UPGRADE OF FEMA -PRISM FOR
LOG-PERIODIC ANTENNAS

M.D. Casciato, T. Ozdemir, M. Carr and
J.L. Volakis

Naval Air Warfare Center Weapons Div.
China Lake, CA 93555-6001

December 1996

33762-2-T = RL-2465

033762-2-T



PROJECT INFORMATION

PROJECT TITLE:  Further Development of FEMATS, Including Prismatic Meshes,
Graphical Interface and New Mesh Truncation Schemes

REPORT TITLE:  Upgrade of FEMA-PRISM for Log-Periodic Antenna Analysis

REPORT No.: 033762-2-T

DATE: December 1996

SPONSOR:

Dr. Helen Wang

Code 472210D, Bldg 01400

Naval Air Warfare Center Weapons Div.
China Lake, CA 93555-6001

Phone: (619) 939-3931

Dr. A. R. (Ron) Skatvold

Code 472320D

Naval Air Warfare Center-Weapons Div.
China Lake, CA 93555-6001

Phone: (619) 939-8915

Fax: (619) 939-6594

SPONSOR P.O. or
CONTRACT No.:  N68936-95-M-E248

U-M PRINCIPAL

INVESTIGATOR:  John L. Volakis
EECS Dept.
University of Michigan

1301 Beal Ave
Ann Arbor, MI 48109-2122
Phone: (313) 764-0500 FAX: (313) 647-2106

CONTRIBUTORS
TO THIS REPORT: M. D. Casciato, T. Ozdemir, M. Carr and J.L. Volakis



Upgrade of FEMA-PRISM for Log-Periodic Antennas

M.D. Casciato and J. L. Volakis

Radiation Laboratory
Department of Electrical Engineering & Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122

This Package contains the following:

Project Report p. 2
Upgrade of FEMA-PRISM for Log-Periodic Antenna Analysis
M. Casciato and J. Volakis

Document on the mathematics of implementation of FEMA-PRISM p. 18
T. Ozdemir and J.L. Volakis

User’s Manual for FEMA-PRISM with updated input file format. p. 31
T. Ozdemir and M. Casciato

AutoCAD FEMA-PRISM Interface Manual p. 47
M. Casciato
2D Mesh Generator “TRIANGLE” Users Manual p. 58

Downloaded from http://www.cs.cmu.edu/~quake/triangle.html

Reprint of Paper on meshing techniques used in TRIANGLE p. 71
Reprint of paper by J. R. Shewchuk

Automated Design of Folded Slots and Log-Periodics p.76
M. Carr and J. Volakis
(describes the operation of a PC code for generating
DXF files by entering the T, o and 6 of the log-periodic)

Listing and description of all directories on Tape delivered
this report p.79



Upgrade of FEMA-PRISM for Log-Periodic Antenna Anlysis

M.D. Casciato and J. L. Volakis
Radiation Laboratory
Department of Electrical Engineering & Computer Science
University of Michigan

Ann Arbor, Michigan 48109-2122
December 18, 1996

This Package contains the following:

1. Project Report.

2. Paper on FEM techniques used in FEMA-PRISM.

3. User’s Manual for FEMA-PRISM with updated input file format.
4. AutoCAD FEMA-PRISM Interface Manual.

5. Triangle 2D Mesh Generator User’s Manual.

6. Paper on meshing techniques used in Triangle.

7. Paper on automated design of log-periodic geometries.

8. Listing and description of all directories in code delivery.



Upgrade of FEMA-PRISM for Log-Periodic Antenna
Analysis

M. D. Casciato and J. L. Volakis

Radiation Laboratory
Department of Electrical Engineering & Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122
December 18, 1996

Abstract

This report describes the interfacing upgrades and modifications made to the Finite
Element (FEM) antenna simulation code FEMA-PRISM, for the analysis of log-periodic
antenna structures. A description and background of the code are given including
meshing and termination schemes used and why. Limitations of the current methods are
discussed along with additional code modifications in progress to improve performance.
Details of upgrades and modifications are given. A 2D triangular mesh generator,
TRIANGLE, was used in mesh generation. Pre-processing interfaces were written to
convert an AutoCAD .dxf line file to a TRIANGLE input file, and to convert
TRIANGLE output files to the FEMA-PRISM input file “surfmesh”. Examples runs are
shown of both a single element folded slot and a 7-element log-periodic folded slot array
(LPFSA).



Introduction

Over the past 10 years we have witnessed an increasing reliance on computational
methods for the characterization of electromagnetic problems. Although traditional
integral equation methods continue to be used for many applications, one can safely
state that in recent years the greatest progress in computational electromagnetics has
been in the development and application of partial differential equation(PDE) methods
such as the finite difference-time domain and finite element (FEM) methods, including
hybridizations of these with integral equation and high frequency techniques. The major
reasons for the increasing reliance on PDE methods stem from their inherent
geometrical adaptability, low O(N) memory demand and their capability to model
heterogeneous (isotropic or anisotropic) geometries. These attributes are essential in
developing general-purpose codes for electromagnetic analysis/design, including
antenna design and characterization. Other attributes of the finite element method are:

Input data to FEM software can be extracted directly from commercially
available (i.e. well-supported) solid modeling packages which run on all
popular workstation platforms and are well documented. This is particu-
larly important to problems in antenna analysis and design, where a high
degree of geometrical fidelity must be maintained(see Figure 1 for ex-
amples of antenna and circuit meshes).

FEM is totally insensitive to the material composition of the radiating or
scattering structure. Also, resistive/material and impedance boundary
conditions are readily implemented in a modular fashion.

Being a near-neighbor method, new "physics” can be added to the FEM
codes without a need to alter the original code structure. Neither the mo
ment method nor the finite difference method share this feature.

Being a frequency domain method, the FEM is ideal for antenna analy-
sis and design purposes. Established hybridizations of the FEM with
moment method and ray methods provide an added advantage by deliv-
ering the most adaptable and efficient code when compared to other ap-
proaches.

Advances in mesh termination schemes have relaxed accuracy compro-
mises with that aspect of the method. Also, the FEM can benefit from
recent fast integral equation algorithms. One may therefore think of the
FEM as the core method for treating the heterogeneous volumetric
structures including feeds and loads



K 4ig for RCS Reducuon

[ecding poini

A D Xy

L XX
R
i

A

Patch array meshed

Rectangular patch in with brick elements

tetrahedral mesh

Circular patch in tetrahedral mesh

y SUBSTAATE
‘00 micron Gaay

Mesh and fields of dual patch antenna
(aperture coupled feed) at resonance

NI

15 62mm

¥ gih:z119rm

D

kR
DX
AR
SO N
NS RRRRE
RO
KA
Y IAY -
e
=
<
WAV
AV 47
ex&'“»'

Spiral antenna surface mesh (one arm) Printed dipole geometry and mesh

Figure £ [llustration of finite element meshes for
antenna and circuit problems.



Fine geometrical details such as those found in spiral antennas and the
feeding structure can be modeled without sacrificing geometrical fideli-

ty.

The immediate output of FEM codes is the near zone fields which can
be readily visualized (superimposed with the geometry) and further pro-
cessed using commercially available tools. Moment method codes do
not share this important feature. This inherent aspect of the FEM codes
allows for extraction and visualization of many different parameters as
needed by the user.

Several finite element codes have been developed at the Univ. of Michigan for the
analysis and design of printed antenna configurations. Typically, the printed antenna
configuration is assumed to be recessed in some metallic or coated platform and the
various codes differ in the element used for the tessellation of the antenna, the type of
platform assumed in the analysis (planar, cylindrical or doubly curved) and the closure
condition employed for terminating the finite element mesh. FEMA-PRISM, the code
being upgraded, uses prismatic elements and an artificial absorber (AA) mesh
termination scheme. A brief description follows.

FEMA-PRISM--Background

FEMA-PRISM is a conformal antenna analysis code employing Finite Element (FEM)
numerical techniques to solve Maxwell’s equations. It employs a distorted prismatic
volume mesh and an Artificial Absorber (AA) termination scheme to solve for near
fields on and in the antenna. Post processing routines [1] generate far-field antenna
patterns. It can do both planar and non-planar geometries and has been validated for
several antenna shapes [2]. This version of FEMA-PRISM also has the capability to
define conducting pins and layers as well as holes in the antenna substrate. These
features allow for the modeling of a finite thickness conductor, as well as substrate
antenna patches.

FEMA-PRISM uses an internally generated 3-D distorted-prism volume mesh, grown
from a user supplied 2-D surface mesh, to define the computational domain. Figure 2
shows how the volume mesh is grown from the user supplied surface mesh.



FEMA-PRISM ATTRIBUTES

Mesh Generation

Absordbing

(Perspective view) (Cross-sectional view)

Features

Analyzes antennas on doubly curved platforms
Anisotropic material coatings/substrates are accomodated

Grows volume mesh using distorted prisms. Given the
surface mesh, volume mesh grown along surface normals

Built-in surface mesh generator for circular and rectangular
patch antennas

Mesh turncated using isotropic/anisotropic artificial
absorbers

Figure 2: FEMA-PRISM Mesh Generation, Absorbers, and Features.



The prismatic shape is a good compromise between the more complicated tetrahedron
shape requiring a 3-D volume mesh input and rectangular bricks which do not model
circular geometries well. Generating a 2-D surface mesh, while much simpler than
generating a 3-D mesh, is not a trivial task, especially for broadband antennas or
antennas containing small geometrical features. As an example consider Figure 3,
showing the outline of a 7-element log-periodic slot antenna (LPSA). The slot widths
are a function of frequency with the higher frequency (smaller) elements having
narrower slot widths, usually about 1/100 wavelength. This is much smaller then the
minimum 1/20 wavelength element size recommended for accurate FEM computations.

LPSA Boundary Configuration

il

S——

[
O

Figure 3: Log-Periodic Slot Antenna AutoCAD Boundary Description.

Element size in a uniform mesh will be dominated by this slot width and the resulting
mesh for any practical problem will have too many unknowns to be analyzed on existing
workstations in a reasonable time period. In FEM analysis a uniform mesh is not
necessary and non-uniform meshing as shown in Figure 4 for a triangular cavity slot and
also a 7-element log-periodic slot, will greatly reduce the number of unknowns.
Algorithms to generate non-uniform meshes are complex and not easy to implement.
Because of this a meshing package developed by J.R. Shewchuck at Carnegie-Mellon



University [3,4] and referred to as TRIANGLE was used to generate the FEMA-PRISM
surface mesh. Non-Uniform meshing however, while decreasing the number of
unknowns in the FEM system does not completely solve the problem. The FEM system
requires that the mesh gradient, i.e., rate of change of element size, be gradual for
convergence. This requirement will still keep the number of unknowns high and limit the
antenna problems that can be solved by the code.

Triangular Cavity Slot

Figure 4: Non-Uniform Mesh - Triangular Cavity Antenna and Log-Periodic Folded Slot
Antenna Array.



Artificial Absorbers (AA) are the mesh termination scheme used in FEMA-PRISM
(2,5]. Figure 2 shows how the AA’s are implemented. The FEM domain is surrounded
by a Perfect Electric (PEC) conducting shell. The region between the antenna cavity and
the shell consists of an inner air region and an outer absorbing region. These regions are
defined according to criteria outlined in [5]. The total air/absorber thickness is usually
0.3 free-space wavelengths, 0.15 wavelengths air and 0.15 wavelengths absorber. The
air/absorber regions are sampled (divided) into 1/20 wavelength thick regions, thus
creating 3 layers of air and 3 of absorber. The permittivity and permeability of the
absorber material are identical, usually 1-j2.7. The absorbing layers are designed to
attenuate the incident wave at normal incidence, thus minimizing reflections and
creating the appearance of infinite free space to the antenna. This material is physical
unrealizable thus the name artificial absorber. The outer 6 layers of the meshes shown in
Figure 4 are the air/absorber layers. FEMA-PRISM grows these surface layers in 3-D to
create the side air/absorber layers shown in Figure 2. The code then caps the volume
mesh by user-specified air/absorber layers, again shown in Figure 2. This air/absorber
cap is usually is of the same parameters as the side air/absorber layers (6 layers, 1-j2.7,
etc.). AA’s, while creating a convenient way to terminate the FEM mesh, significantly
increase the number of unknowns.

A serious limitation of FEMA-PRISM’s capabilities to do practical size problems is the
number of unknowns involved. A promising short-term solution will be to extend
FEMA-PRISM’s capabilities to a Boundary Integral (BI) termination scheme. This
technique terminates the mesh at the cavity surface, thus eliminating the air/absorber
elements and significantly reducing the number of unknowns allowing for larger
problems to be solved. The BI option is currently being added to FEMA-PRISM and
will be provided when available. Long term it is believed necessary to conduct research
to determine the most efficient numerical scheme to solve these broad-band antenna
problems.

Far-field patterns can be plotted using FEMA-PRISM post-processing routines [1].
Figure 5 shows an example of these outputs for the triangular slot antenna shown in
Figure 4, along with surface near field plots. All plots were done in Mat]ab.



TRIANGULAR CAVITY SLOT

NEAR FIELDS
y
X

NORMALIZED RADIATION PATTERN
Eo Eo

Ve
) \‘Lb

Figure 5: FEMA-PRISM Example Far-Field Patterns.

E,

3

Tasks Performed

FEMA-PRISM Interface with AUTO-CAD (Task 1c)

For irregular LPDA and LPSA configurations, it is necessary that the structural details
be specified using a CAD file provided, for example, by AutoCAD. Under this task U of
M upgraded the I/O options of FEMA-PRISM to permit reading and decoding of
AutoCAD files (in IGES or DXF formats) for generating the required surface meshes
used for field calculations.

Note that [6] gives detailed information on the usage of FORTRAN routines AcadProc.f
and TriProc.f outlined below. Reference [3] shows how to use the meshing package
TRIANGLE, also discussed below, and also the input and output TRIANGLE file
formats (.poly, .ele, .node).

The AutoCAD to FEMA-PRISM interface is a 4 step process. AutoCAD is used to
generate a .dxf file containing line and boundary information. The .dxf file is then
pre-processed using the FORTRAN routine AcadProc.f [6], to output a file with
extension .poly for input to the TRIANGLE meshing package [3]. Each boundary in the
AutoCAD file is identified by the layer it is on. This layer information is used by
AcadProc to identify boundary regions for TRIANGLE. Note that unix-based AutoCAD
v.13 was used in these examples. This should create no problems if AutoCad LT is used

10



since AcadProc simply looks for line information in the .dxf file. Figure 6 shows a
sample .dxf file format with line and layer information and Figure 7 shows a 1 element
folded slot .poly file with line, layer, and region identifying information. TRIANGLE
uses the .poly file to generate a mesh based on user supplied parameters [3]. It outputs
several file types including those with extensions .node and .ele, containing node and
element information of the mesh. TriProc.f, another FORTRAN preprocessing routine
[6], converts the TRIANGLE .ele and .node files to a FEMA-PRISM compatible mesh
file called “surfmesh”. TriProc allows the user to specify patch or slot (reverse
conducting and dielectric material), cavity or microstrip [1], and Boundary Integral (BI,
not yet implemented) or Artificial Absorber (AA) termination.

0
SECTION
2
ENTITIES
0
LINE
8
WALLS

6
DASHED
62

5
10 4+—
10 4+—
20
1.0
30
0.0

31
10.0
0
ENDSEC

Sample DXF file describing single line on WALLS layer, Dashed,
Color Blue. Line starts at point 1,0,0 (group codes 10,20,30) and
ends at point 10,10, 10 (group codes 11,21,31). 0, ENDSEC indicates
end of Entities section.

Figure 6: Sample AutoCAD .dxf file.

11



Auto-CAD Boundary Definition - Single Slot Including Air/Absorber

Cavity Region Slot Region
\ /
\ /
\ /
\ ]
\ /
\ /[
\ /

Y
N
N\ »
4 A A\ \
4 f L AN
a1/ $ / N A\
777107 VW %
Absorber Regions 01,2 etc. I?!e ;‘:‘;': Alr Regions

Boundary (Layer) #

Boundary and Region #'s
continue to increment to
center region.

Figure 7: Single Slot AutoCAD Boundary/Region definition and Identifiers.

Output Format (Task 1d)

Currently, FEMA-PRISM outputs all data (radiation/scattering pattern, input impedance
and so on) and antenna surface fields in a format for importing into MATLAB. Since
MATLAB has well established and versatile plotting utilities, the data can then be cast in
various presentation formats. Common spreadsheets such as Excel also allow for data
plotting and an option will be included for outputting the data in a format suitable for
porting into these PC data manipulation packages.

The post processing FORTRAN routine FarField.f [6], outputs pattern data in the

12



following column format:

Theta ----- Phi ----- Power (dB) Theta ----- Power (dB) Phi ----- Total Power (dB)
Mesh Generator of LPSA and LPDA (Task 2¢)

Under this task U of M developed interfaces to mesh Log-Periodic dipole and slot arrays
for use in FEMA-PRISM.

After examing many meshing packages for this application we chose a package referred
to as TRIANGLE. TRIANGLE, written in C, is a 2-D mesh generation package using
Delaunay Triangulation algorithms [3,4]. It was written by J.R. Shewchuk of the School
of Computer Science, Carnegie-Mellon University, Pittsburgh, PA (jrs@cs.cmu.edu). It
is available for free on Netlib and at web location:

http://www.cs.cmu.edu/~quake/TRIANGLE.html

Note that a viewing package, Showme, written for unix workstations is also available at
this website. Showme allows the user to view TRIANGLE input and output .node, .poly,
and .ele files.

Details of file formats and usage are contained in [3]. Under this task TRIANGLE was
interfaced with FEMA-PRISM. As previously stated, two FORTRAN preprocessing
routines, AcadProc.f and TriProc.f were written to interface AutoCAD to TRIANGLE
and then TRIANGLE to FEMA-PRISM. While many options are available in
TRIANGLE for simplicity only a few were used to generate meshes for our
applications. The options used control minimum element area, and minimum
TRIANGLE interior angle. Options were also used which specify that the input file from
AcadProc is a .poly (boundary line) file and to use the region coordinate locations and
identifiers at the end of the .poly file to identify bounded regions. This is done to
simplify sorting of various element types (conducting, cavity, absorbers, etc.) for the
FEMA-PRISM input file “surfmesh”. TriProc also contains an option to reverse surface
conducting/non-conducting elements. Figure 8 shows a single element folded slot along
with dimensions and a sample TRIANGLE mesh.

13



Brick vs. Prism - Single Element Folded Slot

Triangle Mesh for FEMA-PRISM

Cavity/Slot Dimensions

10.1457 CM

Slot Width Top/Bottom - 0.19304 CM
Slot Width Sides - 0.38608 CM

@ Infinite Substrate Simulated by Cavity Absorber

Figure 8: Dimensions and TRIANGLE Mesh - Folded Slot.

Feed locations, curvature of the platform, cavity depth and material layers are specified
in the FEMA-PRISM input file [1].

Feed Modeling (Task 2d)

This version of FEMA-PRISM employs probe feed modeling. The probes can be placed
along any horizontal or vertical edge in the antenna mesh.

Validation (Task 4b)

Two examples were chosen for validation, the single element folded slot shown in
Figures 7 and 8 and the 7-element Log-Periodic Folded Slot Antenna (LPFSA) shown at
the bottom of Figure 4. All runs were on an SGI Indigo2 with 200MHz processor and

14



64M ram. Far-field patterns for both problems are shown in Figure 10. A Matlab
“quiver” vector field plot of the single slot is shown in Figure 9.

The single folded slot mesh containing 54393 unknowns was run at 2.075 GHz, the
approximate resonant frequency of the slot. It converged in 10356 iterations and took
approximately 5.54 hours to run. The average time per iteration was 1.91 seconds. E-Cut
is across the narrow cross section of the slot with H-Cut perpendicular to this. The is an
anomaly in the E-Cut cross-pol just above 36.0 degrees which cannot be explained at
this time.

The LPSFA mesh contained 47984 unknowns and was run at 3.05 GHz, or
approximately the resonant frequency of the center of 7 elements. It converged in 8543
iterations and took approximately 3.5 hours with an average time per iteration of 1.46

Electric Field Vectors - Single Folded Slot

Figure 9: Electric Field Vector Matlab “Quiver Plot” - Single Slot.

