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University of Michigan
Progress Summary

During the past 4 months, our efforts were concentrated on the following:

e improve accuracy of mode matching code and recalculate RCS patterns for mesurement
model

e parallelize mode matching and FEM codes on Intel Paragon
¢ integrate mode matching code with xpatch_ca

e write manual for mode matching code

¢ develop a future, more efficient code based on new concepts
e rewrite FEM code to exploit blade periodicity.

e exploitation of blade periodicity reduces CPU time for SOA dia. engine from hundreds
of hours to minutes.

e developed a simple approach for obtaining rotating-blade modulation data using
solutions of stationary blades. This has major CPU implications since it cuts down
CPU requirements by orders of magnitude.

e revert FEM code to using edge elements for more robust imposition of boundary
conditions. Edge elements are better suited for modeling volume regions with large
PEC sections.

e update FEM solver to using QMR which has smoother and faster convergence

The following documents are included in this report:

1. Interfacing with Xpatch_ca

Currently, xpatch_ca can only make partial use of the modal scattering matrix. In
this document, it is shown that more non-zero entries are required to obtain a
satisfactory solution of the overall engine scattering. Since the non-zero entries of the
scattering matrix are relatively very few and can be predicted apriori (on the basis of
blade periodicity), an efficient I/O and matrix storage scheme is presented.

2. Parallelizaton of the Jet Engine Mode Matching Code
To carry out realistic engine calculations, it is necessary to execute the code on a

parallel platform. This section describes our approach for parallelizing the mode
matching code on the Intel Paragon. We actually developed a generic approach for code
parallelization which can be used for parallelizing future codes, including the new FEM
jet engine code for discrete bodies of revolution. The transportable sections of the code
are included and performance results are presented. It is demonstrated that the
parallelized code has linear CPU requirements whereas the unparallelized code’s CPU
is at least quadratic.

3. Mode Matching Code Improvements and Manual

A major revamping of the code was carried out as described in this document with
the goal of speeding-up the code and improving its accuracy (previous comparisons
with measured data were as much as 5 dB off in certain regions). The code was



restructured to take advantage of simplifications afforded due to blade periodicity and
the curved blades mode normalization was corrected. Also, the Bessel functions
integration routines were improved using an adaptive integration approach along with
double precision. This resulted in substantial accuracy, convergence and stability
improvements and is demonstrated by the excellent comparisons between measured and
calculated results. The latter part of this document discusses the CPU and memory
requirements of the code. A short code manual is also given in the Appendix.

4. Proposed Future Integral Equation Code
To better exploit the periodicity of engine blades, two new integral equation

approaches are proposed. One is based on the Adaptive Integral Equation(AIM) method
which is a variation of k-space techniques and the other makes use of wavelets to
generate a sparse system of equations. Regardless of the approach, the resulting system
will have about 100,000 or so unknowns and this should be compared to the millions
of unknowns associated with all-blade implementations. There are certain inherent risks
with the proposed methodologies. Among them is the behavior of the singularity of the
modal Green’s function, the speed of AIM in accounting for the far zone element
contributions and achievable sparsity of the wavelet-based matrices.

A report on the implementation and performance of the new FEM code will be provided at a
later date and after completion of its validation.



MEMO:  April 19, 1995
TO: Jet Engine Analysis Team

FROM:  Dan Ross
RE: Interfacing Exact Methods to Xpatch

CC:

In order to make use of the exact methods (FEM, Mode Matching) in Xpatch, it is necessary to add
more sophistication into the existing interfacing software.

Currently, Xpatch reads in a modal scattering matrix. The format of this modal scattering matrix
was specified by McDonnell Douglas and allows for only block coupling between modes of the
same order (n) and sense (even/odd).

We have used the case of straight blades, position 1, at 6 GHz to test if in fact non-block coupling is
important. We compared the far fields using the full scattering matrix versus the far fields using
scattering matrices with block coupling only.

In plots 1 and 2 (attached) note that when only block n coupling is assumed, the results are very dif-
ferent.

In plots 3 and 4 note that when all n coupling is used but only even to even and odd to odd modes

are allowed to couple, the results are almost identical for phi-phi polarization but slightly different
for theta- theta polarization. However, this is a special case. When the blades are rotated to position
2 (plots 5 and 6), both polarizations are very different, implying that all even to odd and odd to even
coupling is required.

The only elements of the scattering matrix that can be assumed to be zero satisfy

NN, TEN k :any integer

The format of the scattering matrix must be modified. We suggest a sparse storage format that is
portable. The file should represent the elements of an 8 dimensional sparse system and would look
like this:

1101,1101(-247915198739783,-.12889095703847)
1101,1102(.3321378820867255,-.126351876946842)
1101,1103(-.237983092018485,-.139980415917646)
1101,1104(-.256793274432231,-.190063307218177)
1101,1105(8.760710687399284E-02,-.186127667977141)
1101,1106(.1942273229811178,-.107719258138243)
1101,1111(-3.897148288485881E-11,3.718494601411517E-12)
1101,1112(-1.233306264807076E-10,-1.626344477011836E-11)
1101,1113(-7.211708346235451E-12,-2.923477265083082E-12)
1101,1114(1.052208928527540E-10,9.984907603377483E-12)
1101,1115(8.674671097681725E-11,1.498112948143606E-11)



Each record in the file contains the fields
i1i21314,j1j2j3j4s
where:

il: 0 TE,1 TM (Incoming mode)
i2: 0 odd, 1 even (Incoming mode)
i3: n (Incoming mode)

i4: m (Incoming mode)

j1: 0 TE,1 TM (Outgoing mode)
j2: 0 odd, 1 even (Outgoing mode)
j3: n (Outgoing mode)

j4: m (Outgoing mode)

s: scattering matrix entry

Any entry in the scattering matrix not present in the file is assumed to be zero.

We suggest this format because it is efficient for storing a sparse scattering matrix and can be trans-
ferred to other codes without the need for any extra information.

The eight dimensional scattering matrix can be conceptualized using the following diagram:
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Parallelization of a Jet Engine Mode
Matching Code

Daniel C. Ross, John L. Volakis and Hristos T. Anastassiu

Radiation Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor MI 48109-2122

abstract -- Issues relating to the parallelization of a mode matching code for simulating
radar scattering from jet engine-like structures are presented. The process of re-
programming an existing serial code for parallel execution is explored from an
engineering point of view where we wish to gain the most benefit from parallelization
with the minimum amount of labor. We discuss how to profile the existing serial code to
find where parallelization can be used to scale performance and how to choose a parallel
model for optimum scaling and efficient use of resources. For the jet engine mode
matching code, we achieve scalable performance on the Intel Paragon by computing the
modal inner products and far fields in parallel using a manager/worker model. Our parallel
scheme is coded in a reusable way so that other applications with similar profiles can be
easily parallelized.



1.0 Introduction

An on-going effort aimed at the simulation of radar interactions with jet engines has led to
the development of a semi-analytic, mode matching code [1]. This code is capable of
predicting the radar scattering from a hollow, circular metal cylinder, terminated by a set
of canonical, straight or curved blades. Since this code is the only known benchmark
(other than measurements) for validating more flexible numerical techniques capable of
modeling an actual jet engine, it will be of great value to optimize this mode matching
code for scalable, parallel execution. The steps taken in transforming a working, debugged
serial code to a parallel code will be discussed from an engineering point of view. Here we
are concerned with gaining the largest performance increase with the minimum amount of
programming labor. In this presentation, it will be assumed that the reader either already
has an understanding of the mode matching technique used in [1] or simply doesn’t care

about the mode matching method and is concerned only with issues of parallelization.

A brief description of the serial mode matching code is given in the first section with a
description of the physical input and output parameters. In the next section we describe the
profiling procedure and a discussion on choosing the most appropriate level of
parallelization. Since it is found that the modal inner products and the far field
computations are the most appropriate points for parallelization, the next two sections
focuses on the choice of a manager/worker parallelization model for the numerical
integrations and for the matrix-vector multiplications needed for the far field calculations.
Portable FORTRAN source code for the Intel Paragon is given, demonstrating the
programming techniques used to incorporate parallelization into the original program. The
performances of the two parallel schemes are evaluated independently and in then the
performance of the overall parallelized application is compared with run times on high
speed serial computers. In the last section we briefly describe other measures that could be
taken to moderately increase the performance of the code over what has been presented

here.

