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Brief Summary of Performed Study

1.0 Abstract

The application of multiresolution analysis directly to Maxwell’s equations results in new time
domain schemes with unparalleled properties. This time domain approach, MRTD (MultiResolution
Time Domain Method). allows for the development of schemes which are based on scaling functions
only or on a combination of scaling functions and wavelets for the development of a variable griding.
The dispersion of the MRTD schemes compared to the conventional FDTD Yee’s scheme shows an
excellent capability to approach the exact solution with negligible error for sampling rates which
approach the Nyquist limit. Furthermore, due to the weak-interaction properties of the wavelets,
MRTD schemes allow for time/space-adaptive grids. These recent developments in time domain tech-
niques at the University of Michigan have strongly indicated the potential of MRTDs in creating a
major impact to the area of computational electromagnetics [10,11]. MRTD is not a new methodol-
ogy. It is a correct and accurate generalization of the conventional discretization approaches. It pro-
vides the correct mathematical frame for solving problems in time domain and allows for the
understanding of important issues in time-domain computational electromagnetics.

2.0 Introduction to MRTD

The finite-difference time-domain method (FDTD) has proven to be a powerful numerical technique
in electromagnetic field computations [1,2]. However, despite its simplicity and modeling versatility,
the technique suffers from serious limitations due to the substantial computer resources required to
.model electromagnetic problems with medium or large computational volumes. In addition, the
FDTD method cannot provide the accuracy required for computer simulations of time-dependent
electromagnetic interactions in electrically long regions or in regions which contain non-linear mate-
rials. Such simulations are very important for integrated device modeling, especially in relation to the
design of non-linear photonic devices. The above limitations have always made it a matter of great
interest to improve the efficiency of Yee’s FDTD scheme and have led researchers to the development
of hybrid combinations of FDTD with other propagation methods [3,4] and higher order FDTD
schemes based on Yee’s grid [5]. The method of moments provides a mathematically correct approach
for the discretization of integral and partial differential equations [6]. Its application to the discretiza-
tion of Maxwell’s partial differential equations has provided the field theoretical foundation for TLM
(7,8]. In addition, it has been shown recently [9] that Yee’s FDTD scheme can be derived from the
same approach when using pulse functions for the expansion of the unknown fields. Since the method
of moments allows for the use of any complete and orthonormal set, the choice of an appropriate
expansion set may lead to new powerful time domain schemes. The application of the method of
moments using scaling and wavelet functions, known as multiresolution analysis (MRA), has been
applied to Maxwell’s partial differential equations and has lead to novel and powerful time domain
schemes [10] and [11].
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In a MRTD scheme the electromagnetic fields are represented by a two-fold expansion in scaling and
wavelet functions with respect to space. The expansion in terms of scaling functions allows for a cor-
rect modeling of smoothly-varying electromagnetic fields. In regions characterized by strong field
variations or field singularities, additional field sampling points are introduced by incorporating
wavelets in the field expansions. These additional points are introduced only at specific locations,
thus, allowing for a variable grid capability. The use of different families of functions leads to various
time domain schemes. The exclusive use of scaling functions provides a variety of conventional
schemes including FDTD and TLM. The MRTDs which have been recently developed at Michigan
have used pulse functions as expansion and testing functions in the time domain in order to obtain a
two-step finite difference scheme with respect to time.

MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions have been devel-
oped and applied to a variety of problems. An extensive discussion of these derivations is presented in
(10]. This orthonormal wavelet expansion has already been applied successfully to the computation of
electromagnetic-field problems in the frequency domain and results have been presented for both 2-D
and 3-D problems [17,18]. The Battle-Lemarie scaling and wavelet functions do not have compact
support, thus the MRTD schemes have to be truncated with respect to space (see Figures 1,2). How-
ever, this disadvantage is offset by the low-pass and band-pass characteristics in spectral domain,
allowing for an a priori estimate of the number of resolution levels necessary for a correct field mod-
eling. Furthermore, for this type of scaling and wavelet functions, the evaluation of the moment
method integrals during the discretization of Maxwell’s PDEs is simplified due to the existence of
closed form expressions in spectral domain and simple representations in terms of cubic spline func-
tions in space domain. The use of non-localized basis functions cannot accommodate localized
boundary conditions and cannot allow for a localized modeling of material properties. To overcome
this difficulty, the image principle is used to model perfect electric and magnetic boundary conditions.
As for the description of material parameters, the constitutive relations are discretized accordingly
and the relationships between the electric/magnetic flux and the electric/magnetic field are given by
two matrix equations.

FIGURE 1. Battle-Lemarie Scaling Function and its Fourier Transforms.

Battle Lemarie Scaling Funcfion l === Fourer Transform ct Batlie-Lemane Scaling Function]
1.2 - A—

12 T T T T T
o

08 [
0.4

0.2

0

02 -

January 30, 1997 4



FIGURE 2. Battle-Lemarie Mother Wavelet and its Fourier Transforms.
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Complete dispersion analyses of the MRTD schemes including applications to 3-D problems and
comparisons to Yee's FDTD scheme are given in [10] and show the superiority of MRTDs to all other
existing discretization techniques. Specifically, the results show the capability of the MRTD method
to provide excellent accuracy with up two points per wavelength which is the Nyquist sampling limit.
The use of Battle Lemarie scaling and wavelet functions has provided very efficient solutions to open
and shielded circuit problems (see Appendix B). Figure 4 shows field calculations for the even mode
excited in coupled strips operating in an open environment as shown in Figure 3. The open boundaries
have been accounted for by incorporating PML regions within the MRTD technique. The use of
MRTD allowed for the placement of the matching layer right at the planar lines while it provided very
high accuracy and high computational efficiency. Figure 5 shows the even-mode electric field distri-
butions for a similar coupled strip geometry operating in a shielded environment as shown in Figure 6
(22] (see Appendix B). As with Battle-Lemarie functions, the application of the Haar basis functions
(see Figure 7) has led into the development of a multigrid FDTD technique [23, 24] and has demon-
strated the capability for a spatially adaptive grid in 2-dimensional waveguide and transmission line
problems. Figure 8 shows the field distribution in a two-dimensional shielded stripline. On the same
figure the spatially adaptive grid utilized in this problem is shown. For more details on this develop-
ment see Appendices A and F.

FIGURE 3. Open Coupled Strip Line
|

PML PML
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FIGURE 4. Even-Mode Field Distribution in the Structure of Figure 3

Tangential E-Field Planar Distribution (Even Mode)
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FIGURE 5. Even-Mode Electric Field Distribution for the Structure of Figure 6

Tangential E-Field Planar Distribution (Even Mode)
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FIGURE 6. Shielded Coupled Strip Line

3.0 Time/Space Adaptive MRTD Schemes

The major advantage of the use of Multiresolution analysis to time domain is the capability to develop
time and space adaptive schemes for an open as well as shielded space, and its application to linear
‘and non-linear problems. The effectiveness of the technique is measured in terms of its accuracy and
computational efficiency in comparison to conventional time domain techniques (FDTD, TLM). The
development of a spatially and temporally adaptive MRTD method is based on the property of wave-
let expansion functions to interact weakly and allow for a spatial sparsity that may vary with time as
needed through a thresholding process [12-19]. The availability of such an adaptive method is
extremely important for the accurate modeling of sharp field variations of the type encountered in
beam focusing in nonlinear opti'cs, wave propagation through narrow slits and apertures etc. A brief
presentation of the fundamental steps required for such a adaptive grid is given in the following sec-
tion.

