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FEMATS Background and Overview

FEMATS is a general-purpose finite element-ABC code for scattering analysis and was
developed under the sponsorship of the EMCC through the NASA NRA grant NAG 2-
866. It is the first successful finite element analysis code relying on fully sparse matrices.
To our knowledge, it is one of the most validated codes and rivals the sophistication and
robustness of industry codes developed under the EMCC PRDA. The main advantage of
FEMATS over other frequency domain codes is its inherent ease in modeling material
structures, its geometrical adaptability and its low O(N) memory requirements. It can serve
as the platform for developing new classes of hybrid finite element codes(as proposed here)
which employ a variety of mesh termination schemes and other improvements relating to
adaptive elements and error control. It can be further interfaced with other finite element
codes such as FEMA-PRISM for antenna analysis and RADOME for including effects due
to the nose radome antenna. Under the above NRA, U-M successfully

* Developed, implemented and demonstrated the accuracy of a new class of ABCs for
terminating finite element meshes. In contrast to previous ABCs, this new class of
ABCs can be enforced on a surface conformal to the scatterer and yield remarkably

accurate results even when the mesh is truncated 0.3A to 0.4A away from the scatterer.

This implies a substantially reduced storage as well as execution time, and is
consequently the main reason that our implementation has led to a very successful code.

* Calculated scattering patterns for nearly all EMCC benchmark geometries and compared
them with reference data (measured or calculated). For all geometries, good agreement

was observed even when the ABC/PML was placed at 0.3\ away from the scatterer's
surface. All of our calculations and data files have been archived for future use by the
EMCC and the file names and location are listed in the submitted test-case manual.
FEMATS was used to successfully run some of the largest FEM problems to date with
systems involving more than 500,000 degrees of freedom.

* ported FEMATS on four different parallel platforms. Namely, it was parallelized and
run on the KSR1, CMS5, Intel Paragon and Comvex Exemplar. In fact, most of the
benchmark geometries were executed on the parallel platforms. (see Table 1 for
FEMATS performance on the various parallel platforms).

* Implemented, incorporated and parallelized the latest sparse solvers in FEMATS. We
concluded that the symmetric and unsymmetric biconjugate gradient (BCG) and Quasi-
minimal residual(QMR) solvers were very effective for FEMATS. Typically N/100 to
N/80 iterations are needed for convergence (N=number of degrees of freedom) which
is a remarkably fast convergence rate. However, the convergence rate of BCG is not
monotonic and for monotonic (but equally robust) implementation, the QMR solver is
also available with FEMATS. Recently, a new sparse matrix solver (referred to as



CVSS) was introduced and is purported to have much faster convergence rates. We
will therefore examine the performance of this new solver for EM applications

interfaced FEMATS with sophisticated commercial mesh generation packages and this
is quite important for the code's portability. Indeed, using such packages, FEMATS is
capable of modeling geometries of any degree of complexity and material composition.
This, however, is as much of an advantage as a disadvantage. Because the code has no
hardware restrictions on the input geometry definition, the user is typically required to
enter every aspect of the geometry definition in a step-by-step process which is often a
time consuming task. To overcome this issue, FEMATS was upgraded (as part of this
project) to incorporate a public-domain prismatic mesher to automatically grow the
volume mesh and to avoid use of commercial meshing packages. This mesher has
already been tested in connection with some of the EMCC benchmark geometries and in
conjunction with the PML for mesh truncation as described in the attached documents.

As part of this project we completed a graphical users interface (GUI) for FEMATS to
facilitate the code’s utility by the electromagnetics community. The FEMATS GUI
allows for mesh generation, EM parameter specification, code submission and
monitoring while running on remote parallel platforms, graphical display of surface
fields, plotting of RCS data and so on, all in a single integrated environment.

Project Goals and Progress Summary

The goal of the project is

l.
2.
3.

4.

to enhance the University of Michigan FEMATS code with a graphical interface(GUI),
make FEMATS compatible with a non-commercial structured mesher
upgrade FEMATS with improved mesh truncation schemes

test and validate FEMATS using EMCC benchmarks such as the almond and VFY218

Graphical Users Interface

The FEMATS GUI is now operational and we are continuing to add more features to it.
The items included in the GUI are listed in the brief document appended to this report along
with a display indicating a typical pull down menu. At this moment, all functions necessary
to run FEMATS (geometry input, meshing, compilation, platform submission, plotting,
near zone field images) are included in the menu. We are presently still working on
finalizing the capabilities of the GUI with respect to data post-processing. A more detailed
report on the FEMATS GUI will be provided early September 1996. It is important to note
that the FEMATS GUI is completely based on non-commercial packages can therefore be
ported on any desired platform supporting x windows.



Prismatic Mesher

The prismatic mesher has been completed and fully tested as reported in the Radiation Lab
Techn. Report 033288-1-T. The FEMATS GUI permits the use of ACAD for generating
the surface mesh. In turn the surface mesh can be imported into the NASA Ames code
PRISM for automatic generation of the volume mesh. The user can define material regions,
metallic or absorber sections, as necessary, on the basis of the original geometry
specifications. At this point, the prismatic elements are subdivided into tetrahedrons before
code execution. The user is allowed some control on the mesh structure by modifying a
number of scaling parameters as described in the aforementioned report.

Mesh Truncation Upgrades

We fully upgraded FEMATS mesh termination schemes to include the new perfectly
matched absorber and we are now working on importing the latest fast algorithms for mesh
truncations. Currently, FEMATS employs conformal (doubly curved) absorbing boundary
conditions and artificial absorbers for mesh truncation. This conformal applications for
mesh truncation was introduced by U-M 2-3 year ago and resulted in substantial CPU and
memory reductions. Most of our effort under this project was devoted to investigations for
assessing their accuracy of the perfectly matched absorber (referred to as PML) and its
application to doubly curved surfaces. We first implemented the PML for mesh truncation
of microwave structures and have developed guidelines and tables for choosing its
parameter to achieve broadband absorptions below -50dB without increasing the unknown
count. The incorporation of the anisotropic PML into FEMATS was rather straightforward
and did not require much effort. However, the evaluation of the absorber for non-planar
implementations has yet to be done and therefore of interest has been the assessment of its
accuracy and appropriate choice of parameters such as thickness and absorber-to-target
distance as a function of curvature. This type of assessment has been carried out
(numerically and analytically) and a preliminary report on the performance of the PML for
cylindrical implementations is included. Basically, we found that the performance of the
PML is compromised for non-planar implementations. Nevertheless, the PML still remains
more attractive than absorbing boundary conditions in terms of accuracy, ease of
implementation and parallelization. One of the issues in connection with PML mesh
truncation has been their slower convergence rate. To address this concern, we are
currently investigating convergence acceleration schemes and special preconditioning
algorithms.

The recent introduction of fast integral algorithms provided for a renewed interest on
boundary integral mesh truncation schemes. As is well known, boundary integrals lead to
fully populated submatrices which are CPU intensive. However, implementations based on
the fast multipole method (FMM) and adaptive integral methods (AIM) reduce the CPU
time from O(N*) down to O(N"%) or even lower by resorting to multilevel subgroupings.
We therefore began a new investigation aimed at the hybridization of the finite element and
fast integrals methods. This type of implementation combines the geometrical adaptability
and material generality of the finite element method with the robustness of the integral
equation for mesh truncation. Thus, provided the CPU time of the boundary integral is



affordable, the proposed hybridization is the most attractive among the available competing
hybridizations. At this point, we have completed a study of the finite element-boundary
integral formulation using three different types of fast multipole methods. This was carried
out for two-dimensional scattering and it was determined that a new version of the fast
multipole method based on an asymptotic evaluation of the Green's function provides for
the best compromise in terms of speed and accuracy. We have now began with the
implementation and examination of these schemes for three dimensional structures. We
have already completed a radome scattering code using a three dimensional version of the
FMM and we are now implementing hybridizations of AIM and the finite element method.

FEMATS Benchmarking

FEMATS has been benchmarked against all EMCC geometries except for the Almond and
the VFY218. These structures require conformal mesh terminations for -efficient
implementation. Therefore, use of conformal PML and boundary integral truncations are
most appropriate for these targets. As stated later in this report, we have already validated
FEMATS for the NASA almond and intend to examine the performance of FEMATS in
evaluating the performance of antennas mounted on the VF218. The latter is a new
application and should be of more interest to the EMCC.



LIST OF DOCUMENTS IN THIS REPORT

Graphical Interface to FEMATS (brief report)
M. Nurnberger and J. Volakis

This document provides a brief description of the current FEMATS GUI
along with flow charts and example GUI displays

Artificial Absorbers for Truncating Finite Element Meshes
J Volakis, T. Senior, S. Legault, T Ozdemir and M. Casciato

This document gives an overview of the PML absorber, its capabilities
and application to various antenna and scattering problems, including the
NASA almond and antennas on conical platforms

Design of Planar Absorbing Layers for Domain Truncation in
FEM Applications
S. Legault, T. Senior and J. Volakis

Design guidelines are given for the PML absorber. Curves and formula
are derived which can be used to select the PML parameters to yield a
desired performance.

Application and Design Guidelines of the PML Absorber for
Finite Element Simulations of Microwave Packages
J. Gong, S. Legault, Y. Botros and J. Volakis

Demonstrates the validity of the PML design curves presented in the
previous document for applications to microwave circuits. The latter
application can be carried under a controlled environment and is therefore
better suited for validating the PML design curves

Performance of an Artificial Absorber for Scattering by a
Metallic Cylinder
A. Brown and J. Volakis

A first application of the PML for mesh truncation on a non-planar
boundary. The exact solution of the circular metallic cylinder is used to
gauge the accuracy of the PML. Guidelines are given for the thickness and



appropriate distance of the PML from the cylinder surface to achieve a
desired level of accuracy.

Comparison of Three Fast Multipole Techniques for Solving
Hybrid FE-BI Systems
S. Bindiganavale and J. Volakis

Various Fast Multipole Techniques(FMM) have been introduced over the
past 3 years. These techniques often compromise accuracy for speed and in
this document we provide a critical comparison of the fast multipole
techniques in terms of accuracy and speed-up. It is found that the new
asymptotic or windowed FMM provides the best compromise in terms of
accuracy and speed.

Hybrid Finite Element Methodologies for Antennas and
Scattering
J. Volakis, T. Ozdemir and J. Gong

A lengthy up-to-date review of hybrid finite element methods for
scattering and radiation. This document is a concise look at Michigan's
contributions, including mesh truncation schemes, feed modeling and
parallelization. Many applications are included ranging from antenna
radiation to radome performance evaluations and engine scattering.



FEMATS: Finite Element Method-
Absorbing Termination Surface

FEMATS ATTRIBUTES

General purpose scattering code

Employs first and second order tetrahedrals as building
blocks (surfaces are faceted)

New ABCs are used to determine the mesh conformally
to target only 0.3\ away from target surface

Entire matrix is very sparse (storage: 8.5N complex #)

Models resistive sheets, impedance sheets,
inhomogeneous and anisotropic materials, structural
details

Solver has been parallelized for KSR, Intel iPSC/860
CM-5, Intel Paragon, IBM SP-2, Convex Exemplar

Convergence achieved in ~N/100 (N = # of unknowns)

Solver is based on the BICG or QMR method with ILU
preconditioning

Validated for composite structure and inlets with up to
600,000 unknowns
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Brief Report on the Graphical Interface to

FEMATS

M. W. Nurnberger and J.L. Volakis

1 Introduction

Graphical User Interfaces(GUIs) are have become important utilities in all user-oriented
codes which provide multifunction capabilities. FEMATS is such a code, bringing together
a number of different technologies and capabilities. Moreover, because the code will be able
to run on serial, vector and parallel platforms a user interface to control and monitor the
submission and execution on these platforms is essential. Briefly, a user will typically go
through the following steps in an RCS/Radiation simulation:

defining the geometry using a solid modeling or an IGES /facet data file

specifying the material in selected regions

generating a surface or volume mesh and viewing it to examine fidelity

selecting a mesh truncation scheme and solver (Pro-Solver, BCG, FMM, AIM etc.)

specifying data runs (over frequency ranges, angles, output selection, etc.) and verify-
ing final geometry data sets, including tessellation

submitting the problem to one of the available computating platforms
monitoring the execution (important for parallel platforms)

data extraction and display of RCS and surface fields using line plots and 3D dataset
visualization software

With the intent of delivering a code which can be used by entry-level engineers the use of
a GUI is important as a tool for managing the various tasks related with EM analysis. Also,
future code integration into a simulation environment which combines both electromagnetic,
aerospace and other disciplines necessitates such a graphical interface.
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2

GUI functionality

Here is a summary of the capabilities which best characterize the FEMATS GUI:

All operations are point and click using pull down menus and with all the necessary
functionalities accessible from a single windowing environment

User will have control over meshing, and ability to verify/validate mesh at any time.
Ability to set and modify material parameters easily

Keeps track of all data management and code interface with the various computing
platforms allowing the user to concentrate on the physics of the problem and engineer-
ing issues.

Easy to learn and use using the visual displays but having the availability of keyboard
short cuts for the experienced user.

Program files, for automated processing on most popular computing platfroms.

Supports multiple standard geometry input formats and volume/surface mesh genera-

tors (ACAD, IDEAS, PATRAN, IGES, DXF, etc...)
Keep track of various Solver packages supported by FEMATS

Supports all custom geometry generators through a standardized file format, especially
developed for this purpose (RLGDFF - RadLab Global Data File Format)

Its modular design allows for additions and upgrades, including new solvers, mesh
generators, different elements, visualization packages and so on.

Makes maximum use of public domain and fully documented file formats, for ease in
developing converter scripts, integration of extra modules, etc.

All portions of code (GUI, converter scripts, visualization) available for nearly all
machines, and easy to port if necessary. Maximum use of public supported packages for
visualization, mesh generation pre/post-processing is important in this regard. Also,
commercial meshing packages are generally available on all popular platforms.

Allows for pre/prost-processing on local machines and keep track of code submission
and execution on remote parallel/vector /workstation(PVM) platforms.

Supports 2D plotting package for radiation/scattering patterns, etc.

Supports integrated 3D plotting package for mesh validation using, for example, Ge-
omView, and will have the option to easily integrate others such as SGI OpenGL-based
Open Inventor, Performer, etc.
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e Will support a fully integrated 3D surface viewer(including powefull commercial pack-
ages such as MATLAB) of surface/volume fields and will have capability to easily
integrate with other packages

3 GUI format

An overview of UM’s graphical display depicting some of its pull-down menu capabilities is
shown in Figure 1. As seen, it integrates post-processing, pre-processing and specification
of the input files and formats using pull-down menus similar to the popular word-processing
packages. The UM GUT is written in the Tcl/Tk (pronounced tickle-tee-kay) language, and
uses the Tix widget collection. Tcl is a interpreted script language, designed particularly for
the integration and simultaneous control of several application codes, each possibly running
on a different platform, making it very well suited for design and analysis tools such as
FEMATS. Tk is an X11 toolkit based on Tcl, designed to work alongside Tcl and provide a
graphical interface to the software controlled by the Tcl script. Tk also provides the hooks to
allow program intercommunication for greater amounts of interaction between code modules.
The Tix widget collection is a series of big, complex widgets, built up from the smaller widgets
supplied by Tk. Thus rather complex tasks can be specified using simple commands, greatly
simplifying the mundane tasks.

The GUI is designed in a way that allows it to be extended through the addition of new
menu items for other function controls or the addition of new modules as the application
program is enhanced. Given that Tcl/Tk is a well described language, a knowlegeable user
can make modification to the UM GUI at any stage of the development or in the future.
This is a unique feature of the proposed GUI and is crucial to its porting on any desireable
platform. Moreover, it can be easily adapted for other electromagnetic analysis packages
presently used by the EMCC or to be adapted in the future. Ostensibly, the whole GUI
is a very large heirarchy of short (or long, depending on what they do) scripts, each one
implementing a certain function of the overall program which can be activated by clicking
on the appropriate button. Indeed, these scripts can be written not only in Tcl but also
using languages such as Perl, C; FORTRAN and so on.

The table below provides a list of the presently available and near-term capabilities of the
FEMATS GUI. The items in the list are self explanatory. Some functions not yet operational
are listed to indicate that they are are important and should be considered in the near future.