15



seconds. Note that the mesh size gradient was not optimal in order to keep the number of
unknowns at a reasonable level. A better gradient would have produced an
un-manageable number of unknowns. E-Cut for the LPFSA was perpendicular to the
folded slots, with H-Cut parallel to them.

Folded Slot Radiation Pattern

@ 2075 GHz
10.0 v r r T T v T T r T
00 f - - 1
o *
-100 F - ™
I »* = E-CutCo-Pol e
200 * @@ E CutGrosa Pol -
g 00 . ww s H-CutCo-Pol Yy
he [« #-— #H-Cut Crose-Pol .
< 300 | 3
g ¥ PP, Pt S &
& [ 1 Py, !
E -400 F «” ;
I b | 3 f §
g -50.0 -: T 00, 1
2 L x ‘ .’ :
800 |+ \‘ ]
" » :
200 L 4 v\ .
. ; ."“\ f e !
800 i’ ! x“
4 » W
i
‘w.o 1 1 1 1
[s] ¢] 3B.0 720 1080 140 1800
Degrees
7-Element Log-Periodic Folded Slot
Radiation Pattern @ 3.05 GHz
10.0 T T T T
00
-10.0
200
[o1]
he ]
s -30.0 N
g .
-40.0
%
E | .'"" LY
2 500 t! .
5 g '
-4 0.0 ', = E-Gut Co-Pol ..
-el. f @~ E-Cut Gross-Pol )
H m s H-GUtGo-Pol
700 kg #=— % H-Cut Crosa-Pol “
X1
i
-80.0 - &
]
900 UL N 1 N 1 N N M N e
[¢]¢] 3B.0 720 1080 144 0 180.0
Degress

Figure 10: Far field patterns - Folded Slot and LPFSA.

16



Bibliography

[1] T. Ozdemir and J. L. Volakis, “Users manual for FEMA-PRISM, “Univ of Michigan
Radiation Lab. Techn. Report 031307-6-T, March 1996. 15pp.

[2] T. Ozdemir and J. L. Volakis, “Triangular prisms for edge-based vector finite element
analysis of conformal antennas,” Univ of Michigan Radiation Lab., October 1996.

[3] J. R. Shewchuk, “TRIANGLE, A Two-Dimensional Quality Mesh Generator and
Delaunay Triangulator. v1.3,” Carnegie Mellon University.

[4] J. R. Shewchuk, “TRIANGLE: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator,” School of Computer Science, Carnegie Mellon University.

[5] T. Ozdemir and J. L. Volakis, “A comparative study of an absorbing boundary
condition and an artificial absorber for truncating finite element meshes,” Radio Sci., Vol.
29, No. 5, pp. 1255-1263, Sept.-Oct. 1994.

[6] M. D. Casciato and J. L. Volakis, “AutoCAD FEMA-PRISM Interface Manual,”
University of Michigan Radiation Lab., December 1996.

17



Triangular prisms for edge-based vector finite
element analysis of conformal antennas’

T. Ozdemir and J. L. Volakis

Radiation Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122

October 31, 1996

Abstract

This paper deals with the derivation of the edge-based shape functions for the
distorted triangular prism and their applications for the analysis of doubly curved
conformal antennas in the context of the finite element method (FEM). Although
the tetrahedron is often the element of choice for volume tessellation, mesh gen-
eration using tetrahedra is cumbersome and CPU intensive. On the other hand,
the distorted triangular prism allows for meshes which are unstructured in two
dimensions”and structured in the third dimension. This leads to substantial sim-
plifications in the meshing algorithm and many conformal printed antenna and
microwave circuit geometries can be easily tessellated using such a mesh. The
new edge-based shape functions are first validated by computing the eigenvalues
of three different cavities (rectangular, cylindrical and pie-shell). We then proceed
with their application to computing the input impedance of conformal patch anten-
nas on planar, spherical, conical and other doubly curved (ogival) platforms, where
the FEM mesh is terminated using an artifical absorber applied conformal to the
platform. Use of artificial absorbers for mesh termination avoids introduction of
Green’s functions and, in contrast to absorbing boundary conditions, a knowledge
of the principal radii of curvature of the closure’s boundary is not required.

'This work was supported in part by the U.S. Air Force Rome Laboratory and the
NASA Langley Research Center.

18



Z

Figure 1: The distorted triangular prism shown with the direstions of the
edge vectors

cation, the finite element mesh is terminated conformal to the platform’s sur-
face using an artificial absorber rather than an absorbing boundary condition
(ABC) [5]. The employed conformal mesh termination is easily implemented
by using prisms, and in contrast to the ABCs, the artificial absorber does not
require a priort knowledge of the closure’s radii of curvature or the wave’s
propagation characteristics. The utility and versatility of the proposed fi-
nite element method (FEM) formulation is demonstrated by considering the
analysis of several printed antennas on different platforms. Specifically, we
include input impedance computations for rectangular and circular patches
on planar, spherical and conical surfaces. The radiation from a patch on an
ogive is also considered.

2  Vector edge-based basis functions

Consider the distorted prism shown in Figure 3. The prism’s top and bot-
tom triangular faces are not necessarily parallel to each other and the three
vertical arms are not perpendicular to the triangular faces. The first step
toward specifying a set of shape functions for the prism is the identification
of a unique cross-section containing the observation point (z,y, z) (see Fig-
ure 3). This is done by introducing a parametric representation for the nodes
(zi,9i, 2i) of this cross-section as illustrated in Figure 4. These parametric

19



*
e Xy Y 2y)
Xy Yo v 2) T sl éz "‘ *
'S , K, %
(%5 y,.2,) ’, 4~y
. e (SR )] n4 ' ' * é1
\ e ~ Wl
- ) N {
\ 0 (R 1,0 2y) - Sh
*x,.¥.2,) Lo T . % h /d'
| | cross-section —» e o, h |
S (rll 'rlb) — . (xlh',yjb‘ z,,)
(Xipe Yo Z4) - B (xzs' Yo Z)

Figure 4: (a) Nodal coordinates, (b) triangular cross-section with the local
coordinates ¢ and 7.

representations are given in the Appendix. They involve the parameter s
such that (z;,y;, 2;) reduce to the nodes of the bottom triangle when s = 0
and those of the top triangle when s = 1. Given a point (z,y, z) interior to
the prism, a unique value for s can be computed as discussed in Appendix A.

Having specified the cross-section through the point (z,y,z), we next
proceed with the derivation of the basis functions. We chose to represent
the field variation across the triangular cross-section using the Whitney-1
form [6]. A simple linear variation will be assumed along the length of the
prism. Specifically, the vector basis functions for the top triangle edges can
be expressed as

N1 = d1 ( LQVL3 - L3VL2 )S
N2 = dg ( L3VL1 - L1VL3 ) S
N3 = d3 ( L1VL2 - LzVLl )S

and correspondingly those for the bottom triangle edges will be

M, = dy(L;VIs—LsVEIy)(1—s)
M2 = d2(L3VL1 —LIVL;;)(I —3)
M3 = d3(L1VL2 —LQVLI )(1 —S).

The subscripts in these expressions identify the edge numbers as shown in
Figure 1 and the distance parameters d; are equal to the side lengths of the

d



chose to express these by the representations (linear over the cross-section)

K1(§3n) = {)(§$n)Ll(£an)
Ky(&m) = 0(6n) L2(&,m) (2)
K3(£’ 77) = i}(év 77) L3(€7 77)

As before, L; are the node-based shape functions defined in (1) and a pictorial
description of K, is found in Figure 5(b). Of particular importance in (2) is
the unit vector 9(€,n). It is a linear weighting of the unit vectors v, v, and
03 associated with the vertical arms (see Figure 5(c)), and is given by

X _ Z?:l Lz(fvn) i}i
0(&,n) = T Z?:l L;(€,m)0; ”

This particular choice of ¥ is oriented parallel to the side faces of the prism
when evaluated on those surfaces and minimizes tangential field discontinuity
across the side faces. Another choice is

o(&,n) = Vs

which is always oriented normal to the triangular cross-sections of the prism
and ensures tangential field continuity across the top and bottom triangular
faces. Both choices are equally useful. However, (3) 1s more computationally
efficient and has been used in generating the results presented in sections 3
and 4. ‘

The shape functions derived above for the distorted prism reduce to the
right prism shape functions presented by Nédélec [8]. However, it should be
pointed out that the above shape functions do not guarantee tangential field
continuity across the faces of neighboring prisms. The possible discontinuity
is primarily an issue for highly distorted elements and is caused by the fact
that the horizontal vector basis functions (N and M) may have small non-
vanishing tangential conponents across the vertical faces of the prism (and
vice versa for the vertical basis functions). The expressions given in Ap-
pendix B neglect contributions due to the tangential discontinuities across
the inter-element boundaries. These contributions were ignored because the
discontinuity depends on the distortion of the prism and in practice the ele-
ments are marginally distorted. For general applications, our basis functions
can be safely employed (within the accuracy of the finite element method) as

(3)

7

21



w

Z K[NKCi; —kINKD;]=0  (8)

3 3
N E;N[MNCi; — kXMND;;) + ) E;M[MMC;; — kXMMD;;) +

1=1 j=1

];\ M[& C,] k‘ZMKD,‘j] =0 (9)

Mw

=

w

3
ZE]N [KNC;; — k2K ND;;) + Z EimM[KMC;; — kXKMD;;) +
1=1

3
Z E]‘K[KI\’C,']' - kZI(KDl]] = 0, 1= 1,2,3. (10)

J=1

where the quantities NNC;;, NND;;, etc. are integrals (over the volume
of the prism) involving vector basis functions. Explicit expressions for the
integrals are given in Appendix B.

Upon assembly of (8)-(10) and boundary condition enforcement, we ob-
tain the generalized eigenvalue system

[Al{z} = k;[Bl{=}

in which A = k2 represent the eigenvalues of the problem. The matrices [A]
and [B)] are real, symmetric and sparse ([B] is also positive definite).

22



,,
S

Dielectric ring

P b s
— - - - - . B

i

4

4

Directional - : R
Coupler et /‘ :
S
\ AT A
Metal Cavity \_’/ o \;\“\f‘—"ﬁ /:/j
R
(a) (b)
Cavity dimensions: Dielectric ring info: Results:
Height = 2.2cm Height = 13.84cm Measured = 1282 MHz
Inner diameter = 7.5cm Diameter = 15.24 cm Computed = 1257 MHz
Outer diameter = 11cm (Error = 2 %)
€,.=135

Figure 7: Dielectric ring resonator, (a) geometry, (b) mesh.

Example 3: Pie-shell Cavity

The third example is a pie-shell sector as shown in Figure 8(a) modeled
using distorted prisms. It is obtained by bending the rectangular cavity
considered earlier. The computed and exact eigenvalues for the first five
dominant modes are given in Figure 8(b), and these testify to the accuracy
of the distorted prisms in modeling curved geometries. The number of degrees
of freedom used for this computation was 382. '

4 Application to antennas

4.1 Finite element-artificial absorber method

Prisms facilitate the modeling of conformal antennas since the presence of
curvature does not complicate the mesh generation. As is the case with all
PDE methods, the mesh must be terminated using a boundary integral, some
approximate boundary condition or an absorber. When a Green'’s function is
available, the mesh termination can be achieved using the boundary integral
method right on the antenna surface yielding exceptionally accurate results.
However, there are two problems with the boundary integral mesh trunca-

11



tion techniques. First, the Green’s function is only available for canonical
geometries, i.e., planar [11], cylindrical [12] and spherical [13]. Second, the
presence of material overlays can prohibitively complicate the derivation and
evaluation of the Green’s function making it very difficult to implement the
boundary integral termination method. Thus, for modeling non-canonical
geometries with possible material overlays, it is preferable to avoid use of
the Green’s function. Instead, an artificial absorber will be used for truncat-
ing the mesh as illustrated in Figure 9. The resulting implementation will
be referred to as the finite element-artificial absorber (FE-AA) method and
has several attractive computational features. Among them are fast conver-
gence [5] and a capability to provide accurate input impedance computations.
Accurate radiation pattern data can also be obtained when the rest of the
platform has little or no effect. In its simplest form, this is done by ignor-
ing the extent of the platform and integrating the aperture fields using the
free-space Green’s function.

We next discuss the artificial absorber and then proceed with the appli-
cation of the FE-AA method for the analysis of a variety of patch antennas
on different platforms, some of which are presented here for the first time.

4.2 Design of the artificial absorber

The absorber consists of a lossy dielectric layer backed by a metal. Metal
backing enables us to terminate the mesh while the lossy dielectric lining
traps the incoming wave and absorbs it, thereby forming a trasparent bound-
ary. The absorber material parameters are chosen to completely eliminate
wave reflections at normal incidence. Away from normal, the absorber reflec-
tivity increases monotonically but can be minimized by proper selection of
the absorber thickness and material parameters. Clearly, a thicker absorber
has a better performance but carries additional computational burden. In
addition, higher attenuation is achieved by making the layer more lossy.
However, in this case more samples are required along the thickness of the
layer to accurately model the field’s amplitude decay. For a given thickness
and sampling, an optimization can however be carried out. Such a study was
performed in [5] and it showed that a minimization of the reflectivity for a
3-layer, 0.15, (free-space) thick metal-backed absorber yields the constitu-
tive parameters of €, = g, = 1 — 72.7 (see Figure 9). Below, we make use
of this absorbing layer for mesh truncation. A layer based on the recently

13

24



For this example, the computational domain was discretized using 7,440
prisms resulting in 12,523 degrees of freedom. One frequency run took 3.5
minutes on an HP 715/64 workstation.

Microstrip circular patch on sphere

Figure 11a shows a microstrip circular patch placed on a sphere. This is
an example which clearly shows the advantage of the finite element-artificial
absorber technique. Once the antenna aperture is triangulated, the volume
mesh is grown along surface normals (using prisms) and terminated with
the artificial absorber. Figure 11b shows the comparison with the moment
method [13] and the effect of sphere radius on the resonance behavior. Res-
onance frequencies predicted by this method and the moment method are
within 2% of each other. Although negligible, the difference must be evalu-
ated in view of the fact that the reference data is based on the approximation
that only the dominant T'M;; mode exists under the patch. Such assump-
tions are absent in the finite element analysis. Clearly, the value of the input
resistance is a strong function of the employed feed model and therefore, it
is not surprising to see differences in the levels of the resistance as computed
by the finite element method and the single mode moment method solution.
Figure 11b also shows the resonance behavior for different sphere radii, and
it is observed that the resonance frequency decreases with increasing radius.
This trend might be explained by noting that the shortest distance between
the radiating edges of the patch is greater for a larger sphere radius. The
patch radius (measured on the spherical surface) has been kept constant for
this calculation.

Figures 12c shows the input resistance variation with the excitation fre-
quency for different substrate/superstrate material constants and thicknesses.
Similarly to the planar patch, we observe the downward shift in the resonance
frequency caused by the increasing relative permittivity of the substrate. No-
tice also that the shift is only half as much when the superstrate is present
even though the increase in the refractive index of the superstrate layer is
1.6 times higher than that of the substrate. This is because the field is much
stronger under the patch than above it. As expected, Figure 11c shows that
the loss in the substrate material has no effect on the resonance frequency
but it lowers the overall level of the input impedance. The typical bandwidth
increase with increasing substrate thickness is also observed.

15

25



Metallic
Ground Az

Plane > ‘ ‘h =0.114cm 200
g
=
- g,=2.32 e
(5]
Patch __ :é 100 F

r,=12.9cm -é
r, =10cm é

0= 18.34° S0 ) .

3.0 3.1 32 33
oy (GHz)

(a) (®

Figure 12: Microstrip sectoral patch on cone: (a) Configuration, (b) change
in the resonance behavior as a function of the cone angle .

For this example, the computation region has been discretized using 6,048
prisms resulting in 9,997 degrees of freedom. One frequency run took 4.5
minutes on an HP 715/64 workstation.

Microstrip sectoral patch on cone

This is an example which illustrates the effectivenenss of the new tech-
nique to model antennas on doubly curved platforms with varying radii of
curvature. To our knowledge, this is the first analysis of patches on such a
platform. Figure 12a displays a sectoral microstrip patch printed on a coni-
cal ground plane and Figure 12b shows the antenna resonance behavior as a
function of the cone angle §. We clearly observe that the resonance frequency
drops with the cone angle for the same patch dimensions. It should be also
remarked that the computed resonance frequency is within 3.2 percent of
that predicted by the approximate cavity model, and this is reasonable.

In generating the results given in Figure 12, the computational domain
was discretized using 2,358 prisms resulting in 3,790 degrees of freedom.
One frequency run took 5.5 minutes on an HP 715/64 workstation.

17

26



puted 6-polarized radiation as compared to the measurement [15]. Clearly,
the agreement is very good for this polarization. However, predicting the ¢-
polarized radiation (not shown) requires modeling of the entire ogive as this
particular polarization has a vertical surface field component which is known
to cause diffraction from the ogive’s tips. A way to account for such sec-
ondary diffractions is to interface the FE-AA method with a high frequency
technique and an encouraging study in this direction has been carried out in

[16].

5 Conclusions

A new finite element technique was introduced for the analysis of printed
antennas recessed in platforms of non-canonical shape. The distorted prism
was introduced as the volume discretization element, and corresponding edge-
based shape functions were derived and tested for eigenvalue computations.

A major part of the paper though was devoted to characterizations of
printed antennas using the new technique. Use of prismatic elements was
found very attractive for this application and was essential in simplifying the
modeling of antennas on doubly curved platforms. An artificiai absorber was
used to terminate the mesh conformal to the platform thereby minimizing the
size of the problem while preserving the sparsity of the finite element matrix.
Use of the absorber also avoids difficulties associated with the conformal
application of the classical ABCs. Antennas on spherical, conical and ogival
platforms were considered without using a Green’s function and therefore,
the superstrate/substrate metarials can be readily accounted for.

A limitation of the technique is that it models the immediate neighbor-
hood of the antenna, and therefore ignores the details associated with the
rest of the platform and possible substructures around the radiator. How-
ever, the proposed method was shown to be a good approach for predicting
the resonance behavior of antennas, and could evolve as an important tool
for designing conformal antennas on doubly curved platforms.

19

27



Appendix B

In this Appendix, we show how to compute the following quantities:

NNCy /// V x Ni)- (V x Np)dV
NMCy = /// V x Ni) - (V x M,)dV
NKCy = ///v V x Ni) - (V x K,)dV
MMCy = ///V(VXM;)-(VXMg)dV
MKCy = ///V(VXM,-)-(VxKg)dV
KKCy = ///V(VxKi)-(VxKg)dV

NND; = / / /V N; - N,dV

NMD,, = / / / N, - M,dV
Vv

NKD, = / / / N, -K,dV
1%

leD,‘g = ///M,Mgdv
|4

.MI\'D,'( = /// M,Kng
14

KKDy = / / / K, K,dV.
1%

where the integrals are over the volume of the prism and they must be eval-
uated numerically. However, numerical integration over the distorted prism
volume is cumbersome and therefore, the distorted prism is first mapped onto
a right prism as shown in Figure B1. The integration over the new volume is
then carried out by using the five point Gaussian formula. The relationship
between the two integrations is given by

/// f(z,y,2 da:dydz—/// f(2,9,2) det]J) dédndg

21

28



(xh'yll’zh)

ENMC;,

EN[(C,‘(

EMMC;

EM[(C,‘(

EKK C,‘g

(x3l 'y3(‘ ZJK)

Figure 14: Mapping distorted prism onto a right prism

cos Bn 2 c2hyd;
Xkm + = ——F7—
hihn, 3 hjhihnh,

stn Bk $inPmn )

d;d, ( cos Bn cos Bjm c0S Bim N
¢\ hehn T Thih T Thehn O
COSﬂJ’n 1 62h1d1

ok Xkm + g mh— Sinﬂjk Si"ﬁmn)
J''n 7 m'itn

hld1d~ (cos Bie _cos ,Bkg)

6 ' hjhe  hihe
ENNC;,
—ENKC,[
fldlcosﬁie
0 Thihy
23

(XZ( ’YZU ZZl) (XSb, yw 1)
A
0,0, 1) : (x5, 0, 1)
n ,;\ X350 Yo 0)
Bilinear ) .
transformation e N
> : TR
(0’ 0, O) (XZh’ 0' 0) X (0, 0, 0) (XZb’ 0» O)
(Distorted prism) (Right prism)

29



References

(1] Z.Sacks, S. Mohan, N. Buris, and J. F. Lee, ” A prism finite element time
domain method with automatic mesh generation for solving microwave
cavities,” IEEE APS Int. Symp. Digest, Vol. 3, pp. 2084-87, Seattle,
Washington, June 19-24, 1994.