2.0 Code description

The jet engine mode matching code [1] predicts the radar scattering from an open ended
cylinder terminated at the closed end by an inner circular hub and a set of canonical
straight or curved veins (see Figure 1). The user is required to input geometric information
which consists of the set of variables shown in Table 1.



FIGURE 1. Geometry of canonical jet engine inlet. Left: straight blades, right: curved blades.

Also, the extent of the mathematical model is given by the user with the parameters shown
in Table 2.

TABLE 1. Geometric model parameters

Variable | Description

a (7\,) Radius of inlet

b(A) Radius of inner hub

L1(A) Length of inlet section

L2(A) Length of engine section

Ny Number of blades

gap (°) Angular span of air gap between blades

orient (°) | Angular position of first blade

twist (°) | Total twist angle of blades

RimFlag | Rim scattering contributions (on/off)
fGHz Frequency (GHz)

TABLE 2. Mathematical model parameters

Parameter | Description

IN (Integer) | Max. mode index 1 for inlet region

II (Integer) | Max. mode index 2 for inlet region

JN (Integer) | Max. mode index 1 for engine region

JJ (Integer) | Max. mode index 2 for engine region

bgas (Real) | Error tolerance for adaptive integration

divmax Max. number of integration subdivisions: 29/V™3

The code solves for the amplitudes and phases of the modes in both regions (inlet region

and termination region) so that all boundary conditions are met. This is done directly (not



iteratively) and requires the evaluation of several matrices whose sizes are determined by
the number of modes used. The semi-analytical solution is written in terms of the inverse
and eigenvalue/eigenvector expansion of the matrices. Once the modal coefficients are
known, the scattered field is computed using an analytical evaluation for the far fields of
each mode radiating from the end of the open cylinder. The output of the code consists of
backscatter patterns for both polarizations, computed along the principle arcs around the

mouth of the inlet.

3.0 Code profile/Parallelization level

The engineering process of parallelizing an existing, debugged, serial code involves first
determining if there are a few operations that require large fractions of the applications
time and/or resources (memory). This is known as profiling the code. Profiling often gives
unexpected results when performed on very modular code. It is often found that a low
level routine is gobbling up a large fraction of the overall time and this routine has not
been written by or even understood by the programmer. A simple change to the code
which removes this modularity often causes a new low level routine to become the
dominant consumer of computer time. Optimizing the serial code in this way will
naturally separate the expensive and cheap operations until it is clear that one, or a few
operations are the dominant user of time or memory. By focusing only on a few expensive
operations, efficient code optimization can be done by only parallelizing some routines.
The remainder of the operations in the code may represent a substantial amount of source
but consume relatively little compute time during execution. Parallelization of the
remaining portion of the code usually requires a complete redesign and may be

unwarranted in practice.

Once the expensive operations are found, it is necessary to find if parallelization can
actually be used to increase the performance of the expensive operations. Many
algorithms are inherently serial as they require an iterative solution whereas others are
inherently parallel. Even a serial algorithm however may benefit from parallelization if it
is done at the correct level. For example, an iterative linear system solver can be
parallelized at the matrix vector product level, thus scaling its performance even though it
is inherently a serial algorithm. Ultimately though, the serial nature of any algorithm
limits the scalability of the application on parallel computers. This is known as Ahmdal’s
law. Continuing with the iterative linear system solver example, Ahmdals law predicts that

if the serial operations needed each iteration consume 5% of the overall time, while the



matrix vector products which can be parallelized consume 95% of the overall time, the
maximum possible speedup would be a factor of 20 regardless of how many processors
are used. In fact, adding too many processors will slow the application down as more time
is spent doing communications. Therefore in practice, there will be an optimum number of
processors with this number depending on the size of the problem and the ratio of parallel

to serial operations.

For the mode matching code, the fourth round of profiling (once serial refinements were
made) indicated that about 90 percent of the overall time (3.8 hours on an HP 9000/715)
for a typical run (input parameters: a=4, b=2, L1=5.33, L2=2.66, N,=8, gap=40.2,
orient=2.4, twist=0, RimFlag=off, fGHz=8, IN=25, [I=10, JN=7, JJ=8, bgas=.0001,
divmax=10) was spent filling the matrices used in the semi-analytical expression for the
mode coefficients. It was observed that this percentage will increase as the problem size
(radar frequency) is increased. During the remaining 10 percent of the time, a matrix
inversion is done, and matrix-matrix products are required along with the evaluation of the
far fields, which requires a matrix-vector product. The inversion and the matrix-matrix
product are needed during the evaluation of equation (31) in [1]. After the third round of
profiling, it was determined that the large number of matrix-matrix products required in
the evaluation of equation (31) in [1] would make the code impractical for terminations
with many blades (more than twenty). By using the properties of overlapping modal and
geometric symmetry as discussed in [3], we were able to reduce the summation in
equation (31) in [1] down to one term for any number of blades. This is accomplished by
introducing modes with exponential angular dependance rather than trigonometric angular
dependance and noting that equation (32) is the same for each slice except for a constant
phase factor which can be summed in closed form. Finally a matrix-vector product is
required for each look angle. The matrix-matrix product and the matrix inversion require a
great deal of nodal communications, and when considering the application as a whole,
account for a smaller portion of the overall time while requiring more communications as
the problem size is increased. Parallelization of the matrix fill operation and the far field
calculations are therefore the only operations that will be modified. Both of these
operations become more dominant as the problem size is increased. In fact, for a slightly
electrically larger problem (input parameters: a=5, b=2.5, L1=6.67, 12=3.33, N=8,
gap=40.0, orient=2.5, twist=0, RimFlag=off, f{GHz=10, IN=30, [I=12, JN=7, JJ=12,
bgas=.0001, divmax=10) the total run time on the HP 9000/715 jumped up to 3 days with
one full day required to calculate the far fields and all but a few hours spent calculating the
modal inner products for the matrix fills.



For the matrix fill operations, the elements of the matrices are the inner products of
different mode combinations over the interface from region one (inlet region) to region
two (termination region) as given by equations (33) and (34) of [1]. The integrals require
the numerical evaluation of Bessel function along the radial directions, while the
integration in the angular direction is done analytically. It is the one dimensional
numerical integration of different combinations of Bessel function products that consumes
nearly all of the matrix fill time. The evaluations of higher order (order greater than one)
Bessel functions are inherently serial since it is only possible to calculate higher order
Bessel functions by first computing all lower order Bessel functions using a recurrence
relations. A summation (series) evaluation of the higher order Bessel functions, which is
inherently parallel is unfortunately numerically unstable [2]. Clearly, the level of
parallelization must be above the Bessel function computations, allowing each node to do
its own serial computations of its needed Bessel functions. And, by filling the matrix so
that the highest order Bessel functions are needed first, the intermediate order Bessel
functions can be saved and recalled as needed. (This is an example of serial refinement.)

Parallelization of the matrix fill can be done at either of two levels: (a) the matrix level or
(b) the integration level. Using parallelization level (a) we have each processor working
on a separate piece of the overall matrix while using (b) all processors contribute to the
computations for each matrix element. In either case, the net matrix must be collected on
one of the node’s local memory (node 0) since other operations in the application are not
parallelized. Thus, the total amount of communication will be the same for level (a) or (b)
but parallelization at level (a) will require each node to store a portion of the matrix, which
would then be copied back to the node 0. We therefore choose the lower level (b) since the

overall memory demand will be a factor of two lower.

Parallelization of the far field computation will be done at the matrix-vector product level
since only one matrix (the scattering matrix) is needed for all excitations. This operation

can be made very efficient as will be seen in Section 5.0.

4.0 Parallel numerical integration

Numerical integration of the different combinations of Bessel function products is
accomplished in an optimum way using three point Gaussian quadrature with the
integration domain subdivided into 2" subdomains where 7 is increased until the integral
converges to some acceptable error (bgas in Table 2) or n becomes larger than some preset

value (divmax in Table 2). Although the use of an adaptive integration scheme within a



production code is costly, a study of the number of subdivisions needed for convergence
would represent an enormous task given the vast number of integrals that need to be
evaluated. And, as the problem’s electrical size is increased, higher order Bessel functions
with more oscillations will be encountered, thus driving up the number of subdivisions
needed for convergence. We will assume that in practice the number of processors will be
smaller than the number of integration subdivisions needed and we therefore choose to
break up the integrals separately for parallel computation. In fact, when calling the parallel
integration routine within an adaptive integration loop, we will always choose the first n
such that the number of subdivisions (2") for the first iteration is greater than or equal to
the number of processors. As more processors are added then, we can increase the
accuracy of the numerical integrations without increasing the overall run time. It has been
found by experimentation that the accuracy of these integration has a substantial impact
on the final solution and convergence of the method requires increasing accuracy as the

electrical size is increased.