Ability Now Near Term

General
Defaults File
Status/Project File
Working Project Management
Intelligent Interface
Keyboard Shortcuts ~

b )
el e R lie

|
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Program Files

Graphical Window Dumps
Mesh Post-Processing
Material ID (setting)
Material ID (viewing)
Runtime Parameter Input
Solver Parameter Input
Local Solver Initiation
Remote Solver Initiation
2D Visualization (GnuPlot)
3D/Surface Visualization (xvgr, GeomView)

Online Help

Interfacing to External Codes

Geometry Generators
ACAD
IDEAS
DXF
IGES
others...

Meshing packages
internal meshing
Prism
others...

Converters

RadLab Global Data File Format (RLGDFF)

Graphical Output
2D Viewing, Line Plots (GnuPlot)
3D Viewing (xvgr, GeomView)
Surface Field Plots (Geomview)

Solver Control
Local Solver, Single CPU
Local Solver, Distributed
Remote Solver

Solver Availability
Scalar Solver
Vector Solver (Cray)
Parallel Solver(s):

Intel Paragon
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Convex SPP

IBM SP/2

SGI Power Challenge
PVM
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Convert To/From
R.L. Global Data File
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2D and 3D
Viewers
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Parameters
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Copy

FEMATS Graphical Interface Control Diagram
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ARTIFICIAL ABSORBERS FOR TRUNCATING FINITE
ELEMENT MESHES

J.L. Volakis, T.B.A. Senior, S.R. Legault, T. Ozdemir and M. Casciato
Radiation Laboratory
Department of Electrical Engineering and Computer Science
1301 Beal Ave.

University of Michigan
Ann Arbor, MI 48109-2122

Abstract

A metal-backed layer of absorbing material offers a number of advantages for truncat-
ing the computational domain in a finite element simulation. In this paper we examine
isotropic and anisotropic absorber layers for the purpose of truncating finite element
meshes. Optimal design curves are presented for these absorbers that can be used to
select the various parameters (thickness, propagation and sampling rate) so the reflectiv-
ity is minimized. Applications to radiation and scattering problems are also considered,
and these illustrate the accuracy and versatility of the absorber layers for large scale
electromagnetic simulations.

1 Introduction

In the numerical solution of electromagnetic scattering and radiation problems it is necessary
to truncate the computational domain in a manner which ensures that the waves are outgoing.
This is true also in the analysis for many microwave circuits, and the need to terminate the
mesh is common to finite element (FEM) and finite difference-time domain (FDTD) methods.
One way to do so is to enforce an absorbing boundary condition (ABC) at a surface as close as
possible to the scatterer or radiator, and a review of available ABCs has been given by Senior
and Volakis [1]. Unfortunately, ABCs are limited in their ability to conform to the surface of
the scatterer. They may also require an a priori knowledge of the wave’s properties and, in an
FEM solution, they generally reduce the rate of convergence. Another way of terminating the
mesh is to use a metal-backed layer of isotropic or anisotropic absorbing material [2,3,4,5], and
such layers are often referred to as artificial absorbers since their material parameters may be
physically unrealizable.

The implementation of artificial absorbers for finite element mesh truncation is illustrated
in Fig. 2 and as expected the layer’s material composition plays a major role in the perfor-
mance of the artificial absorber. However, the chosen numerical discretization of the absorber
has an equally important role and cannot therefore be ignored in the design of the absorber for
numerical simulations. In this paper, we examine the performance and design of both isotropic
and anisotropic homogeneous absorbers for truncating finite element meshes. Their applica-
tion to the finite element solution of three dimensional radiation and scattering problems is
also considered and results are shown which demonstrate the utility of these mesh truncation
schemes.
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2 Analytical Study

Consider the metal-backed planar layer shown in Fig. 2(a). The surface z = 0 is the interface
between free space (in ¢ < 0) and a lossy material (in z > 0) backed by a perfect electric
conductor at x = t. For an incident plane wave

Ez or Hz = e‘jko(xcos¢>+ysin¢) (1)

the reflection coefficient is Rg(¢) or Rg(¢), and the objective is to minimize these.
If the layer is composed of a homogeneous isotropic material whose relative permittivity e,
and relative permeability p, are such that €, =y, = b= a — 70 (say), then

. V1= b2sin® ¢ — j cos é tan(kobty/1 — b2 sin? §) o)
1= b 2sin? ¢ + j cos 6 tan(kobty/1 — b2sin? )

Rus(d) = ~m— 7 cos¢cot(kobtm) | 3

\/l—m + j cos ¢ cot(kobty/1 — b=2sin’ B)

These differ because the presence of the metal backing has destroyed duality, and at grazing
incidence (¢ = 7/2), Rg = Ry = —1. If sing > 1, i.e. ¢ = n/2+ 76 with § > 0 so that
sing = coshé and cos¢ = —jsind, |R| differs from unity by only a small amount for both
polarizations. The behavior of |Rg u(¢)| as a function of sin ¢ is illustrated in Fig. 3. At
normal incidence (¢ = 0), (2) and (3) give

Rg(¢

R i(0) = Fe~2hot(a=if) (4)

whose magnitudes are independent of a and can be made as small as desired by choosing
kot sufficiently large. Since large values of § produce rapid field changes in the dielectric, a
disadvantage is that high (and often very high) sampling rates are necessary to simulate them
numerically.

As kot = 00, Rg n(¢) — 0 only for normal incidence, but Sacks et al [4] have shown that
a particular uniaxial anisotropic material has this property for all ¢ < /2. The result is an
example of a perfectly matched layer (PML), and if

— = 1
& =p,=0b0l—(b— g)aéie (5)

where 7 is the identity tensor and b = o — 53, then
RE,H(¢) — :Fe—?jkot(a—jﬁ)cow (6)

which reduces to (4) in the particular case of normal incidence. If kg3 > 1 the reflection
coefficients decay exponentially for all ¢ < 7/2, and since (6) is also valid for sin¢ > 1, the
choice o > 0 ensures an exponential decay for these angles as well. The behavior of |Rg g ()|
is illustrated in Fig. 3 for the same values of kot, @ and 3 used for the isotropic layer. Clearly,
a major advantage of the PML is that its reflection coefficient remains low for a wide range of
angles of incidence.
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3 Absorber Design

The theoretical behavior of the reflection coefficient | R| for the metal-backed layers is relatively
simple. In the case of the isotropic material, an increase in 3 and/or ¢ decreases |R(0)|. The
uniaxial material has this behavior for all real angles of incidence, and while « plays little or
no role, large values of a do produce higher absorption for complex angles. It follows that
for a uniaxial layer of given thickness ¢, @ and 8 can be chosen sufficiently large to produce
high absorption over a broad angular spectrum, with angles near ¢ = /2 providing the only
exception.

Unfortunately, the analytical results do not immediately translate into numerical perfor-
mance. Because of the discretization inherent in an FEM implementation, the fields inside the
layer are reproduced only approximately, and this is particularly true for a rapidly decaying
field. To design a good absorber it is necessary to understand the impact of the sampling rate
on the choice of «, f and ¢, and our objective is to find the minimum number of sampling ele-
ments ( or discrete layers) to achieve a specified | R|. It is anticipated that the errors introduced
by the discretization will have a number of consequences. In particular, for a given number N
of discrete layers and given ¢, increasing 3 will ultimately lead to an increase in |R| because
of the inability to model the increasing attenuation, and an increase in « will likely produce a
similar effect. To obtain some insight into the roles played by N, «, 8 and ¢, a simple FEM
model for computing the reflection coefficient of a metal-backed absorber layer (see Fig. 1) was
considered.

We examine first a homogeneous isotropic layer at normal incidence for which the theoretical
reflection coefficients are given in (4). In spite of the fact that the magnitudes are the same
for both polarizations, a polarization dependence shows up in the FEM implementation. This
is illustrated in Fig. 4, and we note that as N increases, the FEM values of |R(0)| converge
to the common theoretical value for both polarizations. The nulls associated with the H-
polarization curves are characteristic of the behavior of the modeled absorber layer, and are
due to the interference of the reflected fields from the dielectric interface, the metal-backing
and the individual layers used to model the absorber numerically.

Given the many parameters (3, a, t, N), it is essential to consider some optimization of
the proposed metal-backed absorber as a function of these parameters. For this purpose, a
study was carried out using the FEM code mentioned above. Initially, an investigation was
performed to examine the effect of each parameter on the absorber’s performance. As can be
expected, a plays little role in the performance of the absorber for relatively small values of
Bt/X,. Also, larger values of N for the same thickness ¢ lead to lower reflection coefficients.
An optimum value exists but this depends on 3, the absorber’s decay parameter. However, the
most important observation from this preliminary study concerns the scalability of the product
Bt. It was found that for small values of & and for thicknesses up to at least 0.5 wavelenths, the
reflection coefficient is a function of the product Bt/), alone. As a result, one can construct
reflection coefficient curves as a function of #t which are optimum for a given N. Fig. 5 gives
such design curves by plotting |R(0)| and N versus 3t/\, on the same figure, and these can be
used to determine the optimum N for a given 3t/A,. To see how to use the figure, suppose that
the desired reflection coefficient at normal incidence is -50 dB. In Fig. 5 we observe that the
|R(0)| curve intersects the -50 dB line at 3t/)\, ~ 0.58, and referring now to the N curve, the
number of elements required is N = 10. The value of 3 can then be found by specifying either

10



the element size or the layer thickness. Thus, for elements 0.025), thick, we have t = 0.25)¢
and § = 2.32. By increasing N we can improve the performance up to the limit provided by
the theoretical value of |R(0)| which has been included in Fig. 5. A good approximation to the
long-dashed curves in Fig. 5 obtained by linear regression is

t
—f— = —0.0106|R| + 0.0433 (7)
0

N = 0.147exp [7.3536t/ \o] (8)

where | R| is measured in dB and N is the smallest integer equal to or exceeding the right hand

side of (8).

4 Application to Antennas and Scattering

The above study dealt with planar absorber layers but the layers can also be curved for ter-
minating finite element meshes in a conformal manner. This is illustrated in Fig. 1 where the
artificial absorber layer is used to terminate the computational domain surrounding a patch
antenna. Conformal mesh terminations are quite attractive in FEM modeling because they lead
to a substantial reduction of the computational volume and are also compatible with structured
as well as unstructured meshes. In contrast to absorbing boundary conditions, they do not re-
quire a knowledge of the closure’s principal radii of curvature and uniaxial artificial absorbers
offer the possibility of reflectivity control as low as -60dB.

To illustrate the applicability of the artificial absorbers in FEM modeling, two examples are
considered, one dealing with antenna analysis and the other with scattering by a non-canonical
structure. For simplicity both cases employed a simple version of a homogeneous artificial
absorber consisting of three layers 0.05), thick as shown in Fig. 1. The attenuation constant
for each layer was # = 2.6, and thus Bt — (0.405. From Fig. 5 this absorber provides a normal
incidence reflection coefﬁaent of 30dB and from the same figure we also read off that this
reduction can be realized with 3 layers or more. Thus, the design of the proposed homogeneous
absorber is consistent with the curves given in Fig. 5.

The absorber termination shown in Fig. 1 has been used to model a variety of patch
(circular and rectangular) antennas on doubly curved platforms, including circular, spherical,
conical and ogival surfaces. Of particular interest is the computation of the resonant frequency
which is a rather sensitive quantity and its accurate computation via the proposed FEM model
provides a good test of the absorber’s performance. Fig. 6 shows the results for a rectangular
patch antenna mounted on the conical surface illustrated in the figure. The patch resides on
a substrate having ¢, = 2.32 and a thickness h = 0.114cm. Its dimensions are given in Fig. 6
and on the basis of the approximate cavity model it resonates at 3.2GHz. From the computed
input impedance plot, it is seen that the resonance frequency predicted by the FEM code is
3.115G H z, which is within 3 percent of the cavity model. The FEM computations were carried
out using prismatic edge elements and the surface grid is also shown in Fig. 6. A total of 2358
prisms were used for this analysis resulting in 3790 degrees of freedom.

As a scattering example we consider the radar cross section of the NASA metallic almond
(6] shown in Fig. 7. This body is 9.936 inches long, and precise formulae for describing its
surface are given by Woo et. al.[6]. Measured data are also available at several frequencies and
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can be used to benchmark the accuracy of the simulation. Our finite element code FEMATS
[7] was used to model the almond illuminated with a plane wave at a frequency 1.19GHz.
This code employs edge-based tetrahedral elements and the mesh was again terminated using
the aforementioned 3-layer homogeneous artificial absorber. For ease of mesh generation, a
structured prismatic mesh was first generated conformal to the almond’s surface and consisted
of nine 0.05) layers with the outer layers occupied by the artificial absorber. The structured
prismatic mesh was then turned into a tertrahedral mesh resulting in a total of 46,878 edges.
Fig. 7 displays the computed radar cross section(RCS) computations with the measured ones
for both polarizations of incidence. The patterns are taken in the plane most parallel to the flat
side of the almond(non-symmetric plane), with zero degrees corresponding to incidence tip-on.
As seen, the calculations are in good agreement with the measured data except at near 90
degrees for HH polarization. However, other reference calculations based on a moment method
code are in agreement with the FEMATS data, suggesting that the discrepancy may be due to
minor alignment errors in the measurement.

5 Conclusion

In this paper we investigated homogeneous isotropic and uniaxial artificial absorbers for finite
element mesh truncation. By properly selecting the material properties and sampling rate, it
was demonstrated that almost any desired level of absorption can be attained, and typically
very few samples (less than five) are needed to achieve a reflection coefficient of -40 dB over
a wide range of incidence angles. Design curves were presented which can be used to select
the various parameters (loss, thickness and sampling rate) on the basis of a desired reflection
coefficient. As expected, a lower material loss requires a thicker absorber to produce the same
reflection coefficient but, on the other hand, a higher attenuation rate requires more samples to
attain a lower reflection coefficient in a numerical implementation. Most likely, inhomogeneous
(tapered) artificial absorbers can lead to lower reflection coefficients, but these have not yet
been investigated to any great extent.

In contrast to absorbing boundary conditions, a particular advantage of the proposed ab-
sorbers is that they can be used to terminate a finite element mesh conformal to the target
or radiator surface without needing a prior: information about the wave’s propagation char-
acteristics. To test the performance and applicability of the proposed absorber for truncating
finite element meshes in a three dimensional setting, two examples were considered.Namely,
computation were carried for the input impedance of a patch antenna on a conical surface and
the radar cross section of a non-canonical slender body. In both cases the computed values
were in good agreement with reference data by using the proposed artificial absorber for mesh
truncation.
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Figure 2: Geometry of the metal backed absorber layer and its finite element discretization.
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Figure 3: Analytical results for homogeneous isotropic and anisotropic absorbing layers with
t=0.250 and b= 1~ 32: (---) isotropic E pol, (- - -) isotropic H pol. and (——) anisotropic.

23



IRI [dB]

-70 A . I ! s I . ]
0.0 0.2 0.4 0.6 0.8 1.0 1.2

sin ¢
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Design of Planar Absorbing Layers for Domain Truncation
in FEM Applications
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ABSTRACT

A metal-backed layer of absorbing material offers a number of ad-
vantages for truncating the computational domain in a finite element
simulation. In this paper we present design curves for the optimal se-
lection of the parameters of the layer to achieve a specified reflection
coeflicient. The curves are based on one-dimensional finite element sim-
ulations of the absorbers, and the optimization is therefore a function
of the sampling rate. Three types of material are considered, including
the recently introduced perfectly matched uniaxial material, either ho-
mogeneous or with a quadratic material profile. Two three-dimensional
applications are also presented and used to examine the validity of the
design curves.

1 INTRODUCTION

In the numerical solution of electromagnetic scattering and radiation
problems it is necessary to truncate the computational domain in a
manner which ensures that the waves are outgoing. This is true also
in the analysis for many microwave circuits, and the need to terminate
the mesh is common to finite element (FEM) and finite difference-
time domain (FDTD) methods. One way to do so is to enforce an
absorbing boundary condition (ABC) at a surface as close as possible to
the scatterer or radiator, and a review of available ABCs has been given
by Senior and Volakis [1]. Another way is to use a metal-backed layer
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of isotropic absorbing material [2,3], but both schemes have limitations.
For example, an ABC requires a priori knowledge of the propagation
constant which, in a microwave problem, may not be the same in all
section of the computational domain. Also, when used to terminate
an open domain, ABCs reduce the convergence rate and may be hard
to implement on a surface conformal to the scatterer or radiator. An
isotropic dielectric layer alleviates some of these difficulties, but its
accuracy and aspect coverage are limited.