[2] J. C. Nédélec, ”Mixed finite elements in R3,” Numer. Math.,Vol. 35, pp.
315-341, 1980.

[3] A. Bossavit, "A rationale for ’edge-elements’ in 3-D fields computa-
tions,” IEEFE Trans. Magn., Vol. 24, No. 1, pp. 74-79, January 1988.

[4] J. P. Webb, "Edge elements and what they can do for you,” IEEE Trans.
Magn., vol. 29, no. 2, pp. 1460-1465, March 1993.

(5] T. Ozdemir and J. L. Volakis, ”A comparative study of an absorbing
boundary condition and an artificial absorber for truncating finite el-
ement meshes,” Radio Sci., Vol. 29, No. 5, pp. 1255-1263, Sept.-Oct.
1994.

[6] A. Bossavit, "Whitney forms: a class of finite elements for three-
dimensional computations in electromagnetism,” IEE Proc. Part A, Vol.
135, No. 8, November 1988.

(7] O. C. Zienkiewics and R. L. Taylor, The Finite Element Method, 4th
ed., Vol. 1, McGraw-Hill, New York, 1989.

[8] J. C. Nédélec,” A New Family of Mixed Finite Elements in R3,” Numer.
Math., No. 50, pp. 57-81, 1986.

[9] A. Chatterjee, J. M. Jin and J. L. Volakis, ”Computation of Cavity Res-
onances Using Edge-Based Finite Elements,” IEEE Trans. Microwave
Theory Tech., Vol. 40, No. 11, pp. 2106-2108, Nov. 1992.

[10] J. B. Muldavin, A. D. Krisch and M. Skalsey, Personal communication,
University of Michigan, 1995.

[11] J. Gong, J. L. Volakis, A. C, Woo, and H. T. G. Wang, "A hybrid fi-
nite element-boundary integral method for the analysis of cavity-backed

25

30



User’s Manual for FEMA-PRISM (Version 1)

Tayfun Ozdemir
John L. Volakis

Radiation Laboratory
Department of Electrical Engineering and Computer Science
1301 Beal Ave.
University of Michigan
Ann Arbor, MI 48109-2122
TEL: (313) 764-0502, (313) 747-1797
FAX: (313) 747-2106
E-MAIL: tayfun@Qumich.edu, volakis@umich.edu
HOME PAGE: http://www-personal.engin.umich.edu/~volakis/

31



8.

9.

10

11

12.

13.

14.

15.

16.

17.

18.

19.

CONTENTS

. General code description

. Types of antennas that can be modeled
. Specifying antenna geometry

. Input files

. Output files

. Running the code

Input files MainInput and SurfMesh

Running with user-supplied surface mesh option
Running with built-in surface mesh generator
. Microstrip vs cavity-backed

. How to create a user-defined surface mesh
Viewing the surface mesh using MatLab
Output file FquCur

Output file FdgeUnk

Output file Imp

Output file ElmMat

Demonstration runs

Distribution disk and installation of the code

References

10

11

11

11

13

15

32



SC 8a= lla-’: 1-_]27
€= €5 (1§2.7)
£ MHp=1427

&= £ (152.7)
np =127

PEC

(a) (b)

Figure 1: Antenna Modeling

1 General code description

FEMA-PRISM is written in Fortran 77 computer language and has been verified to
run on Unix platforms for HP, Sun, and SGI workstations. It is currently a serial
code with potential for parallellization. It can be run with limited memory allocation
at the expense of speed.

FEMA-PRISM is used to analyze printed antennas on doubly curved surfaces. It
employs the finite element method (FEM) in conjunction with artificial absorbers to
truncate the mesh (see Figure 1). The resulting FEM system of linear equations are
solved interatively using BiCG technique. For details of the analysis and the theory
of the formulation, the user is referred to [1] and [2].

2 Types of antennas that can be modeled

Microstrip as well as cavity-backed antennas with or without coatings can be modeled
(see Figure 1). Currently, only probe feed can be specified at any arbitrary location.

3 Specifying antenna geometry

Because the antennas conform to the platform, only a surface mesh is needed. A
built-in surface mesh generator exists for rectangular and circular patch antennas
(see Section 11). Once the surface mesh is created, it can be viewed very easily using
MatLab tools (see Section 12). The volume mesh is simply grown along the surface
normal and the distorted prism is the building block of the resulting mesh [1].



4 Input Files

MainInput :
SurfMesh

Contains information about the geometry and other input data
Contains the surface mesh data (specifying antenna surface detail)

5 Output Files

Imp : Stores the input impedance

EquCur  : Equivalent magnetic current over the surface of the antenna

EdgeUnk : Complex amplitudes of edge unknowns

MeshDsply: Contains surface mesh data for plotting using MatLab

ElmMat  : Contains element matrices for each prism in the mesh. It is only computed

when a new mesh is generated and can be reused as long as the mesh does
not change. Whether it is generated or read in is controlled by an entry in

the input file MainInput.

6 Running the code

Compile the code by typing
f17 FEMA-PRISM.f -0 ezecutable-filename

To run the code, type in erecutable-filename. The code will first read the integer
entry of the first row of the input file MainInput, which will tell the code whether the
user supplied surface is alreay in the file SurfMesh or the surfmesh is to be generated
by the code according to the second row of MainInput. If the user supplies the surface
mesh, the code proceeds to read in the contents of the file SurfMesh and carries out
the analysis according to the subsequent rows of information in the file Mainlnput.
If the mesh is to be generated by the code’s built-in mesh generator, the code also
reads in the second row of the file MainInput, stores the surface mesh data in the file
SurfMesh and terminates. The code has to be rerun with user-supplied mesh option.
For more detailed explanation, see the following three sections.

7 Input files MainInput and SurfMesh

MainInput contains information describing the antenna geometry, substrate/superstrate

materials, frequency of operation, etc. Figure 2 shows the data format. As shown
there, the first row tells the code whether the user supplies the surface mesh or whether
the mesh will be generated by the built-in mesh generator. The second row has the
antenna geometry info if built-in mesh generator is used. Otherwise this information
is skipped. Starting with the third row (second row if user-supplied surface mesh

4

34



option is chosen), the rest of the information is concerned with the geometry and
the run. All length quantities are in units of Centimeter, frequencies are
in GHz, currents are in Amperes, electric filed is in Volts/cm, impedance
is in Ohms and material parameters are always relative quantities with
respect to those of the free-space.

SurfMesh contains surface mesh data and must be ready prior to running the code
if the user-supplied mesh option is chosen. It can be created for rectangular and
circular patches by the code itself. The first row of the file SurfMesh contains a series
of numbers specifying how many triangles and nodes are contained in the surface
mesh, the number of triangles within the absorbing layer, etc.

8 Running with user-supplied surface mesh option

In this operation mode, the surface mesh data has to be ready in the file called
SurfMesh. Figure 2 shows the general set up of the MainInput along with a descrip-
tion for each entry. Each filled circle indicates a row. All rows are read by the code
with free format. Letters R,I, or C refer to a real, integer or a complex number entry.
All entries on the same row must be seperated at least by a single space.

9 Running with built-in surface mesh generator

In this operation mode, the code has to be run twice. In the first run, the first row
of the file MainInput has the entry value ”2” or ”3”. The second row provides the
information the built-in mesh generator needs to generate the mesh. The code stores
the mesh data in SurfMesh and terminates. The code must then be rerun with the
user-supplied mesh option.

Note that the built-in surface mesh generator generates planar surface meshes (lo-
cated in the plane z = 0).

Caution: In creating a surface mesh for a rectangular patch, if the patch is
cavity-backed, care must be taken to leave at least one cell between the
cavity wall and the air-absorber interface. If the patch is a microstrip,
at least two cells must be left between the patch boundary and the air-
absorber interface.

35



®  Input File Name: For Internal Mesh generator - Output Mesh File Name
For FEM run Input Mesh File Name

[ ] I 1
"% 1 =User-supplied surface mesh, 2 = built-in mesh generator for circular patch,
3 = built-in mesh generator for rectangular patch
™ For internal rectangular patch only: | = antenna patch, 2 = rectangular slot
/e RI1 11 1 \' {"r'e"senl only if the first row
X ———-——————% Radius of the surface mesh (all the way to the termination boundary) , is "2"
' ————————=" Number of rings from the center to the edge of the antenna : )
' ————— Number of rings from the center to the edge of the cavity | &
: ——— Total number of rings in the surface mesh ' Present only if the first row
"\ —»  Number of absorber rings o is "3" ;
___________________________________________________________ y
S® RRIITIII1I1T1I1 N
| -————————— Incremental length in x-direction (uniform sampling) \
X - " y-direction (uniform sampling) '
| »  Number of cells along x-dimension of the patch !
' -- > " y-dimension of the patch '
: ———————————» Number of cells between patch and cavity wall in x-direction \
: ———————— " y-direction \
! ————————%  Number of cells between the cavity wall and the termination boundary in x-dir. !
1 T > " y-dir. ]
X ————»  Number of absorber cells in x-direction '
X — " y-direction ,

_______________________________________________________________________________

[ ] I T 11
-———————=# # of substrate layers
———— ] =all substrate layers are identical, 0 = otherwise
——» # of superstrate layers ( enter zero for no superstrate)
—» | =all superstrate layers have the same thickness and material parameters, 0 = otherwise

[ R CC
® R CC Ordered from the bottom of the cavity up, each row corresponds to a substrate layer. Only one row
: o is needed if all layers are identical ( row has the info for a single layer ).
[ ] R CC
————— % Thickness of the layer
-———————— Relative permittivity of the layer
— % Relative permeability of the layer

L R CC
® R CC Same as above but for the superstrate. Ordered from the antenna surface up (first row corresponds to the
: s layer just above the antenna surface).
[ ] R CC
[ ] I 1

———————— #of Conducting Layers
———— # of Conducting Pin Layers

¢ tit -L> Conducting Layer # (Top of Layer)
———— Expand the Layer: 1 = yes, 0 = no
————»  Number of Segments to expand the layer
—» #of Holes in Layer

Repeat for each conducting Layer

Repeat for each hole in

conducting layer.

———————»  Surface Node Center of Hole
——® # Segments to Expand Hole

———————= Conducting Pin Layers, All edges corresponding to identified conducting
pin node in surface mesh and normal to surface in specified layer will be
make conducting



I - »

> # of probe feeds

} Each row corresponds to a probe feed

Surface node number #1
Surface node number #2 } Probe current flows from node #1 to node #2.

Layer # (layer within which the normally oriented probe is located, or the layer at top of which
the laterally oriented probe is located). Entry can be positive or negative and increase away from

the surface of the antenna with zero corresponding to the layer immediately below the antenna.

—— Complex amplitude of the probe current

R RRIIRTITII

Starting frequency in GHz
Final frequency in GHz
Increment frequency in GHz

Frequency run to save (1 = save the first freq. run, 2 = next frequency, etc.)
—————» 0=BiCG, 1 =QMR

—————»  Tolerance ( ~ 0.01 )

——® | = monitor convergence (dump residual error at each iter.), 0 = otherwise
— % | =compute element matrices, 0 = read in element matrices
— 1 = write element matrix to file, 0 do not write matrix to file
I —® 1 =Read in user specified termination parameters (given in the following row),
0 = code will figure out the optimum parameters (this is the safe course if one is
not familiar with the artificial absorber termination).
RI1 IC

———® Thickness of one layer (all layers have the same thickness)

~% Total number of layers from the top of the outer-most superstrate layer to the termination boundary
‘‘‘‘ ~—® Number of absorber layers

— Relative permittivity of the absorbing layers.

37



Absorber-air interface for cavity-backed
Absorber-air interface for microstrip

Figure 3: Microstrip vs cavity-backed configuration

10 Microstrip vs cavity-backed

As shown in Figure 3, the microstrip configuration can be realized as a cavity-backed
configuration with the mesh terminated at the cavity walls. Basically, at first, the
code treats every configuration as cavity-backed and if the extent of the mesh is the
same as the cavity, the code recognizes it as a microstrip. Consequently, in the first
row of SurfMesh, the second and third entries are identical and also the fourth and
the fifth entries are identical for microstrip geometry.

In specifying a rectangular microstrip patch for the built-in mesh generator, zero
should be entered for the distance between the cavity wall and the termination bound-
ary (entries #7 and 8). For a circular patch, the same quantity should be entered for
the number of rings from the center to the cavity wall and for the total number of
rings in the mesh (entries #3 and 4).

11 How to create a user-defined surface mesh

The file SurfMesh contains surface mesh data. The format is given in Figure 4. As in
Figure 2, here also the filled circles represent rows, and the letters I, R, or C imply real,
integer, or complex number entries, respectively. The first row has information about
the number of surface triangles and surface nodes. Starting from the second row is the
information about the relation between the local and the global indexing of surface
nodes. It is important to note that the local numbering of surface nodes
increase counter-clock wise. Also, the triangular patches are numbered
starting from the antenna region, continuing with the region between the
antenna boundary and the cavity boundary (if cavity-backed) and finishing

7



® 11 11rnemns
<o Number of triangles making up the antenna region

Number of triangles within the cavity boundary

Total number of triangles in the surface mesh

Number of nodes within (and including) the cavity boundary

Total number of nodes in the surface mesh

Number of absorber triangles

Yyvyvy

® 1111
® 1111
® 1111
- Triangle Index (1-11)
,,, ——————= [ndex of node #1
————» Index of node #2
——— Index of node #3
® | RRR
® I RRR
® | RRR
—————» Node Index (1-12)
———----——#  x-coordinate of the node
—e—» y-coordinate of the node
—-——-# z-coordinate of the node
® I 1
® I 1
® I1

———» Absorber triangle number (1-13)
—= Index of the triangle

Figure 4: Input file SurfMesh

with the region between the cavity and the termination boundaries. This
provides a simple way of identifying the antenna and cavity patches. For example,
if N is the number of triangles making up the antenna region, triangles numbered 1
through N are the antenna triangles, etc.

The information about the coordinates of the nodes follows with each row correspond-
ing to a node. Coordinates are in units of Centimeter. It is also important to note
that the nodes over the cavity aperture are numbered first. This simplifies
the volume indexing for cavity-backed antennas.

The last section of the file identifies the triangular patches making up the absorber
section which is the outer skirt of the surface mesh.

12 Viewing the surface mesh using MatLab

For determining the node location of feeds and to inspect the mesh quality, it is use-
ful to view the surface mesh. In fact, this is a must if the built-in mesh generator is

39



used to create the mesh unless one is familiar with the workings of the mesh generator.

The file MeshPlot contains a MatLab program for viewing the surface mesh. To run
the code, execute the line commands in the given order. There are five seperate
sections. The first section consists of six lines of commands, and it reads in the file
MeshDsply (which has the mesh data) and sets up the screen. Before executing these
commands, variables "nt” and "nn” (second and third lines) must be set to the num-
ber of triangles and number of nodes in the mesh, respectively. The following four
sections fall under the titles Display Mesh, Triangle Numbering, Global Node Number-
ing, and Local Node Numbering. The functions of these sections are self-explanatory
and sections can be executed in any order.

Index of each triangle is indicated at the center of the triangle and the index of each
node is shown at the location of the node (the lines stop short of converging at the
nodes in order not to cross over the text). The local indexing of three nodes of each
triangle is indicated (as 1, 2, or 3) counter-clock wise just inside that node within the
repective triangle. With all this information on the screen, the picture can look too
crowded. In these cases, zooming on a particular section of the mesh is necessary for
clarity. To do this just type zoom in the command window and click the part of the
screen that interests you (with the left mouse botton).

From the first line of the program, one sees that it reads in the file MeshDsply which
contains the node indexing and coordinates. MeshDsply is generated each time the
code is run with user-supplied mesh option. If the built-in mesh generator is used, it
is created at the same time as SurfMesh.

It should be noted that this plotting scheme is only useful for planar meshes. When
the surface mesh defines a three dimensional curved surface , the MatLab program
will display its projection onto the z — y plane since it considers only the z and y
coordinates of nodes.

13 Output file EquCur

EquCuris the file containing the equivalent magnetic currents (radiating in free-space)
distributed across the platform surface. They need to be integrated to obtain the radi-
ated field. They are the true currents in the case of planar antennas, and the Fortran
code FarField.f can be used to integrate them for far field evaluation. In the case
of non-planar platforms, the equivalent currents are local approximations to the true
quantities.

The equivalent magnetic currents have been computed from the apeture electric field
using M = 2E x n where n is the surface normal pointing away from the surface. The

9

40



factor of 2 comes from removing the ground plane (assuming locally flat), implying
that without the factor of 2, the currents radiate in the presence of the ground plane.
Hence, given the ability to radiate the currents in the presence of the ground plane,
the quantities in the file FquCur must be divided by 2. This is possible for planar,
cylindrical, spherical and conical ground planes.

The actual computation of the currents is carried out by averaging the electric field
vector over each non-zero triangular patch (using the basis functions). The resulting
vector is then crossed with the surface normal and the outcome is the average value of
the equivalent magnetic current vector over that triangular patch. Except for the first
row which indicates the number of patches (on which M is given) and the free-space
wave number, each successive row contains the patch number, the area of the patch in
em?, the (z, y, z) coordinates of the center of the patch (computed by averaging the
coordinates of the three nodes of the patch), (z, y, z) coordiantes of the unit normal
of the patch (pointing away from the platform), and the complex amplitudes of the
(z, y, z) components of the magnetic current multiplied by a factor of 2 as noted
earlier. The Fortran code FarField.f reads the magnetic current data in this format.
Thus to compute the radiated field FarField.f must be executed with EquCur as the
input file.

14 Output file EdgeUnk

The file EdgeUnk stores the values to all edge unknowns. Needless to say, it has as
many rows of information as the total number of edge unknowns. The first column is
the index of the edge. The next six columns are the (z, y, z) coordinates of the end
nodes of the edge. The second set of coordinates belong to the node toward which
the edge points. The next column is the magnitude of the electric field vector (the
unknown) which is parallel to and constant along the edge. The last two columns are
the real and imaginary parts of the complex amplitude of the electric field unknown,
respectively. All field quantities are in units of Volts/cm.

The frequency for which this information is saved is determined by the first integer
entry of the frequency information row of the input file MainInput (see Figure 2). If
the entry is zero, the file is not stored. This is often the user choice as the file takes up
a substantial amount of memory and should be saved only if needed. The non-zero
value of the entry specifies which frequeny run to save. The number of frequency runs
are determined by the first three real entries of the same row.

10

41



15 Output file Imp

The file Imp stores the input impedance measured at the locations of the probe feeds.
Input impedance is calculated as Z;, = — El/ I where E is the complex amplitude
of electric field unknown along the edge coinciding with the probe (in Volts/cm), |
is the probe length (in Centimeters) and I is the complex amplitude of the probe
current (in Amperes). The resulting impedance value is in units of Ohms. Here it
has been assumed that the current in the probe flows in the direction of that edge.

The first column of the file is the frequency (in GHz), the second column is the probe
number (in the order specified in the input file MainInput), the next two columns are
the real and imaginary parts of the impedance (in Ohms), respectively, and the last
column is the number of iterations the BiCG solver had to carry out for convergence.
The same information is also dumped on the screen while the code is running. This is
a very useful product of the code as it can be used to predict the resonance frequency
of the antenna (the frequency at which the input impedance is purely real).