FIGURE 7. Haar Scaling Functions and Wavelets

A oitn)

The use of multiresolution analysis for adaptive grid computations for PDEs has been suggested by

Perrier and Basdevant [20] and Liantdrat and Tchamitchian [21]. To describe the basic ideas of such
an adaptive scheme for Maxwell’s hyperbolic system, let us cast Maxwell’s equations in one spatial
dimension in the form:
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FIGURE 8. Field Distribution in a Printed Stripline Using MRTD Based on Haar Functions
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The numerical solution of (1) subject to initial conditions and appropriate boundary conditions at the
two boundary points is sought. Following appropriate derivations, the above equation can be written
in the following form:

MU =0 (3)
where
eTt,d, T ,D.
;M = h%e h*; (4)
Z'wWD. uZ,d,

In equation 4, Z,, T, are half shift operators for the spatial and temporal coordinates z, ¢ respec-

tively and Z',, T7), are their Hermitian conjugates. Furthermore, d, D, are difference operators

given by the following equations:

d = $(T-T}) (5)
and
D, = i(zT,, § o, ()2 + 28: o, ()2 6)
Az = ¢ R v
where
zt=7". (7)

In equation 6, ocq,(i ), ctw(i) are the coefficients associated with the scalar functions or wavelet

‘expansion functions respectively. Since M is represented by block of band matrices, it can be shown
that the domain where the field coefficients of u™*!) are non-negligible is at most equal to the corre-
sponding domain of u™ plus the width of the bands in matrix M that represent the operator A in the
wavelet basis. If N, N, are the total number of nonzero scaling and wavelet field coefficients (grid
points), the number of operations required to compute M is of the order of O( Ny +Ny). As it has

been shown in [10,11], the total number of scaling grid points can be as low as two per wavelength.
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However, the resolution required in the wavelet grid points is determined by the nature of the bound-
aries in the problem of interest.

We are now ready to describe the method suggested in [20.21] to adapt in space and time the wavelet
grid and thus follow the sharp features of the waves as they develop and/or move on the grid. At each
time step we keep both the wavelet field values that are larger than a given threshold as well as the
adjacent values. An adjacent wavelet field value is defined on the basis of the wavelet resolution
level(s) incorporated in the solution. The development of an appropriate definition can be considered.
Let G, be the wavelet field values (grid points) which are kept and represent the approximate solu-

tion at the nth time step. From these let us call fundamental the wavelet coefficients that are greater

than the threshold and adjacent the ones as defined above. From equation 3 we compute the wavelet

n+l)

field coefficients of u™*!) corresponding to the fundamental and adjacent coefficients that constitute

grid G,,,. We then adjust G,,, by changing into “fundamental” those field coefficients that are greater

than the threshold and changing into adjacent their adjacent ones. This process creates the new grid
G(n+1)y We project u onto the space corresponding to G, , |, and we are ready for the next step

update. Clearly the basic assumption behind this algorithm is that during a time At, the domain of the
fundamental field coefficients does no spread beyond its border of adjacent coefficients.

This method has already been applied to a variety of circuit problems [25] and is described in detail in
Appendices C, D and E. Figure 10 shows the adaptive mesh following the pulse exciting the parallel
plate waveguide structure shown in Figure 9, with a dense dielectric slab placed perpendicular to the
parallel plates. This figure clearly shows the capability of the mesh to discretize based on field inten-
sity and not on geometry. (see Appendix)

FIGURE 9. Parallel Plate Waveguide Strucfure

or=1 48 mm
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FIGURE 10. Time Adaptive Meshing
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AN FDTD MULTIGRID BASED ON MRTD:

Introduction

The use of wavelets in the method of moments for the solution of integral equations in
frequency domain has been known since the 1993 Antennas and Propagation Syvmposium
in Ann Arbor. MI [1]. Recent publications have demonstrated that the application of the
method of moments directly to Maxwell's equations allows as well for the use of multiresoly-
tion analysis in the time domain [2]. [3], [4]. In fact. multiresolution time domain (MRTD)
schemes based on Battle-Lemarie scaling functions have shown to exhibit highly linear dis-
persion characteristics. In comparison to conventional FDTD. savings in computation time
and memory of one and two orders of magnitude have been reported in (2]. Depending on
the choice of basis functions. several different schemes result. each one carrying the signa-
ture of the basis functions used in MRA. It is also important to note that the design of an

MRTD scheme can be accomplished using one’s own application-specific basis functions.

The objective of this work is to develop an FDTD multigrid using the Haar wavelet basis. It
will be shown that MRTD technique using Haar scaling functions results in the FDTD tech-
nique. Motivation for this work stems from the theory of MRA which says that a function
which is expanded in terms of scaling functions of a lower resolution level. m1. can be im-
proved to a higher resolution level, m2, by using wavelets of the intermediate levels. In other
words, expanding a function using scaling function of resolution level m1 and wavelets up to
resolution level m2 gives the same accuracy as expanding the function. using just the scaling
functions of resolution m2. However, the use of wavelet expansions has major implications
in memory savings due to the fact that the wavelet expansion coefficients are significant
only in areas of rapid field variations. This allows for the capability to discard wavelet ex-
pansion coefficients where they are not significant thereby leading to significant economy
in memory. Different resolutions of wavelets can be combined so as to locally improve the
accuracy of the approximation of the unknown function. This, combined with the fact that
wavelet coefficients are significant only at abrupt field variations and discontinuities allows
MRTD to lend itself very naturally to a Multigrid capability.

As mentioned above, the FDTD equations can be derived by applying the method of mo-
ments to Maxwell’s equations using pulses as basis functions. Since pulse functions are the
scaling functions in the Haar system, the FDTD technique can be considered as a specific
MRTD scheme. Based on these ideas, the multigrid for the first resolution level is derived
in the following sections. This is then followed by the performance of dispersion analysis
to demonstrate the improvement by adding the multigrid to the regular FDTD. The 2D
MRTD scheme based on Haar basis functions is then developed and applied to solve for
the Electromagnetic fields in a waveguide and a shielded stripline. The results obtained are
compared with those computed using conventional FDTD technique. It will be shown that
the wavelet coefficients are significant only at locations with abrupt field variations. This
facilitates in obtaining accurate solutions by combining the wavelet and scaling coefficients

only in regions where the wavelet coefficients are significant (discontinuities).



Derivation of the FDTD Multigrid Using the Haar System

As it Is known in the literature. the Haar system is generated by a scaling function &(r)

and a mother wavelet ¥(r) given below:

I for0<c <1

o1
0 elsewhere
and
1 f0r0§r<%
V(ir)=({ -1 forz<r<l

0 otherwise

Fig.l shows these two generating functions. In the regular FDTD scheme. the electric and

magnetic fields are expanded in terms of pulse functions as shown in the equation below:
E(z.t)=Zi m ¢ Em he(t) hn()

where  E,, is an unknown constant and h,(t) and h,,(z) are the pulse functions centered

at t, and z,,.

Applying this expansion to the one dimensional wave equation and using the method of

moments (Galerkin’s technique) we obtain the following discretized equation:

Az
E(*ﬁHEm k-1 Em) =k Em-H —k Em-l

which can also be denoted as:
DtE =k Em+1 "k Em—l

where D, is the differential operator in the time domain. This is the regular FDTD dis-
cretization scheme with the E and corresponding H components located at the same nodes.
To apply multiresolution analysis, the scaling functions and wavelets of the Haar system
are both used as shown below :

E(l‘, t) = Sk‘mhk(t)[kE:Qm(x) +x E,'f,\Ifm(z)]

Using Galerkin’s method, two discretized equations are obtained for the one dimensional
wave equation. Next, a dispersion analysis is performed in order to compare the character-
istics of new scheme with that of the traditional FDTD technique in terms of the dispersion
errors. A similar approach can be adopted for the 2D and 3D cases to perform the dis-

cretization.

Dispersion Analysis
The dispersion relation of the FDTD and the MRTD scheme is calculated from the solution

of the eigenvalue problem after transforming the equations in the frequency domain [3]
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Figure 1: Scaling and Wavelet Functions.



