands an accurate calculation of the scattering parameters over a wide band of
frequencies. In this Section, FDTD is used in the RF characterization of diode mounting
and waveguide probe structures. The waveguide probe geometry analyzed in this section is
shown in (Fig.2.12). The probe is fed by a shielded coplanar line and has the shape of a
patch. It is inserted into the waveguide through a slot and it is supported by a dielectric
substrate which is not connected to any waveguide wall. The dimensions of the probe as
well as the thickness and the dielectric constant of the substrate are of critical importance
to achieve broadband coupling and low reflection loss.

Usually more than one mode are excited inside the rectangular waveguide, making the
numerical simulation tedious when using the conventional absorbing boundary conditions
(ABC’s) [7], [32]. These ABC'’s specify the tangential electric field components at the
boundary of the mesh in such a way that waves are not reflected. For TEM structures
the waves will be normally incident to the boundaries of the mesh, thus requiring a simple

approximate absorbing boundary condition, Mur’s first order absorbing boundary condition
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[7]. The assumption of normal incidence is not valid for the fringing fields propagating tan-
gential to the walls. For this reason, for non-TEM structures the superabsorption boundary
condition [32] is used in conjunction with Mur’s absorber for better accuracy. This combi-
nation results in an improvement with respect to the reflection coefficient. However, despite
the use of superabsorber, when the frequency range of interest becomes large, significant
reflections occur, even if there is only one propagating mode. To overcome this difficulty,
numerous approaches have been proposed. The technique of diakoptics [40], initially devel-
oped for TLM [41] and later for FDTD [42], used in conjunction with the modal Green’s
function has been successfully applied to TLM [43], [44], [45]. In the analogous FDTD ap-
proach [46], the fields are decomposed into incident and reflected wave amplitudes ("TLM”
approach) and the characteristic impedance is used for the calculation of the reflected wave
amplitudes. A similar absorber based on a circuit (voltage-current) approach has been pro-
posed by F. Moglie et al. [47]. Due to the field decomposition, both of these approaches
are characterized by higher memory and execution time requirements than the conventional
FDTD absorbers.

In contrast to these approaches, the Diakoptics technique is derived directly from Maxwell’s
equations following an approach similar to [48] and only total field values are used. The ab-
sorber proposed is based on the analytic Green’s functions of the waveguide modes. These
Green’s functions are used to calculate the tangential electric (for TE modes) and magnetic
(for TM modes) field components located at the boundary of the mesh. The tangential
fields one cell away from the boundary are decomposed into modes and for each mode the
tangential field at the boundary is calculated by taking the convolution of the mode am-
plitude and the Green’s function for this mode with respect to time. For simplicity, we

consider only TE propagating modes, while the approach for the TM propagating modes
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is dual and straightforward. A similar approach based on numerical Green's functions has
been presented in [49]. This approach requires the numerical evaluation of each mode's
Green’s function that is obtained by running an FDTD simulation for each mode and/or the
application of the FD? principles. On the contrary, the proposed absorber evaluates ana-
lytically the Green’s functions by applying the Inverse Fourier transform to the well-known

expressions in frequency domain. Thus, similar accuracy is obtained without a significant

computational overhead.

2.3.2 Novel Absorber Description

For the sake of simplicity in the presentation, we consider only TE7, ; modes, propagat-
ing in the z-direction, and assume that the waveguide cross-section is located on the xy-
plane. For the tangential magnetic field adjacent to the boundary of the mesh at k = n,—0.5,

eqs.(2.13),(2.14) for non-lossy material are simplified to

z T -
1+1/2Hi,j+1/2,n,—0.5 —1—1/2Hi,j+1/2,nz-0.5 = Az

At [1E}; —E}; -
u ( ,J+1/2,ﬂ.z ;J+1/2'nz 1 (2.21)
0

At 1Ef+1/2,j,n,-1 - 1Ef+1/2,j,nz
1+1/2Hf+1/2,j,n,-0.5 _1—1/2H?+1/2,j.n,-0.5 = u—o ( Az - (222)

The absorber is used to calculate the tangential electric field components at the boundary

of the mesh (k = n.) from the tangential electric field components one cell away from

the boundary plane (k = n, — 1). The tangential magnetic field components Hf;, o5

and HY; _os are updated using eqs.(2.21)-(2.22) and depend both on the values of the

electric field components calculated by Yee’s FDTD scheme and on the values of the electric

field components calculated by the absorber. Using eq.(2.15), the normal magnetic field
z

components at k = n,, HZ\1/2,541/2,n,0 May be calculated from Ef /2,5, 20d Ef’jﬂ/? n-

Thus, for the TE7, , modes, the normal magnetic field components are also determined so
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that the reflection from the boundary is minimized. A similar argument can be used for
the position of the absorber for the TM7 = modes.

In order to derive the absorber based on the analytic Green’s functions. we start with
the wave equation in cartesian coordinates

10°F 9% 92 8% 1067

+o7t 5 app)F =0 - (2.23)

2 _— =
viE c? o2 (6x2

where F indicates the tangential electric field components E*(z,y, z,t), E¥(z,y,2,t) and ¢
represents the velocity of light. The tangential electric field components in the waveguide

can be written as

“(z,y,2,t) Z Z n(2,1) co8(Bz.m2) sin(Byny) (2.24)
m=0n=1
E¥(z,y,2,t)= Z Z n(2:1) 8in(Bz m) cos(Byny) (2.25)
m=1n=0
where
mm nw
ﬂ:c,m - T’ ﬂy,n - T ’ (226)

m, n € N, axb are the waveguide cross section area and E7, ,(2,t) and E}, ,(z,1) are

the modal coefficients given by

2(2 = bmp) / /’ -

z —_— Y —_— —_—

E; .(2,t) = = E%(z,y,2,1) cos( z)sm( ; y) dzdy (2.27)
2 6710

E} n(2,t / / E¥(z,y,z,t) sm(—a:)cos( )da:dy . (2.28)

In eqgs. (2.27) and (2.28), 6m o is the Kroenecker delta given by
1 form=0

6m,0=
0 form#0
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In view of the above, eq.(2.23) yields

asz'n(Z,t) 1 32
0:2 (ﬂim +Bnt 57 | Fralzt) =0 (2.29)

where F7, n(z,t) = ELY.(2,1).
Applying the Fourier transformation (Fyn(z,w) = F{Fnn(z,1)}) with the angular

frequency w=2rf{, the wave equation is transformed into frequency domain, and eq.(2.29)

yields
2

OF (2w w
_.._'"(__)_ ( 3‘,m+ﬂ§,n_—

02?2

62) Fon(z,w)=0 . (2.30)

Following a procedure analogous to [48] and assuming a given amplitude F}, ,((n,~1)Az,w)

of the TE? , mode at k = n, — 1, we obtain

= jﬁz.mn(z—(nz-l)AZ) _ . = 3
Fralz.) = 5 Fr(n: = 1)s2,0) - 2 Yman(2:0)
2 /Hz,mn (92 2=(ns=1)Az
"jﬂz,mn(z—(ﬂz—l)Az) _ -
4+ Frn((n, = 1)Az,w) + ] 0Fun(z,w)
2 ﬂz,mn 0z z=(n,-1)Az
(2.31)
with
% w? — wf,m,, for w > wemn

Bemn = (2.32)
- j%, JwE i —w? for w < wemn ,

where we mn = c\/ (Bz,m)? + (Byn)? is the cutoff frequency of the TE?, ,, mode. The function

Frn n(zw) has exponentially increasing and decreasing solutions with respect to z for w <
We,mn- The exponentially increasing solutions have to vanish for 2 — oo for w < we mn, thus
eq.(2.31) yields

7 0Fna(2,w)
ﬂz,mn 0z

Fnn((n, =1)Az,w) = (2.33)

z=(n;-1)Az
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and
Fm,n(zsw) = GTE;,',,(Z - (nz - I)Az,w) Fm,n((nz - I)Aza“") , (2.34)

where G_'TE,zn‘n(z,w) = ¢~9B=mn i the Green’s function for the TE;, , modes. By satisfving
q.(2.33), Frnn((n. — 1)Az,w) results in an outward propagating solution with respect to
2 for w > Wemp only. Thus, computation of Fy, »(2,w) according to eq.(2.34) requires no
backward propagating solution.

Applying the convolution theorem [50], eq.(2.34) in time-domain reduces to
Fon(zt) = / Grms, (2 = (ns = 1Azt = ¥) Fyol(ne - DAz, ) dt' {235)

where Grg;, (2,t) = F ‘1{6—717;%'"(.2,&))}. As a result, the tangential electric field compo-

nents at the boundary of the mesh at k=n, are expressed in the form:
Frn(nAz,t) = / Grms, (A2t =) Fun((ne = )Az,8) dt' . (236)

Following a procedure similar to [63], Fin n((n, —1)Az,t') can be expanded in a series of
triangle basis functions in time-domain. Inserting this expansion in eq.(2.36) and sampling

Frn(n,Az,t) using delta functions with respect to time, we obtain

Frn(n:Az,IAt) = Y 1_uGrgs,, Fua((n: - 1)Az,IAt) ,  (2.37)

l'=-00

where the discrete FDTD Green’s function 1GTE;, , may be calculated analytically by
+00 1 +00
Gy, = / Gy, (A%, 18t - 2) g(s) da = — / Gz (Bz,w) () €5 du (2.38)

and z = t' — I’At. The triangle basis function is given by:
1-|&| for|z| < At

g(e) =
0 for |z| > At
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and its Fourier transform is:

_ sin(28¢)]
gw) = Fig(t)} = At [ i } (2.39)
2
Due to causality, we have
iGrgz, =0  forl<0 (2.40)
and as a result,
I
Frn(n:Az,18t) = Y 1 yGrgs, | Fra((n. - )Az, A1) | (2.41)
l'=-00

which represents the mathematical formulation of the Diakoptics technique.
As an example, let’s consider the TEf, mode. For the y-component 1EY i, Of the

tangential electric field at k = n., eqs.(2.25) and (2.41) yield

l
EY. = Z 1-rGTE; | EYo((n; - 1)Az,I'At) sin(miAz/a) | (2.42)

1,J,Nz
l'=-c0

where EY o((n,—1)Az,I'At) may be calculated from eq.(2.28) . The discrete FDTD Green’s

function I-I’GTEfo is given by

+00
1 = i
,_IIG’TElz'O = 3= / GIE;YO(AZ,W) g(w) efei=tatg,, (2.43)
-0
with g(w) given by eq.(2.39) and
G1E; o (Az,w) = g7Praolz (2.44)

where 3, 10 is calculated by eq.(2.32) for m = 1,n = 0.