16 Output file ElmMat

The file ElmMat stores the element matrices associated with the prisms making up
the volume mesh. They are stored by the code every time a new volume mesh is
introduced. Obviously, as long as the mesh stays the same so do the prisms and the
element matrices for that matter. Therefore, if they are saved the first time the mesh
is created, they are simply read. One disadvantage is that the file requires substantial
memory space. The number of stored real entries (each with twelve decimals) is 162 x
Numberofprisms in the mesh. As shown in Figure 2, whether the data in ElmMat
are computed or read in depends on the last entry of the frequency information row
of the input file MainInput.

17 Demonstration runs

This section contains two demonstration runs which the user must carry out to insure
that the code is working properly. For each run, the corresponding input/output files
are provided in respective directories.

Demo #1: Cavity-backed circular patch
Before proceeding with the rest of the section, the reader must be advised that these
demonstration runs are intended to show the operation of the code and should not be

used as a measure of the code’s accuracy. For example, both the thickness and the
distance of the absorbing layer have been chosen half or one third of what they should

11

42



I, = 1.3cm (3 rings )
J=13cm(3rings)
Iy = 1.3cm (3 rings ) ()

r,=0.43cm (1 ring)
0.45cm  Metal e=p=1-j27
(1 cell)

I

1.35cm
(3 cells)

0.45cm (1 cell)

‘f

g =24
(b) (©
MainInput (for mesh generation) Output on the screen:
1 SURFACE EDGE INDEXING ...
NUMBER OF ANTENNA EDGES= %0
39 3 6 91 NUMBER OF CAVITY EDGES= 342

TOTAL NUMBER OF EDGES= 756
VOLUME NODAL AND EDGE INDEXING ...
NUMBER OF PRISMS= 1674
. NUMBER OF GLOBAL EDGES= 4306
Maininput (for run) NUMBER OF GLOBAL NODES= 1211
NUMBER OF BOUNDARY EDGES= 54
NUMBER OF BOUNDARY NODES= 54

1 NUMBER OF CAVITY BOUNDARY EDGES= 36
NUMBER OF CAVITY BOUNDARY NODES= 36

1100 NUMBER OF GLOBAL METAL EDGES= 1944
NUMBER OF ABSORBER PRISMS= 690

45 (214,0) (1.,0) NUMBER OF NON-ZERO EDGES= 2362

1 COMPUTING ELEMENT MATRICES ..
0% Done

8 8 0 (1.,0) o

3.4.1 6 01 01 20 % Done

! 80 % Done

45 3 1 (1.,-27) 90 % Done
100 % Done

Begin Frequency Sweep

Freq(GHz) Feed # Re(Zin) Im(Zin) # of lterat.

3.0000 1 78512 59.1441 223
3.5000 1 46.6215 1149450 222
3.6000 I 819289 128.6968 221
3.7000 I 1422111 1159399 228
3.8000 1 181.5739 227
3.9000 1 141.1083 3 231
4.0000 1 89.7684 -41.3362% 225

Resonance

Figure 5: Cavity-backed circular patch: (a) Geometry of the patch and finite element-
artificial absorber modeling, (b) contents of the input files, (c) screen dump produced
by the code and the input impedance as a function of excitation frequency.

12



be to minimize the geometry and hence the CPU time required by each frequency
run. For proper modeling of the antennas, both the thickness and the distance of the
absorber must be at least 0.15), at the operation frequency.

The first demonstration example is a cavity-backed circular patch. Figure 5(a) shows
the patch and termination geometry. Note that in order to save CPU time, only one
layer of absorber (0.05), thick) has been employed and placed about 0.1}, away from
the cavity surface and walls. Figure 5(b) shows the contents of the input file for both
the mesh generation and the actual run. Figure 5(c) shows the screen dump of the
code after the run. An inspection of the frequency sweep shows that the antenna is
resonant at 3.85GHz. The input/output files are provided in electronic form in the
directory "Demol”.

Demo #2: Microstrip rectangular patch with two layers of overlay

The second case is a microstrip rectangular patch with two layers of superstrate.
Similar information for this patch is given in Figure 6. Note in Figure 6(a), the ab-
sorber sections that are in direct contact with the substrate and superstrate layers
are colored differently to indicate that they have different material constants and the
code automatically determines the permittivity and permeability of these sections in
such a way that the waves normally incident on these sections of the absorber are
totally absorbed, i.e., the wave impedances (Z = \/g) on both sides of the interface
are matched. This is clearly shown in Figure 1. Notice that the absorber section in
contact with air have its relative permittivity and permeability equal to each other
(e- = pr) resulting in the wave impedance inside the absorber section’s being equal

to that of the free-space (since \/t Nl \/7‘: . As before, Figure 6(b)

shows the contents of the input files for both mesh generatlon and actual run, and
Figure 6(c) shows the screen dump created by the code after the run. The data show
that the patch resonates at 5.05GHz. The input/output files are provided in elec-
tronic form in the directory ”Demo2”.

Note that, the input files for the first runs (for mesh generation) are not provided in

electronic form since they can easily be copied from the figures. Also the files ElmMat
and EdgeUnk are not provided due to memory restrictions.

18 Distribution disk and installation of the code

Below is the directory list of the distribution list:

README : Text file containing brief information about the distribution disk
FEMA=PRISM.f : Source code for FEMA-PRISM
FarField.f : Source code for Far Field evaluation

13

44



v 0.25cm (2 cell)

'Y e

- L5em . 35cm
,L(6 cells) ' (14 cells)

Feed -
4
/ Icm -
/ (2 cells)
// . 0.5cm (1 cell)
Metal 3cm
. (6cells) i
—_0.50cm
1.00cm
"~ 0.30cm (e =12
_ 025m(p,=2)
__045cm (e, =)

Resonance

Figure 6: Microstrip rectangular patch with multiple superstrates: (a) Geometry of

(b

Maininput (for mesh generation)

3
0502526360012

MainInput (for the actual run)

1

1120
45(2.14,0.) (1.,0.)
0.25(1.,0.) (2.,0.)
0.3(1.2,0)(1.,0.)
1

23230(1.,0)
4555.16.0101
1

4531(1.,-2.7)

©
Screen dump

SURFACE EDGE INDEXING ...

NUMBER OF ANTENNA EDGES= 44

NUMBER OF CAVITY EDGES= 458

TOTAL NUMBER OF EDGES= 458

VOLUME NODAL AND EDGE INDEXING ...
NUMBER OF PRISMS= 1728

NUMBER OF GLOBAL EDGES= 4232

NUMBER OF GLOBAL NODES= 1197
NUMBER OF BOUNDARY EDGES= 52
NUMBER OF BOUNDARY NODES= 52
NUMBER OF CAVITY BOUNDARY EDGES= 52
NUMBER OF CAVITY BOUNDARY NODES= 52
NUMBER OF GLOBAL METAL EDGES= 1532
NUMBER OF ABSORBER PRISMS= 888
NUMBER OF NON-ZERO EDGES= 2700
COMPUTING ELEMENT MATRICES ...

0 % Done

10 % Done

20 % Done

90 % Done
100 % Done
Begin Frequency Sweep

Freq(GHz) Feed # Re(Zin) Im(Zin) # of lterat.

4.5000 1 326467 103.0583 411

4.6000 1 465897 1169454 451

4.7000 1 702919 131.6365 426
1 110.8929 1404605 436
I 170.3384 121.6465 505

459

. 1 . -28.
5.2000 1 129.2563 -57.3716 428
5.3000 1 881359 -553745 342
5.4000 1 629073 -445909 328
5.5000 1 475992 -329925 321

the patch and finite element-artificial absorber modeling, (b) contents of the input
files, (c) screen dump produced by the code and the input impedance as a function

of excitation frequency.

14

45



MeshPlot
Demol
Demo?

/Demol:
MainInput
SurfMesh
MeshDsply
EqvCur
Imp

/Demo2:
MainInput
SurfMesh
MeshDsply
EqvCur
[mp

: File containing the MatLab program
: Directory containing the files for Demo #1
: Directory containing the files for Demo #2

: File MainInput for Demo #1
"1 File SurfMesh for Demo #1

: File MeshDsply for Demo #1

: File EquCur for Demo #1

: File Imp for Demo #1

: File MainInput for Demo #2
: File SurfMesh for Demo #?2

: File MeshDsply for Demo #2
: File EquCur for Demo #2

: File Imp for Demo #2

The disk is formatted on a Power Machintosh. The contents of the disk should
be loaded into the working directory. No extra effort needed to install the code.
Section 6 explains how to run the code.

References

[1] Ozdemir, T. and J. L. Volakis, "Triangular prisms for edge-based vector finite
element antenna analysis,” Radiation Laboratory Tech. Rep. No. 031307-4-T,
Radiation Laboratory, Dept. of Elect. Engr. Comp. Sci., Univ. of Michigan, Ann
Arbor, Michigan 48109-2122, March 1995.

[2] Ozdemir, T., J. Gong, S. Legault, J. Volakis, T. Senior, J. Berrie, R. Kipp and H.
Wang, "Modeling of conformal antennas on doubly curved platforms and their
interactions with aircraft platforms,” Annual Progress Report, Tech. Rep. No.
031307-5-T, Radiation Laboratory, Dept. of Elect. Engr. Comp. Sci., Univ. of
Michigan, Ann Arbor, Michigan 48109-2122, October 1995.

15

46



AutoCAD FEMA-PRISM Interface Manual

M. D. Casciato and J. L. Volakis

Radiation Laboratory
Department of Electrical Engineering & Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122
December 18, 1996

Introduction

This manual contains instructions on converting an AutoCAD .dxf boundary file to a FEMA-
PRISM compatible surfmesh triangular surface mesh file. In addition it describes the ability of
FEMA-PRISM to implement conducting pins, conducting layers, and substrate holes. A descrip-
tion of FEMA-PRISM post-processing routines are also included. This is a 3 step procedure in
which the .dxf file is converted by the FORTRAN routine AcadProc.f to a .poly file compatible
with the meshing package TRIANGLE [3]. TRIANGLE is then used to create the mesh, con-
tained in output files .node and .ele, which is then converted to a FEMA-PRISM compatible “sur-
fmesh” file by the FORTRAN routine TriProc.f Users are referred to [3] for details of
TRIANGLE file formats.

The procedure to convert a .dxf file to a FEMA-PRISM “surfmesh file” is as follows:

1. Convert the AutoCAD .dxf file to the TRIANGLE .poly input file using AcadProc.f

2. Mesh the .poly file using TRIANGLE.

3. Convert the TRIANGLE output files, .1.ele and .1.node, to a FEMA-PRISM surfmesh file
using TriProc.f

Note that detailed instructions on how to use each part of the package follows.

AcadProc

AcadProc is a FORTRAN routine which converts an AutoCAD .dxf file to a .poly file used by
TRIANGLE for mesh generation. Figure 1 show a sample AutoCAD .dxf file containing both line
and layer information. Before using AcadProc certain procedures must be used in creating the
AutoCAD drawing. Referring to Figure 2 each line boundary in AutoCAD must be saved on a dif-
ferent layer numbered consecutively starting with O for the outer layer. AcadProc uses this layer
information to identify bounded regions in the antenna. An algorithm in AcadProc finds the left
(assumes +x right) vertical boundary (y-directed) in each region. It then identifies a point (x,y
coordinate) in each region. and places an identifying integer label on the region (1 is the outer-
most region with 0 it’s identifier). These region coordinates and identifiers are placed at the end of

47



the .poly file as shown below (labels added for clarification).

9 --> Number of regions.

Region #
1

2
3
4
5
6
7
8
9

x-coordinate
0.47470
1.42410
2.37350
3.32290
4.27230
5.22170
8.78505
12.06674
14.76925

y-coordinate
12.35628
12.35628
12.35628
12.35628
12.35628
12.35628
12.35628
12.35628
12.35628

region identifier
0

0NN N AW —

area weighting
0.35
0.35
0.35
0.35
0.2
0.2
0.2
0.075
0.075

48



0
SECTION

2
ENTITIES

0
LINE
8
WALLS
6
DASHED
62
5
10 4—
10 4+—
20
10
30
0.0
"
10.0
21
10.0
31
10.0
0
ENDSEC

Sample DXF file describing single line on WALLS layer, Dashed,
Color Blue. Line starts at point 1,0,0 {group codes 10,20,30) and
ends at point 10,10,10 (group codes 11,21,31). 0, ENDSEC indicates
end of Entities section.

Figure 1: Sample AutoCAD .dxf File.

49



Auto-CAD Boundary Definition - Single Slot Including Air/Absorber

Cavity Region Slot Region
\ /
\ /
\ /
\ ]
\ /
\ I
\ /

'Y
AN
N\
# A A\
4 / f ‘\ \ \
IR
Absorber Regions 0,1,2 etc. g;ﬁ;‘:- Air Regions
Boundary (Layer) #

Boundary and Region #'s
continue to increment to
center region.

Figure 2: Auto-CAD Boundary (Layer #’s) and Region definitions.

TRIANGLE will then give all elements created in these bounded regions the same identifier as the
point within the region when the “-A” option is used (this will be explained in the next section).
This simplifies the separation of different element types (conducting, absorber, etc.) by TriProc.
Note that the algorithm for finding the region points is not perfected. The user should inspect the
.poly file and verify that the number of regions, the x,y coordinates, and the region identifiers are
correct. An explanation of how the region identifiers are used will follow in the TriProc section.
The area weightings are added by the user. When the “-a” option is used (again explained in the
next section) TRIANGLE attempts to restrict the maximum element area in each region using the

area weightings as a guide. This is an iterative process where the user will need to try different
weightings to get the desired mesh.

50



To use AcadProc first modify the input file Acad.in shown below (with comments added):

smplsltabs6.dxf 'Input Autocad DXF file.

smplsltabs6.poly 'Output TRIANGLE .poly line file.

2 'Units of Drawing. Meters(1), cm(2), mm(3), Feet(4), inches(5)
0 '(0) no phasing slots, (1) phasing slots.

The first 2 lines are self explanatory. The third line indicates the units of the AutoCAD drawing
(FEMA-PRISM input file “surfmesh” must be in cm). The third line indicates whether phasing
slots (such as in the LPSA) exist in the antenna. If so AcadProc attempts to automatically find the
interior boundary points for identification purposes as described earlier. To run AcadProc simply
type the executable “acadproc” to generate the .poly file.

TRIANGLE

TRIANGLE, written in C, is a 2-D mesh generation package using Delaunay Triangulation
algorithms [4]. It was written by J.R. Shewchuk of the School of Computer

Science, Carnegie-Mellon University, Pittsburgh, PA (jrs @cs.cmu.edu). It is available

for free on Netlib and at web location:

http://www.cs.cmu.edu/~quake/TRIANGLE.html

Showme, a tool for viewing TRIANGLE input and output files and written for unix workstations
is also available at this website. Showme will also output .ps and .eps files for printing.

For details on how to use TRIANGLE the user is referred to [3]. To illustrate the usage of TRI-
ANGLE for our application a simple example will be given, meshing the single element slot
shown in figure 2. The region identifiers and weightings described earlier will be used for this
example.

To run TRIANGLE simply type:
triangle -pAq28as smplsltabs6.poly

where triangle is the executable and smplsltabs6.poly is the input .poly file. The “-” sign precedes
any options used. The options are as follows:

The “p” tells TRIANGLE to look for a .poly file as the input.

The “A” tells TRIANGLE to look for the region identifiers at the end of the .poly file and uses
them to identify triangles created in each region.

The “q28” indicates that the minimum acceptable interior angle of any element is 28 degrees. If
no angle is specified the default is 30 degrees.

51



The “a” tells TRIANGLE to use the area constraints at the end of the .poly file. If “a” is followed
immediately by a number this option will attempt to constrain the maximum area of all triangles
in the mesh to the number specified.

The “s” forces segments into mesh by splitting.

The user can see all options available in TRIANGLE by simply typing the executable “triangle”.
“triangle -h” will output the TRIANGLE user’s manual [3] to standard output (screen).

Figure 3 shows the folded slot drawing dimensions as well as the mesh created by TRIANGLE
using the indicated options. This figure was generated from a postscript file created by Showme.

Brick vs. Prism - Single Element Folded Slot

Triangle Mesh for FEMA-PRISM

Cavity/Slot Dimensions

10.1457 CM

Slot Width Top/Bottom - 0.19304 CM
Slot Width Sides - 0.38608 CM

® |Infinite Substrate Simulated by Cavity Absorber

Figure 3: Single Slot - Dimensions and TRIANGLE Mesh.

52



TRIANGLE will output 3 files:

smplsltabs6.1.poly
smplsltabs6.1.node
smplsltabs6.1.ele

The “.1.” indicates revision 1. If TRIANGLE is executed using the “.1.” files it will create revision
“.2.7, etc. for higher numbers. The .1.poly is a duplicate of the original .poly file. The .1.node file
contains node coordinates and the .1.ele contains connectivity. These 2 files are used as the input
for TriProc. Note that all output files created by TRIANGLE end with the TRIANGLE options
used to generate it, for future reference.

TriProc

The final step in creating a surfmesh file for FEMA-PRISM is to convert the .1.node and .1.ele
TRIANGLE outputs to the “surfmesh” format using the FORTRAN routine TriProc. FEMA-
PRISM needs the conducting, dielectric (no conducting patch over cavity), air, and absorber
regions separated [1]. TriProc first reads the node and element information generated by TRIAN-
GLE in the .1.node and .1.poly mesh files, including the element identifiers in each boundary
region. As mentioned previously, the boundary regions are identified by an integer which starts at
“0” for the outermost region and increases inward toward the antenna center. TRIANGLE, using
the “-A” option, then attaches this identifier to all TRIANGLE:S created in this region. TriProc first
sorts triangles in the air/absorber regions. It then needs to sort triangles within the antenna cavity
regions depending on whether they are conducting or dielectric. If the user has specified that this
is a slot antenna the first region in from the air/absorbers is assumed conducting (i.e., conducting
triangles). If a patch antenna is specified the first region in from the air/absorbers is dielectric. Tri-
angle types within regions then alternate between dielectric and conducting (or vice-versa) inward
toward antenna center. An example input file to TriProc (called Tri.in) follows:

smplsltabs6.1.node  !Input TRIANGLE Node File
smplsltabs6.1.ele  !Input TRIANGLE Element File
'(0) patch, (1) slot

'(0) cavity, (1) microstrip

'(0) BI, (1) absorber

! # absorber layers (dummy for BI)

! # air layers (dummy for BI)

W W e

The first 2 lines are the input files from TRIANGLE. The next line specifies slot or patch antenna.
Line 4 indicates cavity or microstrip. If the cavity option is chosen the antenna will be placed in a
PEC cavity. If the microstrip option is chosen, the cavity walls will be extended and an absorber
will be placed along the former cavity boundary creating a microstrip effect [1]. Line 5 will be 1
for absorber, with lines 6 and 7 showing the number of absorber/air layers respectively. An algo-
rithm in TriProc uses the total number of air/absorber layers to identify the first region that is in
the actual antenna cavity. From this TriProc determines the conducting/dielectric regions in the
antenna cavity.

53



The output of TriProc is a FEMA-PRISM compatible mesh file called “surfmesh”. To run Triproc
simply type the executable “triproc” after modifying Tri.in appropriately.

Post-Processing Data

Far field patterns can be generated using the FORTRAN routine FarField.f. Farfield reads in the
magnetic current file EqvCur generated by FEMA-PRISM. Simply type the executable “farfield”
and the user is prompted for the appropriate inputs as follows:

Magnetic Current file

Name of Output pattern file

Name of Output field file

Theta Begin, End, Step Size

Phi Begin, End, Step Size

DB amount to be subtracted from computation (outputis unnormalized)
Does user want quiver plot (matlab) of magnetic current.

If quiver plot is desired the user will be prompted for:

File name for X coordinates
File name for Y coordinates
File name for X component
File name for Y component

The pattern file output 5 columns of data consisting of:
Theta Phi Power (dB) Theta Power (dB) Phi Total Power (dB)

Quiver is a matlab routine for plotting localized field vectors. Figure 4 shows a sample quiver out-
put for a single element folded slot. When running matlab load the X,Y coordinates/components
data files generated by FarField. The matlab command quiver(x,y,my,mx) will plot the electric
field vectors of each element on the antenna surface, where x,y are the X,Y coordinate data points,
and my, mx are the Y,X component data points.