6]. For the 1D wave equation discussed above. the FDTD dispersion relation is shown

below:
#4sirl(%) = *H?(%)
where
0 =cAt
and
X = Ark,

This equation is also derived when using Yee's cell. In the equations above. Ax and At
are the space and time steps respectively and &, is the magnitude of the wave vector. The
dispersion relation of the first order resolution MRTD mesh (FDTD multigrid) for the 1D

wave is given by the following equation:

Az Q0 ¥
Esm(g) = ZSzn(I)

Fig.2 shows plots of the normalized wave vector component Y as a function of the normalized
frequency Q for the ideal case, the FDTD technique and MRTD scheme. From the figure it

can be seen that the dispersion curve of the MRTD scheme is much more linear and closer
to the ideal than the FDTD scheme.

Similar analysis has been performed for a 2D problem where the wavelets were applied in
one direction and only scaling functions in the other direction. As expected, the dispersion
relation is the same as that of the FDTD scheme in the direction in which no wavelets
are applied while the dispersion curve substantially improves in the direction in which the
wavelets are used. Figs. 3 and 4 show plots of y as a function of Q for different directions

and validate the claims above.

The 2D-MRTD scheme Consider the following 2-D scalar equation obtained from Maxwell's
H-curl equation:

0E, 0H,
€ 0t —-W'FJHy (1)

This equation can be rewritten in a differential operator form as shown below:

Li(fi(z,y, 1) + La(fo(z,9.1)) = ¢ (2)

where L; and L, are the operators and fi(x.y.t) and fo(x.y,t) represent the electric/magnetic
fields. We now expand the fields using a Haar based MRA with scaling functions o and

wavelet functions v The field expansion can be represented as follows:

flz.oy.t) = [A]lo(z)o(y)] + [Bllo(z)u(y)]
+[Cl[e(z)o(y)] + [D][e(x)e(y)] (3)
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Figure 2: Dispersion Plots for 1D.



Figure 3: Dispersion Plots for 2D in (1,0,0) direction.
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Figure 4: Dispersion Plots for 2D in (1,1,0) direction.



where [o(x)o(v)]. lo(x)u(v)]. [u(x)o(v)] and [v(x)w(yv)] represent matrices whose elements

are the corresponding basis functions in the computation domain of interest and [A]. [Bl.
L l
(1. [D] represent the matrices of the unknown coefficients which give information about

the fields and their derivatives.

Application of Galerkin's technique leads to 4 schemes which can be represented as follows:

< (oo Ll fi) + La( fo) >=< [00].g >: 00Scheme (4)
<{ov) Ll fi) + Lol fo) >=< [ov].g >: ouScheme (5)
<[vol. Li(fi) + La( fo) >=< [wo].g >: voScheme (6)
<[ev] L fi) + Lal f2) >=< [vw].g >: v Scheme ()

From this system. we obtain a set of simultaneous discretized equations. For the first reso-
lution level of Haar wavelets. the above four schemes decouple and coupling can be achieved

only through the excitation term and the boundaries.

The shielded structures analyzed here are terminated at Perfect Electric Conductors (PEC)
and the boundary conditions are obtained by applying the natural boundary condition for

the electric field on a PEC as shown below:

E°o(z)o(y) + EXYo(z)u(y) + EL°6(z)oly) +
' +Et°'ww(r)w(y) =0....AtPEC. (8)

\

where EZ°, E?¥, EF® and EYY are the scaling and wavelet coefficients of the tangential

electric field at the boundary nodes.

The above equations are discretized by the use of Galerkin's method which results in a set
of matrix equations of order N = M+1 where M is the order of the considered wavelet reso-
lutions. These equations are solved simultaneously with the discretized Maxwell’s equations

to numerically apply the correct boundary conditions.

Applications of 2D FDTD Multigrid and Results The 2-D MRTD scheme derived
above has been applied to analyze the Electromagnetic fields in a waveguide and a shielded
stripline.

(a) Waveguide: An empty waveguide with cross-section of 12.7 x 25.4 mm is chosen. A
coarse 5 x 8 mesh is used to discretize this mesh and 2D MRTD technique was applied to
analyze the fields in this geometry. Fig. 5 shows the amplitudes of the wavelet and scaling
coefficients of the electric field obtained by using MRTD technique. From this figure it can
be seen that only the ¢¢ and ¢v coefficients make a significant contribution to the field and
that the contribution of ¥'é and ¥¥ is negligible. From the computed coefficients, the total
field is reconstructed using an appropriate combination of the scaling and significant wavelet
coefficients. For the waveguide chosen here, elimination of the wavelet coefficients that have
no significant contribution leads to 480 unknowns. The reconstructed field obtained by this
mesh has the same accuracy as that of a 10 x 16 FDTD mesh with 960 unknowns which
is in agreement with the theory of MRA. Fig. 6 shows the results of this comparison and

demonstrates that the use of multigrid scheme provides a 50% economy in memory.



@ T

5 ye

8 ol

= Vi b

3 / N

(%)

3 , N\

> / \

$1.5 / N 4

a / \\

= / \

.c-ﬂ / \\

3 / NDDP

3 1t / \ 4

D / A\

h=} / A

3 / \

= \

e ; \

20.5 N

/ \
-.,[____‘_;4 ___fp_\t‘___\‘,q

, T I 2 2 2\
6] 0.005 0.025

~0.01 0.015 0,02
Distance along the cavity side in m

Figure 5: Amplitudes of Scaling and Wavelet Coefficients in a Waveguide.



— : Analytical
*: FDTD (960 unknowns)
+ : MRTD (480 unknowns)

Normalized field pattern

] 0.005 0.01 0.015 0.02 0.055 0.03
Distance along the cavity side in m

Figure 6: Comparison of MRTD , FDTD and Analytical Fields in a Waveguide.



(b) Shielded Stripline : Next. a stripline of width 1.2Tmm is considered. It is enclosed
in a cavity of area 12.7 x 12.7 mm so that the side walls are sufficiently far awav to not
affect the propagation. The strip is placed 12.7mm from the ground. A 40 x 40 mesh is
used to analyze the fields in this geometry with the 2D MRTD technique. Fig. 7 shows the
derived scaling and wavelet coefficients of the fields just below the strip. From the figure. it
can be seen that among the wavelet coefficients. only 0 makes a significant contribution
close to the vicinity of the strip where the field variation is rather abrupt. Fig. 8 shows the
comparision of the total reconstructed field in the 40 x 40 MRTD mesh with that of a 10
x 40 and 30 x 30 FDTD mesh. From the figure it is clear that the field computed by 10
x 40 MRTD mesh using only the significant wavelet coefficients follows the results of the
finer 30x30 mesh very closely. demonstrating once again the significant economy in memory
as illustrated in Table 1. Fig. 9 shows the Normal Electric field plot of the strip and the
variable mesh resulting from MRTD.

Table 1: Comparison of the memory requirements in FDTD and MRTD tech-

niques
Technique | Unknown Coef.
10x40 FDTD 9600
| 40x40 MRTD 11328
80x80 FDTD 38400

Conclusion : For the first time in literature, a mathematically correct approach for a
FDTD multigrid has been given. Since FDTD is based on the expansion of the unknown
fields in pulse functions, the principles of multiresoltion analysis allows for a consistent
additional field expansion in terms of Haar wavelets. Due to the additional wavelets, the
resulting MRTD scheme exhibits dispersion characteristics with much less dispersion error
than the traditional FDTD scheme. The Haar wavelet based 2D MRTD scheme that has
been developed here has been applied to analyse the fields in a waveguide and a shielded
stripline. The wavelet coefficients obtained are significant only in regions of rapid field
variations. Thus the FDTD multigrid capability using MRTD technique has demonstrated

significant economy in memory.
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Figure 9: FDTD Multigrid and Field Plot of the Stripline.
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Abstract- The MRTD scheme is applied to the anal-
ysis of waveguide problems. Specifically, the field
pattern and the S-parameters of a dielectric-loaded
parallel-plate waveguide are calculated. The use of
wavelets enables the implementation of a space- and
time-adaptive gridding technique. The results are
compared to those obtained by use of the conven-
tional FDTD scheme to indicate considerable savings
in memory and computational time.