Recently a new anisotropic absorber has been proposed for termi-
nating the domain. By introducing an additional degree of freedom,
Sacks et al. [4] have shown that a uniaxial material can be designed to
have zero reflection coefficient at its interface for all angles of incidence.
If the material is also lossy, a thin metal-backed layer can be used to
terminate an FEM mesh, and though the material is no longer realiz-
able physically, the associated fields are still Maxwellian. This is often
referred to as a perfectly matched layer (PML), and its development
was motivated by the non-Maxwellian layer introduced by Berenger [5]
(see also [6]) for FDTD problems. By choosing the parameters ap-
propriately, it is possible to achieve any desired level of absorption for
almost all angles of incidence using only a thin layer, but its numerical
simulation is a more challenging task. Because of the rapid exponential
decay of the fields within the layer, there are large variations in a small
distance, and it is difficult to reproduce these in a numerical simula-
tion. Thus, for a discretized PML, the numerical sampling as well as
the material properties affect the reflection coefficient that is achieved.

In this paper we consider the design and performance of three types
of metal-backed planar layers for terminating FEM meshes: homoge-
neous isotropic, homogeneous anisotropic (uniaxial), and inhomoge-
neous (tapered) uniaxial materials. Using one-dimensional finite ele-
ment simulations, their numerical performance is examined and com-
pared with their theoretical capability. Not surprisingly, the sampling
rate has a major effect on the reflection coefficient. Based on a detailed
numerical study, we identify scalable parameters in the numerical model
and use these to generate design curves and formulas for choosing the
sampling rate and material properties to achieve a specified reflection
coefficient. As expected, a tapered uniaxial material proves superior
to the homogeneous one. The applicability of these results to three-
dimensional problems is then illustrated for a simple microwave circuit
and a rectangular waveguide.
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(a) (b)

Figure 1: Geometry of the metal-backed absorber layer (a) and its FEM
implementation (b).

2 ANALYTICAL STUDY

Consider the metal-backed planar layer shown in Fig. 1(a). The surface
z = 0 is the interface between free space (in ¢ < 0) and a lossy material
(in ¢ > 0) backed by a PEC at = =t. For an incident plane wave

Ez or Hz — e—jko(accos¢+ysin¢) (1)

the reflection coeflicient is Rg(¢) or Ry(¢), and the objective is to
minimize these. If the layer is composed of a homogeneous isotropic
material whose relative permittivity €, and relative permeability u, are
such that €, = u, = b= a — jf (say) where a and § are real, then

R(d) = - m—jcos ¢tan(k0btm) _—
V1= b2 sin? ¢ + j cos g tan(kobty/1 — b-2sin’ )

Bald) e = V1= b-2sin? ¢ — j cos d ot (kobty/1 — b2 sin? ) -
1= b7 sin? ¢ + j cos ¢ cot (kobty/1 — b2 sin’ )

These differ because the presence of the PEC backing has destroyed
duality, and at grazing incidence (¢ = 7/2), Rg = Ry = —1. If
sing > 1, i.e. ¢ = 7/2+ 36 with § > 0 so that sin¢ = coshd and
cos¢ = —jsind, |R| differs from unity by only a small amount for
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Figure 2: Analytical results for homogeneous isotropic and anisotropic
absorbing layers with ¢ = 0.25A¢ and b =1 — j2: (- ) isotropic E pol.,
(- - -) isotropic H pol. and (——) anisotropic.

both polarizations. The behavior of |Rg i(¢)| as a function of sin ¢ is
illustrated in Fig. 2. At normal incidence (¢ = 0), (2) and (3) give

RE,H(O) — ;e—%kof(a—jﬁ) (4)

whose magnitudes are independent of o and can be made as small as
desired by choosing kot sufficiently large.

As kot — 00, Rg u(¢) — 0 only for normal incidence, but Sacks et
al. [4] have shown that a particular uniaxial anisotropic material has
this property for all ¢ < 7/2. The result is an example of a perfectly
matched layer (PML), and if

- — = 1
& =p,=bl—(b- Z):z::c (5)
where T is the identity tensor, then
RE,H(¢) — q:e—ijof(a-jﬁ)COSd’ (6)

which reduces to (4) in the particular case of normal incidence. If
ko3 > 1 the reflection coefficients decay exponentially for all ¢ < 7/2,
and since (6) is also valid for sin¢ > 1, the choice a > 0 ensures an
exponential decay for these angles as well. The behavior of |Rg ()|
is illustrated in Figure 2 for the same values of kot, o and 3 used for
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the isotropic layer. Clearly, a major advantage of the PML is that its
reflection coefficient remains low for a wide range of angles of incidence.

Although the outer surface of the layer is reflectionless for all ¢,
the abrupt change in the material properties at z = 0 may produce a
contribution in an FEM solution. We can eliminate the discontinuity by
tapering the properties as a function of  to produce an inhomogeneous
anisotropic layer. As shown by Legault and Senior [7], if b = £ {zv(z)}
a wave propagating into the material has the form

e~ Iko{z¥(z) cos o+ysin ¢} , (7)
and when

2

o) =1+(@=js-1)(3) 0

which tends to unity as © — 04, the reflection coefficients of the layer

are identical to those given in (6). With this expression for y(z), the

attenuation is less where the field is larger, i.e. close to the interface,

and increases as the field is absorbed. A simplified version of (8) is
employed in Section 3.4.

3 NUMERICAL STUDY

For all three types of layer the theoretical behavior of |R]| is relatively
simple. In the case of the isotropic material, an increase in 3 and/or
t decreases |R(0)|. The uniaxial material has this behavior for all real
angles of incidence, and while a plays little or no role, large values of
a do produce higher absorption for complex angles. It follows that for
a uniaxial layer of given thickness ¢, @ and § can be chosen sufficiently
large to produce high absorption over a broad angular spectrum, with
angles near ¢ = /2 providing the only exception.

Unfortunately, the analytical results do not immediately translate
into numerical performance. Because of the discretization inherent in
an FEM implementation, the fields inside the layer are reproduced only
approximately, and this is particularly true for a rapidly decaying field.
To design a good absorber it is necessary to understand the impact of
the sampling rate on the choice of a, 8 and ¢, and our objective is to
find the minimum number of sampling elements (or discrete layers) to
achieve a specified |R|. It is anticipated that the errors introduced by
the discretization will have a number of consequences. In particular,
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Figure 3: Numerical results for a homogeneous isotropic layer with
t = 0.15)¢ and b = —32.5. The top four curves are for E pol., the
bottom four for H pol.: (——) exact, (- - -) N=3, (- - =) N=6 and (—
—) N=12.

for a given number N of discrete layers and given ¢, increasing 8 will
ultimately lead to an increase in |R| because of the inability to model
the increasing attenuation, and an increase in o will likely produce a
similar effect. To obtain some insight into the roles played by N, a,
and t, we now consider a simple FEM model of the layers.

3.1 Numerical Model

A one-dimensional FEM code was used to examine the numerical per-
formance of the absorbing layers. The computational domain was lim-
ited to the discretized layer structure shown in Fig. 1(b), with the
appropriate boundary conditions applied at the interface z = 0 and the
PEC backing z =¢.

We consider first a homogeneous isotropic layer at normal incidence
for which the the theoretical reflection coefficients are given in (4). In
spite of the fact that the magnitudes are the same for both polariza-
tions, a polarization dependence shows up in the FEM implementation.
This is illustrated in Fig. 3, and we note that as N increases, the FEM
values of |R(0)| converge to the common theoretical value for both po-
larizations.
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3.2 Dependence on o and

For a layer of constant thickness the theoretical value of |R(0)| is in-
dependent of o and polarization, but in the numerical implementation
the behavior is much more complicated. Figure 4 shows |R(0)| plotted
versus o and f for a layer of thickness t = 0.25)g made up of 5 (=N)
elements, where the darker tones indicate lower values. For small 3 the
results are in close agreement with theory. As evident from the level
lines, |R(0)| is almost independent of o and decreases exponentially
with 3, leading to a linear decrease on a dB scale. For large (3, how-
ever, the behavior is quite different, and the most striking feature is the
series of deep minima whose spacing in « increases with increasing o
and decreasing 3. These are numerical artifacts which are common to
both polarizations and may depend on the particular numerical code
employed. The minima for the two polarization are interlaced, and for
H polarization the first minimum occurs at @ = 0, § = 1.6. Their
locations also depend on ¢ and N. If N is fixed, the spatial sampling
is inversely proportional to t. Decreasing ¢ results in better sampling,
pushing the minima to higher values of § and producing agreement
with the theoretical values for larger § than before. Increasing ¢ has
the opposite effect. On the other hand, if ¢ is fixed, increasing N im-
proves the accuracy, and shifts the minima to higher 3. Apart from
the minima, the reflection coeflicients for fixed 3 increase slightly with
increasing «, and it is therefore sufficient to confine attention to the
lower values of a.

In Figure 5 the reflection coefficients are plotted as functions of 3
for the same layer with @ = 0 and & = 0.75. The curves correspond
to vertical cuts through the patterns in figure 4, and we also show the
theoretical value obtained from (4). We observe that as 3 increases the
reflection coefficients decrease initially at almost the same rate implied
by (4), but beyond a certain point they begin to increase. The deep
minimum at o = 0 and 8 = 1.6 in Figure 4(a) is clearly seen, but
for design purposes it is logical to focus on the worst case, i.e. the
polarization for which the reflection coefficient is larger. The upper
curves in Figure 5 are almost identical and constitute this case. Since
they correspond to two different values of «, either of them would
suffice, but for reasons that will become evident later, we choose a = 0.
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Figure 4: Plot of |R(0)| in dB for (a) an H polarized and (b) an E
polarized wave incident on a homogeneous isotropic layer with ¢t =

0.25Xg and N = 5. The solid curves are level lines.
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3.3 Dependence on 3, N and ¢

We now seek a connection between the values of 3, N and t for which
|R(0)] is minimized. To this end, we first examine |R(0)| as a function
of # and N for constant ¢, and the resulting plot is shown in Figure 6
for E polarization with ¢t = 0.250g and a = 0 as before. For fixed 3
the reflection coeflicient tends to its exact values as N increases. This
is evident from the level curves and, as expected, the convergence is
better for the smaller 3. Consider now the behavior of |R(0)] for fixed
N. As 3 increases from zero, the reflection coefficient decreases to a
minimum and then increases. The location of the minima is indicated
by the solid line. This is consistent with the behavior shown in Figure
5 and the upper curve is, in fact, just a vertical cut through Figure 6
at N = 5. The solid line in Figure 6 therefore gives the value of 3 at
which |R(0)| is a minimum as a function of the number of elements.
If the process is repeated for other layer thicknesses, it is found that
for minimum |R(0)| the curve of Bt/Ag versus N is virtually the same
for all thin layers. The observation that 8¢/)¢ is a scalable parameter
is an important conclusion of our study, and by choosing a constant
layer thickness we can produce a universal curve for the optimal choice
of N and 3 in FEM simulations. Such a curve is shown in Figure 7
and can be interpreted as giving the value of 8t/) for a specified N
to minimize the reflection coefficient |R(0)|. For example, if ¢ = 0.2),
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Figure 6: |R| as a function of # and N for E pol. with ¢t = 0.25); and
a = 0. The dashed curves are level lines and the solid curve gives the
location of the minimum |R).

and N = 3, then 8 = 2.13. If a smaller value of § is chosen, |R(0)|
will be larger (see Figure 5), and this can be attributed to the fact
that the field reflected from the metal backing has not been attenuated
sufficiently. If 3 is set to a value larger than 2.13, |R(0)| will still be
larger because the chosen N is too small to reproduce the rapid field
decay within the layer.

So far we have considered only normal incidence, but for the anisotropic

layer it is a simple matter to extend the results to all real angles of in-
cidence ¢ < 90°. As evident from the exponent in (6), the absorption
at normal incidence is reproduced at any angle if the layer thickness is
inversely proportional to cos¢. This can be achieved by specifying the
layer thickness t as a fraction 6 of the wavelength A, along the normal
(or z axis) to the material interface. Since t = §Ao/ cos ¢ = ), t/A;
is now independent of ¢ and the scalable parameter 8¢/)o (at normal
incidence) becomes $t/)A,. For the anisotropic layer, all the results
obtained at normal incidence are made applicable for arbitrary ¢ by
substituting A, for Ag. For example, plotting the optimum Bt/), as a
function of N duplicates the curves shown in Figure 7. This notion can
also be used to account for problems where the outer medium is not
free space. In such cases, we have A, = A\g/,/€; (at normal incidence)
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where €, is the relative permittivity of the outer medium.

Although the scaling property of §¢/A, has been established only
for a = 0, it holds to a reasonable degree for small a # 0, but as
increases, the ft/), versus N curves become increasingly dependent on
a. The scalability also extends to the associated values of |R(¢)|, and
this enables us to provide a simple design prescription for an absorbing
layer.

3.4 Design Curves

Since the quantities 3t/), and |R(¢)| are the same for layer thicknesses
up to about 0.5); at least, design curves can be obtained by plotting
|R(¢)| and N versus 3t/A; on the same figure as shown in Figure 8. To
see how to use the figure, suppose that the desired reflection coefficient
at normal incidence is -50 dB. At ¢ = 0 we now have )\, = \y. In
Figure 8 we observe that the |R(0)| curve intersects the -50 dB line
at ft/Ao ~ 0.58, and referring now to the N curve, the number of
elements required is N = 10. The value of 3 can then be found by
specifying either the element size or the layer thickness. Thus, for
elements 0.025)¢ thick, we have t = 0.25)¢ and 8 = 2.32. By increasing
N we can improve the performance up to the limit provided by the
theoretical value of |R(0)| which has been included in Figure 8. A good
approximation to the short-dashed curves in Figure 8 obtained by linear
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regression is

t |
g— = —0.0106|R| + 0.0433 (9)
N = 0.147exp[7.3538¢/)\s] (10)

where A\, = Ao/ cos ¢, | R| is measured in dB and N is the smallest inte-
ger equal to or exceeding the right hand side of (10). These equations
hold for ¢, 0° < ¢ < 90°, for the anisotropic layer, and ¢ = 0° for the
isotropic one. The design criterion provided above applies to specific
angles of incidence. In the case where a specific absorption level is re-
quired over a range of angles of incidence the layer must be designed
for the largest angle occurring. Doing so ensures that the absorption is
superior at all smaller angles.

The performance can be improved by making the anisotropic mate-
rial inhomogeneous, and to illustrate this we consider the case y(z) =
—3jB (z/t)? for which the theoretical reflection coefficient is the same as
before. The scalability is still preserved and the resulting curve is shown
in Figure 8. The fact that the curve for the quadratically tapered layer
lies below that of the homogeneous material confirms the improvement
in performance, and we can now achieve a reflection coefficient of -50
dB by choosing #t/); ~ 0.64 corresponding to N = 9. Approximations
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to the long-dashed curves in Figure 8 are

t
.if_ = —0.0119|R]| + 0.0451 (11)

N = 0.298exp [5.2638¢/),] (12)

where |R| and N are as before. Compared with the homogeneous ma-
terial the decrease in the number of elements required becomes more
pronounced as |R| is reduced. As previously mentioned, these equa-
tions hold for all real angles of incidence in the case of the anisotropic
layer and for normal incidence if the layer is isotropic.

4 THREE-DIMENSIONAL VERIFICA-
TION

As noted earlier, a PML is particularly attractive for terminating a fi-
nite element mesh in the simulation of microwave circuits. For these
applications a PML has an advantage over a traditional ABC because it
does not require an a priori knowledge of the guided wave propagation
constant. To demonstrate the applicability of the design equations in
three dimensions, we consider a shielded microstrip line and a rectan-
gular waveguide.

The microstrip line has width w = 0.71428 cm, substrate thickness
0.12 cm and relative permittivity e, = 3.2, and is enclosed in a metallic
cavity whose dimensions are shown in Figure 9. It should be noted
that the height of the cavity from the microstrip line is sufficiently
large to suppress any reflections from the cavity walls. As a result,
the characteristic impedance of the line should be that same as if the
line was in free space. The microstrip line was terminated using a two-
section homogeneous uniaxial absorber having material parameters ,,
[, in the upper section and 3.2¢,, 7i, in the lower section to match
the substrate. The calculations were carried out at several frequencies
using an FEM code [8] and we show the results for 4.0 GHz. At this
frequency the element width was 0.05)¢ and a five layer absorber having
a total thickness of t = 0.25\¢ was used. With o = 0 the computed
reflection coefficient of the transmission line structure as a function of
B is shown in Figure 9. Recognizing that most of the field is confined
to the substrate, we have A, = Ao/\/€ = 0.559X¢. Using ¢ = 1.789),
and N = 5 in the design formulas (9) and (10) gives 3 = 1.07 and
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Figure 9: (a) Geometry for the microstrip line, (b) computed |R| for
the microstrip line at 4 GHz with a = 0, t = 0.25)g and N = 5. The
intersecting straight lines indicate the predicted values.

|R| = —41 dB (indicated on the plot by the vertical and horizontal lines,
respectively). These values agree reasonably well with the numerical
results shown in Figure 9 where the maximum absorption occurs for
f ~ 1 and |R| ~ —50 dB. The fact that the minimum |R| is lower
than predicted is, perhaps, not surprising. We recall that the design
curves are based on the worst case, i.e. the polarization providing the
largest minimum |R|, and the curve in Figure 9 resembles more the H
polarization curve in Figure 5 than the E polarization which constitutes
the worst case.