Absorber Evaluation

To validate the absorber presented herein, we calculate the magnitude of the reflection
coefficient in frequency domain for the waveguide structure shown in (Fig.2.13). The xy-

plane of the waveguide at z = 0 is short-circuited and the ABC is utilized to calculate the
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electric field components in the xy-plane at : = 2880Az. The waveguide cross-section is
47.6mmx22mm and the cell size is given by Az = 4.76mm, Ay = 1.1mm and Az = 0.4mm.
We use a mesh of the size 10 x 20 x 2880 and run the simulation for 25000 time-steps. All
conductors are assumed to be perfect electric conductors.

We simulate the wave propagation for frequencies between 3.1GHz and 7.4GH= so that
three different modes are excited, TE{,, TES ; and TE§,. To accommodate the presence
of these three modes, we use a superposition of three Gaussian pulses multiplied with the
corresponding mode patterns at z = 2840Az to provide the correct excitation. For the

calculation of the reflection coefficient p, we use the formula

- Et - Eref

) 2.45
o~ (2.45)

where E; is the tangential electric field probed at z = 2860Az and E,.s is the tangential
electric field probed at the same position of a semi-infinitely long waveguide (no effect
from reflections from the ABC) with the same cross section. The semi-infinite length of
the waveguide is approximated by 6700Az and the tangential electric field is probed again
at z = 2860Az. The evaluated ABC is replaced by a PEC. The length of this reference
waveguide is chosen such as no reflections from the PEC plane return to the probe position
for the 25000 steps of simulation. The absorber based on the analytic Green’s function is
compared to the lst-order Mur’s ABC coupled with the superabsorption condition. The
effective dielectric constant [32] for the superabsorber is chosen to 0.407.

For practical applications, the infinite summation in eq.(2.41) has to be approximated by
a finite number of terms T. This approximation corresponds to a truncation of the discrete

FDTD Green’s function according to
IGTE;';,,,, =0 fori>T , (2.46)
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where T represents the length of the discrete FDTD Green’s function with respect to time.

We obtain

l
Fun(ns,t) = ) 12vGrgs, Fan(n -1, . (2.47)
I'=l-T

and eq.(2.42) can be written as

1
(Y= S 0GrEs, Edg(n, - LI') sin(ridz/a) (2.48)
I'=l-T

The reflection coefficient is minimized if we truncate the discrete FDTD Green’s function
at its zeros. In (Fig.2.14), results for the reflection coefficient for the TE] ; mode are shown
for three different values of T, 616, 1127 and 2646. The graph for the 1st-order Mur ABC
with the Superabsorption condition is symbolized with (sup). The larger the length T of the
discrete FDTD Green’s function, the more effective the absorber becomes. For T' = 2646,
the amplitude of the reflection coefficient is less than -40dB for almost the whole frequency
range. Thus, the ABC based on the analytic Green’s function is effective in a much wider
frequency range than the super-absorbing 1st-order Mur ABC. This is true even when we
improve the performance of the superabsorbing 1st-order Mur ABC by applying it to each
waveguide mode separately. Similar results were observed for the reflection coefficient for
the TEZ ; and TE]; modes.

The PML absorber [8] achieves a comparable behavior for a wide frequency range.
For example, the length T' = 2646 of the discrete TE7 ; Green’s function offers a reflection
coefficient very close to that of a PML layer of 4 cells with R = 10~° (Fig.2.15) and T = 4161
has similar performance with a PML layer of 8 cells with R = 1075. Generally, considering
larger values of thg length T is equivalent to increasing the number of the PML cells.
Nevertheless, the memory requirements of the proposed absorber are much lower than the

memory requirements for the PML absorber. For each mode, the convolution of eq.(2.42)
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requires the storage of the T terms of the modal Green’s function and of the T previous
values of the mode amplitude at the z = (n, — 1)Az. Thus, the extra memory requirement
of the Green's function absorber is 2 X T real numbers per mode. A PML layer of N cells
to the z-direction requires M = 6 x N X n; x n, new variables, where n; x n, is the grid
size for the waveguide cross-section. Generally M > 2 x T, especially for large grids. Due
to the details of the waveguide probe structure analyzed in the next section, the waveguide
cross-section grid has a size of 477 x 220 cells. That means that even a PML layer of 4 cells
to the z-direction requires the storage of M = 2,518, 560 new variables !! Using an absorber
based on Green’s functions with length T' = 2646 for the TE] , T = 2238 for the TE ; and
T = 2412 for the TEj,, only 14,592 new variables have to be stored (0.58% of the PML
memory requirements). As a result, the Green’s function-based ABC offers a significant

economy in memory while maintaining similar accuracy with the PML absorber.

Waveguide Probe Structure Characterization

The FDTD technique coupled with the proposed waveguide absorber is used in the RF
characterization of the waveguide probe geometry shown in (Fig.2.12). The probe in the
shape of a rectangular patch is fed by a shielded 502 coplanar line and is inserted into the
waveguide through a slot. The dielectric substrate carrying the probe is not connected to
any waveguide wall. This type of probe can be used as a coupler to a rectangular waveguide
or as a diode mounting structure. The dimensions of the probe as well as the substrate
thickness and the dielectric constant of the substrate are of critical importance in optimizing

coupling to the waveguide.

In our simulations, we try to optimize the thickness of the dielectric substrate carrying

a probe which is 3.6mm wide. The dielectric constant of the substrate is assumed to be
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¢,=12 (GaAs). The width of the dielectric substrate entering the waveguide is 5.8mm
and its thickness is limited to less than 2mm. The probe is designed to feed a WR-187
rectangular waveguide and for this reason, excitation is provided on the coplanar feedline
by a Gabor function which covers the frequency range of 3.1 GHz to 7.4 GHz. For the
simulated frequency range, three different modes are excited inside the waveguide. TE g,
TEj, and TE§ ;, with the cutoff frequencies 3.15 GHz, 6.30 GHz and 6.82 GHz respectively.
The mesh used in the FDTD simulation consists of 480x477x52 cells with a time step of
At = 0.31425ps. The simulation runs for 20,000 time steps to achieve converging results.
The absorber discussed previously is used to absorb simultaneously all propagating modes
of the waveguide for the simulated frequency range.

To characterize the probe performance for different dielectric thicknesses, the magnitude
of the reflection coefficient |$y;| for the dominant TEF ; mode is calculated. For validation
purposes, the calculated results are compared to data derived by the FEM (Finite Ele-
ment Method) assuming a probe width of 3.6mm and a dielectric thickness of 2.0 mm (See
(Fig.2.16)). For the FDTD simulation, the waveguide absorber based on the Green’s func-
tions for the three propagating waveguide modes is used at the terminal plane. For the
FEM simulation, an artificial absorber depending on frequency and angle of incidence is
applied to terminate the waveguide. For the whole operating frequency range (3.1-7.5 GHz)
the performance of both absorbers is comparable and the results show very good agreement.

The dimensions of the shield of the coplanar feedline are chosen to be 5.8mm x 3.8mm,
such as only the CPW dominant mode can propagate and the field patterns are not disturbed
by the side walls in the frequency range of the simulation. In this way, the superabsorption
condition can be applied effectively at the input plane of the feedline.

The performance of the probe has been evaluated for three different dielectric thicknesses
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2.0mm, 1.2mm and 0.0 mm, with the last value corresponding to a microwave probe printed
on a dielectric membrane [52]. Results in terms of the reflection coefficient are shown in
(Fig.2.17). As it can be observed from this figure, the value of the reflection coefficient
reduces over a large frequency range and shows symmetrical behavior round the center
design frequency as the dielectric thickness approaches zero. The electric field (E) and
magnetic field (H) distributions for zero dielectric thickness are plotted for t = 6,000 time
steps across the probe structure symmetry plane (Fig.2.18) and across the coplanar feedline
plane (Fig.2.19) and represent the transmitted and the reflected energy respectively.

The reflection coefficient of the Si-membrane printed probe has been calculated for four
different patch widths 3.6mm, 9.8mm, 11.4mm and 13.0mm and the results are shown in
(Fig.2.20). From this figure, it can be concluded that the width of 9.8mm offers the most
symmetrical behavior for the frequency of operation. The reflection coefficient for widths
larger than 9.8mm is much smaller than that of 3.6mm for most of the simulated frequencies
except a small region round 4.6 GHz. Nevertheless, the widths of 11.4mm and 13.0mm offer
no significant improvement over the width of 9.8mm.

Another geometry parameter of the Si-membrane printed probe that has been investi-
gated is the distance of the probe patch from the short circuit of the waveguide. Lengths
of 8.8mm, 10.4mm, 12.0mm and 13.6mm have been used and the results are plotted in
(Fig.2.21) it can be noticed that the value of 12.0mm offers the best performance in terms
of the value and the bandwidth of the reflection coefficient.

The FDTD results derived by using the absorber presented in Section III.2 have been
validated by comparing to experimental data. The probe has dimensions 13.2mm x 4.3mm
on a dielectric substrate with thickness 2.1lmm, width 28.7mm and ¢,=13. The probe has

been inserted in a WR229 waveguide and is located at a distance of 14.7mm from the top
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surface short circuit. For the FDTD absorber there have been used T=2871 time steps.
The performance of the probe has been evaluated for the frequency range of 3.3-4.6GHz
and the results are shown in (Figs.2.22-2.23). The agreement between the FDTD and the
experimental results is good especially in the frequency range of the optimum performance of
the probe. The abrupt variation in S2; observed for the higher frequencies in the experiment

is maybe due to calibration or other reasons related to the experimental setup.

2.4 Conclusion

The finite-difference time-domain method has been used to analyze planar circuits and
waveguide probe structures. For the analysis, a waveguide absorber based on analytic
Green’s functions has been developed. This absorber is characterized by a better perfor-
mance in accuracy and computational efficiency than the super-absorbing 1st-order Mur
ABC and by a better performance in memory requirements than the PML absorber. The
scattering parameters of the probe structures have been calculated and the results have
been verified by comparison with FEM and experimental data. The influence of critical

geometrical parameters on the probe performance has been investigated and optimized.
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Figure 2.21: Reflection Coefficient for different Distances from the Top Sur-
face Short-Circuit.