Since the parallelization will be done at the integration level, we choose a manager/worker
model with domain decomposition on the integration interval. Processing node 0 will
become the manager and nodes 0 through p will all have worker processes (one per node)
in a constant state of either performing integrations or waiting. The amount of waiting
time is minimized by not requiring communications between worker nodes directly. That
is, the worker nodes do not need to be synchronized. The manager does not do anything
except post requests that an integral be done and collect results. By making use of the Intel
Paragon’s global sum routine gdsum (see Intel Paragon User’s Guide) the worker process
on node 0 is given the task of collecting the results from all other workers by moving each
worker’s value through the Intel Paragon’s mesh connected processors in an efficient way.
The sum is then passed to the manager process which is also on node 0. The special
message passing hardware within the Intel Paragon allows this global sum to be
performed nearly as efficiently as a systolic algorithm which would only let each node
communicate with its neighbors. Natural load balancing occurs since the integration
domain is divided up evenly across all worker processes. Even though the global sum
causes the worker processes to block until the sum is complete, the load balanced worker
processes are completed at virtually the same time thus minimizing any waiting periods.
This fact is born out by observing that this scheme does indeed scale almost as 1/p where

p is the number of processing nodes (as will be shown later in this section).

With the following FORTRAN source listings, we show how the integration scheme is

implemented in a portable fashion. Any number of subdivisions can be requested, not only



powers of two. There are two independent programs (one manager and many workers)
that communicate using the Intel Paragon’s message passing system calls. The worker

processes execute the following program (intwork.f):

include 'fnx.h'

Integer msg_data,msg_answer

Parameter (msg_data=2,msg_answer=3)

Real*8 xlc,x2c,integral, tmp,xgauss(3),
wgauss (3) ,width, c

Real*8 delx,x1,x2,sum, integral

Common /dmsg/ x1lc,x2c,c,xdivs, fnum

Common /amsg/ integral

Real*8 Fnl,Fn2

Integer xdivs, fnum

Integer divs,nodes,dpn,i,p,drem

Data wgauss /0.2777777778,0.4444444444,
0.2777777778/

Data xgauss /0.1127016654,0.5000000000,
0.8872983346/

Call crecv(msg_data,xlc,32)

If (x1c.EQ.0 .AND. x2c.EQ.0 .AND.
xdivs.EQ.0) Goto 2

divs=xdivs
nodes=numnodes ()
delx=( x2c - xlc )/divs
If (divs.GT.nodes) Then
dpn=divs/nodes
drem= IMod(divs,nodes)
If ( mynode() .LT. drem)
dpn=dpn+1
x1=x1c+( mynode () *dpn*delx)
x2=x1+(dpn*delx)
Else
x1=x1lc+( drem* (dpn+l) *delx) +

Then

(mynode () -drem) *dpn*delx

x2=x1+ (dpn*delx)
End If
Else
If ( mynode().LT.divs )
dpn=1
Else
dpn=0
End If
x1=x1c+( mynode () *dpn*delx)
x2=x1+(dpn*delx)

Then

Intel supplied header file

Message passing data
structures

Common blocks used to
pass messages with
different data types.

Integrand functions
Local variables

Constants for 3 pt.
Gaussian Quadrature

Wait for message to
integrate
Check if terminated

Set local variables

Find my portion of integral



End If

sum=0 Do my portion of integral
Do p=1,3
Do i=0,dpn-1
Goto (11,12) fnum Use integrand given by fnum
11 sum = sum + wgauss (P)
& * Fnl( ( xgauss(P) + I) * delx + x1) Integrate function I
Goto 3
12 sum = sum + wgauss (P)
& * Fn2( ( xgauss(P) + I ) * delx + x1,c)Integrate function 2
Goto 3
3 Enddo
Enddo
integral = sum * delx
Call gdsum(integral,l,tmp) Perform global sum

If (mynode().EQ.0) Then
Call csend(msg_answer, integral, 8,0, 0)Send result to manager
End if
Goto 1
2 End

Real*8 Function Fnl(x) Integrand function 1
real*8 x

Fnl=4./(1l+x**2.)

Return

End

Real*8 Function Fn2(x,c) Integrand function 2
real*8 x,c

Fn2=Cos (c*x)

Return

End

Every node executes the worker program and enters an infinite loop, waiting for a message
to integrate a function or to terminate. The original serial integration routine is replaced by
the integration manager subroutine and the integrand functions are removed from the
serial code and put into the worker programs as Fnl, Fn2, Fn3 etc. When an integration of
one of these functions is needed, a high level call to the manager subroutine is made
indicating the function number (fnum) to integrate. Each worker has its own copy of the
functions. Any integration constants are passed along with the message block as is shown
above for integrand function 2. Note that the integrand functions can be made to be very
“smart” since they have access to all of the nodes local memory for storing previously
computed values.

The following source code shows how a high level call is made from the original serial

code (serial.f) to the parallel integration manager routine:



include ’fnx.h’ Intel supplied header file
Existing serial code

Real*8 x1,x2,answer,dparint,c Additional data structures needed
Real*8 prev

Integer xdivs,n,divmax

Integer fnum

Common /dmsg/ x1,x2,c,xdivs, fnum

Real*8 re2,rel,crit,bgas, bound

parameter (bgas=.0001) Adaptive integration parameters
parameter (divmax=11

n=1 Start with the number of subdivisions
Do 6 While (2**n.LT.numnodes())  greater than or equal to number of
n=n+1 nodes
Continue
bound=bgas Adaptive integration of function 1
x1=0.
x2=1.
xdivs=2**n
fnum=1
rel=dparint () Call to parallel integration routine
n=n+1
xdivs=2**n Iterate until error tolerance is
re2=dparint () achieved
if (rel.eq.0.0d0) then Calculate error
crit=dabs(rel-re2)
else
crit=dabs((rel-re2)/rel)
end if
if (crit.gt.bound) then Check if converged
n=n+1
if (co.gt.divmax) then Integral did not converge

write(6,*) 'convergence '// Warn the user of problem
& ’'problems for function ', fnum

bound=10. 0d0*bound Lower requirements
goto 5
end if
rel=re2
goto 10 Try again
else
answer=re2 Got answer
end if
return
end



x1=0

x2=1

xdivs=1000
fnum=2

c=100
answer=dparint ()

x1=0

x2=0

xdivs=0
answer=dparint ()

End

Real*8 Function dparint()
Include 'fnx.h'

Integer msg_data,msg_answer

Do another integral (non-adaptively)

Use integrand function 2
Pass along an integration constant

Kill worker processes before exiting

Parallel integration manager
Intel supplied header file

Message passing data structures

Parameter (msg_data=2,msg_answer=3)
Real*8 x1,x2,answer,integral, tmp,c
Integer xdivs, fnum

Common /dmsg/ x1,x2,c,xdivs, fnum
Common /amsg/answer

If (xdivs.LT.1l) Then
If ( x1.EQ.0 .AND. x2.EQ.0 .AND.
xdivs.EQ.0) Then
Call csend(msg_data,x1,32,-1,1) Terminate workers
Call csend(msg_data,x1,32,0,1)
Goto 1
End If
Write (6,*) '***dparint ERROR: '//
'Must have at least one subdivision.'
Stop
End If

Call csend(msg_data,x1,32,-1,1)
Call csend(msg_data,x1,32,0,1)

Send message to all other nodes

also

Call crecv(msg_answer, answer, 8) Wait for answer

dparint=answer Send answer back to serial code

End

Send message to worker on node 0

10



Note that the high level call to dparint() can be treated as a normal function call except that
the run time of this routine will scale with the number of processors used. The two
programs (original serial code with the modifications shown above, and the worker code)
are compiled separately. The worker program (intwork) is executed on all available nodes
while the original serial code (serial) is executed on node 0 only. This is accomplished

(using 120 nodes for example) with the Paragon OSF command:
serial -sz 120 -on 0 -pt 0 \; intwork -pt 1

The -sz modifier indicates the total number of processors to use. The -on 0 flag indicates
that the program serial is to run only on node 0 and the -pt flag gives the manager process
an identification number of 0 and the worker processes an identification number of 1. This

is necessary for the message passing scheme we have used.