54



Electric Field Vectors - Single Folded Slot

=
=

Figure 4: Quiver Vector Electric Field Plot - Folded Slot.

Notes

The user is referred to [1] for details on operating FEMA-PRISM. Remember that the Meshdsply
routine described in [1] must be used to find probe node numbers before running FEMA-PRISM.
Also a new version of FEMA-PRISM included in this package allows for the addition of vertical
conducting pins (normal to surface mesh), layers, and substrate holes. Reference [1] contains an
updated description of the FEMA-PRISM input file to allow for these additions. Their usage is
described as follows:

Conducting Pins: To use this option at this time the FEMA-PRISM surfmesh input file must be
modified to identify the nodes under which vertical conducting pins exist. Simply add the con-

55



ducting pin number and corresponding surface node number to the end of the surface mesh file,
for example:

1 32
2 24

This shows 2 conducting pin locations under surface node numbers 32, and 24. In addition change
the 7th (of 8) field in line 1 of the “surfmesh” file from O to the number of conducting pins (2 in
this case). In the FEMA-PRISM input file the user states the number of conducting pin layers and
the layer number the pins are in ([1], layer 1 at bottom of cavity). NOTE: In the current FEMA-
PRISM user’s manual [1] the “surfmesh” file description does not show fields 7 and 8 of the first
line of the file. To run this version of FEMA-PRISM these fields must exist (both set at 0 if no
conducting pins or layers). TriProc automatically sets these fields to 0.

Conducting Layers: These are essentially substrate conducting patches duplicating the conducting
patch on the antenna surface. Again in the input file the user specifies the top of each layer on
which the patches reside (layer 1 at bottom again [1]).

Expanded Layers/Holes: The conducting layers (substrate patches) described in the previous sec-
tion can be expanded in size. In additon holes can now be inserted into these substrate patches. In
the FEMA-PRISM input file the user specifies whether to expand the substrate patch, and if so
how many segments to expand it. For each segment specified the non-conducting edges connected
to the conducting patch are changed to conducting as well as the segments that connect these new
conducting edges, thus expanding the patch by one layer of triangles. The user can also specifie if
the patch contains a hole, the number of segments to expand the hole [1], and the hold center. The
center is specified by a corresponding surface node location. For the holes the conducting mesh
edges connected to hole center node are made non-conducting. For each additional segment the
hole is expanded, conducting edges connecting hole segments are made non-conducting, as well
as the next layer of edges outward. For details of the new FEMA-PRISM input file users are
referred to [1].

10

56



Bibliography

[1] T. Ozdemir and J. L. Volakis, “Users manual for FEMA-PRISM, “Univ of Michigan Radiation
Lab. Techn. Report 031307-6-T, March 1996. 15pp.

[2] T. Ozdemir and J. L. Volakis, “Triangular prisms for edge-based vector finite element analysis
of conformal antennas,” Univ of Michigan Radiation Lab., October 1996.

[3]J. R. Shewchuk, “TRIANGLE, A Two-Dimensional Quality Mesh Generator and Delaunay
Triangulator. v1.3,” Carnegie Mellon University.

(4] J. R. Shewchuk, “TRIANGLE: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator,” School of Computer Science, Carnegie Mellon University.

11

57



trianglevl_3.doc Fri Dec 20 13:38:37 1996 1

Triangle
A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
Version 1.3

Copyright 1996 Jonathan Richard Shewchuk (bugs/comments to jrs@cs.cmu.edu)
School of Computer Science / Carnegie Mellon University

5000 Forbes Avenue / Pittsburgh, Pennsylvania 15213-3891

Created as part of the Archimedes project (tools for parallel FEM).
Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.
There is no warranty whatsoever. Use at your own risk.

This executable is compiled for double precision arithmetic.

Triangle generates exact Delaunay triangulations, constrained Delaunay
triangulations, and quality conforming Delaunay triangulations. The latter
can be generated with no small angles, and are thus suitable for finite
element analysis. If no command line switches are specified, your .node
input file will be read, and the Delaunay triangulation will be returned in
.node and .ele output files. The command syntax is:

triangle [-prqg__a_ AcevngBPNEIOXzo_YS_ iFl1sCQVh] input_file

Underscores indicate that numbers may optionally follow certain switches;
do not leave any space between a switch and its numeric parameter.
input_file must be a file with extension .node, or extension .poly if the
-p switch is used. If -r is used, you must supply .node and .ele files,
and possibly a .poly file and .area file as well. The formats of these
files are described below.

Command Line Switches:

-p Reads a Planar Straight Line Graph (.poly file), which can specify
points, segments, holes, and regional attributes and area
constraints. Will generate a constrained Delaunay triangulation
fitting the input; or, if -s, -q, or -a is used, a conforming
Delaunay triangulation. If -p is not used, Triangle reads a .node
file by default.

-r Refines a previously generated mesh. The mesh is read from a .node
file and an .ele file. If -p is also used, a .poly file is read
and used to constrain edges in the mesh. Further details on
refinement are given below.

-g Quality mesh generation by Jim Ruppert’s Delaunay refinement
algorithm. Adds points to the mesh to ensure that no angles
smaller than 20 degrees occur. An alternative minimum angle may be
specified after the ‘g’. If the minimum angle is 20.7 degrees or
smaller, the triangulation algorithm is theoretically guaranteed to
terminate (assuming infinite precision arithmetic - Triangle may
fail to terminate if you run out of precision). 1In practice, the
algorithm often succeeds for minimum angles up to 33.8 degrees.

For highly refined meshes, however, it may be necessary to reduce
the minimum angle to well below 20 to avoid problems associated
with insufficient floating-point precision. The specified angle
may include a decimal point.

-a Imposes a maximum triangle area. If a number follows the ‘a’, no
triangle will be generated whose area is larger than that number.
If no number is specified, an .area file (if -r is used) or .poly
file (if -r is not used) specifies a number of maximum area
constraints. An .area file contains a separate area constraint for
each triangle, and is useful for refining a finite element mesh
based on a posteriori error estimates. A .poly file can optionally
contain an area constraint for each segment-bounded region, thereby
enforcing triangle densities in a first triangulation. You can
impose both a fixed area constraint and a varying area constraint
by invoking the -a switch twice, once with and once without a
number following. Each area specified may include a decimal point.

58



trianglevl_ 3.doc Fri Dec 20 13:38:37 1996 2

-A Assigns an additional attribute to each triangle that identifies
what segment-bounded region each triangle belongs to. Attributes
are assigned to regions by the .poly file. If a region is not
explicitly marked by the .poly file, triangles in that region are
assigned an attribute of zero. The -A switch has an effect only
when the -p switch is used and the -r switch is not.

-c¢ Creates segments on the convex hull of the triangulation. If you
are triangulating a point set, this switch causes a .poly file to
be written, containing all edges in the convex hull. (By default,
a .poly file is written only if a .poly file is read.) If you are
triangulating a PSLG, this switch specifies that the interior of
the convex hull of the PSLG should be triangulated. If you do not
use this switch when triangulating a PSLG, it is assumed that you
have identified the region to be triangulated by surrounding it
with segments of the input PSLG. Beware: if you are not careful,
this switch can cause the introduction of an extremely thin angle
between a PSLG segment and a convex hull segment, which can cause
overrefinement or failure if Triangle runs out of precision. If
you are refining a mesh, the -c switch works differently; it
generates the set of boundary edges of the mesh, rather than the
convex hull.

-e Outputs (to an .edge file) a list of edges of the triangulation.

-v Outputs the Voronoi diagram associated with the triangulation.

Does not attempt to detect degeneracies.

-n  Outputs (to a .neigh file) a list of triangles neighboring each
triangle.

-g Outputs the mesh to an Object File Format (.off) file, suitable for
viewing with the Geometry Center’s Geomview package.

-B No boundary markers in the output .node, .poly, and .edge output
files. See the detailed discussion of boundary markers below.

-P No output .poly file. Saves disk space, but you lose the ability
to impose segment constraints on later refinements of the mesh.

-N No output .node file.

-E No output .ele file.

-I No iteration numbers. Suppresses the output of .node and .poly
files, so your input files won’t be overwritten. (If your input is
a .poly file only, a .node file will be written.) Cannot be used
with the -r switch, because that would overwrite your input .ele
file. Shouldn’t be used with the -s, -q, or -a switch if you are
using a .node file for input, because no .node file will be
written, so there will be no record of any added points.

-0 No holes. Ignores the holes in the .poly file.

-X No exact arithmetic. Normally, Triangle uses exact floating-point
arithmetic for certain tests if it thinks the inexact tests are not
accurate enough. Exact arithmetic ensures the robustness of the
triangulation algorithms, despite floating-point roundoff error.
Disabling exact arithmetic with the -X switch will cause a small
improvement in speed and create the possibility (albeit small) that
Triangle will fail to produce a valid mesh. Not recommended.

-z Numbers all items starting from zero (rather than one). Note that
this switch is normally overrided by the value used to number the
first point of the input .node or .poly file. However, this switch
is useful when calling Triangle from another program.

-02 Generates second-order subparametric elements with six nodes each.
-Y No new points on the boundary. This switch is useful when the mesh
boundary must be preserved so that it conforms to some adjacent
mesh. Be forewarned that you will probably sacrifice some of the
quality of the mesh; Triangle will try, but the resulting mesh may

contain triangles of poor aspect ratio. Works well if all the
boundary points are closely spaced. Specify this switch twice
(*-YY’) to prevent all segment splitting, including internal
boundaries.

-S Specifies the maximum number of Steiner points (points that are not
in the input, but are added to meet the constraints of minimum
angle and maximum area). The default is to allow an unlimited

59



trianglevl_3.doc Fri Dec 20 13:38:37 1996 3

number. If you specify this switch with no number after it,

the limit is set to zero. Triangle always adds points at segment
intersections, even if it needs to use more points than the limit
you set. When Triangle inserts segments by splitting (-s), it
always adds enough points to ensure that all the segments appear in
the triangulation, again ignoring the limit. Be forewarned that
the -S switch may result in a conforming triangulation that is not
truly Delaunay, because Triangle may be forced to stop adding
points when the mesh is in a state where a segment is non-Delaunay
and needs to be split. If so, Triangle will print a warning.

-1 Uses an incremental rather than divide-and-conquer algorithm to
form a Delaunay triangulation. Try it if the divide-and-conquer
algorithm fails.

-F Uses Steven Fortune'’s sweepline algorithm to form a Delaunay
triangulation. Warning: does not use exact arithmetic for all
calculations. An exact result is not guaranteed.

-1 Uses only vertical cuts in the divide-and-conquer algorithm. By
default, Triangle uses alternating vertical and horizontal cuts,
which usually improve the speed except with point sets that are
small or short and wide. This switch is primarily of theoretical
interest.

-s Specifies that segments should be forced into the triangulation by
recursively splitting them at their midpoints, rather than by
generating a constrained Delaunay triangulation. Segment splitting
is true to Ruppert’s original algorithm, but can create needlessly
small triangles near external small features.

-C Check the consistency of the final mesh. Uses exact arithmetic for
checking, even if the -X switch is used. Useful if you suspect
Triangle is buggy.

-Q Quiet: Suppresses all explanation of what Triangle is doing, unless
an error occurs.

-V Verbose: Gives detailed information about what Triangle is doing.
Add more ‘V’s for increasing amount of detail. ‘-V’ gives
information on algorithmic progress and more detailed statistics.
‘-VV'’ gives point-by-point details, and will print so much that
Triangle will run much more slowly. ‘-VVV' gives information only
a debugger could love.

-h Help: Displays these instructions.

Definitions:

A Delaunay triangulation of a point set is a triangulation whose vertices
are the point set, having the property that no point in the point set
falls in the interior of the circumcircle (circle that passes through all
three vertices) of any triangle in the triangulation.

A Voronoi diagram of a point set is a subdivision of the plane into
polygonal regions (some of which may be infinite), where each region is
the set of points in the plane that are closer to some input point than
to any other input point. (The Voronoi diagram is the geometric dual of
the Delaunay triangulation.)

A Planar Straight Line Graph (PSLG) is a collection of points and
segments. Segments are simply edges, whose endpoints are points in the
PSLG. The file format for PSLGs (.poly files) is described below.

A constrained Delaunay triangulation of a PSLG is similar to a Delaunay
triangulation, but each PSLG segment is present as a single edge in the
triangulation. (A constrained Delaunay triangulation is not truly a
Delaunay triangulation.)

A conforming Delaunay triangulation of a PSLG is a true Delaunay
triangulation in which each PSLG segment may have been subdivided into
several edges by the insertion of additional points. These inserted
points are necessary to allow the segments to exist in the mesh while



trianglevl_3.doc Fri Dec 20 13:38:37 1996 4
maintaining the Delaunay property.
File Formats:

All files may contain comments prefixed by the character ’‘#’. Points,
triangles, edges, holes, and maximum area constraints must be numbered
consecutively, starting from either 1 or 0. Whichever you choose, all
input files must be consistent; if the nodes are numbered from 1, so must
be all other objects. Triangle automatically detects your choice while
reading the .node (or .poly) file. (When calling Triangle from another
program, use the -z switch if you wish to number objects from zero.)
Examples of these file formats are given below.

.node files:
First line: <# of points> <dimension (must be 2)> <# of attributes>
<# of boundary markers (0 or 1)>
Remaining lines: <point #> <x> <y> [attributes] [boundary marker]

The attributes, which are typically floating-point values of physical
quantities (such as mass or conductivity) associated with the nodes of
a finite element mesh, are copied unchanged to the output mesh. If -s,
-g, or -a is selected, each new Steiner point added to the mesh will
have attributes assigned to it by linear interpolation.

If the fourth entry of the first line is ‘'1’, the last column of the
remainder of the file is assumed to contain boundary markers. Boundary
markers are used to identify boundary points and points resting on PSLG
segments; a complete description appears in a section below. The .node
file produced by Triangle will contain boundary markers in the last
column unless they are suppressed by the -B switch.

.ele files:
First line: <# of triangles> <points per triangle> <# of attributes>
Remaining lines: <triangle #> <point> <point> <point> ... [attributes]

Points are indices into the corresponding .node file. The first three
points are the corners, and are listed in counterclockwise order around
each triangle. (The remaining points, if any, depend on the type of
finite element used.) The attributes are just like those of .node
files. Because there is no simple mapping from input to output
triangles, an attempt is made to interpolate attributes, which may
result in a good deal of diffusion of attributes among nearby triangles
as the triangulation is refined. Diffusion does not occur across
segments, so attributes used to identify segment-bounded regions remain
intact. 1In output .ele files, all triangles have three points each
unless the -o02 switch is used, in which case they have six, and the
fourth, fifth, and sixth points lie on the midpoints of the edges
opposite the first, second, and third corners.

.poly files:
First line: <# of points> <dimension (must be 2)> <# of attributes>
<# of boundary markers (0 or 1)>
Following lines: <point #> <x> <y> [attributes] [boundary marker]
One line: <# of segments> <# of boundary markers (0 or 1)>
Following lines: <segment #> <endpoint> <endpoint> [boundary marker]
One line: <# of holes>
Following lines: <hole #> <x> <y>
Optional line: <# of regional attributes and/or area constraints>
Optional following lines: <constraint #> <x> <y> <attrib> <max area>

A .poly file represents a PSLG, as well as some additional information.
The first section lists all the points, and is identical to the format
of .node files. <# of points> may be set to zero to indicate that the
points are listed in a separate .node file; .poly files produced by

Triangle always have this format. This has the advantage that a point



trianglevl_3.doc Fri Dec 20 13:38:37 1996 5

set may easily be triangulated with or without segments. (The same
effect can be achieved, albeit using more disk space, by making a copy
of the .poly file with the extension .node; all sections of the file
but the first are ignored.)

The second section lists the segments. Segments are edges whose
presence in the triangulation is enforced. Each segment is specified
by listing the indices of its two endpoints. This means that you must
include its endpoints in the point list. If -s, -g, and -a are not
selected, Triangle will produce a constrained Delaunay triangulation,
in which each segment appears as a single edge in the triangulation.
If -q or -a is selected, Triangle will produce a conforming Delaunay
triangulation, in which segments may be subdivided into smaller edges.
Each segment, like each point, may have a boundary marker.

The third section lists holes (and concavities, if -c is selected) in
the triangulation. Holes are specified by identifying a point inside
each hole. After the triangulation is formed, Triangle creates holes
by eating triangles, spreading out from each hole point until its
progress is blocked by PSLG segments; you must be careful to enclose
each hole in segments, or your whole triangulation may be eaten away.
If the two triangles abutting a segment are eaten, the segment itself
is also eaten. Do not place a hole directly on a segment; if you do,
Triangle will choose one side of the segment arbitrarily.

The optional fourth section lists regional attributes (to be assigned
to all triangles in a region) and regional constraints on the maximum
triangle area. Triangle will read this section only if the -A switch
is used or the -a switch is used without a number following it, and the
-r switch is not used. Regional attributes and area constraints are
propagated in the same manner as holes; you specify a point for each
attribute and/or constraint, and the attribute and/or constraint will
affect the whole region (bounded by segments) containing the point. If
two values are written on a line after the x and y coordinate, the
former is assumed to be a regional attribute (but will only be applied
if the -A switch is selected), and the latter is assumed to be a
regional area constraint (but will only be applied if the -a switch is
selected). You may also specify just one value after the coordinates,
which can serve as both an attribute and an area constraint, depending
on the choice of switches. If you are using the -A and -a switches
simultaneously and wish to assign an attribute to some region without
imposing an area constraint, use a negative maximum area.

When a triangulation is created from a .poly file, you must either
enclose the entire region to be triangulated in PSLG segments, or

use the -c switch, which encloses the convex hull of the input point
set. If you do not use the -c switch, Triangle will eat all triangles
on the outer boundary that are not protected by segments; if you are
not careful, your whole triangulation may be eaten away. If you do
use the -c switch, you can still produce concavities by appropriate
placement of holes just inside the convex hull.

An ideal PSLG has no intersecting segments, nor any points that lie
upon segments (except, of course, the endpoints of each segment.) You
aren’'t required to make your .poly files ideal, but you should be aware
of what can go wrong. Segment intersections are relatively safe -
Triangle will calculate the intersection points for you and add them to
the triangulation - as long as your machine’s floating-point precision
doesn’t become a problem. You are tempting the fates if you have three
segments that cross at the same location, and expect Triangle to figure
out where the intersection point is. Thanks to floating-point roundoff
error, Triangle will probably decide that the three segments intersect
at three different points, and you will find a minuscule triangle in
your output - unless Triangle tries to refine the tiny triangle, uses
up the last bit of machine precision, and fails to terminate at all.

62



trianglevl_3.doc Fri Dec 20 13:38:37 1996 6

You're better off putting the intersection point in the input files,
and manually breaking up each segment into two. Similarly, if you
place a point at the middle of a segment, and hope that Triangle will
break up the segment at that point, you might get lucky. On the other
hand, Triangle might decide that the point doesn’t lie precisely on the
line, and you’ll have a needle-sharp triangle in your output - or a lot
of tiny triangles if you’re generating a quality mesh.

When Triangle reads a .poly file, it also writes a .poly file, which
includes all edges that are part of input segments. If the -c switch
is used, the output .poly file will also include all of the edges on
the convex hull. Hence, the output .poly file is useful for finding
edges associated with input segments and setting boundary conditions in
finite element simulations. More importantly, you will need it if you
plan to refine the output mesh, and don’t want segments to be missing
in later triangulations.

.area files:
First line: <# of triangles>
Following lines: <triangle #> <maximum area>

An .area file associates with each triangle a maximum area that is used
for mesh refinement. As with other file formats, every triangle must
be represented, and they must be numbered consecutively. A triangle
may be left unconstrained by assigning it a negative maximum area.