-1 Introduction

Recently a new technique has been successfully ap-
plied [1-4] to a variety of microwave problems and
has demonstrated unparalleled properties. This tech-
nique is derived by the use of multiresolution analysis
for the discretization of the time-domain Maxwell’s
equations. The multiresolution time domain tech-
nique (MRTD) based on Battle Lemarie functions
has been applied to linear as well as nonlinear propa-
gation problems. The PML absorbing boundary con-
dition has been generalized in order to analyze open
planar structures. MRTD has demonstrated savings
in time and memory of two orders of magnitude. In
addition, the most important advantage of this new
technique is its capability to provide space and time
adaptive gridding without the problems that the con-
ventional FDTD is encountering. This is due to the
use of two separate sets of basis functions, the scal-

ing and wavelets and the capability to threshold the
field coefficients due to the excellent conditioning of
the formulated mathematical problem.

In this paper, a space/time adaptive gridding algo-
rithm based on the MRTD scheme is proposed and
applied to the waveguide problems. As an exam-
ple, the propagation of a Gabor pulse in a partially-
filled parallel-plate waveguide is simulated and the
S-parameters are evaluated. Wavelets are placed only
at locations where the EM fields have ‘signiﬁcant val-
ues, creating a space- and time- adaptive dense mesh
in regions of strong field variations, while maintain-
ing a much coarser mesh elsewhere.

II The 2D-MRTD scheme

For simplicity the 2D-MRTD scheme for the TM,
modes will be used herein. To derive the 2D-MRTD
scheme, the field components are represented by a
series of cubic spline Battle-Lemarie [5] scaling and
wavelet functions to the longitudinal direction in
space and pulse functions in time. After inserting
the field expansions in Maxwell’s equations, we sam-
ple them using pulse functions in time and scal-
ing/wavelet functions in space domain.

As an example, sampling 0D, /0t,= - 0H,/0z in
space and time, the following difference equation is

obtained

¢z ¢z —
E(k'HDH-I/Z,m - ’=D1+1/2,m) =
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t=m-mjy '
m+ms
+ Z k+1/2H1+1/2s+1/2) ' (1)
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——y Z b k+1/2H1+1/2z+1/2
—m-m.
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+ Z Diet1/2 l+1/2s+1/2) ’ (2)
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and ka“,’n with £=¢ (scaling),y
(wavelets) are the coefficients for the electric and

where Df?

magnetic field expansions. The indices /,m and %
are the discrete space and time indices, which are
related to the space and time coordinates via z =
{Az,z = mAz and t = kAt, where Az, Az are the
space discretization intervals in x- and z-direction
and At is the time discretization interval. The coeffi-
cients a(1), b(1), c(i) are derived and given in [2]. For
an accuracy of 0.1% the values m; = ms = 8 my =
m3 = m4 = mg = 9 have been used.

For open structures, the perfectly matched layer
(PML) technique can be applied by assuming that
the conductivity is given in terms of scaling and
wavelet functions instead of pulse functions with re-
spect to space [4]. The spatial distribution of the con-
ductivity for the absorbing layers is modelled by as-
suming that the amplitudes of the scaling functions
have a parabolic distribution. The MRTD mesh is
terminated by a perfect electric conductor (PEC) at
the end of the PML region. Usually, 8-16 cells of PML
medium with ¢Z__=0.4S/m provide reflection coef-
ficients smaller than -90 dB.

In order to use a pulse excitation at z = mAz with
respect to space and to obtain an excitation identical
to an FDTD excitation, we decompose the pulse in
terms of scaling and wavelet functions

kE,’;,"I" ~ Er(0,kAt)
+4 +4
(Y cs@bmes + Y cyD¥mas)  (3)
1=-4 1=-4

where the coefficients c4(1), cy (i) are given in Table
1 for i > 0. For i < 0 it is cg(—1) = cg(i) and

cy(i) = cy(1=1). EF(0, kAt) is the time dependence
of the excitation. For |i| < 4, the above excitation
components are superimposed to the field values ob-
tained by the MRTD algorithm. For example, the
total E,‘:mH will be given by

Ef i = Er(0kAY) co(i) + B 1y (1= co(i)
Due to the nature of the Battle-Lemarie expan-

sion functions, the total field is a summation of

the contributions from the non-localized scaling and

wavelet functions. For example, the total electric field

E:(z,,20,t,) with (k- 1/2) At < t, < (k+ 1/2) At

is calculated in the same way with (2, 3] by

Iy
E,(zo,z,,,to) = Z "Eﬁilﬂ,m’ ¢l'+1/2(Io) ¢m’(zo)

I'm'==1

12,1

+ Z Z kE;/:r;./g’m¢ br+172(20) Yo,me(20)
i ' mi=<l,, .
where ¢m(z) = ¢(F —m) and i m(z) = Yi(E -m)
represent the Battle-Lemarie scaling and i-resolution
wavelet function respectively. For an accuracy of
0.1% the values l; = I2; = 4 have been used.

There are many different ways to take advantage of
the capability of the MRTD technique to provide
space and time adaptive gridding. In DSP, thresh-
olding of the wavelet coefficients over a specific time-
and space- window (5-10 points) contribute signifi-
cant memory economy, but increase the implemen-
tation complexity and the execution time. The sim-
plest way is to threshold the wavelet components to
a fraction (usually < 0.1%) of the scaling function
at the same cell for each time-step. All components
below this threshold are eliminated from the subse-
quent calculations. This is the simplest threshold-
ing algorithm. It doesn’t add any significant over-
head in execution time, but jt offers only a moderate
(pessimistic) economy in meLnory (factor close to 2).
Also, this algorithm allows for the dynamic memory
allocation in its programming implementation.

II1 Applications of 2D-MRTD

The 2D-MRTD scheme is applied to the analysis
of the partially-loaded parallel-plate waveguide of
(Fig.1) for the frequency range 0-30GHz. For the



analysis based on Yee's FDTD scheme, a 16 x 800
mesh is used resulting in'a total number of 14400
grid points. When the structure is analyzed with the
2D-MRTD scheme, a mesh 2 x 100 (200 grid points)
is chosen (dz = 0.24),, dz = 0.4), for f = 30GHz).
This size is based on the number of the scaling func-
tions, since the wavelets are used only when and
where necessary. The time discretization interval is
selected to be identical for both schemes and equal
to the 1/10 of the 2D-MRTD maximum At. For the
analysis we use 8,000 time-steps. The waveguide is
excited with a Gabor function 0-30GHz along a ver-
tical line for the FDTD simulation and for a rectan-
gular region for the MRTD simulations. In all cases,
the front and back open planes are terminated with
a PML region of 16 cells and ¢Z,,=0.4S/m. The lon-
gitudinal distance between the excitation and the di-
electric interface is chosen such that no reflections
would appear before the Gabor function is complete.

The capability of the MRTD technique to pro-
vide space and time adaptive gridding is verified by
thresholding the wavelet components to the 0.1% of
the value of the scaling function at the same cell for
each time-step. It has been observed that the accu-
, racy by using only a small number of wavelets is equal
to what would be achieved if wavelets were used ev-
erywhere. Though this number is varying in time,
its maximum value is 22 out of a total of 100 to
the z-direction (economy in memory by a factor of
28-30). In addition, execution time is reduced by a
factor 4-5. For larger thresholds, the ringing effect
due to the elimination of the wavelets deteriorates
the performance of the algorithm. For example, us-
ing a threshold of 1% (6 out of a 100 wavelets to the
z-direction) increases the error by a factor of 2.5.