The other geometry considered is the rectangular waveguide shown
in Figure 10. The elements are 0.5 cm bricks and the absorbing layer is 5
cm thick (10 elements used) with a material parameter b = 1 —j3. The
reflection coefficient was computed at 4.0, 4.5 and 5 GHz for various
values of 3 in order to determine the maximum absorption point. The
resulting reflection coefficients are plotted in Figure 10. Using equations
(9) and (10) with N = 10 yields At/), = 0.574 and |R| = —50 dB. The
vertical and the horizontal lines in Figure 10 indicate the location of
these values. Once again, the agreement with the predicted values
is good, with only a slight discrepancy in the value of §t/), and a
deviation of about 5 dB in the anticipated reflection coefficient. There
are two points to keep in mind here. First, the design criteria have been
applied to a non-normal incidence case in a three-dimensional setting.
Secondly, the real part o of the material parameter b was set to 1,
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Figure 10: (a) Geometry for the rectangular waveguide, (b) computed
|R| for the waveguide at 4.0 GHz (— —), 4.5 GHz (- - -) and 5.0 GHz
(—) with @ =1,¢=>5.0 cm and N = 10. The intersecting straight
lines indicate the predicted values.

demonstrating that the criteria may still apply when o # 0.

5 CONCLUSION

A uniaxial perfectly matched layer provides a powerful means for trun-
cating finite element meshes close to the modeled structure. By prop-
erly selecting the material properties and sampling rate, almost any
desired level of absorption can be attained, and typically very few sam-
ples (less than five) are needed to achieve a reflection coefficient of -40
dB over a wide range of incidence angles. In this paper we described a
detailed study of three types of layer material including homogeneous
and inhomogeneous uniaxial ones, and by identifying the scalable pa-
rameters of the layers, universal design curves and formulas were de-
veloped. The curves or formulas can be used to specify the numerical,
geometrical and electrical parameters of the PML to achieve a desired
absorption down to -60 dB or lower. They are valid for all real angles of
incidence for the anisotropic layer and restricted to normal incidence for
the isotropic layer. As expected, a lower material loss requires a thicker
absorber to produce the same reflection coefficient. On the other hand,
a higher attenuation rate requires more samples to attain a lower re-
flection coefficient in a numerical implementation. An inhomogeneous
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(tapered) PML is better than a homogeneous one since the material
loss can be increased to larger values close to the metal backing where
the field is smallest.

To test the applicability of the design criteria in a three-dimensional
setting, a shielded microstrip line and a rectangular waveguide were
considered. With both structures terminated with a homogeneous
PML, the results were in reasonable agreement with prediction, and
the discrepancies were no more than could be expected in view of the
conditions under which the criteria were established. These conditions
are:

(1) use of a particular one-dimensional FEM code

(ii) based on the worst case polarization, i.e. the polarization for
which the minimum reflection coefficient is largest

(iii) assumption of a pure imaginary propagation constant, i.e. o = 0,
in the layer.

Condition (iii) is a requirement for scalability, and though small
values of o are still admissible, the condition is clearly inappropriate
if there is substantial power at complex angles of incidence for which
large o is required for absorption. If the polarization can be specified,
(ii) is also inappropriate, and the design criteria may underestimate the
performance that can be achieved. In any given problem where there
is the luxury of testing a variety of layer specifications, it is probable
that a performance can be achieved which is better than that predicted
by the criterion, but even then the design values are a logical place to
start. In the more likely situation where prior testing is not feasible,
we believe that the design criteria provide a logical basis for specifying
the parameters of the PML and its sampling.
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Application and Design Guidelines of the
PML Absorber for Finite Element
Simulations of Microwave Packages

J. Gong*, S. Legault*, Y. Botros* and J.L. Volakis*

Abstract

The recently introduced perfectly matched layer(PML) uniaxial absorber for fre-
quency domain finite element simulations has several advantages. In this paper we
present the application of PML for microwave circuit simulations along with design
guidelines to obtain a desired level of absorption. Different feeding techniques are also
investigated for improved accuracy.

I. Introduction

In the numerical simulation of 3D microwave circuits using partial differential approaches, it
is necessary to terminate the domain with some type of non-reflective boundary conditions.
When using frequency domain PDE formulations, such as the finite element method, the
standard approach is to employ some type of absorbing boundary conditions(ABCs) [1], [2],
[3]. Also, the use of infinite elements [4] or port conditions [5] have been investigated. All of
these mesh truncation methods require a priori knowledge of the dominant mode fields and,
to a great extent, their success depends on the purity of the assumed mode expansion at
the mesh truncation surface. Larger computational domains must therefore be used and the
accuracy of the technique in computing the scattering parameters could be compromised.

Recently, a new anisotropic (uniaxial) absorber [6] was introduced for truncating finite
element meshes. This absorber is reflectionless(i.e. perfectly matched at its interface) for all
incident waves, regardless of their incidence angle and propagation constants. As a result,
it can be placed very close to the circuit discontinuity and is particularly attractive for
terminating the computational domain of high density microwave circuits where complex
field distributions could be present.

Although the proposed uniaxial PML absorber has a perfectly matched interface, in
practice a finite metal-backed (say) layer must be used which is no longer reflectionless due

*Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michi-
gan, Ann Arbor, MI 48109-2122
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to the presence of the pec (see Fig. 1). It is therefore of interest to optimize the absorptivity of
the layer by proper selection of the parameters to achieve a given reflectivity with a minimum
layer thickness. In this paper, we present guidelines for implementing the PML absorber to
truncate finite element meshes in microwave circuit simulations. Example microwave circuit
calculations are also given to demonstrate the accuracy of the PML absorber, the FEM
simulator and the feed model. More examples will be presented at the conference.

II. Absorber Design

An extensive study was carried out using two-dimensional(see Fig. 1) and three dimensional
models (see Fig. 2) in order to optimize the absorber’s performance using the minimum
thickness and discretization rate. As expected, the absorber’s thickness, material properties
and the discretization rate all play an equally important role on the performance of the PML.
The typical field behavior interior to the absorber is shown in Fig. 3. As seen, for small 8
values the field decay is not sufficient to eliminate reflections from the metal backing. For
large 3 values, the rapid decay can no longer be accurately modeled by the FEM simulation
and consequently the associated VSWR increases to unacceptable values. However, an op-
timum value of 3 which minimizes the reflection coefficient for a given layer thickness and
discretization can found. The parameters 3 and ¢ play complimentary roles and the study
shows that the PML absorber’s performance can be characterized in terms of the product
ﬁ : (a scalable quantity when o = 0) and the discretization rate. A two-dimensional analysis

was carried out to determine the optimum values of f: and N (the number of samples in the

PML layer) for maximum absorption near normal incidence. It was determined that given
a desired reflection coeflicient |R| for the PML absorber, the optimum % and N values are

approximately given by the expressions [7]

t
pt = —0.0106|R| 4 0.0433
)\g
t
N = 0.147exp [7.3535—]
g

where || must be given in dB and N is equal to or exceeding the right hand value. As an
example, if we desire to have a value of |R| equal to —50dB, from the above formulae we
have that ﬁ ~ 0.58 and N = 10. It should be noted that though the design formulae were

derived W1th a = 0 they also hold for small non-zero values of a.

III. Feed Excitation

Two feed models were used in conjunction with the scattering parameter extraction method.
One was the horizontal current probes (Fig. 2) linking the back PEC wall with the beginning
of a microstrip feed line. About 3 to 5 horizontal probes were needed for convergence and
this scheme proved more accurate that the usual single vertical probe.

The other feeding scheme employed here involved the specification of the quasi-static
TEM mode at the microstrip line port. In the context of the FEM, the excitation is intro-
duced by imposing boundary conditions across the entire cavity cross section through the
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input port. These conditions also serve to suppress backward reflections from the modeled
circuit discontinuity. Consequently, they can be placed close to the discontinuity without
compromising the accuracy of the scattering parameter extraction.

IV. 3D Modeling Examples

The PML performance as predicted by the formulae was investigated by using it to truncate
the domain of 3-D microwave circuits. For example, Fig. 4 shows the optimum value of
Bt~ 0.96 obtained from the above design equations compares well with the results of the full
wave FEM analysis of the microstrip line shown in Fig. 2. The 3-D FEM computations were
carried out using N = 5 for modeling the PML absorber across its thickness and from the
given formulae, it follows that R = —41dB and this agrees well with the optimum value shown
in Fig. 4. Another example is the meander line shown in Fig. 5. For the FEM simulation,
the structure was placed in a rectangular cavity of size 5.8mm x 18.0mm x 3.175mm. The
cavity was tessellated using 29 x 150 x 5 edges and only 150 edges were used along the y-axis.
The domain was terminated with a 10 layer PML, each layer being of thickness ¢ = 0.12mm.
The Sy results are shown in Fig 6 and are in good agreement with the measured data 8].
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Figure 1: Illustration of wave incidence upon a perfectly match interface (PML) with and
without metal backing.
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Figure 2: Shielded microstrip line terminated by a perfectly matched uniaxial absorber layer.
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Figure 5: Illustration of a meander line geometry used for comparison with measurement.
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Figure 6: Comparison of calculated and measured results for the meander line shown in
Fig.5.
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Performance of an Artificial Absorber for
Scattering off of a Metallic Cylinder

Arik D. Brown and John L. Volakis
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June 1, 1996

Abstract

This paper presents a finite element solution to the scattered field
off of a metallic cylinder in two dimensions. Curved rectangle edge
elements are used which conform to the boundary of the cylindrical
scatterer and the cylindrical, metal-backed, absorber used to termi-
nate the FEM mesh. H-polarization was considered in order to com-
pare the solution to that of the well known analytical solution. An
error analysis was done comparing different absorbers - homogeneous
isotropic, homogeneous anisotropic, and inhomogeneous anisotropic.
The performance of the absorber shows that it can be used to produce
accurate results for the numerical analysis of electromagnetic scatter-
ing problems.

1 Introduction

An important consideration in finite element applications is the termination
of the surface(2d) or volume(3d) mesh used. The method used should be
efficient so that the truncation boundary can be placed close to the scatterer
in order to reduce the size of the computational domain. Another important
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performance criteria of the termination scheme used, is that it does not
produce unwanted reflected waves which corrupt the numerical solution. The
truncation method should be invisible to the scattered fields incident upon
the truncation boundary.

ABC’s have typically been used for mesh termination. There are basically
two types of ABC’s. One involves using Wilcox’s expansions [1]-[3], while the
other involves a one-way wave approximation [4], [5]. A problem encountered
with ABC’s is their accuracy. Because of this, higher order ABC’s have
been developed [6], but this introduces unwanted complexity in an FEM
formulation because higher order derivatives are involved.

An alternative to ABC’s is an artificial absorber. The absorber is used
to truncate the FEM mesh therefore simulating a traveling or out-going
scattered wave. Both homogeneous [7], and anisotropic [8] absorbers have
been investigated previously. This paper specifically investigates using an
anisotropic absorber implemented in a cylindrical coordinate system. The
absorber is metal backed which implies that the tangential electric fields are
zero at the absorber boundary. Throughout this paper a scattering formula-
tion is assumed.

2 Formulation

Consider an H-polarized plane wave at normal incidence ( § = 0° ) on a
metallic cylinder, as depicted in Figure 1.

Using Galerkin’s method the appropriate residual equation for the FEM
system is:

//ﬂ vfo-(i‘-VXEC)_kjaN:-EedQ,=f Nex (71-V xE)-dfii (1)
e Le

In this equation, ZZ, and € denote the permeability and permitivity tensors
and E° is the electric field within each element of the FEM mesh. The
elements used for this particular formulation were curved rectangles because
they conformed easily to the cylinder and absorber truncation boundaries.
Figure 2 shows the geometry of the elements.

An edge element formulation was used to approximate the electric field
within each element. The field was then represented as a summation of
weighting functions and unknown electric field coefficients:
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Figure 1: H incident on metallic cylinder

Figure 2: Geometry of FEM edge elements
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The weighting functions are represented as:

N¢ = &Q‘%%p—)_—p (3)
Ny = pEAZ O 0
Ny = gl ®)
N; = s ©)

After substituting equation 2 into equation 1, the resulting FEM system
becomes:

N N

X;[K “|E° = X;[Be] (7)
In this equation, [K¢), represents the local element coefficient matrix values,
E° is the vector of unknown electric field coefficients, and [B°| represents the
contributions from the boundaries of each element. The weighting functions
are divergence-less, but their curl is not constant due to the non-linear shape
of the elements used. The values for [K®| are listed below:

. A[(po + Ap)in(1 + 22) — 2407 4p, + Ap
K, = A : - kgfwAP(T) (8)
1 2po Ap
K: = 1——1 i
12 ,u”[ Ap n(1+ 2o )] 9)
Ad) Po 2po + AP
Ke — 2 , _ L2
B A pzl(po + poAp)in( PN p)] kressDp(—75—) (10)
Ky, = -Ki, (11)
Ky = Kj, (12)
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K = 2”2’;¢§if°++Ai§) Ko 2221+ 20 (13
K = K (13
K3 = Ki (16)
K3 = Ki (17)
Ky = 220+ 20 20 - Reudn(P0) (19
Ky = K (19
Ky = Ki (20
Ky = K ()
K = Kj (22)
K = K (29

The tensors %, and €. which take into account the anisotropic nature of the
absorber have the form:

s 00
T=%t=| 0 a—j8 0 (24)
0 0 a—3p

When computing the boundary term for the FEM formulation, the inte-
gral due to the metal backed absorber is eliminated because the tangential
electric field is zero. This leaves only the boundary integral associated with
the cylinder surface where:

Escat _ Emc (25)

tang — tang

The matrix system can then be solved to find the electric field values. In
order to verify the numerical results, the H field was found on the surface of
the cylinder by using Maxwell’s equations to find the H field in each element
from the computed electric field values.

H =~V x ZN°EC (26)

Wi,
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Figure 3: Magnetic Field Magnitude vs. ¢

3 Results

The results obtained using the absorber were compared to the exact ana-
lytical free space solution. The distance between the cylinder and absorber
was chosen as %, so that reflections from the absorber would not affect the
solution for the scattered fields. This distance was sampled using elements
with a radial length of 2 while elements in the absorber had a radial length
of &. The sampling rate around the cylinder (phi direction) was also chosen
as 20 samples/wavelength.

Three different types of absorber were used - homogeneous isotropic, ho-
mogeneous anisotropic, and inhomogeneous anisotropic. In each case the
magnetic field was plotted versus B while a was kept constant at 1. Fig-
ure 3 shows the results for the homogeneous isotropic absorber. Figures 4
and 5 show the results for the homogeneous anisotropic and inhomogeneous
anisotropic absorbers.