4.1 Performance

The performance of the portable, parallel integration scheme presented above was
measured by computing the value of 7 using

1
4
T = dx
'([ (A/ 1+ xz)
We compute the integral 1000 times, with an increasing number of subdivisions, evenly

spaced, starting with 10 and ending with 10,000. As shown in Figure 2, the run times of
the portable integration routine scale nearly as 1/p where p is the number of processors.

It 1s crucial that the numerical integrations be done using double precision. A single
precision version of the integration code is subject to substantial inaccuracies as the
number of subdivisions is increased. Also, due to roundoff errors, a single precision code
will give different results depending on the number of processors used. It is therefore
crucial that all of the calculations be done using double precision.

5.0 Parallel far field computation

Once the modal inner products have been computed, the computation of the modal
scattering matrix is performed by evaluating equation (54) of [1]. The portion of the mode
matching code that evaluates equation (54) of [1] is not parallelized in this presentation.
However, as mentioned earlier, we have reduced the summation in equation (54) down to

one term by introducing modes with exponential angular dependance thus making the cost
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of this operation scale by the number of blades. Once the scattering matrix is obtained, the
far fields are found by evaluating a vector of modal coefficients of the incoming modes for
a given incidence angle and polarization and then premultiplying by the scattering matrix.
Each of these matrix vector multiplies (one for each incidence angle and polarization) can
make use of all of the available processing nodes in an efficient manner since the
scattering matrix does not change.

Run time scaling of dparint
Compared to 1/p (perfect) scaling.

560.

480.

400,

320.

secs.

240.

160.

2.0 8.9 16.0 24.0 32.0 40.0 48.0 56.0
p (processors) 15 Mar 95 18:33:22

FIGURE 2. Run time scaling of portable integration routine dparint.

The matrix-vector product needed for this operation can be coded using the same
techniques that we have used for the parallel integration routine. The manager routine
breaks the scattering matrix into nearly equal sized pieces by dividing up the rows and
passing them to each processor. That is, each worker gets some of the rows of the matrix.
Then, the manager passes all of the vector to each worker and the workers perform their
portion of the product. A global concatenation of each node’s result is accomplished using

the Intel supplied routine gcolx (see Intel Paragon User’s Guide).
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5.1 Performance

The matrix-vector product coded using the scheme described above scales very effeciently
as more processors are added. However, there is an optimum number of processors for
which the run time will be a minimum. Adding more processors than the optimum will
tend to decrease the performance. Using a system of size 1440 by 1440 and calculating
482 matrix-vector products (which correspond to the far field calculations needed for the
10 GHz case mentioned previously) we show the run times as the number of processors is
increased in Figure 3. These run times include the time required to distribute the scattering
matrix out to each of the nodes. Note that about 64 processors is optimum for this case. It
is the increased communications needed when more processors are used that eventually

washes out the gains from performing the floating point operations in parallel.

It is important to know the optimum number of nodes (P ) before running the

optimum
program. We have therefore arrived at the following empirical relation indicating the

optimum number of processing nodes to use for a given system size ( N).

N

d 225

= Int(——)

optimum

Note that the system size for the scattering matrix willbe N = 4 (IN - 1II) .

Since the parallel integration routine requires relatively little communication time, it does
not display the same kind of performance peak for a given number of processors, at least it
will not until far more processors are used. Therefore, we let the parallel integration
worker processes run concurrently on the nodes with the matrix-vector product processes
and also on all other available nodes. The process identifiers must be different for the
integration and matrix-vector product workers in order to keep their respective messages

separate.

6.0 Performance of the parallelized mode matching code

With the three modifications to the serial mode matching code:

® Parallelization of modal inner products.

* Use of overlapping modal and geometric symmetry [3] to reduce equation (54) of [1]
down to a single term rather than a sum of matrix products.

* Parallelization of the far field computations

13



the complete jet engine mode matching code was run on the Intel Paragon using the
optimum number of processors for the matrix-vector products and all available nodes for
the modal inner products. The middle, serial portion of the code was actually run on a high
performance serial computer (HP 9000/750). Overall run times for the application are
given in Figure 4 for increasing frequency. The model parameters for each frequency are
given in Table 3. The overall runtimes include the time required to dump out intermediate
data (modal inner products) to the HP 9000/750, compute and dump out the scattering

matrix, sending it to the Paragon and finally computing the far fields in parallel.

Run time scaling of matrix-vector product (parmltv)
N=1440, 482 times

800.

parmityv

700.

5e0.

secs.

400.

200.

100.

0. 20. 40. 60. 80. 100. 120. 140.
p (processors) 16 Mar 95 14:34:34

FIGURE 3. Run time scaling of matrix-vector product (N=1440, 482 times)

7.0 Conclusions/Further optimizations

The only portion of the overall application that does not run in parallel is the evaluation of
equation (31) in [1]. We have however scaled this operation analytically by the number of
blades using the inherent overlapping modal and geometric symmetries [3]. Still, the

evaluation of the matrix inverse and matrix-matrix multiplication require substantial
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compute time for large problems. Unfortunately, when using a mesh-connected machine
such as the Intel Paragon, the communication time required for these operations washes
out the gains from parallelization. Newer, shared memory machines such as the KSR or
the Convex alieviate the need for message passing and have faster communications. These
shared memory machines are more appropriate for the operations that we have not
parallelized on the Intel Paragon and could be used to parallelize the entire mode matching
code. However, the shared memory machines do not have as many processors as are
available on the Intel Paragon due to the cost. Therefore, it must first be determined if
parallelization of the entire code on a shared memory machine with far fewer processors
than is available on the Intel Paragon can improve the overall performance over what has

been presented here.

TABLE 3. Model parameters for run times shown in Figure 4.

fGHZ 6 8 10 12 14
a 3 35 4 4.5 5

b 15 1.75 2 2.25 25
L1 4 4.667 5.334 6 6.667
2 2333 2.667 3 3333
Nj, 8 8 8 8 8
gap 40 40 40.2 40 40
orient 25 2.5 2.4 2.5 25
0 0 0 0
on on on on
23 25 28 30
10 10 11 12
7 7 7 7
10 12
0001 0001 0001 0001
10 10 10 10
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Comparison of Serial/Parallel run times for increasing frequency

280000.

Serial

Parallel

240000.

200000.

160000.

Seconds

120000.

80000.

40000.

6.00 " 7.'08 ' 8.00 9.00 10.00 11.00 12.00
Frequency (GHz) 26 Apr 95 16:51:57

FIGURE 4. Run times for the jet engine mode matching code for increasing frequency.

16



8.0 References

[1]J.L Volakis, H. Anastassiu, D. Ross, “Analysis of Jet Engine Inlets: Annual Report”,
Technical Report 030395-6-T, The University of Michigan, EECS Radiation Laboratory,
Ann Arbor MI, December 1994.

[2] Cornelis F. Du Toit, “The Numerical Computation of Bessel Functions of the First and
Second Kind for Integer Orders and Complex Arguments”, IEEE Transactions on Anten-
nas and Propagation, vol. 38, no. 9, Sept. 1990.

[3] Daniel C. Ross, John L. Volakis and Hristos T. Anastassiu, “Overlapping Modal and
Geometric Symmetries for Computing Jet Engine Inlet Scattering”, IEEE Transactions on
Antennas and Propagation - to appear.

17



The Mode Matching Technique for
Electromagnetic Scattering by Jet Engine
Inlets

Hristos T. Anastassiu and John L. Volakis
Radiation Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor MI 48109-2122

May 1995

Abstract

The Mode Matching Technique is employed for the evaluation of
the Radar Cross-Section (RCS) of cylindrical inlets terminated by
a cylindrical array of grooves that may be straight or curved. The
numerical results obtained are in very good agreement with actual
measurements. The computational requirements and the limitations
of the method are described in full detail.