52



S21 [dB)

-40

-45

-50

=0.01x*

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

T

T

T

— F.D.T.D.
*  Experiment

3

4

3.8 4 4.2

3.6 .
Frequency [GHz]

Figure 2.22: Experimental Validation for 5;.

T

T

T

x***¥

— F.D.T.D.
%  Experiment

1 1 1 1 1 1

3.

4 3.6 3.8 4.2 44

4
Frequency [GHz]

Figure 2.23: Experimental Validation for S5;.

33



CHAPTER 3

Development of New Time-Domain Schemes with Higher

Order Basis Functions

3.1 Introduction

Significant attention is being devoted now-a-days to the analysis and design of various
types of printed components for microwave applications. To understand high-frequency
effects and incorporate them into the design process, there is a compelling need to implement
full-wave solutions during the modeling process. There has been a variety of full wave
techniques developed for this purpose, with many of them available commercially. Despite
the wealth of available codes, many problems in electromagnetics and specifically in circuit
and antenna problems have been left untreated due to the complexity of the geometries
and the inability of the existing techniques to deal with the requirements for large size
and high resolution due to the fine but electrically important geometrical details. The
straightforward use of existing discretization methods suffers from serious limitations due
to the required substantial computer resources and urealistically long computation times.
As a result, during the past thirty years the available techniques are almost incapable

of dealing with the needs of technology leading into a quest for fundamentally different
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modeling approaches.

The use of multiresolution analysis in time domain has shown that Yee's FDTD scheme
can be derived by applying the method of moments for the discretization of Maxwell’s equa-
tions [51] using pulse basis functions for the expansion of the unknown fields. The use of
scaling and wavelet functions as a complete set of basis functions is called multiresolution
analysis and demonstrates that Multiresolution Time-Domain (MRTD) schemes are gener-
alization s to Yee’s FDTD and can extend the capabilities of the conventional FDTD by

improving computational efficiency and substantially reducing computer resources.

3.2 Fundamentals on Multiresolution Analysis

A mutiresolution analysis consists of a sequence of successive approximation spaces V;.

More precisely, the closed subspaces V; satisfy

LVhacWcWweVoa,cVo,C... (3.1)
with
|J Vi = L*(R) (density) (3.2)
j€z
() Vi ={0} (separation) (3.3)
j€Z

There exist many ladders of spaces satisfying the above conditions that have nothing

to do with "multiresolution”; the multiresolution aspect is a consequence of the additional

requirement

f(z) €V; & f(2°z) € Vo (scaling) (3.4)

That is, all the spaces are scaled versions of the central space Vp. Another feature that we
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modeling approaches.

The use of multiresolution analysis in time domain has shown that Yee’s FDTD scheme
can be derived by applying the method of moments for the discretization of Maxwell’s equa-
tions [56) using pulse basis functions for the expansion of the unknown fields. The use of
scaling and wavelet functions as a complete set of basis functions is called multiresolution
analysis and demonstrates that Multiresolution Time-Domain (MRTD) schemes are gener-
alization s to Yee’s FDTD and can extend the capabilities of the conventional FDTD by

improving computational efficiency and substantially reducing computer resources.

3.2 Fundamentals on Multiresolution Analysis

A multiresolution analysis consists of a sequence of successive approximation spaces V.

More precisely, the closed subspaces V; satisfy

LW ocvicWcVoycVoC... (3.1)
with
U V; = L*(R) (density) (3.2)
i€z
ﬂ Vj = {0} (separation) (3.3)
i€z

There exist many ladders of spaces satisfying the above conditions that have nothing

to do with "multiresolution”; the multiresolution aspect is a consequence of the additional

requirement

f(z) €V & f(2z) € Vy (scaling) (3.4)

That is, all the spaces are scaled versions of the central space V;. Another feature that we
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require from multiresolution analysis is the invariance of V; under integer translations
f(z)eE Vo f(z—n)€Vp,VneZ (3.5)

Because of Eq.(3.4), this implies that if f(z) € V;, then f(z — 2/n) € V; for all n € Z.
Finally, we require that there exists ¢ € Vp such that {¢on,n € Z} is an orthonormal basis
in Vp, where for all j,n € Z,8;.(z) = 277/2¢(277z — n). As a result, {¢jn,n € Z} is an

orthonormal basis for V; for all j € Z; that is,

< ¢j,my ¢j,n >= 6m,m m,n € Z (36)

where § notates the Kronecker symbol

1 m=n
6m,n =
0 elsewhere
Throughout this Chapter, there will be used the following notations for the tnner product

and norm for the space L*(R):

00 N

<fe>= [ f@e)

WA =1l =< f, f >
The basic idea of the multiresolution analysis is that whenever a collection of closed sub-

spaces satisfy Egs.(3.1)=(3.5), then there exists an orthonormal wavelet basis {t);,n € Z}

of LA(R), ¢;n(z) = 277/%%(2 7z — n), such that for all fin L*(R),

Piif=Pf+ Z < fiik > vie (3.7

keZ

where P; is the orthogonal projection onto V;. For every j € Z, define W; to be the
orthogonal complement of V; in V;_;. We have
Via=V,oW; (3.8)
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with p 27-periodic and [p(€)|=1. In particular, we can choose p(§) = poe'™ with m €

Z,|po| = 1, which corresponds to a phase change and a shift by m for ¥. We will use this
freedom to define

V=Y gnb-1ns gn = (=1)"honp1 (3.23)

The orthonormality condition of Eq.(3.6) can be relaxed. It is sufficient to require that

the ¢(z — k) constitute a Riesz basis of Vp; that means that they span Vy and for all

(ck)kez € L*(Z) with 3 |ek[* < oo it holds
AY lexl* <Yz - k)P < BY leal? (3.24)
k k k

or equivalently

0<@mn)A<Y Ide+2m)F < (2r) B < o0 (3.25)
l}

where A > 0,B < oo are independent of the c,. Supposing that ¢ € L%(R) satisfies

Eq.(3.25) and defining V; = Span{¢;x; k € Z}, then ;e = 0. Also, if (£) is bounded for
all ¢ and continuous near £ = 0, with ¢(0) # 0, then Ujez Vi = L*(R). One Riesz basis
which satisfies these criteria, satisfies the density and separation qualities of the multireso-

lution analysis.

Chui [?] has proven that {¢(z — k) : k € Z} is an orthonormal family if and only if
21 X _ . |#(€ + 271)|* = 1,¥z € R. This is a very useful criterion for the orthonormality
of a specific scaling family.

We can therefore construct an orthonormal basis ¢+ for V; by defining

¢t = (2m)2Y (g€ + 2n1) |72 (¢) (3.26)
{

Clearly, 3, ]qf&l_(f + 2rl)|? = (27)~!, which means that the ¢*(z — k) are orthonormal.
Finally,
$(6) = €2 mg(¢/2+ 1) $*(/2) (3.27)
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with

mi (€) = mo(€)[Y_ (€ + 2x )12 (3 1§26 + 2x0) Y71/ (3.28)
l

l

or equivalently

Y(z) =Y (-1)* k119t (z = n) (3.29)

with mg (§) = ﬁZn ht e 8,
The Battle-Lemarié wavelets [22, 23] are associated with multiresolution analysis ladders
consisting of spline function spaces. A B-spline with knots at the integers is considered the

original scaling function. The zero order cardinal B-spline Ny is the characteristic function

of the unit interval [0,1)

1 0<z<1
No(z) =

0 elsewhere

For m > 1, the m-th order cardinal B-spline N, is defined recursively by the following

convolution:

No(z) = /_ Z Noo1(z — ) No(t)dt

1
- / Nps(z - )dt (3.30)
0
with the Fourier transform
N _ i y 2) m+1
N, (w) = (27)1/2% zpe/2<3m(§/ )
(@)= (2) L

where ¢ = 0 if m is odd and g = 1 if m is even. For even m, ¢ = N,, is symmetric around
z = 1/2, for odd m, around z = 0. Except for m = 0 the scaling functions constitute a
Riesz basis, but they are not orthonormal. To apply the orthonormalization of Eq.(3.26),
Daubechies [25] has shown that

sin?m¥l(z) g+l

TT@m+ 1) dgemt coi(z)

21 Y |Nm(2z +27k)* =

k=—-00
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The result of the orthonormalization is that support of the ¢* = R = support of the
o for all the Battle-Lemarie wavelets. The "orthonormalized” ¢ has the same symmetry
axis as ¢. The symmetry axis of ¢ always lies at z = 1/2. (For m even, v is antisymmetric
around this axis, for m odd, ¢ is symmetric). Even though the supports of ¢+ and v equal

the whole R, ¢* and v still have very good (exponential) decay
|6, %(z)| < Ce s € R

The Battle-Lemarie wavelets based on the m-th order cardinal B-splines belong to C* with
k < m—1 and have m vanishing moments: [dz z' 9(z) = 0 for 1=0,1,..,m for (") bounded
for | < m. It is impossible for orthonormal v, to have exponential decay and to belong to
C*°, with all derivatives bounded, unless ¢ = 0. As a result, to achieve fast (exponential)
decay, only a finite number & of derivatives can be continuous. The decay rate decreases
as k increases. On the contrary, the Meyer wavelet, which is C*, decays faster than any
inverse polynomial, but not exponentially fast.