From the graphs, it is apparent that the inhomogeneous anisotropic ab-
sorber has the best performance. Both of the other absorbers work ade-
quately, but the inhomogeneous anisotropic absorber tracks the field varia-
tions much better. Another interesting observation is that the accuracy of
the field relies heavily on the value chosen for 3. From the graphs it is clear
that by changing § simply from 1 to 3 causes a great increase in accuracy.
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In order to determine how accurate the results were, the error as a func-
tion of B and absorber thickness was calculated. Because the actual field
value is << 1, a different error criteria was used. This is because since the
field value is so close to zero, the relative error is dominated by this point and
gives an inaccurate error estimate. In order to circumvent this, the following

error criteria was chosen:

actual __ [Jnum.
H H

Error =100 x /W - | Factual |2 (27)
where
actual _;min .
W — 1 _ e_A(HHma:_HHmm ) (28)

This is very similar to an RMS error with the main diflerence being the
addition of the weighting function. In equation 28 , A is a constant. Figures 6
- 8 show the error for all three types of absorber. From the data, it is obvious
that the error decreases as the absorber is made thicker, and with an increase

in S.
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4 Conclusion

Conformal elements were used in order to analyze the performance of an arti-
ficial absorber termination. Three different absorbers were examined - homo-
geneous isotropic, homogeneous anisotropic, and inhomogeneous anisotropic.
From the data, the inhomogeneous anisotropic absorber performed the best.
It was also shown that by increasing the absorber width and increasing g,
the error can be reduced significantly. By specifying an appropriate 3 and
absorber thickness, the absorber can be used to produce accurate numerical
results for other applications.
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Comparison of three FMM techniques for solving hybrid
FE-BI systems

Sunil S. Bindiganavale and John L. Volakis
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Abstract

Three different versions of the Fast Multipole Method (FMM) are employed to
reduce the storage and computational requirement of the boundary integral in the finite
element-boundary integral method. By virtue of its O(N1%) or O(N133) operation
count, the application of the FMM, results in substantial speed-up of the boundary
integral portion of the code, independent of the shape of the BI contour. The main
goal of the paper is to provide a comparison of the various FMM approaches on the
basis of CPU time and accuracy. We present such comparisons and draw conclusions
on the basis of computing the scattering from large grooves.
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1 Introduction

The finite element-boundary integral (FE-BI) method has been quite popular and extensively
applied to many applications. The method [1] combines the geometrical adaptability and
material generality of the FEM with the rigorous BI for truncating the mesh. Nevertheless,
although “exact”, the FE-BI leads to a partly full and partly sparse system and is thus
computationally intensive for large boundary integrals. When the boundary is rectangular
or circular, the FFT can be used to reduce the memory and CPU requirements down to
Nlog N [1],[2]. However, in general, the boundary integral is not convolutional and in
that case the CPU requirements will be of O(N?), where N, denotes the unknowns on the
boundary. The application of the fast multipole method enables the computation of the
boundary matrix-vector product with a O(N'®) or O(N'*}) operation count [3],[4].

In this paper, we apply three different versions of the Fast Multipole Method (FMM) to
reduce the storage and computational requirements of the boundary integral when the size
of the contour is large. By virtue of its low operation count, the application of the FMM
results in substantial speed-up of the boundary integral portion of the code independent of
the boundary shape.

2 Problem Definition and Formulation

As an application of the proposed technique, we consider the scattering by a cavity-backed
aperture shown in Figure 1. The FE-BI formulation for this problem was already outlined
in [2] and results in the solution of the system

[ ey f o) X
[BI] [P] ]| {en} [ | {inc)
The vector and typical form of this system is given in Figure 2. {#} represents the magnetic
field at the nodes within the groove and on the boundary. Also, {t;} represents the magnetic
currents on the boundary. By virtue of the finite element method, the matrices [K] and [B;]
are sparse and thus the corresponding matrix-vector products are implemented using O( V)
operations. However [P] is a full sub-matrix and thus O(N?) operations are needed to
perform the product [P;]{¢1} with NV, denoting the number of nodes on the cavity aperture.
Consequently, in an iterative solution, this matrix-vector product becomes the computational
bottleneck. To reduce the operation count we will herewith employ the FMM procedure for
implementing the products [P;]{¢y}.

Next we examine three versions of the FMM to accelerate the boundary integral matrix-

vector product computation. Specifically, the exact FMM [5],[6], a windowed FMM [7] and
an approximate FMM [8] are examined.

3 FMM Techniques

As stated above, the FMM is a fast method for calculating the matrix-vector product. The
computation of the matrix-vector product is illustrated with the boundary integral for TE
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dI

Figure 1: Geometry of the groove recessed in a ground plane

incidence (H-pol). In this case we deal with the discretization of the integral equation
H: 4+ H: = HFEM (2)

with H? the scattered magnetic field, H' the incident magnetic field and HFFM the total
field which is employed to enforce tangential continuity and

. kY
. 0/ M. (7 H (kolp - 71) dI (3)

M, = E, is the magnetic current and T'; indicates the extent of the boundary, 7 and p’ are
the vectors describing the observation and source points.

3.1 Exact FMM

As illustrated in Figure 3, the Ny boundary unknowns are subdivided into groups with each
group assigned M, unknowns. Thus a total of [, ~ %‘L groups are constructed. Next, by
invoking the addition theorem for cylindrical wave functions, the Hankel function is expanded

as
Q/2

Y (bl + 2= 7) & X Julhold =D HD (opu)emCe=ber) (1)
n=—Q/2
where ¢y and @, are the angles pi and p’ —p make with the x-axis respectively and is valid
for pir > |p’ — pl. 1t should be noted that the source and observation point vectors, p’ and 7
have their origin at the center of the source and test groups respectively. The semi-empirical
formula

Q/2 = koD + 51n(ko D 4 ) (5)

where D is the diameter of the circle enclosing the groups is used to truncate (4) and in
general, ()/2 = M, assures convergence. The Fourier integral form of the Bessel function

In (koll) -7l) = :

- 6%-(7—5)—jn(¢—¢pl,,+vr/2)d¢ (6)
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Figure 2: Typical form of the FE-BI system matrix arising from the scattering/radiation
problem of a groove in a ground plane.

in conjunction with (4) is used to write (3) as

koY P
Hi(p) = =5 | Velo)Tu(g)e ™ 7dg (7
where the far-field pattern of the source group is given by
/ M, (7)™ dl (8)
and the translation operator Tj(¢) is given by
Q/2
]”, Z H2 kopu/ e In(b=du1+7/2) (9)
n=—Q/2

with the propagation vector of the plane wave
ko = ko(2 cos ¢ + § sin @) (10)

The integral over ¢ is discretized into QQ plane wave directions, thus yielding an expression
for the fields radiated by the source group !’ to the receiving group [

_ koYo
H(p) = OY AqbZTuf (6g)Vi(bg)e a7 (11)
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where A¢ = 27/Q indicates the angular spacing between propagation vectors of plane waves
emanating from a group and thus ¢, = ¢A¢ ¢=1...Q and k, = ko(2 cos ¢, + §sin ¢,).
As mentioned earlier, the number of plane wave directions is set equal to twice the number
of elements in the group (Q = 2M,), thus satisfying the Nyquist sampling theorem with
respect to the integration over ¢.

>
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Group Ip | Group ~ Group /Group Ly
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Figure 3: Computation of the boundary integral matrix vector product using exact FMM

In the exact FMM, the matrix vector-product is computed in the following sequence

L. The pattern of the source group is computed. Mathematically, this corresponds to
Vilo) = [ Ma(ear (12
I

Evaluating this pattern for a single source group and in a single direction requires M,
operations, corresponding to the number of elements in the group (the integration over
the line segment is performed as a summation). Consequently for L, groups and ()
directions for each group, the operation count is QMyLy.

2. The translation operation is employed to evaluate the pattern of a source group at a
test group. Mathematically,

(d’q) l’(¢q)Tll'(¢q) (13)

For Q) directions and L, source and test groups, this process involves an operation
count of QLZ.

3. At the receiving group, the fields are redistributed. Mathematically,
H3(7) = =280y Ag,)e 77 (14)

Thus, computing the redistributed field at a single point requires ) operations, and
for Ly groups each containing M, unknowns the operation count is Q) LyM,.
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The total operation count in the above sequence is C1 @M, Ly + CoQL?. By choosing, Q ~ M,
for convergence, the operation count is given by C1 M, N, + CQ%%. and on setting M, ~ /Ny,
the final operation count is N}*. Improvements to the operation count can be achieved by
nesting groups leading to the multi-level FMM.

Beyond the math, the above breakdown of operations are based on the manager-worker
model. Basically, we can view each group as managed by the center element with the workers
comprising the elements of the group. Communication/interaction among the groups takes
place through the managers which in turn interact with the group elements. However, this
type of model is based on certain simplification/decompositions of the original boundary
integral. Clearly, they reduce the direct interdependence of each group member with other
elements belonging to different groups. This is the essence of the CPU speed up afforded
by FMM. However there are inherent approximations which must be understood in order to
assess the accuracy of each FMM algorithm.

3.2 Windowed FMM

In the exact FMM, the translation operation between groups was considered isotropically.
But, it is suggestive that the groups would interact very strongly along the line joining them
and less strongly in other directions. It was shown that by employing a high frequency
analysis [7], that the translation operator could be contemplated as being composed of a
geometrical optics term, along the line joining the source and test group, and two uniform
diffraction terms associated with the shadow boundaries of the GO term. The translation
operator for different group separation distances along the groove of width 50 is shown in
Figure 4. The number of unknowns on the boundary are 750, resulting in 27 groups. It is
seen that the “lit” region of the translation operator decreases with increasing group sepa-
ration distance, eventually displaying the predictable sinc function behavior for large group
separation distances. The high frequency analysis enables the identification of a lit region
even for groups which are not very widely separated. Thus the plane wave interactions can
be filtered by defining a filter function as

1 (Ipg — dur| < Bs)
Wy = 2 !
i (¢q) { e~ lbg—dyr]-Bs) (|¢q _ ¢”,[ > ﬂs)
(15)
with
: +1
. =sin”} (Q ) 16
B Dhopre (16)
and « is the taper factor. The discretized plane wave expansion is now
s_ kYo, & _p |
H; = -?&bz Wi (6g)Tur(9q)Vir(dg)e ™ 7 (17)
g=1

The operation count now associated with (13) is now reduced to C3L? ~ A—]\}z— with the cor-
b

. . . 2 . .
responding total operation count given by CyM,N, + 04%. Grouping the unknowns with
b
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N3 per group, results in an operation count of O(N*/3). The computation of the bound-
ary integral matrix vector product by employing the windowed FMM is depicted pictorially
in Figure 5. It is seen that the filter has the effect of eliminating plane wave interactions
at directions away from the line joining the interacting groups. The spectrum of interac-
tions around the line joining the centers of the two groups which are retained, reduces with
increasing group separation distance.

3.(1) 7 1 - T T T 1 "
; Groups 1 and
= ‘— / 4 E=S430,=
_ 2w} } Q=54p =
~~ l ——— Qﬁ4.p =
%150 Groups 1 and 8 g
e

Figure 4: The Translation operator for different groups on the boundary of a 50\ wide
groove; 750 BI unknowns; 27 groups

3.3 Fast Far Field Algorithm

The third algorithm employed for hybridization was the fast far field algorithm (FAFFA)
which is an approximate version of the FMM. Unlike the exact FMM, where the kernel is
approximated with the addition theorem, in this algorithm the large argument approximation

o 2'e—jk00111 L
) ~ ¢~ Ikopr Pim _-]_____e—Jkopm-pnu (18)

T Vkopi

is used, where py; 1s the distance between the center of the test group [ and the center of
the source group !'; p,y is the distance between the nth source element and its group center
and py,, is the distance between the mth test element and its group center, as depicted in
Figure 6. It should be noted that the use of the large argument expansion, as an additional

Héz)(ko Iﬁ‘ o
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Figure 5: Computation of the boundary integral matrix vector product using windowed

FMM

approximation, necessitates that the FMM procedure can now be used for groups which are
only very well separated. The decoupling of the test-source element interactions in the kernel
as in (18) enables the computation of the matrix-vector product for far-field groups with a

reduced operation count as detailed in the following sequence.

L.

For each test group, the aggregation of source elements in a single source group involves
M, operations, corresponding to the number of elements in the source group. The
aggregation operation corresponds to

Vi = ZM e—Jkopz't 297 (1())

7=1

. Since the above aggregation operation needs to be done for all source groups the

operation count becomes O(%%Mb) ~ O(Ny), where A—’Z’; represents the total number of

groups. Also this operation, being dependent only on the test group rather than the
test element needs to be repeated for %’: test groups leading to a total operation count

of 0( ) for aggregation.

The next step is a translation operation corresponding to

Ay =TV (20)

2j e—jkoﬂm ‘
Ty = \/j 21)
"=V Voo 2L

Since this needs to be done only at the group level, it involves O( M2) operations for all

where

possible test and source group combinations and is the least computatlonally intensive
step.
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Figure 6: Computation of the boundary integral matrix vector product using the FAFFA

4. The final step in the sequence would be the process of disaggregation corresponding to
the operation

koYo Ny /My S
H;(p) = -—-—-—-2 Z Al’le—J 001" Plm (22)
I'=1

Conceptually, this process is the converse of aggregation. Since this operation involves
only the source group instead of the source element it needs to be done for each source
group thus implying an O(A—A};) operation to generate a single row of the matrix-vector
product. To generate M, rows corresponding to a test group the operation count would

be O(N,). With A—I\% test groups, the operation count would be of O(%"i—)

5. The near field operation count being of O(N,M,) and the far field being O(IA\;—i) gives
a total operation count of
Ny

Op.count ~ CyNyMy + Cy—- (23)
M,

Typically, we can set the elements in each group, M, = /N, and as a result the total

operation count is O~ N}°.

4 Results

A computer code based on the above formulation was implemented and executed on a HP
9000/750 workstation with a peak flop rate of 23.7 MFLOPS. The geometry considered was
the rectangular groove shown in Figure 1. The performance of the hybrid algorithms with
respect to accuracy and speed were compared. The benchmark for accuracy was the RMS
error [9]. Table 1 compares the execution time and error of the standard FE-BI to the
FE-Exact FMM, FE-FAFFA and the FE-Windowed FMM for grooves of widths 25X, 35\
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and 50A. The depth of the groove was 0.35A with a material filling of ¢, = 4 and p,=1
and was illuminated at normal incidence. The data reveals that the FE-Exact FMM offers
almost a 50% savings in execution time with almost no compromise in accuracy. While the
FE-FAFFA is the fastest of the three algorithms, the RMS error was substantially higher
(>1 dB). If the maximum tolerable RMS error is set at 1 dB [9], the FE-Windowed FMM
is the most attractive option as it meets the error criterion while being only slightly slower
than the FE-FAFFA. An observation of interest was the comparison of the residual error as

CPU Time for BI (Minutes,seconds)

Groove Width | Total Unknowns | BI Unknowns | FE-BI (CG) | FE-FAFFA | FE-Exact FMM | FE-WEM!
25 2631 375 (3.48) (3,26) (5.25) (4,13)
35 3681 525 (16,34) (5,55) (10,31) (7,22)
50 5256 750 (45,1) (14,31) (26,18) (16,10)

RMS error (dB)

Groove Width | FE-FAFFA | FE-Exact FMM | FE-WFMM
25 1.12 0.0752 0.6218
35A 1.2 0.1058 0.721
50\ 1.36 0.1123 0.843

Table 1: CPU Times and RMS error of the hybrid algorithms

a function of the number of iterations in the CG solver for the hybrid algorithms. This is
shown in Figure 7. It is seen that the convergence curves for the FE-BI and the FE-Exact
FMM overlap each other to graphical accuracy while the FE-Windowed FMM shows a very
small deviation. Thus, the hybridization of the FMM does not have a deleterious effect on
the conditioning of the FE-BI system.

The execution time of the fastest of the three hybrid techniques, the FE-FAFFA is com-
pared with the FE-BI employing the special CG-FFT solver, suited for only planar apertures
in Table 2. Tt is seen that the CG-FFT solver is substantially faster but is applicable only
to convolutional boundary integrals.

The performance of the hybrid algorithms at a more stressing angle of incidence is de-
picted in Figure 8. The RMS error follows the same trend as for normal incidence illumi-
nation. The width of the groove illuminated was 10\ and this example reveals that the
technique is scalable for smaller problems. The near group radius in this example was 1A;
implying that the matrix vector products for groups separated by a distance less than a
wavelength was computed using the exact method of moments procedure. It has to be noted
that the application of the hybrid techniques for the 10\ groove illustrates that the near-

group radius can be reduced as the problem size becomes smaller down to a minimum in the
vicinity of 0.3A.
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Figure 7: Convergence curves for the hybrid algorithms for the groove of width 25X

4.1 Summary

The hybridization of the finite element - boundary integral and fast multipole methods was
examined from a computational performance point of view. Three different versions of the
fast multipole method was used for executing the matrix-vector product associated with
the boundary integral. It was shown that a considerable reduction in CPU time could be
achieved and further reductions are likely as the boundary integral increases in size. The
FE-Windowed FMM provides the best compromise in terms of speed and accuracy. The
FE-BI with the CG-FFT solver is faster than any of the FEM-FMM versions and can be

used if the terminating boundary is amenable to its use.
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Hybrid Finite Element Methodologies for
Antennas and Scattering
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Abstract

This paper is an overview of the finite element method (FEM) as applied to
electromagnetic scattering and radiation problems. A brief review of the method-
ology is given with particular emphasis on new developments over the past five
years relating to feed modeling, parallelization and mesh truncation. New applica-
tions which illustrate the method’s capabilities, versatility and utility for general
purpose application are discussed.