1 Introduction

In a series of earlier reports [1, 2, 3, 4] we presented the application of the
semi-analytic Mode Matching (MM) technique to the evaluation of the Radar
Cross Section (RCS) of engine-like structures. Three different geometries
were analyzed and mathematical expressions for their RCS were derived.
The most serious difficulty that we encountered was the complete lack of
reference data and our subsequent inability to validate our relevant computer
code. Under the request and the guidance of the Radiation Laboratory,
an actual model of the geometries was built and measured at GE Aircraft
Engines, Cincinnati OH [5]. The initial comparisons of our data with the
measurements [4] were not considered sufficiently good. In this report new,
improved results for various engine configurations are given. Futhermore,
the modifications in the input data and the main body of the code that
made these results possible are explained. The good agreement with the
measurements implies that the computer code has been completely debugged,
and 1s therefore ready for release. A brief manual explaining the use and the
capabilites of the code is included in an Appendix. Finally, the computational
requirements and the limitations of the technique are discussed.

2 Corrections to the old version of the code
and improved results

In [4] we presented some preliminary RCS predictions for the geometries de-
picted in Figs. 1 and 2. The comparisons between calculated and measured
data in [4] were not satisfactory. The reasons for the disrepancies are listed
below:

e The numerical integration subroutine in the old version of the code
was not accurate enough. In the new version, double precision arithmetic
1s used along with an adaptive numerical integration scheme and rigorous
convergence checks.

e The mode normalization used in the curved blades geometry was in-
correct. Careful study of the original paper by Reiter [6] revealed that the

generally accepted form of the Generalized Telegraphist’s Equations is valid
only if the following normalization is used:



Perspective view

-— | — [, —-

Front view Side view

Figure 1: Inlet terminated by an array of straight blades.



Front view

Side view

Figure 2: Inlet terminated by an array of curved blades.



L/e,qfs — 5 (1)
L/h,mfszzéﬁ (2)

where e; and h; are the transverse electric and magnetic fields corresponding
to the ¢** mode and S is the cross-section of the waveguide. It is worth
mentioning that the importance of this normalization is not stressed out in
either [6] or any other paper that makes use of the same equations. The
aforementioned normalization is obviously inconsistent with the more widely
accepted

1
EL/@thfS:@j (3)

which was used in the old version of the code.

e The blade width of the actual model turned out to be 5°, and not 4° as
requested [5]. The 5° width was used in the new set of results.

o The orientation of the blades in the actual measurements was not iden-
tical with the test-matrix specification [5]. In the new set of results, the
orientation was such that the x-axis bisected the first blade of the array, so
that the measurement configuration is matched by the computational model.

After the aforementioned modifications the generated numerical results
agreed very well with the measured data. The new set of results is presented
in Figs. 3- 7. The solid line corresponds to calculated and the dotted line to
measured data. Also, a plot of the tangential fields at the interface between
the hollow region and the termination showing field continuity is given in
Iigs. 8 and 9.

To give more details about the extraction of the calculated data, let us
define the following parameters: N;: number of orders of cylindrical functions
used in region 1, M;: number of modes per order used in region 1, Ny: number
of orders of cylindrical functions used in region 2, My: number of modes per
order used in region 2, ¢, twist angle per wavelength of the curved blades.
Futhermore, let a, b, 4, 3, ¢,, #1 be the same parameters defined in Figs. 1,

2. For each one of the analyzed geometries the input parameters were as
follows:

6 GHz, straight blades: b =3\, a = 1.5\, [; = 4\, [, = 2)\, ¢, = 40°,
¢1 = 2.50, N} - 21, A/Il — 10, NQ - 6, ]Wg = 8
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Figure 3: Data for the straight blades geometry at 6 GHz.
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Figure 4: Data for the straight blades geometry at 8 GHz.
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Figure 6: Data for the curved blades geometry at 4 GHz.
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Figure 8: Transverse electric fields (p component) at both sides of the inter-
face between the hollow region and the termination for the straight blades
geometry at 6 GHz. The fields are plotted at p = 2X for an incidence angle
of §; = 0° and ¢ polarization. The azimuth angle ¢ is measured counter-
clockwise from the measurement plane.
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Figure 9: Transverse electric fields (¢ component) at both sides of the inter-
face between the hollow region and the termination for the straight blades
geometry at 6 GHz. The fields are plotted at p = 2) for an incidence angle
of 6; = 0° and ¢ polarization. The azimuth angle ¢ is measured counter-
clockwise from the measurement plane.
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8 GHz, straight blades: b = 4A, a = 2), [} = 5.334), [, = 2.667),
¢ =40°, ¢1 = 2.5°, Ny =25, M; =10, Ny =7, M, = 8.

10 GHz, straight blades: b =5\, a = 2.5\, [} = 6.667\, [, = 3.333),
G =40°, ¢; = 2.5°, Ny =30, My =12, Ny =7, M, = 12.

4 GHz, curved blades: b = 2X, a = 1), [} = 2.667)\, [, = 1.333),
G = 40°, ¢y = 2.5% ¢y, = 0.3928 rad - A71, Ny = 25, M} = 10, N, = 9,
M, =9.

8 GHz, curved blades: b = 4), a = 2X, [} = 5.334), [, = 2.667),
G = 40°, ¢y = 2.5°, ¢y, = 0.1963 rad - A7) Ny = 30, M, = 10, N, = 9,
M, =9.

3 Computational Requirements and Limita-
tions

The results prove that the MM method is very accurate, nevertheless it can
become computationally intensive for large size engines. The number of
modes that are necessary for matching the tangential fields at the interface
between the hollow region and the termination grows drastically with size,
resulting to large modal matrices. Using the amount of memory that was
necessary for relatively small diameters (up to 101), third-order curve fitting
generated the plot in Fig. 10. Similarly, Fig. 11 estimates by extrapolation
the operation time on a serial machine for large geometries. For the analysis
of realistic problems, where the engine is about 50) in diameter, the comput-
ing facilities at the Radiation Laboratory are not sufficient. A parallelized
version of the code has, though, been prepared [7] so that the operation time
1s reduced as much as possible. The storage requirements, though, are still
very high.

Another limitation of the method is that strict convergence tests are very
hard to implement. If one excessively increases the number of modes in a
specific geometry, the condition number of the involved matrices and the
individual eigenvalues of the G.T.E. system in the curved blades case de-
teriorates, yielding unreliable results. Unfortunately, it appears that these
numerical problems usually begin to occur before convergence has been ab-
solutely guaranteed. Nevertheless, at least for the geometries that have been
analyzed in this report, the computed data are adequately close to the mea-
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sured ones, even if some fluctuation around the correct values can still be
observed.

4 Summary and Conclusions

In this report we presented numerical results of the MM technique applied
to the evaluation of the RCS of engine-like configurations. The calculated
data were in very good agreement with measurements. We explained the
modifications in the old version of the computer code that resulted in the
improved data given here. Finally, we addressed the efficiency, demands and
the limitations of the method.
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5 Appendix: The Computer Code Manual

5.1 Introduction

This is a brief user’s manual for the Mode Matching (MM) code developed
at the University of Michigan between 1993 and 1995, written in FORTRAN
77 for the actual computation of the Radar Cross Section (RCS) of specific
versions of the inlet geometry. The purpose of this manual is to describe
the code, give useful guidelines to potential users and point out what the
limitations of the code are.

5.2 General Description of the Code

The code follows strictly the mathematical analysis described in [4] for the
geometries described in Figs. 1 and 2. Given the specific parameters of the
geometry, the generalized scattering matrix of the termination is computed.
The coefficients of the ingoing modes are computed by coupling of the in-
cident plane wave to the cylindrical waveguide fields. Multiplication of the
scattering matrix with the ingoing modes coeflicient vector yields the out-
coming modes coefficient vector. The outcoming fields give rise to equivalent
currents on the open end (aperture) of the inlet, and Kirchhoff integration
of these equivalent currents yields the scattered field and the RCS of the
structure.

The numbering of the modes in region 1 (the hollow part of the inlet)
has been coded as follows: Assume we use N; orders of the Bessel function
(i-e. use functions Jo(kmop) to Jn,—1(kmn,-1p)) and M; modes per order,
i.e. let m range from 1 to M;. Then, the total number of modes is 4N; M,
(N1 M; TM modes, plus Ny M; TE modes, multiplied by 2 for even and odd
¢ dependence of the corresponding vector potential). The T' My, even modes
(m =1,..., My) correspond to the first M; modes of the numbering scheme.
The T'M;,, even modes (m = 1,..., M;) correspond to modes M; + 1..2M,,
e.t.c. Finally, the TMy,_;,, even modes (m = 1,..., M;) correspond to
modes (N; —1)M; +1...N; M;. Using the same numbering scheme, the TE,,,
odd modes correspond to mode numbers Ny M; +1...2N; M;, the TM,,,, odd
modes correspond to mode numbers 2N; M; +1...3N, M, and finally the TE,,,,,
even modes correspond to mode numbers 3N; My + 1...4N; M;. To visualize
the numbering scheme, it is helpful to think of any coefficient vector as a
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collection of four subvectors, each corresponding to some particular set of
modes, in the following format:

TMeven

T Eodd

T Modd (4)
T Feven

The scattering matrix has the format of the cartesian product of two vectors
of this kind, 1.e. the numbering of both rows and columns follows exactly the
same rules.