.edge files:
First line: <# of edges> <# of boundary markers (0 or 1)>
Following lines: <edge #> <endpoint> <endpoint> [boundary marker]

Endpoints are indices into the corresponding .node file. Triangle can
produce .edge files (use the -e switch), but cannot read them. The
optional column of boundary markers is suppressed by the -B switch.

In Voronoi diagrams, one also finds a special kind of edge that is an
infinite ray with only one endpoint. For these edges, a different
format is used:

<edge #> <endpoint> -1 <direction x> <direction y>

The ‘direction’ is a floating-point vector that indicates the direction
of the infinite ray.

.neigh files:
First line: <# of triangles> <# of neighbors per triangle (always 3)>
Following lines: <triangle #> <neighbor> <neighbor> <neighbor>

Neighbors are indices into the corresponding .ele file. An index of -1
indicates a mesh boundary, and therefore no neighbor. Triangle can
produce .neigh files (use the -n switch), but cannot read them.

The first neighbor of triangle i is opposite the first corner of
triangle i, and so on.

Boundary Markers:

Boundary markers are tags used mainly to identify which output points and
edges are associated with which PSLG segment, and to identify which
points and edges occur on a boundary of the triangulation. A common use
is to determine where boundary conditions should be applied to a finite
element mesh. You can prevent boundary markers from being written into
files produced by Triangle by using the -B switch.

The boundary marker associated with each segment in an output .poly file
or edge in an output .edge file is chosen as follows:

63



trianglevl 3.doc Fri Dec 20 13:38:37 1996 7

- If an output edge is part or all of a PSLG segment with a nonzero
boundary marker, then the edge is assigned the same marker.

- Otherwise, if the edge occurs on a boundary of the triangulation
(including boundaries of holes), then the edge is assigned the marker
one (1).

- Otherwise, the edge is assigned the marker zero (0).

The boundary marker associated with each point in an output .node file is
chosen as follows:

- If a point is assigned a nonzero boundary marker in the input file,
then it is assigned the same marker in the output .node file.

- Otherwise, if the point lies on a PSLG segment (including the
segment’s endpoints) with a nonzero boundary marker, then the point
is assigned the same marker. If the point lies on several such
segments, one of the markers is chosen arbitrarily.

- Otherwise, if the point occurs on a boundary of the triangulation,
then the point is assigned the marker one (1).

- Otherwise, the point is assigned the marker zero (0).

If you want Triangle to determine for you which points and edges are on
the boundary, assign them the boundary marker zero (or use no markers at
all) in your input files. Alternatively, you can mark some of them and
leave others marked zero, allowing Triangle to label them.

Triangulation Iteration Numbers:

Because Triangle can read and refine its own triangulations, input
and output files have iteration numbers. For instance, Triangle might
read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the
triangulation, and output the files mesh.4.node, mesh.4.ele, and
mesh.4.poly. Files with no iteration number are treated as if

their iteration number is zero; hence, Triangle might read the file
points.node, triangulate it, and produce the files points.1l.node and
points.l.ele.

Iteration numbers allow you to create a sequence of successively finer
meshes suitable for multigrid methods. They also allow you to produce a
sequence of meshes using error estimate-driven mesh refinement.

If you’re not using refinement or quality meshing, and you don’t like
iteration numbers, use the -I switch to disable them. This switch will
also disable output of .node and .poly files to prevent your input files
from being overwritten. (If the input is a .poly file that contains its
own points, a .node file will be written.)

Examples of How to Use Triangle:

‘triangle dots’ will read points from dots.node, and write their Delaunay

triangulation to dots.l.node and dots.l.ele. (dots.l.node will be
identical to dots.node.) ‘triangle -I dots’ writes the triangulation to
dots.ele instead. (No additional .node file is needed, so none is
written.)

‘triangle -pe object.l’ will read a PSLG from object.l.poly (and possibly
object.l.node, if the points are omitted from object.l.poly) and write
their constrained Delaunay triangulation to object.2.node and
object.2.ele. The segments will be copied to object.2.poly, and all
edges will be written to object.2.edge.

‘triangle -pg3l.5a.1 object’ will read a PSLG from object.poly (and
possibly object.node), generate a mesh whose angles are all greater than
31.5 degrees and whose triangles all have area smaller than 0.1, and
write the mesh to object.l.node and object.l.ele. Each segment may have
been broken up into multiple edges; the resulting constrained edges are
written to object.l.poly.



trianglevl_3.doc Fri Dec 20 13:38:37 1996 8

Here is a sample file ‘box.poly’ describing a square with a square hole:

# A box with eight points in 2D, no attributes, one boundary marker.
8201
# Outer box has these vertices:
1 00 0
2 03 0
3 30 0
4 33 33 # A special marker for this point.
# Inner square has these vertices:
5 11 0
6 12 0
7 21 0
8 2 2 0
# Five segments with boundary markers.
51
1 12 5 # Left side of outer box.
2 57 0 # Segments 2 through 5 enclose the hole.
3 7 8 0
4 8 6 10
5 6 5 0
# One hole in the middle of the inner square.
1
1 1.5 1.5

Note that some segments are missing from the outer square, so one must
use the ‘-c’ switch. After ‘triangle -pgc box.poly’, here is the output
file ‘box.l.node’, with twelve points. The last four points were added
to meet the angle constraint. Points 1, 2, and 9 have markers from
segment 1. Points 6 and 8 have markers from segment 4. All the other
points but 4 have been marked to indicate that they lie on a boundary.

12 2 0 1
1 0 0 5
2 0 3 5
3 3 0 1
4 3 3 33
5 1 1 1
6 1 2 10
7 2 1 1
8 2 2 10
9 0 1.5 5
10 1.5 0 1
11 3 1.5 1
12 1.5 3 1

# Generated by triangle -pgc box.poly
Here is the output file ‘box.l.ele’, with twelve triangles.

12

w

0

=

=
OUTON IR, JOOONO WU

11
8
10
6
11
11 10
12 4 12
# Generated by triangle -pgc box.poly

O ~JO U W

\\e]
=

10

P 9N WD P 0o Wwo

Here is the output file ‘box.l.poly’. Note that segments have been added
65



trianglevl_3.doc Fri Dec 20 13:38:37 1996 9

to represent the convex hull, and some segments have been split by newly
added points. Note also that <# of points> is set to zero to indicate
that the points should be read from the .node file.

0 2 0 1
12 1
1 1 9 5
2 5 7 1
3 8 7 1
4 6 8 10
5 5 6 1
6 3 10 1
7 4 11 1
8 2 12 1
9 9 2 5
10 10 1 1
11 11 3 1
12 12 4 1
1
1 1.5 1.5

# Generated by triangle -pgc box.poly
Refinement and Area Constraints:

The -r switch causes a mesh (.node and .ele files) to be read and
refined. If the -p switch is also used, a .poly file is read and used to
specify edges that are constrained and cannot be eliminated (although
they can be divided into smaller edges) by the refinement process.

When you refine a mesh, you generally want to impose tighter quality
constraints. One way to accomplish this is to use -q with a larger
angle, or -a followed by a smaller area than you used to generate the
mesh you are refining. Another way to do this is to create an .area
file, which specifies a maximum area for each triangle, and use the -a
switch (without a number following). Each triangle’s area constraint is
applied to that triangle. Area constraints tend to diffuse as the mesh
is refined, so if there are large variations in area constraint between
adjacent triangles, you may not get the results you want.

If you are refining a mesh composed of linear (three-node) elements, the
output mesh will contain all the nodes present in the input mesh, in the
same order, with new nodes added at the end of the .node file. However,
there is no guarantee that each output element is contained in a single
input element. Often, output elements will overlap two input elements,
and input edges are not present in the output mesh. Hence, a sequence of
refined meshes will form a hierarchy of nodes, but not a hierarchy of
elements. If you a refining a mesh of higher-order elements, the
hierarchical property applies only to the nodes at the corners of an
element; other nodes may not be present in the refined mesh.

It is important to understand that maximum area constraints in .poly
files are handled differently from those in .area files. A maximum area
in a .poly file applies to the whole (segment-bounded) region in which a
point falls, whereas a maximum area in an .area file applies to only one
triangle. Area constraints in .poly files are used only when a mesh is
first generated, whereas area constraints in .area files are used only to
refine an existing mesh, and are typically based on a posteriori error
estimates resulting from a finite element simulation on that mesh.

‘triangle -rg25 object.l’ will read object.l.node and object.l.ele, then
refine the triangulation to enforce a 25 degree minimum angle, and then
write the refined triangulation to object.2.node and object.2.ele.

‘triangle -rpaa6.2 z.3’ will read z.3.node, z.3.ele, z.3.poly, and
z.3.area. After reconstructing the mesh and its segments, Triangle will

66



trianglevl_3.doc Fri Dec 20 13:38:37 1996 10

refine the mesh so that no triangle has area greater than 6.2, and
furthermore the triangles satisfy the maximum area constraints in
z.3.area. The output is written to z.4.node, z.4.ele, and z.4.poly.

The sequence ‘triangle -gal x’, ‘triangle -rga.3 x.l1’, ‘triangle -rga.l
x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,
suitable for multigrid.

Convex Hulls and Mesh Boundaries:

If the input is a point set (rather than a PSLG), Triangle produces its
convex hull as a by-product in the output .poly file if you use the -c
switch. There are faster algorithms for finding a two-dimensional convex
hull than triangulation, of course, but this one comes for free. If the
input is an unconstrained mesh (you are using the -r switch but not the
-p switch), Triangle produces a list of its boundary edges (including
hole boundaries) as a by-product if you use the -c switch.

Voronoi Diagrams:

The -v switch produces a Voronoi diagram, in files suffixed .v.node and
.v.edge. For example, ‘triangle -v points’ will read points.node,
produce its Delaunay triangulation in points.l.node and points.l.ele,

and produce its Voronoi diagram in points.l.v.node and points.l.v.edge.
The .v.node file contains a list of all Voronoi vertices, and the .v.edge
file contains a list of all Voronoi edges, some of which may be infinite
rays. (The choice of filenames makes it easy to run the set of Voronoi
vertices through Triangle, if so desired.)

This implementation does not use exact arithmetic to compute the Voronoi
vertices, and does not check whether neighboring vertices are identical.
Be forewarned that if the Delaunay triangulation is degenerate or
near-degenerate, the Voronoi diagram may have duplicate points, crossing
edges, or infinite rays whose direction vector is zero. Also, if you
generate a constrained (as opposed to conforming) Delaunay triangulation,
or if the triangulation has holes, the corresponding Voronoi diagram is
likely to have crossing edges and unlikely to make sense.

Mesh Topology:

You may wish to know which triangles are adjacent to a certain Delaunay
edge in an .edge file, which Voronoi regions are adjacent to a certain
Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to
each other. All of this information can be found by cross-referencing
output files with the recollection that the Delaunay triangulation and
the Voronoi diagrams are planar duals.

Specifically, edge i of an .edge file is the dual of Voronoi edge i of
the corresponding .v.edge file, and is rotated 90 degrees counterclock-
wise from the Voronoi edge. Triangle j of an .ele file is the dual of
vertex j of the corresponding .v.node file; and Voronoi region k is the
dual of point k of the corresponding .node file.

Hence, to find the triangles adjacent to a Delaunay edge, look at the
vertices of the corresponding Voronoi edge; their dual triangles are on
the left and right of the Delaunay edge, respectively. To find the
Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the
corresponding Delaunay edge; their dual regions are on the right and left
of the Voronoi edge, respectively. To find which Voronoi regions are
adjacent to each other, just read the list of Delaunay edges.

Statistics:

After generating a mesh, Triangle prints a count of the number of points,
triangles, edges, boundary edges, and segments in the output mesh. If



trianglevl_3.doc Fri Dec 20 13:38:37 1996 11

you’ve forgotten the statistics for an existing mesh, the -rNEP switches
(or -rpNEP if you’ve got a .poly file for the existing mesh) will
regenerate these statistics without writing any output.

The -V switch produces extended statistics, including a rough estimate
of memory use and a histogram of triangle aspect ratios and angles in the
mesh.

Exact Arithmetic:

Triangle uses adaptive exact arithmetic to perform what computational
geometers call the ‘orientation’ and ‘incircle’ tests. If the floating-
point arithmetic of your machine conforms to the IEEE 754 standard (as
most workstations do), and does not use extended precision internal
registers, then your output is guaranteed to be an absolutely true
Delaunay or conforming Delaunay triangulation, roundoff error
notwithstanding. The word ‘adaptive’ implies that these arithmetic
routines compute the result only to the precision necessary to guarantee
correctness, so they are usually nearly as fast as their approximate
counterparts. The exact tests can be disabled with the -X switch. On
most inputs, this switch will reduce the computation time by about eight
percent - it’s not worth the risk. There are rare difficult inputs
(having many collinear and cocircular points), however, for which the
difference could be a factor of two. These are precisely the inputs most
likely to cause errors if you use the -X switch.

Unfortunately, these routines don’t solve every numerical problem. Exact
arithmetic is not used to compute the positions of points, because the
bit complexity of point coordinates would grow without bound. Hence,
segment intersections aren’t computed exactly; in very unusual cases,
roundoff error in computing an intersection point might actually lead to
an inverted triangle and an invalid triangulation. (This is one reason
to compute your own intersection points in your .poly files.) Similarly,
exact arithmetic is not used to compute the vertices of the Voronoi
diagram.

Underflow and overflow can also cause difficulties; the exact arithmetic
routines do not ameliorate out-of-bounds exponents, which can arise
during the orientation and incircle tests. As a rule of thumb, you
should ensure that your input values are within a range such that their
third powers can be taken without underflow or overflow. Underflow can
silently prevent the tests from being performed exactly, while overflow
will typically cause a floating exception.

Calling Triangle from Another Program:
Read the file triangle.h for details.
Troubleshooting:
Please read this section before mailing me bugs.
‘My output mesh has no triangles!’
If you’re using a PSLG, you'’ve probably failed to specify a proper set
of bounding segments, or forgotten to use the -c switch. Or you may
have placed a hole badly. To test these possibilities, try again with
the -c and -O switches. Alternatively, all your input points may be
collinear, in which case you can hardly expect to triangulate them.
‘Triangle doesn’t terminate, or just crashes.’
Bad things can happen when triangles get so small that the distance

between their vertices isn’t much larger than the precision of your
machine’s arithmetic. If you’ve compiled Triangle for single-precision



trianglevl_3.doc Fri Dec 20 13:38:37 1996 12

arithmetic, you might do better by recompiling it for double-precision.
Then again, you might just have to settle for more lenient constraints
on the minimum angle and the maximum area than you had planned.

You can minimize precision problems by ensuring that the origin lies
inside your point set, or even inside the densest part of your

mesh. On the other hand, if you’re triangulating an object whose x
coordinates all fall between 6247133 and 6247134, you’re not leaving
much floating-point precision for Triangle to work with.

Precision problems can occur covertly if the input PSLG contains two
segments that meet (or intersect) at a very small angle, or if such an
angle is introduced by the -c switch, which may occur if a point lies
ever-so-slightly inside the convex hull, and is connected by a PSLG
segment to a point on the convex hull. If you don’t realize that a
small angle is being formed, you might never discover why Triangle is
crashing. To check for this possibility, use the -S switch (with an
appropriate limit on the number of Steiner points, found by trial-and-
error) to stop Triangle early, and view the output .poly file with
Show Me (described below). Look carefully for small angles between
segments; zoom in closely, as such segments might look like a single
segment from a distance.

If some of the input values are too large, Triangle may suffer a
floating exception due to overflow when attempting to perform an
orientation or incircle test. (Read the section on exact arithmetic
above.) Again, I recommend compiling Triangle for double (rather
than single) precision arithmetic.

‘The numbering of the output points doesn’t match the input points.’

You may have eaten some of your input points with a hole, or by placing
them outside the area enclosed by segments.

‘Triangle executes without incident, but when I look at the resulting
mesh, it has overlapping triangles or other geometric inconsistencies.’

If you select the -X switch, Triangle’s divide-and-conquer Delaunay
triangulation algorithm occasionally makes mistakes due to floating-
point roundoff error. Although these errors are rare, don’t use the -X
switch. If you still have problems, please report the bug.

Strange things can happen if you’ve taken liberties with your PSLG. Do
you have a point lying in the middle of a segment? Triangle sometimes
copes poorly with that sort of thing. Do you want to lay out a collinear
row of evenly spaced, segment-connected points? Have you simply defined
one long segment connecting the leftmost point to the rightmost point,
and a bunch of points lying along it? This method occasionally works,
especially with horizontal and vertical lines, but often it doesn’t, and
you’ll have to connect each adjacent pair of points with a separate
segment. If you don’‘t like it, tough.

Furthermore, if you have segments that intersect other than at their
endpoints, try not to let the intersections fall extremely close to PSLG
points or each other.

If you have problems refining a triangulation not produced by Triangle:

Are you sure the triangulation is geometrically valid? Is it formatted

correctly for Triangle? Are the triangles all listed so the first three
points are their corners in counterclockwise order?

Show Me:

Triangle comes with a separate program named ‘Show Me’, whose primary
purpose is to draw meshes on your screen or in PostScript. Its secondary

69



trianglevl_3.doc Fri Dec 20 13:38:37 1996 13

purpose is to check the validity of your input files, and do so more
thoroughly than Triangle does. Show Me requires that you have the X
Windows system. If you didn’t receive Show Me with Triangle, complain to
whomever you obtained Triangle from, then send me mail.

Triangle on the Web:
To see an illustrated, updated version of these instructions, check out
http://www.cs.cmu.edu/~quake/triangle.html
A Brief Plea:

If you use Triangle, and especially if you use it to accomplish real
work, I would like very much to hear from you. A short letter or email
(to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to
me. The more people I know are using this program, the more easily I can
justify spending time on improvements and on the three-dimensional
successor to Triangle, which in turn will benefit you. Also, I can put
you on a list to receive email whenever a new version of Triangle is
available.

If you use a mesh generated by Triangle in a publication, please include
an acknowledgment as well.

Research credit:

Of course, I can take credit for only a fraction of the ideas that made
this mesh generator possible. Triangle owes its existence to the efforts
of many fine computational geometers and other researchers, including
Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David
Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.
Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,
Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher
J. Van Wyk, David F. Watson, and Binhai Zhu. See the comments at the
beginning of the source code for references.



Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

1 Introduction

Triangle is a C program for two-dimensional mesh genera-
tion and construction of Delaunay triangulations, constrained
Delaunay triangulations, and Voronoi diagrams. Triangle
is fast, memory-efficient, and robust; it computes Delau-
nay triangulations and constrained Delaunay triangulations
exactly. Guaranteed-quality meshes (having no small an-
gles) are generated using Ruppert’s Delaunay refinement
algorithm. Features include user-specified constraints on
angles and triangle areas, user-specified holes and concav-
ities, and the economical use of exact arithmetic to im-
prove robustness. Triangle is freely available on the Web
at “http://www.cs.cmu.edu/~quake/triangle.html” and from
Netlib. This paper discusses many of the key implementation
decisions, including the choice of triangulation algorithms
and data structures, the steps taken to create and refine a
mesh, a number of issues that arise in Ruppert’s algorithm,
and the use of exact arithmetic.

2 Triangulation Algorithms and Data
Structures

A triangular mesh generator rests on the efficiency of its
triangulation algorithms and data structures, so I discuss these
first. I assume the reader is familiar with Delaunay triangu-
lations, constrained Delaunay triangulations, and the incre-
mental insertion algorithms for constructing them. Consult
the survey by Bern and Eppstein [2] for an introduction.

There are many Delaunay triangulation algorithms, some
of which are surveyed and evaluated by Fortune [7] and Su and
Drysdale [18]. Their results indicate a rough parity in speed
among the incremental insertion algorithm of Lawson [11],
the divide-and-conquer algorithm of Lee and Schachter [12],
and the plane-sweep algorithm of Fortune [6]; however, the

Supported in part by the Natural Sciences and Engineering Research Council
of Canada under a 1967 Science and Engineering Scholarship and by the
National Science Foundation under Grant ASC-9318163.

implementations they study were written by different peo-
ple. I believe that Triangle is the first instance in which all
three algorithms have been implemented with the same data
structures and floating-point tests, by one person who gave
roughly equal attention to optimizing each. (Some details
of how these implementations were optimized appear in Ap-
pendix A.)