The normal electric field is probed at a distance 10
cells away from the source and is plotted in (Fig.2) in
time-domain. Comparable accuracy can be observed
for the FDTD and the MRTD meshes. In addition,
the reflection coefficient Sy; is calculated by separat-
ing the incident and the reflected part of the probed
field and taking the Fourier transform of their ra-
tio (Fig.3). The results for 5 GHz (TEM propaga-
tion) are validated by comparison to the theoreti-

[
cal value obtained applyin& 1deal transmission line
theory [6] and are plotted at Table 2. The time-
and space-adaptive character of the gridding is ex-
ploited in (Figs.4,5) which show that the wavelets
follow the propagating pulses before and after the
incidence to the dielectric interfaces and have negli-
gible values elsewhere. The location and the number
of the wavelet coefficients with significant values are
different for each time-step, something that creates a
dense mesh in regions of strong field variations, while
maintaining a much coarser mesh for the other cells.

IV Conclusion

A space- and time- adaptive gridding algorithm
based on a multiresolution time-domain scheme in
two dimensions has been proposed and has been ap-
plied to the numerical analysis of a waveguide prob-
lem. The field pattern and the reflection coefficient
have been calculated and verified by comparison to
reference data. In comparison to Yee's conventional
FDTD scheme, the proposed scheme offers memory
savings by a factor of 5-6 per dimension maintain-
ing a similar accuracy. The above algorithm can be
effectively extended to three-dimension problems.
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I Introduction

Recently the principles of the Multiresolution Analysis have been successfully applied (1, 2]
to the time-domain numerical techniques used for the analysis of a variety of microwave prob-
lems. New techniques have been derived by the use of scaling and wavelet functions for the
discretization of the time-domain Maxwell’s equations. The multiresolution time domain tech-
nique (MRTD) based on Battle Lemarie functions has been used for the simulations of planar
circuits and resonating structures. The conventional FDTD absorbers (e.g. PML) have been
generalized in order to analyze open planar structures. MRTD has demonstrated unparalleled
savings in execution time and memory requirements (2 orders of magnitude for 3D problems). In
addition to time and memory, MRTD technique can provide space- and time- a,dal‘).tive meshing
without the problems that the conventional FDTD variable grids are encountering (e.g. reflec-
tions between dense-coarse regions). This unique feature stems from the use of two separate sets
of basis functions, the scaling and wavelets. Due to the excellent conditioning of the formulated
mathematical problem, MRTD offers the capability to threshold the wavelet field coefficients.
This advantage of the MRTD Technique is demonstrated herein by performing a space-/time-
adaptive meshing.

In this paper, a space-/time- adaptive meshing algorithm based on the MRTD scheme is pro-
posed and validated for a specific waveguide problem. Wavelets up to the second resolution
are placed only at locations where the EM fields have significant values. These locations are
changing with the time as the pulse is propagating inside the waveguide and with the space as
the pulse is approaching regions of discontinuities. The proposed algorithm offers the oppor-
tunity of a space-/time- adaptive mesh with variable resolution of the field representation. In
this way, significant memory and execution time savings can be achieved in comparison to the

conventional variable-mesh FDTD algorithms.



IT MRTD Formulation

Without loss of generality, the 2D-MRTD scheme for the T M, modes will be described herein.
To derive the scheme equations, the field components are represented by a series of cubic spline
Battle-Lemarie scaling and l-order wavelet functions along the z-direction, while pulses are used
for the time representation. Wavelets of higher-order can be included in a similar way. After
inserting these series expansions in Maxwell’s equations and sampling them with pulse functions

in time and scaling/wavelet functions in space domain, we derive the following equations for

the electric field:

m+my m+m3
Al (k1 D71 jom = ¥ D01 j2m) = "'Al‘;(;z a(rs/2 Hi ) pinnfn + ‘ > k2 Y jaien2)
| 1 ';’1;';” ‘ZT;T‘
At (k+lDl+1/2m /‘DI+1/2m) = _ mZ_m b(z) k+1/2 H1+1/2 i+1/2 T Z Dk+1/2 Hl+l/2z+l/2)
1 N o I+ e
At(kHDz m+1/2 = «Dr, m+l/2 ( ‘1‘:1 (14172 +1/2 m+l/2) )
'7+4:

Klt‘(kHD;fnﬂ/z - kD;l,Jrzn+1/2) = AL( Z{ c(1)k41/2 Hﬁ’x/z.m/z) ’

1={-ly
where kD, * «E and kH with {=¢ (scaling), (wavelets) are the coefficients for the electric
flux, electric and magnetic field expansions. The indices /,m and k are the discrete space and
time indices, which are related to the space and time coordinates via z = [Az,z = mAz and
t = kAt, where Az,Az are the space discretization intervals in x- and z-direction and At is the
“time discretization interval. The coefficients a(z), b(:), c(:) are derived and given in [1]. For an
accuracy of 0.1% the values my = ms = 8, m; = m3 = my = mg = 9 have been used. The
indices /; have to take similar values to achieve tha same accuracy in the summations.
The use of non-localized basis functions'in the 2D-MRTD scheme causes significant effects. Lo-
calized boundary conditions are impossible to be implemented, so the perfect electric boundary
conditions are modelled by use of the image principle in a generic way. The implementation of
the image theory is performed automatically for any number of PEC, PMC boundaries. The
material discontinuities are represented in terms of scaling and wavelet functions resulting into
a linear matrix equation as explained in [1, 3] where this technique was used in the modeling of
anisotropic dielectric media. In addition, the total value of a field component at a specific point
of the mesh is a summation of the contributions from the neighbooring non-localized scaling
and wavelet functions. The field values at the neighbooring cells can be combined appropriately
by adjusting the scaling and wavelet function values and by applying the image principle.
The demand for the simulation of open structures led to the generalization of the perfectly
matched layer (PML) technique (4], so as it can be used in the MRTD simulations. The con-

ductivity is expanded in terms of scaling functions instead of pulse functions with respect to



space. The amplitudes of the expansion scaling functions follow the PML spatial conductivity
distribution. In our simulations, the parabolic distribution was used, though the realization of
other distributions (linear. cubic, ...) is straightforward. For example, if we assume that the

PML absorbing material (e. u, 0€) extends to the z-direction, substituting

D(i)r'z(l‘,:,t) — D(i)z’z(l'.:,t)e—aﬁ)tlc (1)

and
HO¥(z, 2 t) = H(‘)y(z:.:,t)e_oﬁ)t/“ (2)

for i=9, ¥, leads to the following equation:

Following a procedure similar to the one used for the derivation of the non-PML region equa-

tions, we get for D, components
Atfe
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The finite-difference equations for D®¥)? and H®¥) are similar. For all simulations, a parabolic

distribution of the conductivity o is used in the PML region (N cells):

EH E.H

Timiz) = a,,m,(N) for m=0,1,..,N, (4)

with ¢£# the maximum conductivity at the end of the absorbing layer. As in [5], the "magnetic”

ma:

conductivity o is given by:

(TE O'H
(maz) _ _(md) g m=0,1,..,N, ()
€ @

and the MRTD mesh is terminated by a perfect electric conductor (PEC) at the end of the
PML region. This PEC is modelled by applying the image theory.



IIT Space/Time Adaptive Meshing

The wavelet components’ amplitudes have negligible values away from the discontinuities or at
regions where the excitation pulse has not propagated yet. There are numerous ways of taking
advantage of the above feature. The simplest one is to threshold the wavelet components to a
fraction (usually < 0.1%) of the scaling component at the same cell (space adaptivity) for each
time-step. All components below this threshold are eliminated from the subsequent calculations
for the same time-step (time adaptivity). This procedure offers only a moderate economy in
memory (factor close to 2). Also, this algorithm allows for the dynamic memory allocation in
its programming implementation, while maintaining a low complexity.