5.3 Running the Code

Some of the parameters of the geometry are entered by the user in the file
“param4.inc”, while the rest are given by the user in an interactive manner.

The input parameters in the file “param4.inc” are:

in: equal to Ny, as defined in the previous section.

ii: equal to My, as defined in the previous section.

jn: equal to Ny, as defined in the previous section.

ji: equal to My, as defined in the previous section.

ngas: equal to the number of abcissas per subinterval used in the Gaussian
integration. A typical value is 3.

bgas: equal to the tolerance accepted in the Gaussian integration. A
typical value is 107°.

The user has to enter the rest of the parameters interactively by answering
the following questions:

Enter the large inlet radius in wavelengths: Enter the hollow cylinder
radius b.

Enter the small inlet radius in wavelengths: Enter the hub radius a.

Enter l1 (length of region 1) in wavelengths: Enter length [; of the hollow
section of the inlet.

Enter 12 (length of region 2) in wavelengths: Enter length [ of the ter-
mination. The blades are assumed to be backed by a PEC plate.

Enter number of blades: Self explanatory.

Enter fw (angular width of each groove) in degrees: Self explanatory.
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Enter fst (phi angle of first groove) in degrees: Enter the angle formed
by the measurement plane and the rightmost edge of the first groove. This
angle is identical to ¢; in Fig. 1.

Straight or curved blades? (s=1,c=2) Self explanatory.

Enter the gradient of each blade (rad/lambda): Enter the twist angle per
wavelength for the curved blades.

Enter the lowest order for the asymptotic evaluation of Bessel functions in
region 2: If N; has to be extremeley large in region 2, it may be more efficient
to use asymptotic formulas of the Bessel functions in the evaluation of the
elements of the GTE matrix. This option should be used with caution, and
only if exact computation causes serious numerical problems. Enter a very
large number to avoid any asymptotic calculation. Recall that the maximum
order of Bessel functions in region 2 is equal to (No — 1) 7/¢,,.

Enter 1 for inclusion of rim contribution: Enter 1 if you want to include
the contribution of the fringe wave at the lip of the inlet.

Enter measurement frequency in GHz: Enter frequency so that the RCS
is expressed in dB/m?.

Do you need the scattering matriz (y=1,n=2)? Enter 1 if you want the
scattering matrix stored in the file “scatmat”. Make sure that enough mem-
ory is available for this matrix storage.

As soon as all the parameters are given, the code calculates the eigenval-
ues of the modes. A list of the modes and their characteristic wavenumber
k, expressed in A™! appears on the screen. Index 1 in the third column cor-
responds to traveling modes and index —1 corresponds to evanescent modes.

The GTE matrix is also determined and the eigenvalues and the eigenvec-
tors are computed. There is an option for checking the calculated eigenvalues
and how accurate they are. A subroutine calculates the products (M — AI)x,
where x is the eigenvector corresponding to the eigenvalue ). Theoretically
the resulting vectors should be exactly zero. Their maximum numerical en-
try appears on the screen, showing the accuracy of the eigenvalues. Further
comments on this calculation are given in the relevant subroutine.

The procedure described in [4] involves the inversion of three matrices.
The inverse condition number of each matrix appears on the screen, yielding
a measure of the accuracy of each numerical inversion. Condition numbers
greater that 10'> should be considered poor for double precision arithmetic
(or greater than 10° for single precision) and the corresponding inversion is
not likely to be of acceptable accuracy.
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The scattering matrix is readily obtained upon completing the aforemen-
tioned matrix inversions. The RCS can then be plotted as a function of the
incidence angle §;. There is also an option for checking the continuity of the
tangential fields at the interface between regions 1 and 2, which constitutes
the basis of the MM technique. The fields at the interface are plotted as
a function of the azimuth angle ¢, at a constant p and for incidence angles
specified by the user. The first column is the angle ¢, the second column
gives the p component of the total field at the interface and the third column
gives the ¢ component of the field. The numerical values should be the same
in regions 1 and 2. Also, the incident field in region 1 is plotted (p and ¢
component in columns 4 and 5 respectively). All fields are normalized to the
maximum value of the incident field.

Finally, the RCS pattern is plotted in d B/m? as a function of the incidence
angle (0 to 60 degrees) for both ¢ and @ polarizations.

5.4 Comments on the Use of the Code

The MM technique yields very accurate results, provided the modes in re-
gions 1 and 2 are carefully chosen by the user. All propagating modes should
be used, along with a number of evanescent modes, so that continuity of the
tangential fields is achieved at the interface between the two regions. Unfor-
tunately, the number of necessary evanescent modes cannot be determined
a priori. Only successive runs of the code can show if sufficient convergence
of the results has been achieved. Poor choice of the modes may lead to
ill-conditioned, even non-invertible matrices, and to avoid such situations,
a general rule of thumb is that the highest order modes in regions 1 and 2
should have approximately the same cut-off frequency. It is therefore inferred
that the number of modes used in region 1 should always be larger than the
number of modes in region 2. Also, the solution of the GTE equation may
cause numerical problems if any two of the eigenvalues happen to be very
close to each other. In this case a different, smaller set of modes should be
used in region 2.

So far the code has been proven to yield fairly accurate results for a series
of test geometries as described in previous sections of this report. Further

investigation on the convergence properties will take place using the paral-
lelized version of the code.
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1 Introduction

The characterization of the scattering properties of jet engine inlets has been
our basic research project for the past two years. Our main effort was focused
on proposing simple geometrical engine-like models that are amenable to ex-
act solutions. A number of canonical geometries that simulate a jet engine
have been rigorously analyzed, and very good results have been obtained. Al-
though this task has been successfully completed, the need for more flexible,
numerical methods is obvious, since the geometrical and physical features of
realistic engines are too complicated to handle via any analytical technique.
The purpose of this report is to propose methods suitable for the analysis
of jet engines with arbitrary, irregular, not necessarily perfectly conducting
terminations.
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2 On the Application of Wavelets to the Mo-
ment Method

2.1 General Theory

Although the Mode Matching technique yields very accurate results for canon-
ical geometries, it is not applicable to structures where conventional (or gen-
eralized) mode field representations are not available. Realistic jet engine
inlets belong to this category since their geometries are extremely irregular
and complicated. Furthermore, sections of the geometry are coated with
dielectric meterials, and this precludes use of analytical solutions. Thus, a
numerical solution is more appropriate for a realistic configuration.

A Finite Element Method (FEM) formulation has been developed in the
Radiation Laboratory [1], but it appears that the computational require-
ments for realistic problems are prohibitive, unless certain symmetries of the
geometry are taken into consideration. On the other hand, Moment Method
(MM) codes have been developed in the past for bodies of revolution (BOR),
where the axial symmetry simplifies the computational rigors. Unfortunately,
MM is difficult to apply in general three-dimensional shapes. If conventional
basis functions are used (pulse, roof-top, pieciewise sinusoidal e.t.c.), the
impedance matrix is fully populated, making the method computationally
expensive. For realistic engine inlets (about 50 wavelengths wide in diam-
eter) application of the MM would have exorbitant storage and CPU time
requirements.