1 Introduction

Over the past 10 years we have witnessed an increasing reliance on computational meth-
ods for the characterization of electromagnetic problems. Although traditional integral
equation methods continue to be used for many applications, one can safely state that
in recent years the greatest progress in computational electromagnetics has been in the
development and application of partial differential equation(PDE) methods such as the
finite difference-time domain and finite element (FEM) methods, including hybridiza-
tions of these with integral equation and high frequency techniques. The major reasons
for the increasing reliance on PDE methods stem from their inherent geometrical adapt-
ability, low O(N) memory demand and their capability to model heterogeneous (isotropic
or anisotropic) geometries. These attributes are essential in developing general-purpose
analysis/design codes for electromagnetic scattering, antennas, microwave circuits and
biomedical applications. For example, modern aircraft geometries contain large non-
metallic or composite material sections and antenna geometries may involve many lay-
ers of materials, including complex microwave circuit feeding networks. Although, the
moment method continues to remain the most accurate and efficient approach for sub-
wavelength size bodies of simple geometries, PDE methods and hybrid versions of these
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have shown a much greater promise for large scale simulations without placing restric-
tions on the geometry and material composition of the structure.

This paper is a selected review of hybrid finite element methods and their applica-
tions to scattering and antenna analysis. We begin by first introducing the mathematical
basics of the method without reference to a specific applications and in a manner that
identifies the method’s inherent advantages in handling arbitrary geometrical configura-
tions which may incorporate impedance boundary conditions and anisotropic materials.
In this section we also identify the key challenges associated with the implementation of
the method such as mesh truncation and feed modeling for antenna applications. Section
3 of the paper reviews the various mesh truncation schemes to be employed on the outer
mesh surface for the unique solution of the vector wave equation. Absorbing boundary
conditions, integral equations and artificial absorbers are discussed, all leading to differ-
ent versions of hybrid FEM methodologies, and we comment on their accuracy and ease
of implementation. Section 4 presents several approaches for antenna feed modeling in
the context of the FEM, including coaxial as well as aperture coupled feeds. The next
section is devoted to parallelization issues specific to finite element codes. We give per-
formances of typical FEM codes and provide storage and implementation guidelines for
maximizing code performance on parallel computing platforms. The final section of the
paper gives some representative applications of the method to scattering and antenna
problems.

2 Theory

2.1 FEM Formulation

Consider the antenna and scattering configurations shown in Figure 1. In the case of
a scatterer, the entire computational domain is enclosed by a fictitious surface S, that
may encompass a variety of composite/dielectric volumes as well as metallic, impedance
and resistive surfaces. The antenna geometry is assumed to be recessed in some doubly
curved surface. In this case, the bounding surface S, may either be located as shown or
can be coincident with the antenna aperture. As usual, the recessed cavity is intended to
house the radiating elements and their feeding structure such as coaxial cables, striplines,
microstrip lines or aperture coupled feeds. The cavity may encompass any inhomoge-
neous or anisotropic material including resistive cards, lumped or distributed loads and
$0 on.

The goal with any finite element formulation is to obtain the solution of the vector
wave equation

VX [F - (VXE)] - k% E=—jk, 2,3 — V x (F." - M) (1)

in which E represents the total electric field, (€., ,) denote the relative permittivity and
permeability tensors of the computational domain, kg is the free space wavenumber and
Zy is the free space intrinsic impedance. In addition, J; and M; denote the impressed
electric and magnetic sources, respectively, and represent the excitation for the antenna
problem. As is well known, the standard finite element (FE) solution scheme is to
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Figure 1: Computational domains for FEM analysis, (a) the various regions enclosed by
So, (b) typical tetrahedral mesh, (c) computational regions for antenna analysis

consider the weak form of (1), instead of solving it directly. This can be achieved by
extremizing the pertinent functional [1]

F(E) = 2//V VXE (VxE)]—kS(E~E)-E}dv
b ] B kB ¥ x (7 Mo
T k2o //So+5f E-(Hx#)ds

+ jkozo{// ds+Z—LS//VlE Edv} (2)

where R denotes the resistivity or impedance of the surface S,, Sy stands for the junction
opening to possible guided feeding structures and H is the corresponding magnetic field
on Sp and Sy whose outer normal is given by n. Also, V; is the source volume and V] is
the volume occupied by the load Z, whose length and cross section are given by d and
s, respectively. It is noted that S, must be closed when it satisfies an opaque impedance
boundary condition but can be open (i.e. a finite plate) if it satisfies the penetrable
resistive sheet condition [2]

ixnxE=—Rnx(H'-H")

where H* denote the fields on the two sides of the surface S,. As seen from (2), in spite
of the discontinuity in the magnetic field, no special care is required for the evaluation of
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the integral over S,. The explicit knowledge of H is, however, required over the surface
So and Sy (referred to as mesh truncation surfaces) for the unique solution of E.

As an alternative to (2), we can instead begin with (1) by weighting it with a testing
function T. Subsequently, application of the divergence theorem yields the residual

<RT> = // {(vx)[E"(VxB) -Ke EB-T}av
+/// A ko Zdi + ¥ x (BT M)} dV

+ ]kozo//+ T (H x #)dS
So+Sg

+]kZ{// andS—l—m///T Edv} 3)

This is typically referred to as the weak form of the wave equation, whereas (2) is referred
to as the variational form. It will be seen later that when set equal to zero ,(3) yields
the same system of equations as those deduced from the functional (2 (2). Therefore both
methods are equivalent.

When dealing with large computational domains as is often the case in scattering
applications, it is instructive to work with the scattered rather than the total field, and
also distinguish the air and dielectric regions. This approach results in reduced errors
within the computational domain and to proceed we introduce the definitions

E — Einc 1 Escat’ H= Hinc + Hscat (4)

where E™ denotes the excitation field impinging from the exterior of S, and E**** is the
scattered field. With these substitutions, the functional F takes the form

F(Escat) — %/// . {(v X Escat) . (V X Escat) _ kgEscat . Escat} dV
o~ Vd
+ / / /V B [fhoZod; + 7 x (T M) av

+ koo // E* . (H x #) dS
So+Sf

+ ]koZo{ // (7 x B*) - (i x B**) dS + —— /// Bt . e dV}
ZL.S \%

+ ]kOZO {// TL X Escat (Tl X Emc dS + __/// Escat Emc dV}
14
scat  (=—1 inc 2= inc scat
+ 5///Vd{VXE '(ur VX E") ~ K, - " B} qy (5)
1 inc — —1 scat 2= scat inc inc
+ 5//Vd{vXE (VB < R BBV 4 f(B)
in which f (E™<) is a collection of terms involving only the incident field E™. Its specific

form is of no consequence since it will be eliminated in the subsequent minimization of
F. Most importantly, we observe in (6) the presence of integrals over the volume Vi
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occupied by the dielectrics and over the surface 5,. The introduction of these integrals is
required when working with the scattered field because E*** is discontinuous at bound-
aries separating media with different permeabilities [4]. Also note that the presence of
the last two integrals is necessitated because E'" satisfies the wave equation only in free
space, and that these two volume integrals become equal when the dielectric anisotropy
reduces to isotropy.

The functionals (2) and (6) or the weighted residual (3) can be cast into a discrete
system of equations for the solution of E. To accomplish this, it is first necessary to
subdivide the volume as a collection of small elements such as those shown in Figure 2
[3]. Within each volume element, the field can then be expanded as

’I- -----
’
’
’
’
’

Right Angled Skewed Brick Curvilinear Brick
Brick
Tetrahedron Distorted Prism Cylindrical Shell

Figure 2: Illustration of the various elements for tessellating three dimensional volumes

M=#ofedges
B = Y BWE= (W {E7) (6)
k=1

in which W7 are referred to as the edge-based shape or basis functions of the eth element
in the computational domain. In contrast to the traditional node-based shape functions,
the edge-based shape functions are better suited [5] for simulating three dimensional elec-
tromagnetic fields at corners and edges. Moreover, edge-based shape functions overcome
difficulties associated with spurious resonances [6]. They were proposed by Whitney [7]
over 35 years ago and were revived in the 1980s [8],[9]. Their representation is different
for each element but have the common properties [10] of being divergence free (i.e.,
V- W, = 0 within the element) and normalized in such a manner so that the expansion
coeflicients Fj} represent the average field value across the kth edge of the eth element.
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One disadvantage of the edge-based elements is that they increase the unknown count.
However, this is balanced by the increased sparsity of the resulting stiffness matrix. A
detailed mathematical presentation of the edge-based shape functions for various two
and three dimensional elements (bricks, hexahedra and tetrahedra) [11]-[14] is given by
Graglia et. al. [15] in this issue of the Transactions. Linear as well as higher order
(curvilinear) elements are discussed [16]-[19].

2.2 Discretization and System Assembly

Once the computational domain has been tessellated using appropriate elements and
shape functions, the discretization of (2), (3) or (6) proceeds by introducing the expan-
sion B or E** = YN E¢, with E® as given by (6) and N, denoting the number of
elements comprising the computational domain. For the functional (2), the system of
equations is constructed by setting (Rayleigh-Ritz procedure)

OF(E)
_ =1,2,..N; k=12..M 7
aEE 0) € Y~ ) ( )

whereas in the case of (3) Galerkin’s approach is used by setting T = W}. Regardless
of the procedure, the resulting system will be of the form

D IAUET + LIBNHEY + LK) + (07} =0 ®)

in which the brackets denote square matrices and the curly braces refer to columns.
Among the various new parameters, [A¢] is referred to as the element matrix and results
from the discretization of the first volume integral in (2),(3) or (6); N; is equal to the
aggregate of the surface elements (quadrilaterals for hexahedra or triangles for tetrahedra
and prisms) used for the tessellation of S,, S¢ and S,; the column { K¢} results from the
discretization of the source integral over V;; and [B®] is the matrix associated with the
third and fourth surface integrals in (2),(3) or (6). Finally, N, denotes the aggregate
of the surface and volume elements over S,, V; and V; and the column {C?} results
from the discretization of the integrals in (6) involving the external incident field E'.
Basically, {C?} provides the external excitations (scattering problem) whereas { K¢} is
the corresponding excitation column for internal sources as is the case with antenna
problems.

The entries of the element matrix [A°] are specific to the choice of the shape functions
and are.compactly given by

(47 = [[f {IowIR) W - W R W} av (9)
with T
2wy - 2{we}
DW= | ZAWzy - g {we}! (10)
2{we} - 2wa"



and V, denotes the volume of the discrete element while the subscripts (z,y, z) in (10)
imply the (z,y,z) components of the shape function W°. If lumped loads are present
(i.e., in the presence of a volume integral over V;), the diagonal entries of [A°] are simply
modified with the addition of the term jk,Z,d*/Z. Perfectly conducting posts located
at the k™ edge are handled by setting the corresponding total fields equal to zero and
rearranging the final matrix as discussed later.

The internal source excitation column is simply given by

J; M,
(K} = /// wedikz,d gy V4V x [E] M v (1)
Ve Ji M,

and the entries of the corresponding excitation column due to the incident field with the
presence of dielectric materials are

nc

E
1 xr
€y = jkoZ, [| =[WP)S E, ¢ dS
J |
inc\ T nc
1 E, E,
T 5///Vp Vxq By (@) [DWP)T — K [WP[e]} E, dv
d Ez Ez
inc ine\ T
1 E, E,
7 e R R R L B e

in which W? implies the representation of the shape function over the required pt*
surface or volume element.

The specification of the matrix [B®] can not be completed without first introducing
some a priori relationship between the E and H fields on S,. This relationship (or
boundary condition on S,) is referred to as the mesh termination condition and its form
depends on the physics of the problem. For example, in the case of problems where the
entire computational domain is enclosed by a perfect electric or magnetic conductor, the
unknown column {£*} is eliminated from {F}. For scattering and radiation problems,
the mesh termination condition should be such that the artificial boundary S, appears
transparent to all waves incident from the interior of the computational domain. Clearly,
if S, is placed far enough from the scatterer or radiator, the simple Sommerfeld radiation
condition provides the appropriate relationship between E and H. However, this is not
practical since it will yield large computational domains. To bring S, as close as possible
to the scattering or radiating surface, more sophisticated boundary conditions must be
introduced on S,. These mesh termination conditions are critical to the accuracy and
efficiency of the formulation and are some of the major bottlenecks in the implementation
of the FEM. Regardless of the employed mesh termination approach, after carrying out
the sums in (8), a process referred to as matrix assembly, the resulting matrix system
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will be of the general form

{E"} 0] o] | f {EV} | _ [ {¢"}

Al e S a4 1= 0 2
In this, { EV} denotes the field unknowns within the volume enclosed by S, +S; whereas
{EP®} represents the corresponding unknowns on the boundaries S, and/or S;. The ex-
citation column {b"} results from the assembly of { K¢} and similarly {6®} is associated
with {C?}. The matrix [A] is very sparse (9 to 30 non-zero entries per row) and this
is a major characteristic and advantage of FEM. By using special storage schemes and
solvers suitable for sparse systems, the CPU and memory requirements are maintained
at O(N) and scalability can be attained on multiprocessor platforms.

The boundary matrix [G] in (12) is associated with the boundary fields { E®} and its
specific form is determined by the employed mesh termination condition on S,. Over the
past five years, much research on FEM has concentrated on the development of mesh
truncation schemes which minimize the computational burden without compromising
accuracy. As will be seen later, this compromise is difficult to attain and is subject
to the computational problem being considered. For the purpose of our discussion, we
will subdivide the various mesh termination schemes into three categories: (1) exact
boundary conditions, (2) absorbing boundary conditions (or ABCs), and (3) artificial
absorbers. Exact boundary conditions provide an integral relation between the electric
and magnetic fields, and because they are exact, they permit the placement of S, very
near or exactly on the surface of the scatterer or radiator. The resulting formulation is
referred to as the finite element-boundary integral (FE-BI) method and combines the
adaptability of the FEM and the rigor of the boundary integral methods. However, it
yields a fully populated matrix [G] and as a result, the FE-BI method is associated with
higher computational demands even though only a small part of the overall system is full
(see Figure 3a). To alleviate the higher computational demands of the rigorous FE-BI
method, ABCs or artificial absorbers (AAs) can instead be used to terminate the mesh.
Both of these are approximate mesh termination methods, but lead to completely sparse
and scalable systems of equations. Basically, the sub-matrix [G] is eliminated with the
application of ABCs or AAs (see Figure 3b). In the case of ABCs, a local boundary con-
dition in the form of a differential equation is applied on S, to relate E and H so that .S,
appears as transparent as possible to the incident fields from the interior. The resulting
method will be referred to as the finite element-ABC (FE-ABC) method and has so far
been the primary method for general-purpose scattering computations. Finally, the use
of artificial absorbers (including perfectly matched layers or PMLs) [20] have recently
gained major attention because of their potential for greater accuracy and inherent im-
plementation simplicity. In the context of the finite element-artificial absorber (FE-AA)
method, the mesh is terminated by using a material absorber (typically non-realizable
in practice) to absorb the outgoing waves and suppress backward reflections. Below, we
briefly discuss the specifics for each of the three mesh termination schemes.
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3 Mesh Termination Schemes

3.1 Finite Element-Boundary Integral Method

The FE-BI method was introduced in the early seventies [21],[22] as a natural exten-
sion of the FEM for modeling unbounded problems. However, because of its larger
computational requirements, the method did not enjoy a widespread application to elec-
tromagnetics until the late eighties [23, 24]. In accordance with the FE-BI method, the
relation between E and H on S, is provided by the Stratton-Chu integral equation (or
its dual)

A xH(r) = 7 xH™(r)
+oax ] {0 B0 VG () 4 kYo B(R)JGo(rr') (13

4 j}—:ﬁV' [ X BE)] VGo(r,x) | dS

where r and r’ denote the observation and integration points, respectively, and G,(r,r') =
exp(—jk,|r — r'|/(4m|r — 1'|) is the free-space Green’s function. The above is the most
general form of the boundary integral and places no restrictions on the shape of S, with
the exception that it must be closed as shown in Figure 1(a). Provided S, is placed
just above the outer boundary of the scatterer or radiator, any material composition
which is interior to S, can be handled with ease using the FEM without relation to the
boundary integral. This form of the FE-BI was used by Yuan [25] and later by Angélini
et. al. [26], Antilla and Alexopoulos [27], and Soudais [28] to model three dimensional
scatterers with anisotropic treatments. The method has also been successfully used for
biomedical simulations [29],[30].