Table 1 compares the algorithms, including versions that
use exact arithmetic (see Section 4) to achieve robustness,
and versions that use approximate arithmetic and are hence
faster but may fail or produce incorrect output. (The robust
and non-robust versions are otherwise identical.) As Su and
Drysdale [ 18] also found, the divide-and-conquer algorithm is
fastest, with the sweepline algorithm second. The incremen-
tal algorithm performs poorly, spending most of its time in
point location. (Su and Drysdale produced a beiter incremen-
tal insertion implementation by using bucketing to perform
point location, but it still ranks third. Triangle does not use
bucketing because it is easily defeated, as discussed in the
appendix.) The agreement between my results and those of
Su and Drysdale lends support to their ranking of algorithms.

An important optimization to the divide-and-conquer algo-
rithm, adapted from Dwyer [5], is to partition the vertices with
alternating horizontal and vertical cuts (Lee and Schachter’s
algorithm uses only vertical cuts). Alternating cuts speed the
algorithm and, when exact arithmetic is disabled, reduce its
likelihood of failure. One million points can be triangulated
correctly in a minute on a fast workstation.

All three triangulation algorithms are implemented so as to
eliminate duplicate input points; if not eliminated, duplicates
can cause catastrophic failures. The sweepline algorithm
can easily detect duplicate points as they are removed from
the event queue (by comparing each with the previous point
removed from the queue), and the incremental insertion al-
gorithm can detect a duplicate point after point location. The
divide-and-conquer algorithm begins by sorting the points by
their z-coordinates, after which duplicates can be detected
and removed. This sorting step is a necessary part of the
divide-and-conquer algorithm with vertical cuts, but not of
the variant with alternating cuts (which must perform a se-
quence of median-finding operations, alternately by z and

71



Delaunay triangulation timings (seconds)
Number of points 10,000 100,000 1,000,000
Point distribution | Uniform | Boundary | Tilted || Uniform | Boundary | Tilted || Uniform | Boundary | Tilted

Algorithm Random | of Circle | Grid || Random | of Circle | Grid || Random | of Circle | Grid
Div&Conq, alternating cuts

robust 0.33 0.57 | 0.72 4.5 5.3 5.5 58 61 58

non-robust 0.30 027 | 0.27 4.0 4.0 3.5 53 56 44
Div&Cong, vertical cuts

robust 0.47 1.06 | 0.96 6.2 9.0 7.6 79 98 85

non-robust 0.36 0.17 | failed 5.0 2.1 42 64 26 | failed
Sweepline

non-robust 0.78 062 | 0.71 10.8 8.6 10.5 147 119 139
Incremental

robust 1.15 388 | 279 24.0 112.7 | 101.3 545 1523 | 2138

non-robust 0.99 2.74 | failed 213 94.3 | failed 486 1327 | failed

Table 1: Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha processor, not including I/0. Robust and non-robust
versions of the Delaunay algorithms triangulated points chosen from one of three different distributions: uniformly distributed
random points in a square, random approximately cocircular points, and a tilted 1000 x 1000 square grid.

y-coordinates). Hence, the timings in Table 1 for divide-
and-conquer with alternating cuts could be improved slightly
if one could guarantee that no duplicate input points would
occur; the initial sorting step would be unnecessary.

Should one choose a data structure that uses a record to
represent each edge, or one that uses a record to represent
each triangle? Triangle was originally written using Guibas
and Stolfi’s quad-edge data structure [10] (without the Flip
operator), then rewritten using a triangle-based data structure.
The quad-edge data structure is popular because it is elegant,
because it simultaneously represents a graph and its geometric
dual (such as a Delaunay triangulation and the corresponding
Voronoi diagram), and because Guibas and Stolfi give de-
tailed pseudocode for implementing the divide-and-conquer
and incremental Delaunay algorithms using quad-edges.

Despite the fundamental differences between the data
structures, the quad-edge-based and triangle-based imple-
mentations of Triangle are both faithful to the Delaunay tri-
angulation algorithms presented by Guibas and Stolfi [10]
(I did not implement a quad-edge sweepline algorithm), and
hence offer a fair comparison of the data structures. Perhaps
the most useful observation of this paper for practitioners
is that the divide-and-conquer algorithm, the incremental al-
gorithm, and the Delaunay refinement algorithm for mesh
generation were all sped by a factor of two by the triangular
data structure. (However, it is worth noting that the code
devoted specifically to triangulation is roughly twice as long
for the triangular data structure.) A difference so pronounced
demands explanation.

First, consider the different storage demands of each data
structure, illustrated in Figure 1. Each quad-edge record
contains four pointers to neighboring quad-edges, and two
pointers to vertices (the endpoints of the edge). Each triangle
record contains three pointers to neighboring triangles, and

Figure 1: Atriangulation (top) and its corresponding represen-
tations with quad-edge and triangular data structures. Each
quad-edge and each triangle contains six pointers.

three pointers to vertices. Hence, both structures contain six
pointers.! A triangulation contains roughly three edges for
every two triangles. Hence, the triangular data structure is
more space-efficient.

It is difficult to ascertain with certainty why the triangular
data structure is superior in time as well as space, but one can
make educated inferences. When a program makes structural
changes to a triangulation, the amount of time used depends in
part on the number of pointers that have to be read and written.

!Both the quad-edge and triangle data structures must store not only
pointers to their neighbors, but also the orientations of their neighbors, to
make clear how they are connected. For instance, each pointer from a
triangle to a neighboring triangle has an associated orientation (a number
between zero and two) that indicates which edge of the neighboring triangle
is contacted. An important space optimization is to store the orientation
of each quad-edge or triangle in the bottom two bits of the corresponding
pointer. Thus, each record must be aligned on a four-byte boundary.



Figure 2: How the triangle-based divide-and-conquer algo-
rithm represents an isolated edge (left) and an isolated tri-
angle (right). Dashed lines represent ghost triangles. White
vertices all represent the same “vertex at infinity”; only black
vertices have coordinates.

This amount is smaller for the triangular data structure; more
of the connectivity information is implicit in each triangle.
Caching is improved by the fact that fewer structures are
accessed. (For large triangulations, any two adjoining quad-
edges or triangles are unlikely to lie in the same cache line.)

Because the triangle-based divide-and-conquer algorithm
proved to be fastest, it is worth exploring in some depth. At
first glance, the algorithm and data structure seem incompat-
ible. The divide-and-conquer algorithm recursively halves
the input vertices until they are partitioned into subsets of
two or three vertices each. Each subset is easily triangulated
(yielding an edge, two collinear edges, or a triangle), and the
triangulations are merged together to form larger ones. If one
uses a degenerate triangle to represent an isolated edge, the
resulting code is clumsy because of the need to handle special
cases. One might partition the input into subsets of three to
five vertices, but this does not help if the points in a subset
are collinear.

To preserve the elegance of Guibas and Stolfi’s presenta-
tion of the divide-and-conquer algorithm, each triangulation
is surrounded with a layer of “ghost” triangles, one triangle
per convex hull edge. The ghost triangles are connected to
each other in a ring about a “vertex at infinity” (really just
a null pointer). A single edge is represented by two ghost
triangles, as illustrated in Figure 2.

Ghost triangles are useful for efficiently traversing the con-
vex hull edges during the merge step. Some are transformed
into real triangles during this step; two triangulations are sewn
together by fitting their ghost triangles together like the teeth
of two gears. (Some edge flips are also needed. See Fig-
ure 3.) Each merge step creates only two new triangles; one
at the bottom and one at the top of the seam. After all the
merge steps are done, the ghost triangles are removed and the
triangulation is passed on to the next stage of meshing.

Precisely the same data structure, ghost triangles and all, is
used in the sweepline implementation to represent the grow-
ing triangulation (which often includes dangling edges). De-
tails are omitted.

Augmentations to the data structure are necessary to sup-
port the constrained triangulations needed for mesh genera-

Figure 3: Halfway through a merge step of the divide-and-
conquer algorithm. Dashed lines represent ghost triangles
and triangles displaced by edge flips. The dotted triangle
at bottom center is a newly created ghost triangle. Shaded
triangles are non-Delaunay and will be displaced by edge flips.

tion. Constrained edges are edges that may not be removed in
the process of improving the quality of a mesh, and hence may
not be flipped during incremental insertion of a vertex. One
or more constrained edges collectively represent an input seg-
ment. Constrained edges may carry additional information,
such as boundary conditions for finite element simulations.
(A future version of Triangle may support curved segments
this way.) The quad-edge structure supports such constraints
easily; each quad-edge is simply annotated to mark the fact
that it is constrained, and perhaps annotated with extra in-
formation. It is more expensive to represent constraints with
the triangular structure; I augment each triangle with three
extra pointers (one for each edge), which are usually null but
may point to shell edges, which represent constrained edges
and carry additional information. This eliminates the space
advantage of the triangular data structure, but not its time
advantage. Triangle uses the longer record only if constraints
are needed.

3 Ruppert’s Delaunay Refinement
Algorithm

Ruppert’s algorithm for two-dimensional quality mesh
generation [15] is perhaps the first theoretically guaranteed
meshing algorithm to be truly satisfactory in practice. It
produces meshes with no small angles, using relatively few
triangles (though the density of triangles can be increased
under user control) and allowing the density of triangles
to vary quickly over short distances, as illustrated in Fig-
ure 4. (Chew [3] independently developed a similar algo-

72



Figure 4: A demonstration of the ability of the Delaunay re-
finement algorithm to achieve large gradations in triangle size
while constraining angles. No angles are smaller than 24°.

rithm.) This section describes Ruppert’s Delaunay refinement
algorithm as it is implemented in Triangle.

Triangle’s input is a planar straight line graph (PSLG),
defined to be a collection of vertices and segments (where
the endpoints of every segment are included in the list of
vertices). Figure 5 illustrates a PSLG defining an electric
guitar. Although the definition of “PSLG” normally disallows
segment intersections (except at segment endpoints), Triangle
can detect segment intersections and insert vertices.

The first stage of the algorithm is to find the Delaunay
triangulation of the input vertices, as in Figure 6. In general,
some of the input segments are missing from the triangulation;
the second stage is to insert them. Triangle can force the mesh
to conform to the segments in one of two ways, selectable by
the user. The firstis to insert anew vertex corresponding to the
midpoint of any segment that does not appear in the mesh, and
use Lawson’s incremental insertion algorithm to maintain the
Delaunay property. The effect is to split the segment in half,
and the two resulting subsegments may appear in the mesh.
If not, the procedure is repeated recursively until the original
segment is represented by a linear sequence of constrained
edges in the mesh.

The second choice is to simply use a constrained Delaunay
triangulation (Figure 7). Each segment is inserted by delet-
ing the triangles it overlaps, and retriangulating the regions
on each side of the segment. No new vertices are inserted.
For reasons explained in Section 3.1, Triangle uses the con-
strained Delaunay triangulation by default.

The third stage of the algorithm, which diverges from Rup-
pert [15], is to remove triangles from concavities and holes
(Figure 8). A hole is simply a user-specified point in the
plane where a “triangle-eating virus” is planted and spread
by depth-first search until its advance is halted by segments.
(This simple mechanism saves both the user and the imple-
mentation from a common outlook wherein one must define
oriented curves whose insides are clearly distinguishable from
their outsides. Triangle’s method makes it easier to treat holes
and internal boundaries in a unified manner.?) Concavities

2| imagine computational geometers replying, “Of course,” engineers
responding, “Hmm,” and solid modeling specialists recoiling in horror.

MIV,

Figure 5: Electric guitar PSLG.

Figure 6: Delaunay triangulation of vertices of PSLG. The
triangulation does not conform to all of the input segments.

Figure 7: Constrained Delaunay triangulation of PSLG.

K 4

Figure 8: Triangles are removed from concavities and holes.

Figure 9: Conforming Delaunay triangulation with 20° mini-
mum angle.



OS5

Figure 10: Segments are split recursively (while maintaining
the Delaunay property) until no segments are encroached.

Sh SN

Figure 11: Each bad triangle is split by inserting a vertex at
its circumcenter and maintaining the Delaunay property.

are recognized from unconstrained edges on the boundary of
the mesh, and the same virus is used to hollow them out.
The fourth stage, and the heart of the algorithm, refines
the mesh by inserting additional vertices into the mesh (using
Lawson’s algorithm to maintain the Delaunay property) until
all constraints on minimum angle and maximum triangle area
are met (Figure 9). Vertex insertion is governed by two rules.

o Thediametral circle of a segment is the (unique) smallest
circle that contains the segment. A segment is said to
be encroached if a point lies within its diametral circle.
Any encroached segment that arises is immediately split
by inserting a vertex at its midpoint. The two resulting
subsegments have smaller diametral circles, and may or
may not be encroached themselves. See Figure 10.

o The circumcircle of a triangle is the unique circle that
passes through all three vertices of the triangle. A tri-
angle is said to be bad if it has an angle too small or
an area too large to satisfy the user’s constraints. A bad
triangle is split by inserting a vertex at its circumcenter
(the center of its circumcircle); the Delaunay property
guarantees that the triangle is eliminated (see Figure 11).
If the new vertex encroaches upon any segment, the ver-
tex is deleted (reversing the insertion process) and all the
segments it encroached upon are split.

Encroached segments are given priority over bad triangles.
A queue of encroached segments and a queue of bad trian-
gles are initialized at the beginning of the refinement stage
and maintained throughout; every vertex insertion may add
new members to either queue. The former queue rarely con-
tains more than one segment except at the beginning of the
refinement stage, when it may contain many.

AV

Figure 12: Demonstration of the refinement stage. The first
two images are the input PSLG and its constrained Delaunay
triangulation. In each image, highlighted segments or trian-
gles are about to be split, and highlighted vertices are about
to be deleted. Note that the algorithm easily accommodates
internal boundaries and holes.

The refinement stage is illustrated in Figure 12. Rup-
pert [15] proves that this procedure halts for an angle con-
straint of up to 20.7°. In practice, the algorithm generally
halts with an angle constraint of 33.8°, but often fails to
terminate given an angle constraint of 33.9°. It would be
interesting to discover why the cutoff falls there.

3.1 Selected Implementation Issues

Triangle removes extraneous triangles from holes and con-
cavities before the refinement stage. This presents no prob-
lem for the refinement algorithm; the requirement that no
segment be encroached and the Delaunay property together
ensure that the circumcenter of every triangle lies within the
mesh. (Roundoff error might perturb a circumcenter to just
outside the mesh, but it is easy to identify the conflicting
edge and treat it as encroached.) An advantage of removing
triangles before refinement is that computation is not wasted
refining triangles that will eventually be deleted.

A more important advantage is illustrated in Figure 13.
If extraneous triangles remain during the refinement stage,
overrefinement can occur if very small features outside the
object being meshed cause the creation of small triangles
inside the mesh. Ruppert suggests solving this problem by
using the constrained Delaunay triangulation, and ignoring
interactions that take place outside the region being triangu-
lated. Early removal of triangles provides a nearly effortless

73



Figure 13: Two variations of the Delaunay refinement algo-
rithm with a 20° minimum angle. Left: Mesh created using
segment splitting and late removal of triangles. This illustra-
tion includes external triangles, just prior to removal, to show
why overrefinement occurs. Right: Mesh created using con-
strained Delaunay triangulation and early removal of triangles.

AiA AA\ </
VNNARD
TN

V)
N

P>

Ay‘}
4

X

N/

\/
L\

AV
e l’;
%

Vav, !

YRR,
\/

NAVAYSN

SRR

Figure 14: Two meshes with a 33° minimum angle. The left
mesh, with 290 triangles, was formed by always splitting the
worst existing triangle. The right mesh, with 450 triangles, was
formed by using a first-come first-split queue of bad triangles.

way to accomplish this effect. Segments that would normally
be considered encroached are ignored (Figure 13, right), be-
cause encroached segments are diagnosed by noticing that
they occur opposite an obtuse angle in a triangle.

Another determinant of the number of triangles in the final
mesh is the order in which bad triangles are split, especially
when a strong angle constraint is used. Figure 14 demon-
strates how sensitive the refinement algorithm is to the order.
For this example with a 33° minimum angle, a heap of bad
triangles indexed by their smallest angle confers a 35% re-
duction in mesh size over a first-in first-out queue. (This
difference is typical for large meshes with a strong angle con-
straint, but thankfully disappears for small meshes and small

e b >t

Figure 15: In any triangulation with no angles smaller than
30°, the ratio b/a cannot exceed 27.

constraints.) The discrepancy probably occurs because cir-
cumcenters of very bad triangles are likely to split more bad
triangles than circumcenters of mildly bad triangles. Unfor-
tunately, a heap is slow for large meshes, especially when
small area constraints force all of the triangles into the heap.
Delaunay refinement usually takes O(n) time in practice, but
use of a heap increases the complexity to O(n logn).

Triangle’s solution, chosen experimentally, is to use 64
FIFO queues, each representing a different interval of angles.
Itis counterproductive (in practice) to order well-shaped trian-
gles by their worst angle, so one queue is used for well-shaped
but too-large triangles whose angles are all roughly larger than
39°. Triangles with smaller angles are partitioned among the
remaining queues. When a bad triangle is chosen for splitting,
it is taken from the “worst” nonempty queue. This method
yields meshes comparable with those generated using a heap,
but is only slightly slower than using a single queue. During
the refinement phase, about 21,000 new vertices are generated
per second on a DEC 3000/700. These vertices are inserted
using the incremental Delaunay algorithm, but are inserted
much more quickly than Table 1 would suggest because a
triangle’s circumcenter can be located quickly by starting the
search at the triangle.

3.2 A Negative Result on Quality Triangulations

For any angle bound 6 > 0, there exists a PSLG P such
that it is not possible to triangulate P without creating a new
corner (not present in P) having angle smaller than §. Here,
I discuss why this is true.

Ruppert’s proof that his Delaunay refinement algorithm
terminates makes use of the assumption that all interior angles
are 90° or larger. This condition is often violated in practice,
so he suggests handling small interior angles by surrounding
each vertex of an acute angle with a ring of shield edges. As
the negative result stated above suggests, there are PSLGs for
which shield edges fail, and for which no construction can
succeed. Fortunately, all such PSLGs [ am aware of have
an interior angle much smaller than 8, so failure is generally
predictable.

The reasoning behind the result is as follows. Suppose a
segment in a conforming triangulation has been split into two
subsegments of lengths a and b, as illustrated in Figure 15.
Mitchell [13] proves that if the triangulation has no angles
smaller than 6, then the ratio b/a has an upper bound of
(2cos8)'%°/%  (This bound is tight if 180°/8 is an integer;



Figure 15 offers an example where the bound is obtained.)
Hence any bound on the smallest angle of a triangulation
imposes a limit on the gradation of triangle sizes along a
segment (or anywhere in the mesh).

A problem can arise if a small angle ¢ occurs at the in-
tersection point o of two segments of a PSLG, as illustrated
in Figure 16 (top). The small angle cannot be improved, of
course, but one does not wish to create any new small an-
gles. Assume that one of the segments is split by a point p,
which may be present in the input or may be inserted to help
achieve the angle constraint elsewhere in the triangulation.
The insertion of p forces part of the region between the two
segments to be triangulated (Figure 16, center), which can
cause a new point g to be inserted on the segment containing
p. Leta = |pg| and b = |op| as illustrated. If the angle bound
is maintained, the length a cannot be large; the ratio a/b is
bounded below

il,—n—d) (cos(O +¢)+
sinf

If the region above the segments is part of the interior
of the PSLG, the fan effect demonstrated in Figure 15 may
necessitate the insertion of another vertex r between o and p
(Figure 16, bottom); this circumstance is unavoidable if the
product of the bounds on b/a and a/b given above is less
than one. For an angle constraint of # = 30°, this condition
occurs when ¢ is about six tenths of a degree. Unfortunately,
the new vertex r creates the same conditions as the vertex p,
but closer to o; the process will cascade, eternally creating
smaller and smaller triangles in an attempt to satisfy the angle
constraint. No algorithm can produce a finite triangulation
of such a PSLG without violating the angle constraint. (It is
amusing to consider whether the angle constraint can be met
if one is allowed an infinite number of triangles.)