In the general case, ¢ = Ny, the ¢ satisfies [ dzg(z) = 1 and

(
2n+1
272" 25:31 #2z-n-1+7), m=2n=even
J
#(z) = {
2n +2
g-2n-1yint $(2z—n-1+7), m=2n+1=odd
J

If we choose ¢ to be the 0-th order cardinal spline,

1 0<2z<1
$(z) =

0 elsewhere

61



and we follow the previous steps, we end up with the Haar basis

4

1 0<z<1/2

P(z)=9 -1 -1/2<z<1/2

\ 0 elsewhere

No orthonormalization is needed since ¢ is orthogonal to its translations.
Choosing the piecewise linear spline (m=1) as the scaling function,

» 1-]z] 0<]z[<1
¢(z) =

0 elsewhere

it satisfies

#(z) = 0.5¢(2z + 1) + ¢(2z) + 0.5¢(2z — 1)

and its Fourier transform is

siné /2

3(6) = (2m) 2Ty

It can be observed that

25 Y166+ 2D = = + Zeosé = 2(1+ 2e05%(€/2))
leZ 3 3 3

(3.31)

Since ¢ is not orthogonal to its translates, it is needed to apply the orthogonalization trick

described above. The orthonormalized scaling function is given by

4sin?(£/2)

A _ . -1/
¢l(£) - \/5(2 ) 262[1 + 26032(6/2)]1/2

The ¢+ is not compactly supported unlike ¢ itself. The corresponding mg is

1+ 2c052(2,f/2)J1/2

i (€) = cosz(§/2)[ 1 + 2cos?(§)

and the wavelet 9 is given by

1+ 2sin?(£/4)]1Y/2,
Fae] © 60

1+ 2sin®(£/4) 172
(1+2c0s2(§/2))(1 + 2cos2(§/4))] 9(6/2)

#e = eff/zsin2(£/4>[

= \/§ei5/23in2(£/4)[
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The choice of the scaling function for the development of the new Time-Domain MRTD
scheme is the cubic cardinal spline (m = 3). After orthonormalization, the spectral expres-

sions of the scaling and the wavelet functions are

) in($) 1
) = (2 12 sin(3 ) . 3.34
(&) = @m)= s \/1 - sin?(§) + Zsin?(%) - ssind() o

and

(L) = pit/2 PH(£+2m) - o
(€)= ¢A_—_J-(£/2+7r)¢L(£/2) = 1o(€) (3.35)

The Cubic Spline Battle-Lemarie Scaling and Wavelet functions are plotted in (Figs.3.1-

3.2) in Spatial Domain and in (Figs.3.3-3.4) in Spectral Domain.

3.4 The 2D MRTD scheme

For simplicity, the 2D MRTD scheme is analyzed for a homogeneous lossless medium
with the permittivity € and the permeability 4. Assuming no variation along the y-direction,

the Maxwell’s equations for the two-dimensional 7M* mode [62] can be written as:

0E, _ 10H,
% - <o (3.36)
0H, _ 10E, OE,

ot p(am 82) (3:37)
0E, _ 10H,

5 " oz (3.38)

To derive the 2D MRTD Scheme, the electric and magnetic field components incorporated
in these equations are expanded in a series of Battle-Lemarie scaling and wavelet functions

in both x- and z-directions and in pulse functions in time.
X b6
Ez(.’L‘,Z,t) = Z kEf_'l/?,‘m hk(t) ¢l—1/2("r) ¢m(2)

k,l,m=-0c0
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+00
DY
kJlm=~o00
+o0
DY
klm=-o00
+00
DY
k,lm=—o0
+00

E,(z,z,t) = Z

k,l,m=-o00
400
D'
kilm=—0c0 T
+00
+
klm=-oc0
+00
+ X
klm=-o0
400
Hyz,2,1) = Y
k,,m=—00
400
+ X
klm=-00
400
+ X
kJlm=-0c0
400

DY

klm=-o00

where ¢u(2) = (25

+oo  277-1

SN REDYR hklt) dioaala) Ui, (2)

r,=0 p:=0
+00 27T-1

T, ".‘L’.P.rds
Z E kEl—T/Zm hi(t) ¥;2 1/2,,( z) Om(z)

re=0 pz=0
+00 AEREED

"’Tz. zwrz, z Tr Tz
S D RELTERET h(t) U, (2) UL (2)

rz,rz=0 pz,p.=0

CEFS ) () Di(2) bt al2)

2rz-1
2,6%r,,pz r.

Z S RESaUE (1) i) ¥y, (2)
r,=0 p.,=0
400 27r-1 i ¢
S X kB h(t) O] (3) me1/2(2)
ry=0 pz=0

Mz Tz -]

Zwr‘r, r Vrz,p2 Tz
Z Z Im—172¢ ” ( ) 1/)1 P:l.‘( ) ,()bm—l/?vpz(z)

rz,rz=0 pz,p.=0
k+1/2Hf/_’¢;q/52,m_1/2 hit1/2(t) Gi-1/2(2) Sm-1/2(2)

+o0 272-1

Z Z k+l/2H1 l/2m—1/2 hk+1/2(t) (I 1/2( )d)m 1/2,,2( )

rz=0 p,=0
400 2TT-1 v 6
Z Z k+1/2Hly-’-172',::-1/2 hk+1/2(t) ¢;‘:1/2,p3($) ¢m—l/2(z)
rz=0 pz=0
= Ty v
U¥rz,pz¥rz,pz z z
S X kBTN b (8) U, (8) U0 (2)

re,r2=0 pz,p:=0

(3.39)

- n) and ¥;, (z) = or/2 $o(2"[£ — n] — p) represent the Battle-

Lemarie scaling and r-resolution wavelet function respectively. The expressions of the scaling

and the O-resolution wavelet in the spectral domain are given in Eqgs.(3.34)-(3.35).Since

higher resolutions of wavelets are shifted and dilated versions of the 0-resolution, their

domain will be a fraction of that of the 0-resolution wavelet; thus there are going to be

more than one higher resolution wavelet coefficients for each MRTD cell. Specifically, for

the the arbitrary r-resolution and for the n-cell to the x-direction, there exist 2" wavelet
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coefficients located at ‘—f—x =n+ -2-,%-1-, p=0,..,2"—1. This is the reason for the summation
of the p terms for each resolution r in the expansion of Eq.(39). +E};»” and x41/2H/ " with
K =1z,y,zand y,v = ¢, are the coefficients for the field expansions in terms of scaling and
wavelet functions. The indices [, m and & are the discrete space and time indices related to
the space and time coordinates via r = [Az,z = mAz and t = kAt, where Az,Az are the
space discretization intervals in x- and z-direction and At is the time discretization interval.
For an accuracy of 0.1% the above summations are truncated to a finite number of terms
determined by the dispersion and stability requirements (typically between 22-26). The

time-domain expansion function hg(t) is defined as

hi(t) = h(~— — k) (3.40)

with the rectangular pulse function

(

1 for|z|<1/2

h(t)=1 1/2 for || = 1/2

| 0 for lz] > 1/2
The magnetic field components are shifted by half a discretization interval in space and
time-domain with respect to the electric field components (leap-frog).

Upon inserting the field expansions, Maxwell’s equations are sampled using pulse func-
tions as time-domain test functions and scaling/wavelet functions as space-domain test-

functions. For the sampling in time-domain, the following integrals are utilized

+00
/ hi () (t)dt = 64 Az (3.41)

and
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+00
Ohpiyyo(t)
/ (1) =t = 6~ B (3.42)

where 0 is the Kroenecker symbol,

1 fork=4F
6k,k' =

0 fork #4k
Sampling in space-domain is obtained by use of the orthogonality relationships f or the

scaling and for the wavelet functions [25]

400
[ $m(a)ni(2)de = b i, (3.43)
/qsm W i(@)dz = 0, ¥ 7,p (3.44)
and
+00
/ ¢:n,p(z) :r:’,p'(m)dz = 61',7" 6m,m,' 6m,m' Az (345)

The integrals containing derivatives can be approximated by the following expressions:

|06 nazl
/¢m ¢ +l/2( )d ~ Z a(i)‘sm-f-i,m’ (3'46)
with
N I Y
i) =1 [ 8@ esinle i+ 1/20dE (3.47)
a , Nd,r,2
/d)m (o +1/2p( )d '~ Z dy (i, P)bmpi,m’ (3.48)
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with

/ 2728, (€) |Wo(€/27)] € sin[€(i + 0.5+ p/2" + 1/27T1)] dE . (3.49)

a o Tie,r,2
/d) ¢ +1/2( Oms1p2(z) S eolisP)ompim (3.50)

1=-Ncr1

with

¢ (i,p) = % /Ooo 2724, (€) [90(£/27)| € sin[€(i +0.5— p/2" = 1/27+1)] 6, (3.51)

nb,r] 2,2

41/2,00(8) .
/ ?l’m,p, + / £ —dz x Z bT],T2(27p1’p2)6m+i,m’ (352)

=Ty rp
with
braralipispe) = [ 190(E/27 IBol€/2)| Esinle 1/ 24pa/ 27—y 2741/27 -1/ 2741
(3.53)
For the rest of the MRTD Technique description, an expansion only in a series of scaling and
0-resolution wavelet functions will be considered. Hints for the enhancement of additional
wavelet resolutions will be presented where needed. Since for the 0-resolution (7 = 0) there
is only one wavelet coefficient per cell (p = 0), the p symbols will be omitted from the

definition of the b, ¢, d coefficients, which will be given by

Nc,0,2

0Pmi 41
/1/)m( )Mdzz z co(%)0m+i,m! (3.54)

1==T¢,0,1

with

oli) =7 [ m(e) I0u(E)| € sinleil de (3.55)

Nd,0,2

/ ¢m() '“’2( )dzz 3 do(§)bmisms (3.56)

1==n40,1
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with

doli) = [ dm(€) [90(E)] € sin(€ i +1) de = coli + 1 (3.57)
Thus, eq.(3.56) can be written as
+00 n -1
a , ¢,0,2
[ o@D gy S it Dl 359
i—‘-""c,o,]‘l
a 0: 15,0,0,2
/’l[)o w +1/2( )dﬂ,‘% Z bO(i)6m+i,m’ (359)
with
bo(6) = boa(i) = [ Idol6)P € sinfe (i + 1/2))dg (3.60)

with a(¢), bo(¢), co(?) given in Table (3.1) [26]. Due to symmetries in the integrals for the

O-resolution, the coefficients satisfy the conditions: a(-1-1) =

—a(i), bo(=1— 1) = —bo(3)

and co(—t) = —co(4) for ¢ < 0. Hence, the stencil lengths have to be: Mmb,0,0,1 = Mbo02— 1=

ny and nmco1 = meo2 = Me. These conditions are not general and do not hold for any

other arbitrary resolution. The stencil size is determined by the dispersion requirements. It

has to be noted that the Battle-Lemarie scaling function has exponential decay; thus, the

coefficients a(z) for i > 12 are not zero, but their value is negligible (< 10~4).