Recently, the concept of wavelets was considered in applied electromag-
netics. It has been shown [2] that if the wavelets and scaling functions
of a suitable multiresolution analysis (MRA) are used as basis functions
in MM algorithms, the resulting impedance matrices may be fairly sparse.
This interesting property has been succesfully exploited in a number of pa-
pers for solving one-dimensional problems [2, 3]. Lately, two-dimensional
Daubechies wavelets were used in the analysis of a microstrip problem [4]
and the impedance matrix was again quite sparse. It is therefore of interest
to examine their application to general 3D problems. In this section we will
show that all the properties that make wavelets attractive in one-dimensional
problems are still valid in three dimensions, and therefore one should expect
that their application to a full scattering problem will again lead to sparse
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matrices and efficient implementation.
Let us consider the following integral equation

//Grr r')d*S" = g(r) rey (1)

f(r) =0, r¢ ¥ (2)

where Y is some arbitrary, open surface, g(r) is some known excitation,
G (r;r’) is a dyadic kernel and f(r) is the unknown function. Let r' =
r'(v1,v,2) be some parametrization of the surface, where vy, v, are two or-

thogonal coordinates with uj,u, being the associated unit vectors. Egs.
(1), ( 2) can then be written

/ / I' ’01,’02 f(Ul,'UQ)hlhgd’U]dvg = g(r) re (3)
£(r) = 0, rdT (4)

where hy, hy are the associated metric coeflicients along uy, u, respectively.
On our way to solve for f(v;,vy) we introduce the representation

f(v1,v2) = Pi(v1,v2)us + Pa(v1,v2)us + P3(v1,v3)us (5)

where uz = u; X uy and Py, P, P3 are sums of weighted basis functions

defined by

Pi(vl,vz) = Z Z [ Olg::fl) d)m,k(vl)wm,n(UQ) +

+ BE™ k(1) Gmn(v2) +
+ AU Gk (01)thn(v2)] +

+ Y B gk (01) bmn(02) i=1,23 (6)

where the o’s, f’s, ¥’s and s’s are unknown complex coefficients, m; is an
arbitrary integer and % x, ém i are dilated and translated versions of an
appropriate mother wavelet 1 and scaling function ¢ respectively, i.e.
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Uma(t) = 224(2" = k) (7)
bmi(t) = 254(2"t k) (8)

Equation ( 6) is exact, since the set {tm x®m ny Vm kP, ¢myk¢m‘n}m,n,kez is
a complete basis for L(R?) [4]. Therefore, if its elements are weighted by
complex coefficients they span L%(R?) x L%(R?), i.e. they span the space
of complex functions of two real variables, with square integrable real and
imaginary parts.

To generate a discrete system of equations from ( 3)- ( 6) we define an
inner product between two functions in L*(R?) x L%(R?)

< f(t,ta), g(ts, ta) > //f (t1,t2)g(t1, t2)d*S (9)

For simplicity let us use the notation zpm x for either v,, x or ¢, x. To obtain
the unknown coefficients of ( 6) we take the inner product of the three com-
ponents of ( 3) with the functions 1, ()%, (t2). The resulting equations
can be written explicitly as follows:

/ // /dvldv2dt1dt2 u;(ty,t9) - [é (t1,t2;v1,02) hy (v1,02) hy (v1, v2) -
3 . 5 5
PILCRE HY S0 a0 02 (b)) +

+ o B k(01) b (2) P (1) (1) +
F A (V1) (V2)

+ Z Sflj:[:nl)qul,k(vl)¢ml,n(v2)'¢~)/¢,n(tl)&u,u(h)}] =

H
N
=
<
S
~
~o
et
+

L/Ui (tla t2) ‘g (tl, tg) iﬂ,ﬂ(tl)z[)u.u(b)}dtldtg
Vi€ {1,2,3} (10)

Similarly, when ( 9) is used in conjunction with ( 4) we obtain Vi €
{1,2,3}
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L [dvdeed 3 X1 el b0 ma(va)bun(v0)binlva) +
m=m| n k=1

BE N 1 (01) b (02) B (01 ) (02) +

7£1i’l:n)¢m,k(vl )d)m,n (02)1:;;1,&(1)1 )"I)u,u(U?)] +

S (01 By (02) (V1) (1)} =

=0 (11)

_+_

L.

o~

where ¥¢ is the complement of ¥. Equations ( 10) and ( 11) cast a linear sys-
tem with unknowns afli”,:n),ﬂii’,:n),7fli}:n),sffy’,?l). Solution of this system yields
the coeflicients of the expansion ( 6), and hence the unknown function f.

A few comments on the final system of equations are necessary. It is
obvious that the problem is separable, in the sense that all the basis functions
are essentially real functions of one real variable. It follows that all the
wavelet properties that make them appealing in one-dimension also hold in
our case. Thus, the impedance matrix of the 3D MM system is expected to
be sparse [2]. Specifically, due to orthogonality and space localization, most
elements in ( 11) are exactly equal to zero, or vanishingly small. Significant
terms exist only in two cases: a) When (m, k) = (g, &) and (m,n) = (u,v),
i.e. on the diagonal of the impedance matrix; b) When a particular wavelet
or scaling function is truncated by the boundary lines of ¥¢, i.e. when the
orthogonality properties are destroyed. Furthermore, the elements of ( 10)
may also be vanishingly small when very small length scales are involved.
Suppose that 9, «(vy) oscillates in v; much more rapidly than the rest of the
integrand. Let the rest of the integrand be K (vy). Then, if %, .(v;) is not
truncated by the end points, the v; integration yields

b . b .
/a K (00)d, (1) dvy = K (v0) / Bn(v1)doy =

~ 0, if 9, <(v1) is a wavelet
" K(v), if ¥, .(v1) is a scaling function

(12)

where vy is some point in the support of ¥, «(vi) and K(vp) is a slowly
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varying function. Hence, in the first case the element is vanishingly small,
while in the second case it is trivial to compute (no integration is necassary).

When the surface is closed or semi-closed the formulation should be
slightly modified. For those geometries the unknown is basically a periodic
extension of the function f and instead of the regular wavelets and scaling
functions, the following set of periodic functions [5]

F0) = Y alo ) (13)
[=—0c0
which is a complete, orthonormal basis of L?[0, 1] appears to be more appro-
priate. Although the dilation-invariance property of the original wavelet is
not possessed by the periodic function defined in ( 13), the wavelets proper-
ties which render a sparse matrix are still valid. Therefore the MM solution
for open surfaces can be directly extended to closed surfaces as well.
We remark in closing this section that the above results can be generalized
to the integral equation of the kind

//G ) £(r)d2S" + of(r) = g(r) rey (14)

where « is an arbitrary complex constant.

2.2 Application

The approach presented in the previous section can be directly applied to the
Electric Field (EFIE) and the Magnetic Field Integral Equations (MFIE).
These take the form [6]:

E(r) = >+//{errr [E() x 4 +

- ﬂczf‘( ') - [ x H(x))}d*S (16)
Hr) = B+ [ [- {errr)]-[ﬁ'xH(r')]+

+ JRYT (r,r) - [E(r) x &)} 25 (17)
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where T (r,r') is the pertinent dyadic Green’s function and ¥ is assumed to
be a closed surface. If ¥ is perfectly conducting, the tangential electric field
vanishes on ¥, therefore ( 16) and ( 17) reduce to

0 = ﬁin(r)HkZﬁx/E/f(r,r')-[ﬁ'xﬂ(r')]d%' (18)

i xH(r) = fxH(r)—hx />:/ [V < T (r,r)] - [0 x H(r')] £519)

Yre X

It is seen that ( 18), ( 19) have the form of ( 1) and ( 14) respectively, with
the tangential magnetic field as the unknown.

Similarly, when the surface ¥ is characterized by an impedance boundary
condition of the form

nx(nxE)=-nZnxH (20)
then ( 16). ( 17) reduce to

i xE(r) = ﬁin(r)_ﬁx/E/{[va(r,r’)]~[ﬁ’xE<r’)J+

+ ]%f‘ (r,r') - [A" x (A’ x E(r"))]}d*S (21)
ixH(r) = hxH(r)—i x /E/{[v x D (r,r')] - [i' x H(')] +
+ jkpT (r,r') - [A x (A x H(r'))]}d*S (22)
Vre X

which are of the same form as ( 14).

3 The Adaptive Integral Method (AIM)

It has already been mentioned in the previous sections that the conventional
MM is not practical for very large geometries, due to excessive storage and
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CPU requirements. Many techniques have been proposed for improving the
MM efficiency. Among the most promising ones is the recently developed
Adaptive Integral Method (AIM) [7]. The main idea of this method is to
replace the full MM impedance matrix with a sum of matrices having special
properties that reduce the computational complexity and memory require-
ments. This improvement can be achieved by approximating the interaction
among far away current sources with delta current sources located at the
nodes of a rectangular grid. It can be shown that the original impedance
matrix reduces to a sum of two terms: the first is a sparse matrix and the
second one is a product of sparse and Toeplitz matrices.