The discretization of (14) follows by introducing the expansion (over the s™* surface
element)

n=# of edges
E(r) = kZ E{Sy(R) =[S {£°} (14)
=1

with a similar expansion for the H field (if necessary). The surface shape functions
S°(r) can be set equal to W¢(r) when the latter are evaluated on the surface of the
volume element. For the tetrahedron, n x Sy are simply equal to the traditional basis
functions given by Rao et. al. [31]. However, as pointed out in [32], S° can be chosen
independently of W€ provided care is exercised when (14) is substituted/combined with
(2)-(6). Regardless, when (14) is substituted into (3) or (6) after discretization we will
get the partly sparse, partly full system [33] given in (12) and illustrated in Figure 3(a).
Finally, we point out that since S, is a closed surface, the final system is not immune to
false interior resonances due to the boundary integral. In this case, the combined field
formulation [34] or the simpler complexification scheme [35] may be employed.

When S, coincides with an aperture in a ground plane (see Figure 1(b)), the inte-
gral equation (14) can be simplified substantially [36]. Specifically the integral relation
between E and H on the aperture reduces to

ﬁxH:ﬁxH9°+//SﬁxG(r,r’)[E(r)xﬁ] ds (15)
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where G is the dyadic Green’s function of the second kind, with # x V. x G =0 on S,
and for planar platforms it reduces to ,

. %, [~ 1 e Ikelr—r

G = —-] Zo (I '|‘ EVV) 471’|I' _ r'l (16)
In this, I is the unit dyad and the factor of 2 is due to image theory. Also, H% is
equal to the sum of the incident and reflected fields (in the absence of the aperture) for
scattering or zero for antenna parameter computations. For non-planar S,, H% is equal
to the field scattered by an otherwise smooth surface again with the aperture removed.
In this case, the Green’s function should also be modified accordingly with respect to
the non-planar platform. One of the first implementations of the FE-BI for radiation
and scattering from rectangular apertures/antenna recessed in a ground plane was given
by Jin and Volakis [14],[33],[36] and was later extended to antenna analysis on planar
[37], [38], [39] and cylindrical [40] platforms.

The FE-BI method is particularly attractive in terms of CPU and memory require-
ments when the [G] matrix is Toeplitz and can therefore be cast in circulant form [41],[42],
[43], [44]. In this case, the entire system can be solved using an iterative solver [45] in con-
junction with the FFT to reduce the CPU requirements down to O(N,.log N,.) for the
boundary integral sub-matrix. The FFT is simply used to carry out the matrix-vector
product [§] {EB} within the iterative solver. For example, if the symmetric biconjugate

gradient (BCG) method [45] is employed to solve (12) and rectangular elements are used,
the storage requirement is only 4N, + 8Ny, where N, and Ny, denote the number of
edges within the computational volume and on S,, respectively. For triangular surface
elements, the storage requirement is about 4.5 times larger due to the presence of the
diagonal edges across the quadrilaterals. Whether the full matrix [G] is Toeplitz or not
depends on the shape of the surface S, and on the uniformity of the mesh. It can be
shown that [G] will be Toeplitz for planar and cylindrical surfaces provided the surface
grid is uniform. The Toeplitz form of [G] has been exploited with great success and sys-
tems with more than 0.5 million unknowns spanning apertures of 15\ x 15\ have been
solved accurately on a desktop workstation. Convergence of the iterative solver is also
quite impressive for these systems and as demonstrated by Ozdemir and Volakis [46] (see
Figure 4) the FE-BI method is the method of choice for these applications. For example,
we observed that a 180,000 unknowns system converged in 57 iterations and for another
system of 25,000 unknowns convergence was achieved after 66 iterations with an average
CPU time of 2 sec/iteration on an HP9000/750 rated at 24.7 MFlops. Because of these
impressive performances, it is advantageous to transform [G] to a Toeplitz matrix even
when the surface grid is not uniform. To do so, a uniform grid can be superimposed onto
the non-uniform mesh (see Figure 5) and the edge fields on the two grids can be related
via a connectivity matrix [39]. In this manner, non-rectangular antenna elements and
apertures can be modeled with the full geometrical adaptability of the finite element
method and without compromise in accuracy. It is important to note that similar trans-
formation matrices can be exploited for decomposing computational domains as done,
for example, in [47].

When Sp is not planar, the boundary integral matrix will inevitably cause large CPU
and storage requirements for large N, to the point where FE-ABC or FE-AA methods
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become more attractive at the expense of accuracy. Recently, though, techniques have
been proposed which show promise in reducing the computational requirements of the
matrix-vector product [§] {EB}. Among them, the fast multipole method [48], [49] can

reduce the operation count in carrying out the matrix-vector product from O (N2 ) down
to O (NL?) and reductions down to O (N53) have also been proposed. The main idea of
the FMM [49] is to subdivide the surface S, into groups, each containing approximately
M, ~ \/N,, unknowns. By rewriting the free space Green’s function as an expansion [50]
or by introducing its far field approximation [51], it can be shown that the interactions
between the unknowns within the groups can be carried out in O (N, M) operations
whereas the interactions between groups can be carried out in O (N2 /M,.) operations.
The sum of these two operation counts yields a total operation count of O (NL?) for the
boundary integral matrix when M,, ~ /N, and this must be added to the O (Nee)
operation count associated with the sparse matrix [A]. Details for the implementation
of the FMM are given in [48], [49] and when combined with the FEM, we can refer to
it as the FE-FMM method [52]. A comparison of the FE-BI (with LU and conjugate
gradient-FFT solvers) and the FE-FMM methods for the calculation of the scattering
by a large groove in a ground plane is tabulated in Table 1. The groove was 50A long

CPU Time for BI (Minutes,seconds)
Groove Width | Total Unknowns | BI Unknowns | FE-BI (CG) | FE-FMM [ FE-BI (CGFFT)
25X 2631 375 (8,48) (3,26) 1,41)
35X 3681 525 (16,34) (5,55) (3,24)
50 5256 750 (5,1) (14,31) (5,40)
Storage of BI (KB) RMS error (dB)
Groove Width | FE-BI (CG) | FE-FMM | | Groove Width FE-FMM
25\ 1072 277 25\ 1.12
35\ 2102 458 35\ 1.2
50 4291 784 50 1.36

Table 1: CPU Times, storage requirement and error

and 0.35X deep (all metallic) and filled with a dielectric having ¢, = 4 and pu, = 1. By
using a sampling rate of about 15 edges per wavelength, the system unknowns were
Nee = 5256 and N, = 750. From the data in Table 1, it is clear that the FE-FMM is
more than 3 times faster and requires 3-5 times less memory than the FE-BI when LU
decomposition is used for solving the FE-BI system. Because of the grouping/averaging
of the surface elements, the FE-FMM exhibits certain errors which are functions of many
parameters [53] and these errors must be kept in mind as the system size is increased. It
is expected that the FMM will exhibit greater speed-ups as the system size is increased.
Nevertheless, the special implementation of the FE-BI using the FFT is still by far the
most accurate approach.

We close this section by noting that another approach for treating the boundary
integral matrix-vector products is via the adaptive integral method (AIM) [54]. This
approach relies on the introduction of multipole expansions (similar to Taylor series ex-
pansions) to replace the sources on S, by equivalent point sources placed on rectangular
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grids. In this manner the CPU requirements can be reduced by making use of three di-
mensional FFT routines. It can again be shown that AIM reduces the boundary matrix
CPU requirements down to O (NL?®) or even down to O (NL53?).

3.2 Finite Element—Absorbing Boundary Condition Method

The goal with any ABC is to eliminate backward reflections from S,, and a variety of
these boundary conditions have been proposed over the years beginning with those of
Bayliss and Turkel [55], and Engquist and Majda [56]. More recently, other ABCs such
as those by Webb and Kanellopoulos [57], and Chatterjee and Volakis [4] (see also Senior
and Volakis [2]) have been proposed. All ABCs provide an approximate relation between
the E and H fields on the surface Sy which in most cases is derived by assuming a field
expansion in inverse powers of r, where r is the radial distance from the center of Sy. If
the ABC annihilates the first (2m + 1) inverse powers of r, it is then referred to as an
mth order ABC. The second order ABC derived by Chatterjee and Volakis [4] is given
by

GkoZo(H™* x 7)) = &- B 4 B+ [V x #(V x E¥*),] +5 - V,(V-E™),  (17)

where
& = ahib+ agtaty
B = U(fﬂfl + {2£2)
3y = (Jko + 3k — —% — 2%y)Erfy + ——(]ko + 3k — =L — 269t
]ko Km k Km

or = nldkE =k, + D(Gko — £1) + £ + kK]
ar = nldkl — kg + D(jko — Ka) + K3 — KmAR]

~ 1

T = D %,

Ak = Ky — ks

D = 2k + 5k — ~2.
Km

In the above equation, the subscripts n and t denote surface normal and tangential
components of the field, f,,; are the principal surface directions and &y, k; are the
corresponding curvatures, k,, = (K1 + k2)/2 is the mean curvature and k, = k1k2 is the
Gaussian curvature. For k; = k, (spherical termination boundary), (17) reduces to the
ABC derived by Webb and Kanellopoulos [57]. The latter authors have recently proposed
a correction [58] for the implementation of these ABCs which should be incorporated in
existing codes.

Upon substituting (17) into the surface integral of (6) and making use of vector
differential and integral identities [59], we have

jkoZo //S Escat . (H % n // Eislcat + Qs (Etslcat) ]dS

scat\2
4 //SOanE 12dS
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Figure 6: Illustration of an antenna terminated by an isotropic absorbing material
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Next, expansion (6) or (14) is introduced and (18) is differentiated as in (7) to obtain
the finite element equations (8) . Since the ABC is a local condition, the sparsity of
the finite element matrix is preserved and the resulting system is again given by (12)
with [G] removed. However, in the case of arbitrarily curved boundaries, the matrix
will not be symmetric except for planar and spherical boundaries. The system will be
also symmetric for cylindrical boundaries only if linear edge-based expansion functions
are used. These ABCs have been extensively validated for a number of antenna and
scattering configurations[59], [60]. Higher order ABCs have been proposed for a more
effective suppression of the outgoing waves. These are often difficult to implement but
as demonstrated by Senior et. al. [61], they provide greater accuracy and effort being
placed so much closer to the scatterer or radiator.

3.3 Finite Element—Isotropic Absorber Method

In accordance with this method, the outgoing waves are suppressed by an absorbing
dielectric layer placed at some distance from the antenna as shown in Figure 6. Typ-
ically, the layer is backed by metal and the finite element region extends all the way
to the metal at which point the mesh is terminated by setting the tangential com-
ponent of the total electric field to zero. This is equivalent to removing the integral
over S, in (2)-(6). Obviously, the accuracy of the technique depends on how well the
metal-backed absorber suppresses the incoming waves without introducing backward re-
flections. The plane wave reflection coefficient of the absorber shown in Figure 6 has
been minimized over the entire visible angular range [46]. The fact that the dielectric
has the same relative permittivity and permeability ensures that there is no reflection
from the air-dielectric interface at normal incidence (perfect impedance match), but the
performance degrades away from normal with the reflection coefficient reaching unity
at grazing. This limitation led researchers to consider perfectly matched interfaces as
discussed next. Nevertheless, even though the isotropic absorbers are not perfect, they
are still useful in modeling antennas on doubly curved platforms. Figure 7(a) displays a
sectoral microstrip patch printed on a conical surface and Figure 7(b) shows the antenna
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Figure 7: Sectoral microstrip patch on cone

resonance behavior for different cone angles. We clearly observe that the resonance fre-
quency drops with the cone angle for the same patch dimensions. It should be also
remarked that the computed resonance frequency is within 3.2 percent of that predicted
by the approximate cavity model, and this is reasonable.

In generating the results given in Figure 7, the computational domain was discretized

using 2,358 prisms resulting in 3,790 degrees of freedom. One frequency run took 5.5
minutes on an HP9000 (Model 715/64) workstation rated at 22 MFlops.

3.4 Finite Element—Anisotropic Absorber Method

This mesh termination method is similar to that described in the previous section except
that the layer is comprised of an anisotropic lossy dielectric which has zero reflection
coefficient at the air-dielectric interface over all incident angles and can therefore be
considered as a perfectly matched interface (PMI) [20]. The intrinsic parameters of the
PMI layer are

- a—jf 0 0
b —¢ 0 a-jf O
a 0 0 1

a=jp

where a = (Z/Z)?, Z is the intrinsic impedance of the medium being terminated by
the absorber, whereas a, 3 and the thickness of the layer are parameters which can be
optimized for maximum absorption.

The advantage of the anisotropic (over the isotropic) artificial absorber in terminating
finite element meshes is illustrated in Figure 8 [62] where it is shown that the anisotropic
absorber retains its low reflectivity at oblique incidences except near grazing (¢ = 0°).
The performance shown in Figure 8 is based on a purely theoretical analysis but as
shown in Figure 9, this performance can be realized in numerical simulations with careful
choices of #t and the sampling rate N within the absorber. It has been found [63] that
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Figure 9: Reflection coeflicient of the PMI for terminating a microstrip line as extracted
from a numerical implementation
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the reflectivity curve shown in Figure 9 is typical to most situations and the location
of the minimum reflection coefficient can be predicted a priori. An extensive numerical
study based on a two dimensional planar absorber model demonstrated that 3¢/, (A, =
Mo/ cos ¢) is a scalable parameter and that given the desired reflection coefficient |R),
the formulas [62]

Gt

- = —0.0106]R| +0.0433 (19)

t
N = 0.147exp[7.353§—] (20)

can be used to choose §t/), and the minimum number of discrete samples to achieve
the desired absorption. In these, |R| is specified in dB and A, denotes the free space
wavelength. These formulas are in agreement with the actual numerical results in Fig-
ure 9 but it has yet to be determined how well they apply for curved perfectly matched
layers which are placed conformal to scattering and radiating surfaces. Improvements
to their absorptivity though can be attained by considering tapered layers and formulas
similar to (19)-(20) are given by Legault [62] for one such tapered anisotropic absorber.

4 Feed Modeling

For scattering problems where the plane wave incidence is usually the ‘source’, the right—
hand-side excitation has been explicitly given in (12) and will not be discussed further.
However, for antenna parameter computations, the explicit form of {K*} in (11) will
depend on the type of feeding scheme being employed. Below we discuss specific forms
of {K¢} corresponding to different feeding choices.

Simple Probe Feed: For thin substrates the coaxial cable feed may be simplified as a thin

current filament of length [ carrying an electric current / I. Since this filament is located
inside the cavity, the first term of the integral in (2) or (3) needs to be considered for
this model. Specifically, the ith (global) entry of the excitation vector K; becomes

Ki = jhoZol [-Wi(x),  i= 71,0201 Jm (21)

where r is the location of the filament, m is the number of (non-metallic) element edges
and 3, is the global edge numbering index. In general, m such entries are associated
with m element edges, and thus the index ¢ goes from 7; up to j,,. This expression can
be further reduced to K; = jkoZo! [, provided that the sth edge is coincident with the
current filament.

Voltage Gap Feed: This excitation is also referred to as a gap generator and amounts to
specifying a priori the electric voltage V' across the opening of the coax cable or any
other gap. Since V = E - d, where d is a vector whose magnitude is the gap width, and

E the electric field across the gap, we have that F; = where cosb; is equal to 1

dcosb;’
if the 7th edge is parallel to d. Numerically, this gap voltage model can be realized by
first setting the diagonal term A;; of the [A] matrix equal to unity and the off-diagonal
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terms A;; (1 # j) to zero. For the right-hand-side vector, only the entry corresponding
to the 1th (global) edge across the gap is specified and set equal to the value F; whereas
all other entries associated with edges not in the gap are set to zero.

Coazial Cable Feed Model: The simple probe feed of the coaxial cable is accurate only if
the substrate is very thin. For thicker substrates, an improved feed model is necessary
and this can be achieved by evaluating the functional

Fo = —jkoZs //S (E x H) - 2dS (22)
f

over the aperture Sy of the coax cable. Assuming a TEM mode across Sy, the fields
within the cable may be expressed as (see Figure 10) [64]

E= -7:—7‘, H= —(23, (23)

with

TC [
ho = —Yreg 4 1o (24)

~ patch r
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Figure 10: (a) Side view of a cavity-backed antenna with a coax cable feed; (b) [llustra-
tion of the FEM mesh at the cavity-cable junction (the field is set to zero at the center
conductor surface).

the electric and magnetic fields, respectively, measured at z = 0 and Iy is the center
conductor current. Also, (r,¢,z) are the polar coordinates of a point in the cable with
the center at r = 0. We observe that (24) is the desired constraint at the cable junction
in terms of the new quantities kg and eg which can be used as new unknowns in place
of the fields E and H.