After applying the Galerkin technique to Eqs.(3.36)-(3.38), the following MRTD equa-

tions are derived:

k+] E$v¢¢ zv¢¢

-1/2,§ ~ Fi-1/2,5

At

Eznﬁoé _ EI,¢0¢

1=1/2,5 i-1/2,j _

At

1 Ng-1

! y’¢¢
GAZ( § : (] )k+1/2H'_1/2’j+J‘I+1_1/2
J'==nq

> coli Veprs2HYSY C2,5+i-1/2)

J'=-nc
1 ng-1

eAz( Z a(j’ )k+1/2H_1/2J+J'+1 -1/2

J'==ng
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i a(i) bo(2) co(t)

0 1.29161604157839 2.47253977327429 0.

1 -0.155978843323672 0.9562282774123074 | -4.659725793402785E-02
2 |5.9606303324687290E-02 0.1660591600788887 5.453939813583327E-02
3 | -2.929157759806890E-02 | 9.392437777679437E-02 | -3.699957746974982E-02
4 | 1.5362399457426780E-02 | 3.141444475216036E-03 | 2.057449098775452E-02
5 | -8.184462325283712E-03 | 1.349356908709108E-02 | -1.115303180864957E-02
6 | 4.3757585552354830E-03 | -2.858941810094752E-03 | 5.976877725279031E-03
7 | -2.342365356649461E-03 | 2.778680514115529E-03 | -3.202621363952005E-03
8 | 1.252877717042020E-03 | -1.129446167303586E-03 | 1.714086849566890E-03
9 | -6.716635068590737E-04 | 7.071507309377701E-04 | -9.176508438494196E-04
10 | 3.583506907489797E-04 | -3.491267305845643E-04 | 4.911754748072018E-04
11 | -1.931321684715780E-04 | 1.952711419194906E-04 | -2.629253013538502E-04
12 | 1.019327767057869E-04 | -1.021304423384722E-04 | 1.407386855875626E-04
13 | -5.613943183518454E-05 | 5.531259273864269E-05 | -7.533840689573666E-05
14 | 2.834596805928539E-05 | -2.947330468694831E-05 | 4.033146235099674E-05
15 | -1.700348604873522E-05 | 1.572110653438641E-05 | -2.159462850665844E-05

Table 3.1: Coefficients a(t), bo(7), co(?)
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Nc

2 ¢

co(J )k+1/2H, 1/2 i+i'=1/2)

J'=-nc
z,09 Z,0Y
k+1E1 l/g.]_ E‘ l/ng _ 1 = H v,09
J'==nc
ny—1
Z bo(j Hl/? 11/2,J+J +1- 1/2)
J'==ny
T,%0%0 z,%0%0
Ez 1/2,) Ei -1/2,j _ 1 ( i -/) FY¥d
Al = Azl co(J k+1/28i-1/2,5+5'4+1-1/2
J'=-nc
np—1
) Y¥ovo
-,Z bo(3 Detr/2 )5 ira11/0)
J'=—ny
2,60 2,66 1
k+1Ei,j—1/2 ki 5-1/2 1 (nz (-/ HY%?
At Az a 2)k+1/2 i+1'41-1/2,j-1/2
t/=—n4
Ne
% Y%
_,Z co(d )k+1/2Hi+i'—1/2,j—1/2)
t'=—n,
EN) 2,690 a—1
k+1E1] -1/2 "~ E 1,5=1/2 L( "E (,) Hy,w,o
A7 Az ¥ Jet1/28 1252172
t'=—ngq
Ne
. y¥ovo
.,Z co(i )k+1/2Hi+i’—1/2,J'-1/2)
t'=-=nc¢
2,909 z,%0¢
k'HEzJ I/Q—kE 4,j=1/2 1 = . Hy,dnﬁ
At eAm( Z co(? k4172 i+ 4+1-1/2,j-1/2
t"‘—ﬂc
np—1
Y bo(d k+1/2H,+,'+1 1/2,-1/2)
t'= =—np
z%ovo 2,900
k+ 1Euol/2 Eu 1/2 1 = 3 HY %o
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The indices 7, j and k are the discrete space and time indices related to the space and time
coordinates via z = tAz,z = jAz and t = kAt, where Az,Az are the space discretization
intervals in x- and z-direction and At is the time discretization interval. The values of the

stencil lengths n,, ny, n. depends on the accuracy and dispersion requirements.

3.4.1 Modeling of Hard Boundaries

Unlike the FDTD where the consistency with the image theory is implicit in the ap-
plication of the boundary conditions, for MRTD schemes based on entire-domain functions
this theory must be applied explicitly in the locations of Perfect Electric (PEC) or Magnetic
Conductors (PMC). The total value of a field component at a specific cell is affected by a
theoretically infinite - practically finite - number of neighbooring cells due to the fact that
the basis functions extend from -co to co. Some of these neighbors may be located on the
other side of the conductor. This effect is taken into consideration by applying the image
theory (Fig.3.5). In this way, the physical boundary condition of zeroing-out the E-field tan-
gential to the PEC is automatically satisfied. For example, even symmetry is applied for the
normal-to-PEC ele¢tric field components and odd symmetry for the parallel-to-PEC. Image

Theory can be implemented automatically for an arbitrary number of hard boundaries.
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The time-domain numerical techniques are modeling the real space by creating a discrete
numerical grid. Sometimes, this mesh does not coincide with the electrical one and MRTD
is one example. The enhancement of wavelets on MRTD requires a special treatment of
the wavelet components of the normal-to-PEC electric field. Assuming a vertical PEC in
(Fig.3.6), the electrical domains (I) and (II) are isolated from each other. That means that
one wavelet component value of the normal electric field EXACTLY ON the PEC would
create a non-physical electrical coupling. Thus, TWO wavelet components, one located
infimitesimally left of the PEC and the other infinitesimally right of the PEC, have to be
defined in order to satisfy the electrical isolation condition. The H-field component that
is parallel to the PEC has to be treated in a similar way. The rest components of the E-
and H-field have to be zeroed-out on both sides of the PEC, so one value is sufficient. In
FDTD the interleaved positioning of the field components on the Yee’s cell (which are the
same with the scaling functions components on the MRTD’s cell) requires that the normal-
to-PEC E-field component is located half cell size away from the conductor. In this way,

the definition of only one field component per cell is sufficient.

3.4.2 Modeling of Excitation

Without loss of generality, the modeling of the excitation for the 2D and 2.5D MRTD is

presented. The 3D algorithm is a direct extension of the 2D. For simplicity, only 0-resolution

wavelets are used.
In order to apply a point (pulse) excitation P(z,, 2,) for z, = mAz, 2z, = nAz, the pulse

has to be decomposed in terms of scaling and wavelet functions

P(zo,zo) = Z Z c¢¢(l-’£,¢712.¢) ¢(m +1z,¢) d’(n + lz,¢)

lz,9==00 l; 4=-00
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1,7‘0:—00 1,,¢=—oo

with

m+40.5 prn+40.5
Cop(lrgrlzg) = / /n s d(m+1zy) d(n+1.4) dz dz

3

m+ 5 n+0.5
coullzgrley) = /m o / d(m+1lz4) p(n+1.y) dz dz
m+0.5 n+05
cypllzpleg) = /;n / os d(m+1zy) d(n+1;4) dz dz
m+ 5 n+0.5
collanle) = [ / L dmetly) ntly)dzds . (364)

Practically, the summations of Eq.(3.63) can be truncated to a finite number of terms.
Usually 6-8 terms on each side of the excitation point per direction can offer an accuracy
of representation close to 0.1%. In case the neigboring scaling or wavelet functions are
located outside the computational domain (e.g. m+ Iy 4 > ny or m+ Iz 4 < 0 for a domain
[0,n;) to the x-direction), image theory has to be applied for their translation inside the
computational grid.

If there is no discontinuity (hard boundary or dielectric interface) in the summation

interval of Eq.(3.63), the double integrals of Eq.(3.64) can be split in two single integrals

m+0.5 n+0.5
coplzgylzg) = / Cos d(m + 1z 4) dz /n o d(n+1.4) dz = cg(lz,) c4(l26)

m+0.5 n+0.5
collegrleg) = [ dmtlg)de [0+ L) do = colleg) culley)

m+0.5 n+0.5
cyp(leyslzg) = / Y(m+lzy) dz/ S d(n+1.4) dz = cy(lz,y) cs(lz)

m-0.5 n-0.

. rm+0.5 -n+0.5
cyp(loys lzy) = [n_os P(m+lry) dz /ﬂ_os Y(n+1ly) dz = cy(ley) culloy)

with ¢4, ¢y given in Tables (3.2)—(3.3).
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Due to the symmetries of the Battle-Lemarie scaling and wavelet functions, the decom-

position coefficients have to satisfy the following conditions

C¢(l¢) = C¢,(—ld,). ld> = —1, —2,..

C,/,(lu',) = C¢,(1 - l,/,), 1,1, =0, —1, —2, .

For each time-step, the excitation scaling and wavelet components have to be superim-

posed to the respective field values obtained by the MRTD algorithm in order to provide a

transparent source similar to that described in Ch.2.

oo,total

¢
m+11'¢,n+l,,¢ kE‘m+l,|¢,n+1,,¢ + C¢¢(lzy¢’ lz'¢)

¢y total _ oY

k m+1,,¢,n+l,'¢, kEm+l,,¢,n+l,,w + c¢¢(lxv¢’ lzr"l))
Yo,total _ oY

kEm+I,,¢,n+l,v¢ kEm+II,¢,n+I,'¢ + C¢¢(11‘1¢’ lzy¢)
Y, total _ V2%

REnYl, ymttey = KEmbt, gty T C0ullzg ley)

For the 2.5D-MRTD algorithm that requires impulse excitation in time-domain, the above
superposition takes place only for the first time step (t=0). Nevertheless, for the 2D-MRTD

it has to be repeated throughout the number of time-steps that the excitation is on. The

ls 0 1 2 3 4 5 6
cg(lg) | 0.91507 | 0.03820 | 0.00963 | —0.00863 | 0.00502 | -0.00268 | 0.00141
Table 3.2: Excitation Scaling Decomposition Coefficients

Iy 1 2 3 4 5 6 7
cy(ly) | =0.10250 | 0.12115 | -0.02975 | 0.01501 | -0.00598 | 0.00298 | -0.00139

Table 3.3: Excitation Wavelet Decomposition Coefficients




appropriate number of the time-steps will depend on the time dependence of the excitation

(Gaussian, Gabor, ...).
Arbitrary excitation spatial distributions f(z, z) for an area [z; = m;Az, 77 = mpAz] X
[21 = 1Az, 22 = ngAz] can be modeled in a similar way. The spatial distribution has to

be sampled with scaling and wavelet functions, giving the new decomposition coefficients

m2+40.5 rny+0.5
cosllogylsg) = / / f(2,2) d(my +log) d(n1 +1s) dz da

m1-0.5 1-0.5
ma+0.5 n2+05
copllzgrlzy) = / o / s y2) ¢(my +1z4) (m +1;y) dz dz
- ny—
my+0.5 n2+05
cosllopleg) = / - / S(@2) Um + o) B + L) d da
_ ny—
mo+0.5 n2+05
C¢¢(1z,¢,lz,w) = / os / os (ml + 1 ,j,) ¢r(n1 +1, 'l') dz dz
—05 Jny-

For most simulations the choice of =8 < I 4,1z 4y < (my—my)+8and -8 <1, 4,14 <

(ng — ny) + 8 offer an accuracy close to 0.1%.