The above space-/time- adaptive meshing scheme is applied to the analysis of the partially-
loaded parallel-plate waveguide of (Fig.1) for the frequency range 0-22.5GHz. The waveguide is
half-filled with air and half-filled with dielectric with ¢, = 2.56. An FDTD 16 x 640 (10240 cells)
mesh and an MRTD 2 x 80 (160 cells) mesh (160 grid points with dz = 0.18),, dz = 0.3, -
close to the Nyquist Limit for f = 22.5GHz) are used for the Time-Domain simulations (3,000
time-steps). The 160 grid points of the MRTD mesh express the number of the used scaling
functions. The number of the wavelets is varying with time and depends on the predefined
threshold. For consistency, the time step for both schemes is chosen to be equal to the 1/8 of
the FDTD maximum At.

The waveguide is excited with a Gabor function 0-22.5GHz along a vertical line for the FDTD
simulation and for a rectangular region of 12 cells to the longitudinal direction (due to the
non-localized character of the Battle-Lemarie scaling and wavelet functions) for the MRTD
simulations. Other excitations (e.g.Gaussian) can be applied i a straightforward way. For both
cases, a PML region of 16 cells and 0Z,,=0.45/m absorbs the waves in the front and back open
planes. The capability of the MRTD technique to provide space- and time- adaptive gridding is
verified by thresholding the wavelet components to the 0.1% of the value of the scaling function
at the same cell for each time-step. The accuracy achieved by using only the wavelets with
values above the threshold is equal to what would be if wavelets were used everywhere. Though
this number is varying in time , its maximum value is 36 out of a total of 160 to the z-direction
(economy in memory by a factor of 52 instead of 32). In addition, execution time is reduced
by a factor 4-5. For larger thresholds, the ringing effect due to the elimination of the wavelets
deteriorates the performance of the algorithm. For example, using a threshold of 1% (13 out of
a 160 wavelets to the z-direction) increases the error by a factor of 2.1.

The results for the Reflection Coefficient for 10 GHz are validated by comparison to the theoret-
ical value |R| = 0.231 (=(v/2.56-1.0)/(v/2.56+1.0)). MRTD gives the value 0.2296 and FDTD
gives 0.2304 (similar accuracy). The normal electric field is probed at a distance 10 cells away
from the source and is plotted in (Fig.2) in time-domain. Similar accuracy can be observed for



the FDTD and the MRTD meshes.

Fig.3 demonstrates the space- and time-adaptive character of the meshing algorithm. It is
clearly shownw that the wavelets follow the propagating exciation pulse before and after the
incidence to the dielectric interface and can be omitted elsewhere. The location and the number
of the wavelet coefficients with values above the threshold ("effective wavelets”) are different
for each time-step, something that creates a mesh with high resolution ("dense”) in regions of
strong field variations, while maintaining a much lower resolution ("coarse”) for the rest cells.

IV Conclusion
A simple space- and time- adaptive meshing algorithm based on an MRTD scheme has been

proposed and has been validated for a parallel-plate waveguide problem. The electric field value
and the reflection coefficient have been calculated and verified by comparison to reference data.
The proposed scheme exhibits memory savings by a factor of 52 in 2D, as well as execution
time savings by a factor of -3, while maintaining a similar accuracy with Yee's conventional
FDTD scheme. In addition, this algorithm doesn’t increase the programming complexity and

can be effectively extended to 3D problems.
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Abstract

The recently developed MRTD schemes are used for the development of a time adaptive time-
domain technique for circuit design. The new technique exhibits considerable savings in memory

and computational times in comparison to the conventional FDTD scheme.

I Introduction

Significant attention is being devoted now-a-days to the analysis and design of various types
of microwave circuits. The finite-difference-time-domain (FDTD) scheme is one of the most
powerful numerical techniques used for numerical simulations. However, despite its simplicity
and modeling versatility, the FDTD scheme suffers from serious limitations due to the sub-
stantial computer resources required to model electromagnetic problems with medium or large
computational volumes. In addition, the FDTD scheme cannot provide the accuracy required
for computer simulations of time-dependent electromagnetic interactions in electrically long re-
gions or in regions whirch ~antain non-linear materials. Such simulations are very important for
integrated device modelling, especially in relation to the design of non-linear photonic devices.
To alleviate these problems hybrid combinations of FDTD with other numerical techniques and
higher order FDTD schemes based on Yee’s grid have been proposed. MRTD (MultiResolution
Time Domain Method) [1, 2] has shown unparalled properties in comparison to Yee's FDTD.
MRTD is not a new methodology. It is a correct and accurate generalization of the conventional
discretization approaches. It provides the correct mathematical frame for solving problems in
time domain and allows for the development of time/space adaptive grids.

II Introduction to MRTD

It is well known that the method of moments provides a mathematically correct approach for
the discretization of integral and partial differential equations. Since it allows for the use of
any complete and orthonormal set, the choice of an appropriate expansion set may lead to
different time domain schemes. For example, the expansion of the unknown fields using pulse



functions leads to Yee's FDTD scheme. In a MRTD scheme the fields are represented by a two-
fold expansion in scaling and wavelet functions with respect to time/space. Scaling functions
guarantee a correct modelling of smoothly-varying fields. In regions characterized by strong field
variations or field singularities, higher resolution is enhanced by incorporating wavelets in the
field expansions. Wavelets are introduced only at specific locations, allowing for a time/space
adaptive grid capability.

MRTD schemes based on cubic spline Battle-Lemarie scaling and wavelet functions (Fig.1) have
been successfully applied to the simulation of 2D and 3D open and shielded problems [1, 2, 3, 4].
The functions of this family do not have compact support, thus the MRTD schemes have to
be truncated with respect to space. Localized boundary conditions (PECs, PMCs etc.) and
material properties are modelled by use of the image principle and of matrix equations respec-
tively. However, this disadvantage is offset by the low-pass (scaling) and band-pass (wavelets)
characteristics in spectral domain, allowing for an a priori estimate of the number of resolu-
tion levels necessary for a correct field modelling. In addition, the evaluation of the moment
method integrals during the discretization of Maxwell’s PDEs is simplified due to the existence
of closed form expressions in spectral domain and simple representations in space domain. Dis-
persion analysis of this MRTD scheme shows the capability of excellent accuracy with up to 2
points/wavelength (Nvquist Limit). However, specific circuit problems may require the use of
functions with compact support. For that reason, Haar basis functions have been utilized and
have led to [5]. As an extension to this approach, intervalic wavelets of higher order may be
incorporated into the solution of SPICE-type circuits. Results from that new technique will be

shown at the Conference.

III Time Adaptive MRTD Scheme

The major advantage of the use of Mutiresolution analysis to time domain is the capability to
develop time and space adaptive schemes. This is due to the property of the wavelet expansion
functions to interact weakly and allow for a spatial sparsity that may vary with time through
a thresholding process. The adaptive character of this technique is extremely important for
the accuraté modelling of sharp field variations of the type encountered in beam focusing in
nonlinear optics, etc. The use of the principles of the multiresolution analysis for adaptive grid
computations for PDEs has been suggested by Perrier and Basdevant [6]. To understand the
fundamental steps of such an adaptive scheme for Maxwell’s hyperbolic system, let’s consider

Maxwell’s equations in 2D (1 for space and 1 for time):

ou 0 —e(2)7'2 . . r
z - 1
ot ez o | E=EED AR )

After manipulation, the above equation can be written as



eI/D, T!D,

Mi = t t
ZyD. uZ,D,

i =0 2)

where Zy, T are half shift operators for space and time coordinates z,t and Z,I, ThT are their
Hermitian conjugates. D;, D, are difference operators given by:

8 9 8 9
Di= (L aalilT=+ 3 auli)T™), D. = (Y 127+ Y a2 (3)
i=-9 i=-9 2 =9 i=-9
where a,, ay, are the coefficients associated with the scalar and the wavelet functions respec-
tively. At each time step we keep both the wavelet field values that are larger than a given
threshold as well as the adjacent values. An adjacent wavelet field value is defined on the basis
of the wavelet resolution level(s) incorporated in the solution. Recently, an efficient space/time
adaptive meshing prosedure was proposed [7] for Battle-Lemarie expansion functions. In this
paper, intervalic wavelets are used for the expansion of the fields (Fig.2). The adaptive mesh will

be applied to a variety of circuit problems and results will be discussed during the presentation.