However, before introducing F¢ into the system, it is necessary to relate eg and hg to
the constant edge fields associated with the elements in the cavity region which border
the cable aperture. Since the actual field has a 1/r behavior in the cable, we find that

AV = E,(b — a) = eolng, 7= Np(p = 1,2, ...,Nc) (25)
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where AV denotes the potential difference between the inner and outer surface of the
cable and N, denotes the global number for the edge across the coax cable. When
this condition is used in the functional Fg, it introduces the excitation into the finite

element system without a need to extend the mesh inside the cable or to employ a
. oL oFc . . .
fictitious current probe. The derivation of TR and its incorporation into the system is
i
then a straightforward task [64]. As can be expected, the above feed model assumes the
presence of only the dominant(TEM) mode at the cavity-cable junction, an assumption
which may not be suitable for certain applications. Of course, the model can be improved
by extending the mesh (say, a distance d) into the cable. The equi-potential condition

will then be applied at z=-d, where all higher order modes vanish.

Aperture-Coupled Microstrip Line Model: As shown in Figure 11, when the microstrip
antenna is fed with a microstrip line network underneath the ground plane (cavity’s base)
via a coupling aperture, special treatment of the feed structure must be considered in
the FEM formulation. This is because the microstrip line is usually designed to have
different size and shape as compared to the cavity’s geometries. Hence, the conventional
simulation of treating the entire 3-D domain using a single type of element is not efficient
or appropriate for this feed.

Referring to Figure 11, it is appropriate to separate the computational domains be-
cause of the small element size required in modeling the guided feed structure. As an
example, let us consider a rectangular aperture which has been extensively employed in
practice. The cavity fields may be discretized using tetrahedral elements, whereas in the
microstrip line region rectangular bricks are the best candidate since the feed structure
is rectangular in shape and the substrate is of constant thickness. Although both types

Antenna Elments

st m }

Truncation Plane
Coupling Aperture Sa

Figure 11: Cross-section of an aperture coupled patch antenna, showing the cavity
region I and the microstrip line region II for two different FEM computation domains.

of elements employ edge-based field expansions, the meshes across the common area
(coupling aperture) are different, and consequently some connectivity matrix must be
introduced to relate the mesh edges across the aperture. However, since the aperture is
very narrow, a ‘static’ field distribution may be assumed at any given frequency. There-
fore, the potential concept may be again applied to relate the fields below and above
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the aperture. Specifically, the ‘equi—potential’ continuity condition is enforced, and to
demonstrate its implementation, let us first classify the slot edges as follows

Tetrahedral Mesh (Cavity Mesh):

o B j=1,23,.. vertical edges

o £ j=1,2,3,... diagonal edges
Brick Mesh (Feed Mesh):

o Bf j=1,2,3,...  vertical edges only

Then the ‘equi—potential’ continuity condition requires that

EM = ¢E
t c C
EY = oGBS+ €1 Eip)

in which

+1
6j = 1 )

whereas ¢ and d are the lengths of the vertical and diagonal edges, respectively. That
is, t is simply the width of the narrow rectangular aperture. The coefficient ¢; is equal
to £1 depending on the sign conventions associated with the meshes above and below
the coupling aperture.

This connectivity scheme can be extended to entirely different computational do-
mains. Also, it is apparent that the approach makes the FEM implementation straight-
forward for different geometry/size domains that would be significantly inefficient if only
one type of elements were used for modeling the structure. In addition, the technique
ensures a good system condition since the number of distorted elements in the mesh is
minimized.

5 Parallelization

When considering 3D problems of practical interest, the unknown count of the compu-
tational domain can easily reach several million degrees of freedom. The sparsity of the
FEM system (particularly for the FE-ABC and FE-AA methods) makes possible the
storage of such large scale problems but even at O(N) computational demands, their
practical solution requires efficient use of parallel and vector platforms. Modern com-
puting platforms can now deliver sustained speeds of several GFlops and CPU speeds
in the Tflops range are within our reach. The inherent sparse matrices of PDE meth-
ods are particularly suited for execution on multiprocessor and vector platforms but
the exploitation of these processors requires special storage schemes and techniques to
perform the matrix-vector product required in the iterative algorithms at the Flop rates
sustained on these multiprocessors.
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Complex
Operation * +
Matrix-vector Products | nze | nze-N
Vector Updates 4N | 3N
Dot Products 3N | 3N
Total # of Operations | 29N | 3N

N = # of unknowns
nze = # of nonzero matrix elements

Table 2: Floating Point Operations of BCG Per Iteration

To parallelize and vectorize the FEM codes, it is essential to first optimize the ex-
ecution of the iterative solvers which typically take-up 90% of the CPU time. Among
them, the conjugate gradient algorithms (CG, BCG, CGS and QMR) have been found
very attractive and a brief comparison of the pros and cons for these is given in [45]. The
Generalized Minimal Residual Method (GMRES) is another iterative solver which can
exhibit faster convergence rates. However, it stores the direction vectors and as a result
it requires much higher storage. For the discussion below we will primarily concentrate
on the BCG and QMR algorithms and we note that the symmetric form of BCG re-
quires minimal number of arithmetic operations (see Table 2). A disadvantage of the
BCG is its erratic convergence pattern whereas the QMR has smooth and monotonic
convergence. However, neither BCG nor QMR can guarantee convergence and typically
they both converge or not for the same problem. When considering the parallelization
of a completely sparse system such as that resulting from the FE-ABC method, the
following issues must be addressed:

Storage of Sparse System: The performance of the code is strongly dependent on the
employed storage scheme. Since a typical FEM matrix has about 8.5 N, or so non-zero
entries, it is essential that the non-zero elements be stored in a manner that keeps the
storage requirements nearly equal to the non-zero entries and minimizes inter-processor
communications. The ITPACK [65] and the compressed row storage (CRS) schemes are
most appropriate for parallel computing. The ITPACK storage format is most efficient
for retrieving the matrix elements and certainly the choice method when the number
of non- zero elements are nearly equal for every matrix row. Basically, the ITPACK
format casts the FEM matrix in a smaller rectangular matrix having the same rows as
the original matrix and can be unpacked by referring to a pointer integer matrix of the
same size. However, this rectangular matrix can contain as much as 50% zeros which
results in space wastage. By using a modified ITPACK scheme, space wastage can be
reduced down to 30%. Even with less wastage, the CRS format may be the most efficient
storage scheme with some compromise in CPU speed. It amounts to storing [A] as a
single long row which can be uncompressed using two integer pointer arrays. For the
symmetric BCG algorithm, the CRS format results in only 8.5 N complex numbers and
N integers. However, it should be pointed out that the CRS format is not appropriate for
vector processors such as the C-90. For vectorization, it is best to organize the storage in
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Processors | # of Processors, P | Tiem (p-secs/iteration/unknown)
Cray C-90 1 (275 MFlops) 0.55
KSR 1 28 1.28
58 0.57
8 3.42
Intel Paragon 16 1.99
32 1.38
IBM SP-1 4 1.47

Table 3: CPU Time Per Unknown for Solving Typical FE-ABC Systems

sections of long vectors and to achieve this for our type of matrices the jagged diagonal
format [66] appears to work best. Using this format the rows are reordered so that the
row with the maximum number of non- zeros is placed at the top of the matrix and
rows with the least non-zero entries are shuffled to the bottom. This reordering greatly
enhances vectorization because it allows tiling of the shorter rows to yield very long
vector lengths in the matrix-vector multiplication phase. Specifically, for some problem
the jagged diagonal storage format allowed the matrix-vector multiplication routine to
run at about 275 MFlops on a Cray C-90 whereas the same routine ran at 60 MFlops
using the CRS format. The dot product speeds and the vector updates reached 550
MFlops and 600 MFlops for the same problem. Table 3 provides a relative comparison
of CPU estimates on various computers.

Interprocessor Communications: For distributed memory platforms, the method of par-
titioning the stiffness matrix [A] among the processors, the chosen storage scheme and
the inherent unstructured sparsity of [A] are all crucial to the overall speed of the code.
An approach that has worked well on massively parallel processors (such as the SP-2,
Intel Paragon, Convex Exemplar) is that of assigning each processor a section of the
matrix and by dividing the vectors among the P processors. Thus, each processor is
responsible for carrying out the matrix-vector product for the block of the matrix it
owns. However, the iterate vector is subdivided among all processors, and therefore
narrow-band or structured sparse matrices have an advantage because they reduce in-
terprocessor communication. Since typical FEM matrices are unstructured, algorithms
such as the Recursive Spectral Bisection (RSB) have been found very effective in re-
ducing inter-processor communication. However, the standard Gibbs-Pool-Stockmeyer
profile reduction algorithm has been found even more effective in reducing the initial
FE-ABC matrix (see Figure 3) to banded form as illustrated in Figure 12. This type of
matrix reordering can deliver speed-ups as close to linear as possible.

Matriz Preconditioning: Preconditioned iterative solvers are intended to improve the
convergence rate of the algorithm. At times, preconditioners are necessary as may
be the case with some dielectrically loaded structures. However, for relatively small
systems (less than 100,000 unknowns) it has been found that diagonal preconditioning
is typically most effective and should always be applied. This preconditioning amounts
to normalizing each row by the largest element, but even this simple operation can lead to
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Figure 12: Reduced bandwidth of the FE-ABC system after application of the Gibbs-
Pool-Stockmeyer profile reduction algorithm

substantial convergence speed-ups. Block and incomplete LU preconditioners are more
effective in improving the convergence of the solver but are more costly to implement
and one must judge on the overall CPU requirements rather than on the improved
convergence alone. For example, the incomplete LU preconditioner given in [67] reduced
the iterations to 1/3 of those needed with diagonal preconditioning. However, each
iteration was 3 times more expensive due to the triangular solver bottleneck.

6 Additional Applications

We choose three more examples to demonstrate the capability of the hybrid finite element
methods.

Scattering by a Large Cone—Sphere: A cone-sphere is basically a hemisphere at-
tached to a cone. This is a difficult geometry to mesh since a surface singularity exists at
the tip of the cone. The singularity can be removed in two ways: 1) by creating a small
region near the tip and detaching it from the surface or ii) by chopping off a small part
near the tip of the cone. The second option inevitably leads to small inaccuracies for
backscatter from the conical tip; however, we chose this option since the conical angle
in our tested geometry was extremely small (around 7°) and the mesh generator failed
to mesh the first case on numerous occasions. In Figure 13, we plot the backscatter pat-
terns of a 4.5\ long cone-sphere having a radius of 0.5A for 66 polarization. The mesh
truncation surface is a rectangular box placed 0.4X from the surface of the cone-sphere.
As seen, the far-field results compare extremely well with computations from a body of
revolution code [68].

Frequency Selective Surfaces (FSS): FSS structures [69] are arrays of tightly packed
periodic elements which are typically sandwiched between dielectric layers. The periodic
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Figure 13: Backscatter pattern of a perfectly conducting conesphere for ¢¢ and 06
polarizations. Black dots indicate computed values using the FE-ABC code (referred
to as FEMATS) and the solid line represents data from a body of revolution code [68].
Mesh termination surface is a rectangular box.
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elements may be of printed form or slot configurations designed to resonate at specific
frequencies. As such, they are penetrable around the element resonances and become
completely reflecting at other frequencies. To meet bandwidth design specifications,
stacked element arrays may be used in conjunction with dielectric layer loading. Here
we consider the analysis of FSS structures via the FE-BI method. Because of the fine
geometrical detail associated with the FSS surface, the finite element method has yet
to be applied for the characterization of FSS structures, but use of prismatic elements
makes this a much easier task. Of particular interest in F'SS design is the determination
of the transmission coefficient as a function of frequency, and since the array is periodic,
it suffices to consider a single cell of the F'SS. For computing the transmission coefficient
T, the periodic cell is placed in a cavity as shown in Figure 14 and the structure is excited
by a plane wave impinging at normal incidence. Assuming that near resonance the wave
transmitted through the FSS screen will retain its TEM character, the transmission
coefficient of the FSS panel can be approximated as

S

E
T(O) = 10log |—
dB 0g o

where a is the reflection coefficient of the absorber placed at the bottom of the cavity
and should be kept small (< 0.1) to suppress higher order interactions. By adding the
next higher order interaction, a more accurate expression for the transmission coefficient
1s

Tig ~ Td(g) + 10log [1 —a(l - T(O))] .

The above FSS modeling approach was applied for a characterization of multi-layered
slot F'SS structures. The geometry of the multilayer radome is given in Fig. 14. The
total thickness of the F'SS was 6.3072cm and is comprised of two slot arrays (of the same
geometry) sandwiched within the dielectric layers. For modeling purpose, a 1.54cm thick
absorber is placed below the FSS as shown in Fig 14. It is seen that the results generated
by the FE-BI method are in good agreement with the measurements [70].

Scattering by Jet Engine Inlets:

This example demonstrates a hybridization of the finite element and high frequency
methods for scattering by jet engine structures[71]. In this hybridization, the jet en-
gine itself is modeled by the FEM taking advantage of the geometrical adaptability of
finite methods. The fields generated by the FEM are then propagated to the mouth
of the jet engine using a ray technique such as the geometrical theory of diffraction or
the shooting and bouncing ray methods. To analyze the scattering by the jet engine,
the blade structure is placed in a computational domain which is truncated by a per-
fectly matched absorbers at about 0.5 wavelengths from the engine face. By exciting
the engine on a mode by mode basis, the appropriate modal scattering matrix is gen-
erated using the procedure described in [71]. However, in this case the computational
domain is confined to a single blade lobe (cylindrical periodic cell) using appropriate
phase boundary conditions at the boundaries of the periodic cells. This reduces the
computational requirements to very low orders and permits the simulation of practi-
cal jet engine geometries. Given the modal scattering matrix of the jet engine, high
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Figure 14: Upper figure: geometry of the multilayer frequency selective surface (FSS)
used for modeling; lower figure: measured and calculated transmission coefficient
through the FSS structure
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frequency techniques can be readily used for propagating the fields to the inlet open-
ing as described by Karty et.al.[72]. A demonstration on the accuracy of this hybrid
technique is given in Figure 15 where we show the computed scattered field due to a
single mode excitation. The specific engine-blade geometry was placed in a cylindrical
metal-backed cavity as shown in Figure 15. It consisted of 20 straight blades mounted
radiallly on a cylindrical hub 9.25” in radius with the blades extending all the way to
the outer wall of the cavity which was 14.375” in radius. The blades were 2 degrees
thick and 2.75”long, whereastheentireinletdepthwas19.685” and we remark that this
configuration is similar to an F4 fighter engine. The shown computation was carried
out at 4.348GHz and involved the solution of an FEM system with only 87,000 edges
(64,000 elements) since a single periodic lobe was descretized but the overall structure
spans about 4.5 wavelengths in diameter. As seen the agreement between the FEM com-
putations and those of the reference modal solution are in excellent agreement, nearly
overlaying each other.

7 Conclusion

In this paper we reviewed hybrid finite element methods as applied to electromagnetic
scattering and radiation problems. Much of the emphasis dealt with the various mesh
truncations schemes and we presented an up-to-date account of these schemes. The
usual finite element-boundary integral method was presented and new developments for
reducing the CPU requirements of this technique using the fast integral methods were
discussed. Antenna feed modeling in the context of the finite element method had not
been discussed before and for the first time we presented an overview of the model-
ing approaches for the most popular antenna feeds, including aperture coupled feeds.
Parallelization will continue to play an increasingly greater role and a section was in-
cluded discussing our experiences for better implementation of finite element codes on
distributed and vector architectures. A number of examples illustrating the success-
ful application of the finite element method were included throughout the paper and
these were intended to demonstrate the method’s geometrical adaptability and inherent
capability to treat highly heterogeneous structures.

As can be expected, issues relating to mesh truncation, mixing of elements [73], do-
main decomposition[74, 75], robustness, adaptive refinement|76], accuracy, error control,
feed modeling and parallelization for large scale simulations will continue to dominate
future research and developments relating to partial differential equation methods. An
apparent advantage of the finite element method is its potential hybridization with all
other frequency domain methods. Future applications of the finite element method are
likely to make greater use of hybridization techniques aimed at increasing the method’s
accuracy and efficiency while retaining its inherent geometrical adaptability and ease in
handling materials.
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