3.4.3 Treatment of Open Boundaries - PML Absorber

As it was discussed in Ch.2, for all discrete-space full wave techniques a special treatment
should be given to geometries of interest defined in "open” regions where the computational
grid is unbounded in one or more directions. Since the computational domain is limited in
space by storage limitations, an appropriate boundary condition should be implemented to
effectively simulate open space and satisfy the radiation condition. Berenger [8] proposed
the Perfect Matched Layer (PML) Absorber, which is based upon splitting the E- and
H- field components in the ABC area and assigning artificial electric and magnetic loss
coefficients. On the condition that these loss coefficients satisfy the PML relationship for
each point of the absorber area, this nonphysical absorbing medium has a wave impedance

less sensitive to the angle of incidence and frequency of outgoing waves than the preexisting
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absorbers.In this Subsection, the non-split and split extensions of the PML absorber for the
2D-T M?* Battle-Lemarie MRTD are discussed. Their performance is going to be validated
in Ch.4. Assuming that the PML area is characterized by (¢,, 1,) and electric and magnetic

conductivities (cg,0p), the TM?* equations can be written by adding an extra term to

Eqs.(3.36)-(3.38)

€ 5 +ogE;, = 2, (3.65)
OF, _ 0H,

€ _(9t +opgE, = 2 (3.66)
oH, _ OE, 0E

uo—at +opH, = 52 =2, . (3.67)

Without loss of generality, PML cells only along the z-direction are considered. The exten-

sion to the x- and y- directions is straightforward. For each point z of the PML area, the
magnetic conductivity oy needs to be chosen as [8]:

o8(z) _ ou(2) (3.68)

for a perfect absorption of the outgoing waves. A parabolic spatial distribution of og g,
opn(z) = oP%E(1 - %)P , with p=2 for0<z<6 (3.69)

is used in the simulations, though higher order distributions (e.g.Cubic p=3) can give similar
results. The PML area is terminated with a PEC and usually has a thickness varying
between 4-32 cells. The maximum value o®® is determined by the designated reflection

coefficient R at normal incidence, which is given by the relationship

5 26771016

R=e koot _ oo 3hm (3.70)

In MRTD, the PML area can be modeled by discretizing the above equations in a similar
way to the non-conductive area described in the beginning of Section 3.4 and split and

non-split formulations can be derived.
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Similarly, the PML equations for the TE* can be written as,

OH, JF,

ﬂo—ét—-f-UHHr = Z (371)
oH. _ OE, _
#o—at—+ onH, = o (3.72)
dE, 0H, OH, i
GOW + UEEy = - oz + 9z (313)

Split Formulation

Following the approach of [8], H, is split in two subcomponents, Hy;, H,, and Egs.(3.65)-

(3.67) are written as,

eo%”;—waE(z)Ex = -QELB:’—HW (3.74)
analy;, = @%:—HW (3.75)

poe o O (3.76)
w2 L op()Hye = -2 (3.77)

For the sake of simplicity in the presentation and without loss of generality, the fields
E; E, Hy;, H,, are expanded in terms of scaling functions only in space domain and pulse
functions in time domain. By applying Galerkin’s technique [26, 53], the following split

PML equations are obtained

I,¢¢ —_ - JAt o $,¢¢
enElyp; = €7F Fok B,
1 -0 Atfe
+ —(e77BM ¢ — ]
YL )
= b6 b
Y] y, Y2,
' Z a(i )(“+1/2Hi—1/2,j+j’+1—1/2 + k+1/2Hi—1/2,j+j’+1—1/2)
i/==nq
2,06 _ 2,69
e BT = kBt
CAr el
! yz,¢¢o yzy¢¢
+ Az Z a(i )(k+1/2Hi+i'+1-1/2,j—1/2+k+1/2Hi+i’+l—1/2,j—l/2)
t/==n,
yz, 00 _ vz, 00
w12H 11 = k2B 50
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At el "
- Z,0
qu:c( > (O )L _1y0)

t'=-ng

e-a;;”zAt/uo

I

yz,6¢ yz,00
k+1/2H:’—1/2,j—1/2 k-l/2Hi-1/2,j-1/2

1 ng—1

~gl1/2 o . . -~
o= Mo -1) ¥ aRES ey - (BT8)
“YH

J'=-na
Exponential time-stepping is being used for the field components affected by the PML con-
ductivities 0, og. Due to the entire-domain nature of the Battle-Lemarie scaling functions,

the PML conductivity must be sampled by them over at least 12 cells (6 cells per side),
; i+6
OpH = / ] op.H(2)p;(2)dz . (3.79)
-

Image theory is applied to extend the conductivity layer outside the terminating PEC’s. The
presented formulation follows the idea introduced by Berenger for the FDTD. Nevertheless,

an efficient non-split form of the PML equations does not demand extra memory for the

storage of two H, subcomponents per cell.

Non-split Formulation

Substituting in Eqs.(3.65)-(3.67) [54]:

Ei(z,2,1) = Ei(z, z,1)e™ 5l (3.80)

and

Hj(z,2,t) = Hi(z,2,t)e”0H ) ko (3.81)

for i=x,z and j=y leads to the following system of equations:

0B, _ _oi,

€75 = Ep (3.82)
0E, _ 0H,
5 = e (3.83)
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o, _ OE. OE.
Ho7ot = oz oz

(3.84)

Discretizing Eqs.(3.82)~(3.84) and inserting Eqs.(3.80)-(3.81) yields the unsplit formu-

lation of the fields for the PML region:

z,0¢ —U At/fo z,0¢
1B = B E 2 )2
ng—1
-0.50%,At/eo g _1__ ) y,0¢
¢ F € (Az j,—Zn a(z)k+1/2H"-1/2J+J"+1—1/2)
206 _ -y PPAt)e, paod
k+1E1J -1/2 € kEi,j—1/2
ng—1
~0.50% P at/e, BE At y V.60
* (Ax _Z_n WOz liicsacaasmige)
.60 _ o372 At mu X
k120 500 = “k- 1/2Hi—1/2.j—1/2
+ Sa;]_l/zAt/uo éz
Ko
1 & b4 1 & 46
. z, . z,
(KT‘ Z a(i )kEi+i',j-1/2"A'; Z a(j )kEi-l/z,j+j') ,
t'=-ngq j'==ne

(3.85)

where the terms 01{3. g are given by Eq.(3.79).

3.4.4 Total Field Calculation

Due to the nature of the Battle-Lemarie expansion functions, the total field is a sum-
mation of the contributions from the non-localized scaling and wavelet functions. For
example, the total electric field Eg(z,,20,t,) with (k — 1/2)At < t, < (k +1/2) At
(i-1)Az <z, <iAzand (j—1/2)Az< 2, < (j+1/2) Az is calculated in the same way
with [26, 53] by

h
Er(xm 20y to) = Z E:., 1-1/2,j+35' ¢l+t -—1/2(730) ¢]+] (zo)
C it jl=—ly

Fmaz Iy VAR |

$¢¢r1 'z z
+ 2 > > kB 3T i Birir-1/2(%0) ¥idjnp, (%)

ry=0 {' j'==lz, pz=0
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Tmaz l3,r yAEES |

l'Ur P T : .
+ Z Z Z k z+::l/:2j+1 1’[’1';1"—1/2-}’:(1:0) OJ+1’(~°)

rz=0 1v]1=_13r pz=0

Tmazx 14 r 2T=Tz
er; Pz w'z Pz Tz HTz -
+ Z Z Z kE:+: '—1/2,5+4;' d,-}., _1/2‘,,:(130) 74’]'+J'r'pz(~>o)
rr,72=0 1t/ 3'==l4, Pz,p:=0

(3.86)

where ¢n(z) = (5 — n) and ¢y (z) = 97/2 $o(2"[2= — n] — p) represent the Battle-
Lemarie scaling and r-resolution wavelet function respectively and ry,; is the maximum
wavelet resolution used in this area of the computational domain. It has been observed
that the values Ij = l30 = l30 = l40 = 10 and I3y = I31 = 4,1 = 6 offer accuracy close to
0.5% for most simulations incorporating the first two wavelet resolutions. For the cases of
narrow strips with very sharp field discontinuities, the summation limits must increase up
to 15-20 terms per direction.