IV  Conclusion

A Time Adaptive Time-Domain Technique based on intervalic wavelets has been proposed and
applied to various types of circuits problems with lumped and distributed elements. This scheme
exhibits significant savings in execution time and memory requirements while maintaining a

similar accuracy with conventional circuit simulators.
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Abstract

The Multiresolution Time-Domain (MRTD) scheme with perfectly matched layer (PML) absorbing
boundaries is applied to the analysis of a membrane patch antenna. The results are compared to those
obtained by use of the conventional FDTD technique and substantial reductions in memory requirements
are observed.

I Introduction

Recently Multiresolution Time-Domain Analysis has been successfully applied to simulate a variety of mi-
crowave structures [1]. MRTD has performed complete analysis of both planar circuits [2] and resonating
structures [3]. Additionally conventional FDTD absorbers, such as PML [4] have been generalized in order to
analyze open planar structures [5]. In all cases, MRTD has demonstrated a high degree of savings in execution
time and memory requirements with respect to FDTD.

In this paper the techniques described are applied to the simulation of a membrane patch antenna with a center
frequency of 9 GHz. Full 3D MRTD analysis with PML along three coordinate directions is used to simulate
the antenna. The MRTD scheme is applied to the calculation of S-parameters for the membrane antenna and
is compared to conventional FDTD.

II Application of PML to the 3D MRTD scheme

. To derive the 3D MRTD scheme, the field components in Maxwell’s E-curl and H-curl equations are represented
by a series of cubic spline Battle-Lemarie scaling functions in space and pulse functions in time. These equations
are sampled with pulse functions in time- and scaling functions in space-domain, as detailed in [1]. As an
example, consider the discretization of:

OE, _ 0H, B BH,,' 1)
ot dy 0z

For a homogeneous medium with the permittivity ¢, expanding and sampling 0F; /0t, dH, /0y and 8H,/dz
with scaling and pulse functions in space and time gives

€

€ ¢z ¢z
At ("“Emn,m,n - "El+1/2.m-n)

1 m+8 1 n+8

— . 9z . ¢y
= Av Z a(i) k+1/2H1+1/2,i+1/2,n T Az Z a(i) "+1/2Hl+l/2,m,i+1/2 : (2)
y i=m-9 i=n-9
where kE,'f’m‘n, eH f,'nn and y H ,"xm are the coefficients for the electric and magnetic field expansions. The

indices {,m,n and k are the discrete space and time indices related to the space and time coordinates via
r =[Az, y=mAy, z =nlAz and t = kAt, where Az, Ay, Az are the space discretization intervals in x-, y-
and z-directions and At is the time discretization interval. The coefficients a(z) are given in [1].

To derive the perfectly matched layer (PML) technique [4] along one coordinate direction it is assumed that
the conductivity is given in terms of scaling functions with respect to space. The spatial distribution of the



conductivity for the absorbing layers is simulated by assuming that the amplitudes of the scaling functions
have a parabolic distribution [5]. For the PML absorbing material in the y-direction with e, # and conductivity
o the term og)E, must be added to the left side of eq.(1). Then, substituting the following into eq.(1):

Ei(z,y,2,t) = Ei(r,y,z,t)e“’ﬁ)‘/f 5

Hi(z,y,2,t) = Hi(z,y, 2, t)e~"0'/#, (4)

and assuming that the PML is only along the y-direction leads to the following equation:

+8
-oE A At _,E Aat/2 1 n .
k+1E1¢:l/2,m,n = e Y(may t/skEf:1/2,m.n+Te Iimay) Bt/ )/f(_A_; Z a(l)"“/?Hf:uz,,'H/g'n‘*'
t=m-9
u Az Z a(i)k+1/2HH!-ll/2,m,i+1/2) : (5)
i=m-9
For all simulations, a parabolic distribution of the conductivity ¢ is used in the PML region (N cells):
EH _ EH/M» _

T(may) = Umaz(ﬁ) for m=0,1,..,N, (6)

where 0Z.# is the maximum conductivity at the end of the absorbing layer. As in (4], the magnetic conductivity

ol has to be chosen as:

aE H
T(may) _ Y(may)
€ p

for m=0,1,..N, (7

for a perfect absorption of the outgoing waves. The MRTD mesh is terminated by a perfect electric conductor
(PEC) at the end of the PML region, modelled by applying the image theory.

While the above derivation is adequate for a structure which only needs to be terminated with PML along one
direction, such as a shielded thru-line, structures such as patch antennas need PML termination in all three
coordinate directions. In this case, the derivation discussed above needs to be extended to three dimensions.
The procedure is straightforward and results in the following equation:

E E
¢z e-a(ﬂ;A:)At/ce—a(nA,)At/ee-a(‘m)At/ckEéz

"+1E1+1/2,m,n '= 1+1/2,m,n +
At _oE,. (at/2)/e -afmA,)(Az/z)/ce-o(‘;A.,(Atm/c(L mis a(i)k41)2HY
+ - e e Ay Ye+1/2) 1941720 T
i=m-9
1 m+8
. ¢
A Z D12 pmivrgn) (8)
i=m-9

As in eq.(6) a parabolic distribution for the conductivity is applied in the x-, y- and z-directions.

IIT Applications of the 3D-MRTD scheme

The object of this paper is to apply the 3D MRTD scheme to the analysis of membrane patch antennas.
However, in order to test the application of PML to the 3D MRTD scheme, a microwave thru-line is analyzed
using MRTD and FDTD. The thru-line has a width of 0.4 mm and length of 10.0 cm and is placed in the
center of a cavity with dimensions 1.6mm x 10.0cm x 1.6mm. A Gaussian pulse is used to excite the thru-line



with fmaz = 50GHz [6] and is placed in the middle of the center conductor 9 mm from the PML layer along
the y-axis. The FDTD analysis uses 16 x 100 x 16 mesh while the MRTD analysis uses a 8 x 20 x 8 mesh.
Additionally six cells of PML are used along the y-direction at either end of the thru-line with a oEY. =30
Therefore the total discretization of the thru line is 16 x 112 x 16 for FDTD and 8 x 32 x 8 for the MRTD
scheme, resulting in a factor of 14.0 savings in memory. The time discretization interval for the MRTD scheme
is At = 3.92- 1075, while the FDTD scheme has At = 6.335 - 10~'4s. In both cases, the simulation is
performed for 6000 time steps. A comparison plot of time vs. Ez-field amplitude is shown in Figure 1. Note
that the amplitude of the Gaussian has been normalized and the time-steps multiplied by a constant factor in
order to compare the two plots more easily. The initial Gaussian pulse has been completely absorbed by the

PML layer along the y-direction.

The membrane patch antenna shown in Figure 2 is simulated using 3D MRTD and FDTD. A full description
of the parameters of the antenna can be found in (7). A PML layer of six cells is used along the +r, £y and
+2z directions, resulting in an FDTD mesh of 72 x 112 x 28 and a MRTD mesh of 42 x §2 x 12, a factor of
7.22 savings in memory. In the PML layers 0£2, = 0BY_ = 02 = 3.0 for FDTD and MRTD. The time
~ discretization interval used for the MRTD scheme is At = 1.6008 - 10~'3s while the FDTD time discretization
interval is At = 1.3297 - 10~ '3s. In both cases the simulation is performed for 7000 time steps. The antenna
feed line is 20 mm long and the Gaussian pulse is sent from a point y=4 mm from the edge of the PML layer
in the FDTD and MRTD simulations. Figure 3 shows a plot of Ez field values vs. time for MRTD and FDTD.
Measurement of the intial and reflected normalized Gaussian pulses occurred at y = 14 mm from the edge of
the PML layer. Figure 4 shows a plot of the calculated S); (7] for the membrane patch antenna. Note that

excellent correlation is achieved between FDTD and MRTD results.