If some PSLGs do not have quality triangulations, what
are the implications for shielding? Triangle implements a
variant of shielding known as “modified segment splitting us-
ing concentric circular shells” (see Ruppert [15] for details),
which is generally effective in practice for PSLGs that have
small angles greater than 5°, and often for smaller angles.
Shielding is useful even though it cannot solve all problems.
On the other hand, the Delaunay refinement algorithm does
not know to use careful arrangements of triangles as in Fig-
ure 15 to manage small input angles, and therefore can fail
to terminate even on PSLGs for which a quality triangulation
exists. Hence, Triangle prints a warning message when an-
gles smaller than five degrees appear between input segments.
The smaller an angle is, and the greater the number of small
angles in a PSLG, the less likely Triangle is to terminate. An
interesting question for future work is how to determine when
and where it is wise to weaken the angle constraint so that
termination can be ensured.

This problem presents another motivation for removing
triangles from holes and concavities prior to applying the
Delaunay refinement algorithm. Holes with small angles
might cause the algorithm to fail if triangles are not removed

sin(6 + ¢)> _

tand

0 AN

Figure 16: Top: A difficult PSLG with a small interior angle ¢.
Center: The point p and the angle constraint necessitate the
insertion of the point q. Bottom: The point ¢ and the angle
constraint necessitate the insertion of the point r. The process
repeats eternally.

until after refinement. Concave objects can be particularly
dastardly, because a very small angle may occur between a
defining segment of the object and an edge of the convex hull.
The user, unaware of the effect of the convex hull edge, would
be mystified why the Delaunay refinement algorithm fails to
terminate on what appears to be a simple PSLG. (In fact, this
is how the issues described in this section first became evident
to me.) Early removal of triangles from concavities avoids
this problem.

4 Correct Adaptive Tests

The correctness of the incremental and divide-and-conquer
algorithms depends on reliable orientation and incircle tests.
The orientation test determines whether a point lies to the left
of, to the right of, or on a line; it is used in many (perhaps most)
geometric algorithms. The incircle test determines whether
a point lies inside, outside, or on a circle. Inexact versions

74



Figure 17: Left: A Delaunay triangulation (two of the guitar's
tuning screws). Right: An invalid triangulation created by
Triangle with exact arithmetic disabled.

of these tests are vulnerable to roundoff error, and the wrong
answers they produce can cause geometric algorithms to hang,
crash, or produce incorrect output. Figure 17 demonstrates a
real example of the failure of Triangle’s divide-and-conquer
algorithm.

The easiest solution to many of these robustness problems
is to use software implementations of exact arithmetic, al-
beit often at great expense. It is common to hear reports
of implementations being slowed by factors of ten or more
as a consequence. The goal of improving the speed of cor-
rect geometric calculations has received much recent atten-
tion 4, 8, 1], but the most promising proposals take integer
or rational inputs, often of limited precision. These methods
do not appear to be usable if it is convenient or necessary to
use ordinary floating-point inputs.

Triangle includes fast correct implementations of the ori-
entation and incircle tests that take floating-point inputs. They
owe their speed to two features. First, they employ new
fast algorithms for arbitrary precision arithmetic that have a
strong advantage over other software techniques in computa-
tions that manipulate values of extended but small precision.
Second, they are adaptive; their running time depends on the
degree of uncertainty of the result, and is usually small. For
instance, the adaptive orientation test is slow only if the points
being tested are nearly or exactly collinear.

The orientation and incircle tests both work by comput-
ing the sign of a determinant. Fortune and Van Wyk [8]
take advantage of the fact that only the sign is needed by
using a floating-point filter: the determinant is first evaluated
approximately, and only if forward error analysis indicates

that the sign of the approximate result cannot be trusted does

one use an exact test. Triangle’s adaptive implementations
carry this suggestion to its logical extreme by computing a
sequence of successively more accurate approximations to
the determinant, stopping only when the accuracy of the sign
is assured. To reduce computation time, some of these ap-
proximations can reuse previous, less accurate computations.
Shewchuk [16] presents details of the arbitrary precision
arithmetic algorithms and the adaptivity scheme, and pro-
vides empirical evidence that multiple-stage adaptivity can
significantly improve on two-stage adaptivity when difficult
point sets are triangulated.

Using the adaptive tests, Triangle computes Delaunay tri-
angulations, constrained Delaunay triangulations, and convex
hulls exactly, roundoff error notwithstanding. Table | shows
that the robust tests usually incur only a 10% to 30% over-
head, though more time may be needed for points sets with
many near-degeneracies. One exception is the divide-and-
conquer algorithm with vertical cuts. Because this algorithm
repeatedly merges tall, thinly separated triangulations, it per-
forms many orientation tests on nearly-collinear points, and
hence the robust version is much slower than the non-robust
version. The variant that uses alternating cuts encounters
nearly-collinear points less often; hence, its robust version
suffers a smaller speed handicap, and its non-robust version
is less likely to fail.

Of course, adaptive tests do not solve all robustness prob-
lems. Geometric computations that produce new vertices,
including circumcenters and segment intersections, could be
performed exactly in principle, but the results would have
large bit complexity and would be inconvenient to manip-
ulate and expensive to store. Worse, vertices of arbitrarily
large bit complexity could eventually be produced in a cas-
cading effect when the Delaunay refinement algorithm inserts
circumcenters of triangles whose vertices were themselves
circumcenters. Hence, it is infeasible to make the algorithm
perfectly robust. Fortunately, the Delaunay refinement algo-
rithm is naturally stable with regard to floating-point roundoff
error. Problems arise only when triangles are refined to so
small a size that it is no longer possible to construct a circum-
center that is distinct from its triangle’s vertices.

I have not produced a robust version of the sweepline al-
gorithm for a somewhat technical reason. The sweepline
algorithm maintains a priority queue (normally implemented
as a heap) containing two types of events: site events, where
the sweepline passes over an input point, and circle events,
where the sweepline reaches the top of a circle defined by
three consecutive vertices on the boundary of the triangula-
tion. Unfortunately, the y-coordinate of such a circle top is
expensive to compute exactly, may be irrational, and has a
somewhat complicated exact representation. A robust imple-
mentation must keep the events correctly ordered, and hence
must replace the simple comparisons normally used to main-
tain a priority queue with a test that correctly compares two
circle tops. Even a fast adaptive version of such a test would
be so much slower than simple comparisons that event queue
maintenance, which is a dominant cost of the sweepline al-
gorithm, would become prohibitively expensive.

A Additional Implementation Notes

The sweepline and incremental Delaunay triangulation im-
plementations compared by Su and Drysdale [18] each use
some variant of uniform bucketing to locate points. Buck-
eting yields fast implementations on uniform point sets, but
is easily defeated; a small, dense cluster of points in a large,
sparsely populated region may all fall into a single bucket.
[ have not used bucketing in Triangle, preferring algorithms



that exhibit good performance with any distribution of input
points. As a result, Triangle may be slower than necessary
when triangulating uniformly distributed point sets, but will
not exhibit asymptotically slower running times on difficult
inputs.

Fortune’s sweepline algorithm uses two nontrivial data
structures in addition to the triangulation: a priority queue to
store events, and a balanced tree data structure to store the
sequence of edges on the boundary of the mesh. Fortune’s
own implementation, available from Netlib, uses bucketing to
perform both these functions; hence, an O(n logn) running
time is not guaranteed, and Su and Drysdale [18] found that
the original implementation exhibits O(n*/2) performance on
uniform random point sets. By modifying Fortune’s code to
use a heap to store events, they obtained O(n logn) running
time and better performance on large point sets (having more
than 50,000 points). However, bucketing outperforms a heap
on small point sets.

Triangle’s implementation uses a heap as well, and also
uses a splay tree [17] to store mesh boundary edges, so that
an O(n log n) running time is attained, regardless of the dis-
tribution of points. Not all boundary edges are stored in the
splay tree; when a new edge is created, it is inserted into the
tree with probability 0.1. (The value 0.1 was chosen empiri-
cally to minimize the triangulation time for uniform random
point sets.) At any time, the splay tree contains a random
sample of roughly one tenth of the boundary edges. When
the sweepline sweeps past an input point, the point must be
located relative to the boundary edges; this point location in-
volves a search in the splay tree, followed by a search on the
boundary of the triangulation itself.

Splay trees adjust themselves so that frequently accessed
items are near the top of the tree. Hence, a point set organized
so that many new vertices appear at roughly the same loca-
tion on the boundary of the mesh is likely to be triangulated
quickly. This effect partly explains why Triangle’s sweepline
implementation triangulates points on the boundary of a cir-
cle more quickly than the other point sets, even though there
are many more boundary edges in the cocircular point set
and the splay tree grows to be much larger (containing O(n)
boundary edges instead of O(,/n)).

Triangle’s incremental insertion algorithm for Delaunay
triangulation uses the point location method proposed by
Miicke, Saias, and Zhu [14). Their jump-and-walk method
chooses a random sample of O(n'/3) vertices from the mesh
(where n is the number of nodes currently in the mesh), deter-
mines which of these vertices is closest to the query point, and
walks through the mesh from the chosen vertex toward the
query point until the triangle containing that point is found.
Miicke et al. show that the resulting incremental algorithm
takes expected O(n*/?) time on uniform random point sets.
Table 1 appears to confirm this analysis. Triangle uses a sam-
ple size of 0.45n'/3; the coefficient was chosen empirically
to minimize the triangulation time for uniform random point
sets. Triangle also checks the previously inserted point, be-

cause in many practical point sets, any two consecutive points
have a high likelihood of being near each other.

A more elaborate point location scheme such as that sug-
gested by Guibas, Knuth, and Sharir [9] could be used (along
with randomization of the insertion order) to obtain an ex-
pected O(n log n) triangulation algorithm, but the data struc-
ture used for location is likely to take up as much memory
as the triangulation itself, and unlikely to surpass the perfor-
mance of the divide-and-conquer algorithm; hence, I do not
intend to pursue it.

Note that all discussion in this paper applies to Triangle
version 1.2; earlier versions lack the sweepline algorithm and
many optimizations to the other algorithms.

References

[1] Francis Avnaim, Jean-Daniel Boissonnat, Olivier Dev-
illers, Franco P. Preparata, and Mariette Yvinec. Eval-
uating Signs of Determinants Using Single-Precision
Arithmetic. 1995.

(2] Marshall Bern and David Eppstein. Mesh Generation
and Optimal Triangulation. Computing in Euclidean
Geometry (Ding-Zhu Du and Frank Hwang, editors),
Lecture Notes Series on Computing, volume 1, pages
23-90. World Scientific, Singapore, 1992.

(3] L. Paul Chew. Guaranteed-Quality Mesh Generation
for Curved Surfaces. Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 274—
280. Association for Computing Machinery, May 1993.

(4

—

Kenneth L. Clarkson. Safe and Effective Determinant
Evaluation. 33rd Annual Symposium on Foundations
of Computer Science, pages 387-395. IEEE Computer
Society Press, October 1992.

[5] Rex A. Dwyer. A Faster Divide-and-Conquer Algo-
rithm for Constructing Delaunay Triangulations. Algo-
rithmica 2(2):137-151, 1987.

[6] Steven Fortune. A Sweepline Algorithm for Voronoi

Diagrams. Algorithmica 2(2):153-174, 1987.

(7] . Voronoi Diagrams and Delaunay Triangula-
tions. Computing in Euclidean Geometry (Ding-Zhu
Du and Frank Hwang, editors), Lecture Notes Series on
Computing, volume 1, pages 193-233. World Scientific,

Singapore, 1992.

[8] Steven Fortune and Christopher J. Van Wyk. Efficient
Exact Arithmetic for Computational Geometry. Pro-
ceedings of the Ninth Annual Symposium on Com-
putational Geometry, pages 163-172. Association for
Computing Machinery, May 1993.

(9] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir.
Randomized Incremental Construction of Delaunay and
Voronoi Diagrams. Algorithmica 7(4):381-413, 1992.

75



[10] Leonidas J. Guibas and Jorge Stolfi. Primitives for the
Manipulation of General Subdivisions and the Com-
putation of Voronoi Diagrams. ACM Transactions on
Graphics 4(2):74-123, April 1985.

(11] C. L. Lawson. Software for C' Surface Interpolation.
Mathematical Software III (John R. Rice, editor), pages
161-194. Academic Press, New York, 1977.

[12] D.T. Lee and B. J. Schachter. Two Algorithms for Con-
structing a Delaunay Triangulation. International Jour-
nal of Computer and Information Sciences 9(3):219-
242, 1980.

[13] Scott A. Mitchell. Cardinality Bounds for Triangula-
tions with Bounded Minimum Angle. Sixth Canadian
Conference on Computational Geometry, 1994.

(14] ErnstP. Miicke, Isaac Saias, and Binhai Zhu. Fast Ran-
domized Point Location Without Preprocessing in Two-
and Three-dimensional Delaunay Triangulations. Pro-
ceedings of the Twelfth Annual Symposium on Compu-
tational Geometry. Association for Computing Machin-
ery, May 1996.

[15] Jim Ruppert. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal of
Algorithms 18(3):548-585, May 1995.

(16] Jonathan Richard Shewchuk. Robust Adaptive Floating-
Point Geometric Predicates. Proceedings of the Twelfth
Annual Symposium on Computational Geometry. Asso-
ciation for Computing Machinery, May 1996.

[17] Daniel Dominic Sleator and Robert Endre Tarjan. Self-
Adjusting Binary Search Trees. Journal of the Asso-
ciation for Computing Machinery 32(3):652-686, July
1985.

[18] Peter Su and Robert L. Scot Drysdale. A Compari-
son of Sequential Delaunay Triangulation Algorithms.
Proceedings of the Eleventh Annual Symposium on
Computational Geometry, pages 61-70. Association for
Computing Machinery, June 1995.

10



AUTOMATED DESIGN OF LOG-PERIODIC FOLDED DIPOLE AND
FOLDED SLOT ANTENNAS

Michael Carr (mcarr@umich.edu)
John Volakis (volakis@umich.edu)
December 15, 1996

INTRODUCTION

While log-periodic folded dipole antennas can be completeley
characterized with only four basic parameters, construction or synthesis of a
LPFD antenna can be time-consuming because of the many geometry points
that must be calculated using these parameters. Design iterations are in turn
time consuming, because the slightest change in design parameters requires a
recalculation of each point.

Figure 1: Basic LPFD Geometry

The 32-bit Windows application developed in this project uses four basic
parameters to design a LPFD or LPFS antenna. It saves a DXF-format file
containing the antenna geometry suitable for import into AutoCAD or one of
many other CAD packages supporting DXF.

USER INTERFACE

The program’s user interface (shown in Figure 2) is comprised of a single
dialog box prompting for entry of the antenna’s design parameters.

76



antenna.dxf

Figure 2: User Interface

Alpha
This parameter establishes the angle between the top and bottom of any
given element in the antenna.

No. of elements
The antenna may have anywhere from one to 999 dipole elements.

F_Low and F_High

These parameters specify the lowest and highest desired frequencies. They
do not insure that the antenna will operate at these frequencies, however.
The values are only used to calculate the shortest and longest elements of
the antenna. Middle elements are interpolated from these two calculated
elements.

Antenna Type

These radio buttons select between a folded dipole, an antenna which is
constructed of metal, or a folded slot, an antenna which is etched out of
metal.

Output filename

This box lets you choose a name for the resulting .DXF file. By default, it will
create a file named antenna.dxf. Click the “Choose” button to use a file
requester or simply type the name into the text box.

Make DXF

After all parameters have been specified, this button will generate the desired
.DXF for the antenna and exit the program.

Cancel
This button exits the program without generating the .DXF file.

77



CONCLUSIONS

This pre-alpha release of the code has the general program framework
implemented, but does not generate antennas of the correct dimension, nor of
the correct shape. Future releases will correct these problems. Please feel free
to offer suggestions as to the user interface and program operation.

78



README

Fri Dec 20 13:48:37 1996 1

This is a listing of all directories in this delivery.

Directory Listing:

DIRECTORY bin:

This directory contains all executables (compiled on SGI) including;

Acad.in
Acad.in.bak
Tri.in
Tri.in.bak

acadproc

antenna.exe

farfield

fema
showme
triangle

triproc

acadproc input file.
Commented acadproc input file.
triproc input file.
Commented triproc input file.

Converts AutoCAD .dxf file to Triangle .poly
input file.

Experimental DOS executable to automatically
generate Log-Periodic .dxf line file.

Generates far-field data from FEMA-PRISM output
magnetic current file EqvCur.

FEMA-PRISM executable.
Triangle Viewing tool.
2D mesher.

Converts Triangle output .l.node and .l.ele to
FEMA-PRISM "surfmesh" input file.

DIRECTORY doc:

This directory contains documentation for routines delivered.

LOG-PERI.MIF.ps Postscript copy of final report.

Manualvl.ps FEMA-PRISM user’s manual

cover.ps Cover page for report.

AutoCAD Interface Manual (i.e. .dxf to Triangle
using AcadProc.f and Triangle to surfmesh using
TriProc.f

meshman.ps

Updated FEMA_PRISM Input File format
including conducting pins, layers,
holes, etc.

minpl.ps/minp2.ps
trianglevl_3.doc Triangle meshing package user’s manual.
DIRECTORY examples:

This directory contains example input files, meshes, and data for
the single folded slot (slot subdirectory) and the 7-element LPFSA
(lpfsa subdirectory).

The subdirectory for each antenna contains:

an execute directory containing:

79



README Fri Dec 20 13:48:37 1996 2

1) The AutoCAD .dwg drawing file.

2) The AutoCAD .dxf file.

3) The .poly file created by AcadProc.f.

4) The .l.node and .l.ele files created by Triangle (Note that the
end of these files shows the Triangle command and options used
to create the files).

5) The FEMA_PRISM input "surfmesh" mesh file created by TriProc.f

6) MainInput, the FEMA_PRISM input parameter file.

7) Acad.in, Input file for AcadProc.f.

8) Tri.in, Input file for TriProc.f.

a data directory containing FEMA_PRISM and FarField.f output files:

1) EdgeUnk - FEMA_PRISM edge (field) unknowns.

2) EqvCur - FEMA_PRISM magnetic current file (used by FarField.f).

3) Imp - FEMA_PRISM probe impedence.

4) RUNDATA - Run data output of FEMA_PRISM.

5) *E.pat, and *H.pat FarField output patterns. (Note that these patterns
are combined outputs from FarField. 2 FarField runs were made for each
pattern, i.e., for E-Cut single slot runs were phi=180, theta=90,0,5
and phi=0, theta=0,90,5. After being combined aspects were renumbered
to go from 0 to 180 for each cut.

DIRECTORY src:

This directory and subdirectories contain all source code
and make files.

Subdirectory fema_prism contains:
This subdirectory contains all FEMA_PRISM subroutines and
makefiles as well as FarField.f source code for farfield

pattern generation.

In addition to FEMA_PRISM subroutines there is also:

Farfield.f Source code for farfield pattern generation
routine.

Makefile SGI makefile including 03 optimization.

Makefile_SGI Same as above.

MakefileNOOPT SGI makefile with no optimization.
Subdirectory preproc contains:

This subdirectory contains preprocessing routines (converting AutoCAD to
FEMA_PRISM input) as well as appropriate makefiles.

AcadProc. f Routine to convert AutoCAD .dxf files to
Triangle .poly input file.

AcadProc.inc Include file for above.

TriProc.f Routine to convert Triangle output .1.node and
.l.ele files to FEMA_PRISM "surfmesh" file.

Subdirectory triangle contains:

This subdirectory contains all Triangle meshing C source code as
well as Showme viewing tool C source code.

A.poly Example .poly boundary line file.

80



README
makefile
showme.c
triangle.c
triangle.h
triangle.shar

tricall.c

Fri Dec 20
Triangle
C-source

C-source

13:48:37 1996 3
and Showme make file.

code for Showme viewing package.

code for Triangle 2D meshing package.

Include file for triangle.c

Archived

triangle/showme package.

Example program on how to call Triangle.

81