The fact that the MRTD is based on entire-domain basis functions with varying values
along each cell offers the unique opportunity of a multi-point field representation per cell.
The neighboring scaling and wavelet coefficients can be combined in an appropriate way to
calculate the total field value for more than one interior cell points. In this way, MRTD
creates a mesh with much larger density than that offered by the nominal number of the
cells without increasing the memory requirements. This additional density is very useful
in the calculation of the characteristic impedance of planar lines, where even a small field
variation can cause a perturbation of the impedance value by 5 — 10€2. On the contrary,

FDTD is based on pulse basis functions that have a constant value for each cell, offering a

single-point field representation.
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3.5 Conclusions

After reviewing the general principles of Multiresolution Analysis, novel time-domain
schemes based on expansions in scaling and wavelet functions (MRTD) have been derived.
FDTD implementation schemes (excitation, hard/open boundary and dielectric interfaces)
have been extended to Multiresolution schemes based on entire-domain expansion basis,
while maintaining similar performance characteristics. These schemes offer the unique op-
portunity of a multi-point field representation per cell. Battle-Lemarie functions are used

throughout the dissertation due to their special qualities.
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Figure 3.1: BL Cubic Spline Scaling - Spatial Domain.
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Figure 3.2: BL Cubic Spline Wavelet - Spatial Domain.
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Figure 3.3: BL Cubic Spline Scaling - Spectral Domain.
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Figure 3.4: BL Cubic Spline Wavelet - Spectral Domain.
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Figure 3.5: Image Theory Application for tangential-to-PEC E-field.
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Figure 3.6: Treatment of Wavelet Components of normal-to-PEC E-field.
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CHAPTER 4

Characterization of Microwave Circuit Components

Using the Multiresolution Time Domain Method (MRTD)

4.1 Introduction

Recently, the Battle-Lemarie based MRTD technique has been successfully applied [26,
53, 54] to a variety of microwave problems and has demonstrated unparalleled properties.
When applied to linear as well as nonlinear propagation problems, it has exhibited MRTD
schemes based on other entire-domain expansion basis can be developed in a similar way by
calculating the appropriate summation coefficients. The use of Battle-Lemarie basis allows
for a more simplified evaluation of the moment method integrals is simplified due to the
existence of closed form expressions in spectral domain and simple representations in terms
of cubic spline functions in space domain. The use of non-localized basis functions cannot
accomodate localized boundary conditions. To overcome this difficulty, the image principle
is used to model perfect electric and magnetic boundary conditions. Pulse functions are
used as expansion and test functions in time-domain. In this Chapter, a 2.5D MRTD scheme
is developed and applied to a variety of shielded and open of transmission line problems.

Specifically, propagation constant, characteristic impedance and field patterns are derived
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for shielded and open transmission line structures and compared to FDTD results. For the
treatment of open boundaries, Berenger’s PML principles [8] have been extended in split

and non-split form, so as they can be used for entire-domain basis MRTD schemes.

4.2 The 2.5D-MRTD scheme

For simplicity, an overview of the 2.5D-MRTD scheme is presented for a homogeneous
medium. The derivation is similar to that of the 2D-MRTD scheme in CH.3, which uses the
method of moments with pulse functions as expansion and test functions. The magnetic
field components are shifted by half a discretization interval in space and time-domain with
respect to the electric field components.

Using the approach of [55], Maxwell’s curl equations for a homogeneous medium with

the permittivity ¢ and the permeability y can be written in the following form

0E, 0H,

€ TR Ty--*_ﬂHy (4.1)
0E, oH,
6—67— = —ﬂHr— 9z (42)
0E, _ 0H, O0H,
T re (4.3)

where 3 is the propagation constant and j = v/-1. The electric and magnetic field com-
ponents incorporated in these equations are expanded in a series of Battle-Lemarie scaling
and wavelet functions in both x- and y-directions. For example, E, can be represented as:

400
). kEf_’f‘;g,m hi(t) di-1/2(2) dm(y)

k,,m=-c0

+o0 +oo  27V-1

+ Y Y X KB h() diiaja(e) 92, (4)

. kilym=—oc0 ry=0 py=0

00 400 )
+ Z Z sum;‘;z:[)l kEf_"f;;”’:;'P hi(t) wI:I/Z,px(x) m(y)

klm=—00 rz=0

E;-(.’t, Y, t)
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CHAPTER 4

Characterization of Microwave Circuit Components

Using the Multiresolution Time Domain Method (MRTD)

4.1 Introduction

Recently, the Battle-Lemarie based MRTD technique has been successfully applied [31,
58, 59] to a variety of microwave problems and has demonstrated unparalleled properties.
When applied to linear as well as nonlinear pr;)pagation problems, it has exhibited MRTD
schemes based on other entire-domain expansion basis can be developed in a similar way by
calculating the appropriate summation coefficients. The use of Battle-Lemarie basis allows
for a more simplified evaluation of the moment method integrals is simplified due to the
existence of closed form expressions in spectral domain and simple representations in terms
of cubic spline functions in space domain. The use of non-localized basis functions cannot
accommodate localized boundary conditions. To overcome this difficulty, the image principle
is used to model perfect electric and magnetic boundary conditions. Pulse functions are
used as expansion and test functions in time-domain. In this Chapter, a 2.5D MRTD scheme
is developed and applied to a variety of shielded and open of transmission line problems.

Specifically, propagation constant, characteristic impedance and field patterns are derived
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to < (k+1/2)At, Az < z,<iAzrand (j-1/2)Ay <y, < (j+1/2)Ayis calculated by

Eu(2ororts) = ///Ex(x,y,i)é(x—xo)é(y—yo)é(t—to)dxdydt

z,0¢
Z kE,'+,'/_1/2’J‘+J'/ d’i+i’—1/2(zo) ¢j+j'(yo)

i,j'= o0

Q

I
1]
> REL gy Oivir-1y2(20) Siat (%) (4.6)

v'==h

Extending the dispersion analysis from 2D to 2.5D space, the stability condition for the

2.5D S-MRTD scheme results in

At < ! (4.7)

T e (&P (D T @) + (5

with the wave propagation velocity c. It is preferable to choose At at least 1.2-2.5 time less

than the stability limit. In this way, much more linearity of the dispersion characteristics

is achieved.

4.3 Applications of the 2.5D-MRTD scheme to Shielded Trans-
mission Lines

First, the 2.5D-MRTD scheme is applied to the analysis of shielded stripline and mi-
crostrip lines to investigate propagation and coupling effects. Results for these shielded
structures are presented and discussed separately below.

A shielded stripline is a simplified version of a membrane microstrip shown in (Fig.4.1a).
The metallic shield has dimensions 47.6mm X 22.0mm and the central strip has length
11.9mm. The stripline is filled with air (¢, = 1.). The analysis for the higher order
propagating modes is straightforward. For the analysis using Yee’s FDTD scheme, a 40 x 10
mesh was used resulting in a total number of 400 grid points. When the structure was

analyzed with the 2.5D-MRTD scheme , a mesh 8 X 4 (32 grid points) was chosen reducing
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Mode TEM Shield TEq

Analytic values | 1.4324 GHz | 3.4615 GHz

8x2 MRTD 1.4325 GHz | 3.4648 GHz

Rel.Error 0.007% 0.095%

8x4 MRTD 1.4325 GHz | 3.4641 GHz

Rel.Error 0.007% 0.075%

16x4 MRTD | 1.4325 GHz | 3.4633 GHz

Rel.Error 0.007% 0.052%

40x10 FDTD | 1.4322 GHz | 3.4585 GHz

Rel.Error -0.014% -0.087%

Table 4.1: Mode frequencies for 5 = 30

the total number of grid points by a factor of 12.5. In addition, the execution time for the
analysis was reduced by a factor of 3 to 4. The time discretization interval was chosen to
be identical for both schemes and equal to the 0.8 of the 2.5D-MRTD maximum At. For
the analysis # = 30 was used and 5,000 time-steps were considered.

From (Table 4.1) it can observed that the calculated frequencies of the two first prop-
agating modes for # = 30 by use of 2.5D-MRTD scheme are very close to the theoretical
values, since the largest error is less than 0.1%. The relative error of the 2.5D-MRTD calcu-
lated frequencies is always positive, which corresponds to an overestimation of the resonant
frequencies. This is exactly what has to be expected from the dispersion behavior of the

MRTD schemes.

The non-localized character of the basis functions offers the opportunity to calculate the

field values in any point of the discretization cells. The field values at the neighbooring cells
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can be combined appropriately by adjusting the scaling functions’ values and by applying
the image principle. For example, the total electric field E (z,,y,,%,) With (k = 1/2) At <
to < (k+1/2) At is calculated by Eq.(4.6) by simply truncating the ¢, summation from
Iy = -12,..,12 for each index. That means that the summation based only at the 12
neighbooring cells from each side gives the total field component values with good accuracy.
In (Fig.4.2-4.4), the value of the E, field has been calculated and plotted for the 4 cells
exactly below the strip by use of the 2.5D-MRTD scheme. The relative position of the strip
is from 15 to 25 . For the TEM mode the pattern obtained by use of the conventional FDTD
scheme is plotted for comparison. For the shield TE;p mode, the analytically calculated
pattern has been added for reference. All results are normalized to the peak value. It can
observed that the agreement of the MRTD calculated field pattern with the reference data
is very good for the shield T Eyo mode, where the values are changing slowly (sinusoidally)
(Fig.4.2). On the contrary, for the TEM mode where the edge effect is more prominent, the
agreement is not good. In this case, wavelets of 0-Resolution are added in both directions to
describe the higher spatial frequencies. It can be observed from (Fig.4.3) that the wavelet
coefficients for the 8x4 grid have a significant contribution (> 10%) close to the stripline.
Increasing the grid size from 8 to 16 to the strip direction and/or from 4 to 8 to the normal
to the strip direction improves more the accuracy of the field representation (Fig.4.4).

The characteristic impedance Z, for the TEM mode of the stripline is computed from

the equation:

_ Y_ _ fcv Eydy

Zo= 7= o Hdl (48)

where the integration paths C, and C, are shown in (Fig.4.1a). Since both of the schemes

used in the analysis are discrete in space-domain, the above integrals are transformed to
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Subpoints/cell | Z;¢ (Q) | Relative error | Z¥* () | Relative error
3 80.56 -15.71 % 84.04 -12.07 %
3 94.46 -1.17 % 92.55 -3.17 %
7 99.06 +3.64 % 94.59 -1.04 %
9 101.44 +6.13 % 94.96 -0.65 %
11 97.56 +2.07 % 95.01 -0.60 %

Table 4.2: Z, for different number of subpoints/cell (8x4 Grid).

summations. For the FDTD summations, only one field value per cell is needed, due to the
fact that pulse expansion functions which are constant for each cell are utilized. On the
contrary, for the 2.5D-MRTD summation the field values for a number of subpoints along
the integration path have to be calculated, since the expansion functions are not constant
for each cell. It can be observed from (Table 4.2) that the accuracy of the calculation of
the characteristic impedance is improved by increasing the number of subpoints per cell, at
which the field values are calculated. An accuracy better than 1% is achieved if the field
values are computed for more than 9 subpoints per cell along the integration path for the
scheme including wavelets of 0-resolution to both directions. On the contrary, the value of
Z, that is calculated from the scheme based only on scaling functions is oscillating, thus
indicating that a denser mesh is required. The analytical value of the Z, is 95.58  [56].