To illustrate the mathematical details, let us consider the integral equa-
tion

/D &' K (r — ¥)X(r') = Y(r) (23)

where X is the unknown vector function, K is a kernel and D is a domain
of integration with arbitrary dimensionality. To solve this integral equation
via the MM we expand X and Y as

X() = 3 Xathlt) (24)

Vi) = 3 Yarbalt) (25)

The basis functions 1,(r) are usually of the edge-based type and are
associated with edge a. On substituting ( 24), ( 25) into ( 23), the original
integral equation is transformed to the linear algebraic system

S KupXp = Yo | (26)
f=1
where
Ko = /D /D drdr'yo (1)K (r — ' )bs(r') (27)

The basic idea of AIM is to use approximate expressions for K,5 when
and g are basis functions corresponding to edge elements separated by large
distances. To facilitate this approximation, we write ( 27) in the form
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[ [drdr'y, Kig if v, —rg| < R
[ drd Ky i [ra— gl > R

where 9, are conventional basis functions and ¥, are auxiliary basis functions

defined by

Ko = (28)

Q Q Q
=y > Z_: admn®” (T = Fimn) (29)

=1 m=1n
In the latter equation, 63(r —rymy) is a 3-dimensional delta function, ryy, are
points on a rectangular grid surrounding the original sample points and @)
is an arbitrary positive integer, equal to the desired order of approximation.
The coefficients Ay imn are found by imposing equality of the moments up to
order Q of 1, and v, with respect to the center of edge . These moments
are defined by

l

Mo = [ [ [ dre =20y = ya)7(z = 2 wal) (30)
M3 s = /Z /Z /_Zdr(x—ara)‘“(y—ya)‘”(z—za)%(r) (31)

and on using the definition of the delta functions, equality of the moments
yields the following linear algebraic system for the coefficients Ay jmn

Q Q Q
Z Z ZAfxlmn :171_37 )ql(ym_y )qz(z -2 )q3 = M;ﬁ] 42,93 (32)

=1 m=1n=1

The explicit expressions for the elements K,4 are finally

Ky = KI5 if|ro -1 >R (33)
[(O'ﬁ — [{far + ] neaT lf lra - rﬁl < R (34)
where
]{g;r - Z Z Aaylmn[\’(rlmn — rllm'n')Aﬁ,l’m’n’

! ! !
U'm'n limn

[(:Ea'r = < '(/)01’ [{djﬁ > —
- E Z Aa,lmnl{(rlmn - rl’m’n’)Aﬁ,I'm’n’

! ! U
U!'m/n' lm,n
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The triangular brackets stand for the integral

< f(r), Kg(r) / / drdr' f(r)K (r — r')g(r") (35)

In the final formulation [K75*"] is obviously sparse, since only nearby current

elements interact with each other. Moreover, [K(fgr] is a product of the sparse
matrices [A], [A]T by a Toeplitz matrix with elements K (Timpn —Tpmins). Spar-
sity implies that the system can be efficiently solved by an iterative method,
such as the Conjugate Gradient (CG) technique. Furthermore, the con-
volutional character of the products involving the Toeplitz matrix implies
that a Fast Fourier Transform can be employed for the calculation of the
matrix-vector products involved in the CG method. Therefore, the compu-
tational complexity drops from O(N?) (required for a full matrix inversion) to
O(NlogN) for volume problems and to O(N*/?logN3/?) for surface problems,
required by the combined CG and FFT technique (CG-FFT). Moreover, stor-
age drops to O(N) and O(N®/?) respectively.

We have already mentioned that the very large electrical size of actual
jet engine inlets makes the application of standard MM impossible, due to
excessive storage and CPU requirements. Nevertheless, AIM drastically en-
hances the MM efliciency by exploiting the properties of sparse or Toeplitz
matrices. Therefore it 1s expected that AIM is capable of solving very large
geometries. At this moment, though, it is difficult to obtain a priori quan-
titative estimates of its capabilities and limitations in solving large scale
problems.

4 Memory and CPU time requirements

Although is is very difficult to estimate the number of unknowns N or the
number of iterations that is necessary for the solution of particular problems
via the aforementioned methods, it is possible to estimate the memory storage
and the number of operations for given N. For surface problems the number
of operations per iteration for AIM is [8]

N, ~ 32(m + 1)°N + 88N,(6 + %logch) (36)

and the number of real variables that must be stored is
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Ny = T(m +1)°N + 192N, (37)

where m is the order of the multipole expansion and N, ~ (N/12)*2. For the
standard MM the relevant numbers are N,, = 2N? and Ny = N%. Plots for
the operation count and memory requirements for standard MM and AIM
with m = 2 are given in Figs. 1 and 2. It is evident that AIM is far more
efficient than standard MM for large number of unknowns.

If we define a “sparsity parameter” a € [0, 1] such that a = 1 for an empty
matrix and ¢ = 0 for a full matrix, then the operation count for a sparse
matrix becomes N,, ~ 2(1 —a)N? and the storage becomes Ny; = (1 —a)N2.
[t is obvious that a wavelet MM may become more efficient than AIM only if
a 1s an increasing function of N. In Fig. 3 the minimal value of a is plotted
so that a wavelet MM method is superior to AIM with respect to memory
and CPU time.

Figs. 1, 2 and 3 demonstrate the relative efficiency of standard MM,
AIM and wavelet MM. Nevertheless, it should be pointed out that the plots
have been drawn for a given number of iterations and assuming that the same
number of unknowns /N is used for all methods, which is not true, in general.
A wavelet expansion method may require a much larger number of unknowns
for a particular problem than AIM, therefore any apparent advantage may
be only superficial. Furthermore, it is impossible to estimate a priori the
sparsity parameter that a wavelet expansion can achieve, or even the number
of iterations that are necessary for satisfactory convergence of each method.
Therefore, the efficiency of each technique can be quantified only in terms
of unknown factors. Only actual implementation of the methods will show
which one is more suitable for what problem.

To close this section, the advantages and disadvantages of each method
are highlighted:

AIM:

+ Easy to implement

+ Grid adaptable to arbitrary geometries

+ Sparsity guaranteed

- Performance has not been tested within inlets

Wavelets/ MM:

+ Rigorous, guarantees convergence

+ For high sparsity, CPU time and storage are very low
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- Very complicated
- Difficult to apply to arbitrary, non-canonical geometries
- Sparsity level not predictable a priori

5 Future Plans

Our intention is to undertake the following tasks, towards the completion of
the Ph. D. thesis:

e Develop an experimental AIM code for a simple 3D geometry with a
known solution, to familiarize with the details of the method.

e Develop an AIM code for the geometries that have been analyzed via
Mode Matching.

¢ Extend the analysis for coated blades, multiple blade stages and arbi-
trary blade shapes.

o Repeat the above three using wavelets as basis functions in the context
of a MM analysis.

The proposed work will have an impact on reducing the computational re-
quirements of large scale EM simulations. The prospects of AIM and wavelets
are promising but their extension to 3D has yet to be considered. Conse-
quently, a critical look at the suitability and computational requirements of
these new approaches is appropriate. The engine simulation has computa-
tional requirements that are equal to or greater than that of the airframe
and is therefore a good candidate for examining the performance of the tech-
niques.

6 Conclusion

In this report we proposed some efficient methods for the RCS computation
of jet engine inlets. The complexity of realistic engines has led us to consider
flexible numerical techniques that can handle irregular shapes and dielectric
material coatings. The MM is generally considered very reliable, but com-
putationally expensive. In order to decrease the memory requirements, we
considered the use of wavelet basis functions, which have proven to yield
sparse matrices in one and two-dimensional problems. We claimed (and jus-
tified our claims) that even in three-dimensional problems sparse impedance
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Figure 1: Memory required for standard MM and AIM (surface problems).
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Figure 2: Number of operations per iteration (surface problems).
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Minimal matrix sparsity for wavelets superiority over AIM
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Figure 3: Minimal sparsity for wavelet MM superiotity over AIM.
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matrices are expected to appear in the calculations. We also presented the
basics of a recently developed numerical technique (AIM), which drastically
reduces the CPU time and storage requirements of the conventional MM.
Therefore, we are in a position to propose the analysis of scattering from
jet-engine inlets via two different versions of the moment method: a) using
multidimensional wavelets as basis functions and b) taking advantage of the
simple structure of the impedance matrix achieved by AIM.
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