The modification of the dimensions of the MRTD mesh (Table 4.3) shows that the
accuracy of the calculation of the Z, by use of the MRTD is much better than that of the
Yee’s FDTD scheme with a 40x10 mesh (relative error -3.28%).

A similar procedure is used for the analysis of the shielded coupled-stripline geometry

of (Fig.4.1b) for the first even and odd mode. Both strips have a length of 11.9mm, the
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Z, () | Relative error
Analyt. Value | 95.58 0.0%
8x4 MRTD 95.01 -0.60%
8x8 MRTD 95.19 -0.41%
16x4 MRTD 95.71 0.14%
40x10 FDTD | 92.44 -3.28%

Table 4.3: Z, for different mesh sizes (11 subpoints/cell).

distances between them is 11.9mm, from the top and bottom PEC’s are 11.0mm and from
the left and right PEC’s are 11.9mm. The structure is filled with air (¢, = 1.). For the
analysis with the conventional FDTD scheme, a 70 X 20 mesh resulted in a total number
of 1400 grid pints. The same accuracy is achieved by an MRTD mesh 14 x 4 (56 grid
points) resulting in an economy of memory by a factor of 25. The space distribution of the
tangential-to-stripline E is plotted in logarithmic scale in (Fig.4.5) for the even mode.

The 2-D MRTD technique is also used for the analysis of a shielded microstrip (Fig.4.1c)
with width 9.9mm on a dielectric substrate with ¢, = 10.65 and thickness 11mm. The mi-
crostrip is placed in the center of a rectangular shield 69.3mm x 44mm. The same accuracy
for the characteristic impedance calculation (Theoretical Z, = 50 Ohms) is achieved by an
FDTD mesh 140 x 80 and an MRTD mesh 28 X 20resulting in an economy in memory by

a factor of 20.
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4.4 Validation of the MRTD-PML Split and Non-split Algo-
rithms

The extension of the popular PML absorber [8] principles for MRTD applications has
been presented in CH.3. In this Section, the numerical performance of this absorber is
investigated for 4-32 cells and for different cell sizes (A/10-A/2.5). Specifically, p.ropaga,tion
constant, characteristic impedance and field patterns are derived for open transmission lines
and compared to 2D results.

A parallel-plate waveguide of width d=48 mm, terminated at both ends by PML, is
used to validate the described algorithm. A T'M? line source with a Gabor time variation
is excited close to the one side of the waveguide. The benchmark MRTD solution with
no reflections is obtained by simulating the case of a much longer parallel-plate waveguide
of the same width to provide a reflection-free observation area for the time interval of
interest. A quadratic variation in PML conductivity is assumed for all cases, with maximum
theoretical reflection coefficient of 10~ at normal incidence. Two frequency ranges are
investigated,[0, 0.9f7™1] (TEM propagation) and [0,0.9f7M2] (TEM + T M, propagation),
where fTMn = 5% = 3.125 n (GHz) is the cutoff frequency of the T M, mode. The time-step
is chosen to be 0.637 of the Courant limit according to the stability analysis of Ch.5.

For the TEM propagation frequency range, it can -be seen from Figs.(4.6)-(4.8) that
for dense grids (Cell Size = Apmqz/10) even 8 PML cells offer a numerical reflection close
to -80 dB. Different values of theoretical maximum reflection ranging from 10~° to 103
don’t change significantly the numerical performance of the absorber (variation of 4-5 dB’s).
When 16 PML cells are used, the spurious reflection is below -100 dB for the whole frequency

range. Similar conclusions can be drawn for the multimodal propagation (TEM +TM,) in
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Fig.(4.9). It can be observed that 8 and 16 PML cells cause a numerical reflection close to
-70 dB and below -100 dB respectively. For coarse grids with cell sizes close to the Nyquist
limit (Cell Size = Apqz/2.5), the behavior of the PML layer changes. The Large cell size
causes retrospective reflections between the lossy cells and the numerical reflections from
the absorber increase. Thus, a larger number of cells is required to obtain an acceptable
reflection coefficient. Fig.(4.10)—(4.11) show that at least 32 cells are needed for reflection
around -50 dB for the high frequencies. Again, the reflection at lower frequencies is negligible
(below -100 dB’s). It should be emphasized that the loss coefficients assigned to each cell
must be given by Eq.(3.79); that implies that the conductivity profile must be sampled with
the scaling and wavelet functions that have a significant value in the PML layer. For all
simulations, scaling (and wavelet) functions located up to 6 cells away from the PML layer
are used for the sampling. When this procedure is not applied and the loss coefficients get
the point value of the loss distribution at each cell (FDTD approach), the PML performance
gets worse as it is displayed at Fig.(4.12). It should be noted that the performances of the

split and the non-split formulations are almost identical as it is displayed in Fig.(4.13).

4.5 Application of PML to the Analysis of Open Stripline
Geometries

The PML non-split algorithm presented in Section 3.3.2 can be easily extended for the
2.5D and the 3D MRTD algorithms incorporating scaling and wavelet functions maintain-
ing the same performance characteristics. For each resolution added to the scheme, the
conductivity must be sampled with an appropriately positioned wavelet function. It was

observed that S, changes only by 1-1.6 dB after the enhancement of multiple resolutions.
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In this section, the 2.5D MRTD scheme is applied to the analysis of open single and coupled
striplines to investigate propagation and coupling effects. In all simulations only wavelets of
the 0-resolution are used for both directions, since the value of the higher resolution fields
is negligible (smaller than 1%).

First, the 2.5D MRTD scheme is applied to the analysis of the open stripline for the
first (quasi-TEM) propagating mode. The analysis for the higher order propagating modes
is straightforward. The central strip has a length of 23.8mm and the distances from the top
and bottom are 5.5mm and 16.5mm respectively. The structure is filled with air (¢, = 1.).
The PML absorber is applied for 4 cells to the left and the right sides of the structure
and the maximum theoretical reflection is Ry,q;=1e-7. For the analysis using Yee’s FDTD
scheme, a 42 x 28 mesh is used resulting in a total number of 1176 grid points. Analyzing
the structure with the 2D-MRTD scheme, a mesh 12 x 4 (48 grid points) is chosen to reduce
the total number of grid points by a factor of 24.5 . In addition, the execution time for
the analysis is reduced by a factor of 4 to 5. The time discretization interval is chosen
to be identical for both schemes and equal to 1/10 of the 2D-MRTD maximum At. For
the analysis 3 = 30 is used and 20,000 time-steps are considered. From (Table 4.4) it can
observed that the calculated frequencies of the dominant propagating mode for 8 = 30 by
use of 2D-MRTD scheme is very close to the theoretical values, since the largest error is
less than 0.1%, for mesh sizes much smaller than those used for the conventional FDTD
simulations.

In (Fig.4.14), the pattern of the E, field just below the strip has been calculated and
plotted by use of the 2D-MRTD scheme. The pattern obtained by use of the conventional
FDTD scheme is plotted for comparison. Since the edge effect is prominent, a mesh 12 x 8

(96 grid points) with scaling functions and wavelets of 0-resolution is used for the MRTD
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Mode TEM Rel.Error

Analytic values | 1.4324 GHz | 0.000%

12x4 MRTD | 1.4329 GHz | 0.035%

12x8 MRTD | 1.4325 GHz | 0.007%

42x28 FDTD | 1.4321 GHZ | -0.021%

Table 4.4: Dominant mode frequency for 5 = 30

simulation. The characteristic impedance Z, for the quasi-TEM mode of the stripline is
computed from Eq.(4.8).

For the FDTD summations, only one field value per cell is needed, due to the fact that
pulse expansion functions which are constant for each cell are utilized. On the contrary, for
the 2D-MRTD summation the field values for a number of subpoints along the integration
path have to be calculated, since the expansion functions are not constant for each cell.
(Table 4.5) shows that the accuracy of the calculation of the characteristic impedance is
improved by increasing the number of subpoints per cell, at which the field values are
calculated. An accuracy better than 1% is achieved if the field values are computed for
more than 9 subpoints per cell along the integration path. (Table 4.5) shows the calculated
values of the characteristic impedance Z,.

A similar procedure was used for the analysis of the open coupled-stripline geometry of
(Fig.4.15) for the dominant even and odd modes. Both strips have a length of 23.8mm,
the distances between them is 23.8mm, from the top PEC 16.5mm and from the bottom
PEC 5.5mm. The MRTD-PML layer has a thickness of 4 cells (23.8mm) with maximum
reflection Ryqz=1e-7 and starts ezactly at the edge of the striplines. The structure is filled

with air (e, = 1.). For the analysis with the conventional FDTD scheme, a 65 X 20 mesh
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Z, () | Relative error
Analyt. Value | 56.83 0.0%
12x4 MRTD 597.24 +0.72%
12x8 MRTD | 57.09 +0.46%
42x28 FDTD | 54.96 -3.29%

Table 4.5: Z, for different mesh sizes.

resulted in a total number of 1300 grid points. The same accuracy is achieved by an MRTD
mesh 20 x 4 (80 grid points) resulting in an economy of memory by a factor of 16.25. The
space distribution of the tangential-to-stripline E is plotted in logarithmic scale in (Fig.4.16)

for the even mode and in (Fig.4.17) for the odd mode.

4.6 Conclusion

A multiresolution time-domain scheme in 2D has been applied to the numerical analysis
of shielded and open striplines and microstrips. The field patterns and the characteristic
impedance have been calculated and verified by comparison to reference data. In compar-
ison to Yee’s conventional FDTD scheme, the proposed 2.5D-MRTD scheme offer memory
savings by a factor of 25 and execution time savings by a factor of about 4-5 maintaining a
better accuracy for characteristic impedance calculations. This indicates memory savings of
a factor 5 per dimension leading to two orders of memory savings in three dimensions. Com-
pared to 2.5D-FDTD, 25 times less cells in MRTD require about 5 times less running time,
thus the computation time per cell is increased by a factor of 5. This leads to computation
time savings of mo.re than one order for 3 dimensional structures. For structures, where the

edge effect is prominent, additional wavelets have to be introduced to improve the accuracy
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when using a coarse MRTD mesh. A non-split PML absorber has been evaluated and its
performance is similar to that of the conventional FDTD Split PML absorber (reflections

close to -100 dB).
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Figure 4.1: Printed Lines Geometries.
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