IV  Conclusion

A membrane patch antenna is successfully simulated using the 3D MRTD scheme with PML absorber along
the x-, y- and z-directions. With respect to calculated Sy, results MRTD shows excellent correlation with
FDTD while exhibiting a memory savings with a factor of 7.22.
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Abstract- A Multigrid 2-D Finite Difference Time
Domain (FDTD) technique based on Multiresolu-
tion analysis with Haar wavelets is used to ana-
lyze structures such as an empty waveguide and a
shielded stripline. The results obtained are compared
with those computed using a finer resolution regular
FDTD mesh. This comparative study illustrates the
benefits of using wavelets in FDTD analysis.

I Introduction

Multiresolution Time Domain (MRTD) Technique is
" a new approach to solving time domain problems.
This technique uses Multiresolution Analysis (MRA)
to Discretize Maxwell’s equations in time domain and
demonstrates excellent capability in solving Electro-
magnetics problems [1], [2]. Depending on the choice
of basis functions, several different schemes result,
each one carrying the signature of the basis func-
tions used in MRA. It is also important to note that
the design of an MRTD scheme can be accomplished
using one’s own application-specific basis functions.

MRTD technique using Haar scaling functions results
in the FDTD technique (3].

Recently, an FDTD multigrid using the Haar wavelet
basis has been developed and it has demonstrated
that such a scheme exhibits highly linear dispersion
characteristics [3]. Motivation for this work stems
from the theory of MRA which says that a func-
tion which is expanded in terms of scaling functions

of a lower resolution level, ml, can be improved to
a higher resolution level, m2, by using wavelets of
the intermediate levels. In other words, expanding
a function using scaling function of resolution level
ml and wavelets upto resolution level m2 gives the
same accuracy as expanding the function using just
the scaling functions of resolution m2. However, the
use of wavelet expansions has major implications in
memory savings due to the fact that the wavelet ex-
pansion coefficients are significant only in areas of
rapid field variations. This allows for the capability
to discard wavelet expansion coefficients where they
are not significant thereby leading to significant econ-
omy in memory. Different resolutions of wavelets can
be combined so as to locally improve the accuracy
of the approximation of the unknown function. This,
combined with the fact that wavelet coefficients are
significant only at abrupt field variations and discon-
tinuities allows MRTD to lend itself very naturally
to a Multigrid capability.

In this paper, a 2D MRTD scheme based on Haar
basis functions (first order resolution) is developed
and applied to solve for the Electromagnetic fields in
a waveguide and a shielded stripline. The results ob-
tained are compared with those computed using con-
ventional FDTD technique. It will be shown that the
wavelet coefficients are significant only at locations
with abrupt field variations. This facilitates in ob-
taining accurate solutions by combining the wavelet



and scaling coefficients only in regions where the
wavelet coefficients are significant (discontinuities).

II The 2D-MRTD scheme

Consider the following 2-D scalar equation obtained
from Maxwell’'s H-curl equation:
0H,

OE,
= —4+4 1
6(’?t Oy + A, (1)

This equation can be rewritten in a differential op-
erator form as shown below:

Li(filz,y.1) + La(fo(z,9,8)) = g (2)

where L, and L, are the operators and fi(x,y,t) and

fa(x,y,t) represent the electric/magnetic fields. We
now expand the fields using a Haar based MRA with
scaling functions ¢ and wavelet functions ¢ [3]. The
field expansion can be represented as follows:

f(z.y,t) = [A][8(x)8(y)] + [Bl[¢(z)¥(y)]
+Cl[W(2)¢(v)] + [Dll¥(2)v(y)]  (3)

[6(x)6(¥)], [8(x)(y)], [¥(x)e(y)]

[w(x)¥(y)] represent matrices whose elements are the

where and

corresponding basis functions in the computation do-
main of interest and [A], [B], [C], [D] represent the
matrices of the unknown coefficients which give in-
formation about the fields and their derivatives.

Application of Galerkin’s technique leads to 4
schemes which can be represented as follows:

< [#9], Li(f1) + La(f2) >=< [¢4], 9 >: $¢Scheme
< (89], Li(f1) + La(f2) >=< [¢¥], 9 >: ¢¥Scheme
< [¥e], Li(f1) + La(f2) >=< [¢¥¢), 9 >: vdScheme
<[], Li(f1) + La(f2) >=< [¥¥)], 9 >: v¥Scheme

From this system, we obtain a set of simultaneous
discretized equations. For the first resolution level of
Haar wavelets, the above four schemes decouple and
coupling can be achieved only through the excitation
term and the boundaries.

The shielded structures analyzed here are terminated
at Perfect Electric Conductors (PEC) and the bound-
ary conditions are obtained by applying the natural

5)

—~ o~ o~ o~

boundary condition for the electric field on a PEC as

shown below:

EP®o(x)o(y) + ELo(2)b(y) + EL%u(zj0(y) +
+EMu(r)i(y) = 0. AtPEC. (8)

where E7®, E?¥, E¥® and EYY are the scaling and
wavelet coefficients of the tangential electric field at
the boundary nodes.

The above equations are discretized by the use of
Galerkin’s method which results in a set of matrix
equations of order N = M+1 where M is the order
of the considered wavelet resolutions. These equa-
tions are solved simultaneously with the discretized
Maxwell’s equations to numerically apply the correct
boundary conditions.

III Applications of 2D FDTD

Multigrid and Results

The 2-D MRTD scheme derived above has been
applied to analyze the Electromagnetic fields in a
waveguide and a shielded stripline.

(a) Waveguide: An empty waveguide with cross-
section of 12.7 x 25.4 mm is chosen. A coarse 5
x 8 mesh is used to discretize this mesh and 2D
MRTD technique was applied to analyze the fields
in this geometry. Fig. 1 shows the amplitudes of the
wavelet and scaling coefficients of the electric field
obtained by using MRTD technique. From this fig-
ure it can be seen that only the ¢¢ and ¢y coef-

4) ficients make a significant contribution to the field

and that the contribution of ¥¢ and ¥¥ is negligible.
From the computed coefficients, the total field is re-

~——

constructed using an appropriate combination of the

7) scaling and significant wavelet coefficients. For the

waveguide chosen here, elimination of the wavelet co-
efficients that have no significant contribution leads
to 480 unknowns. The reconstructed field obtained
by this mesh has the same accuracy as that of a 10
x 16 FDTD mesh with 960 unknowns which is in
agreement with the theory of MRA. Fig. 2 shows the
results of this comparison and demonstrates that the
use of multigrid scheme provides a 50% economy in
memory.



(b) Shielded Stripline : Next, a stripline of width
1.2Tmm is considered. [t is enclosed in a cavity of area
12.7 x 12.7 mm so that the side walls are sufficiently
far away to not affect the propagation. The strip is
placed 12.7mm from the ground. A 40 x 40 mesh is
used to analyze the fields in this geometry with the
2D MRTD technique. Fig. 3 shows the derived scal-
ing and wavelet coefficients of the fields just below
the strip. From the figure, it can be seen that among
the wavelet coefficients, only ¢ makes a significant
contribution close to the vicinity of the strip where
the field variation is rather abrupt. Fig. 4 shows the
comparision of the total reconstructed field in the 40
x 40 MRTD mesh with that of a 40 x 40 and 80 x
80 FDTD mesh. From the figure it is clear that the
field computed by 40 x 40 MRTD mesh using only
the significant wavelet coefficients follows the results
of the finer 80x80 mesh very closely, demonstrating
once again the significant economy in memory as il-
lustrated in Table 1. Fig. 5 shows the Normal Electric
field plot of the strip and the variable mesh resulting
from MRTD. ‘

Table 1: Comparison of the memory require-
ments in FDTD and MRTD techniques

Technique | Unknown Coeff.
40x40 FDTD 9600
40x40 MRTD 11328
80x80 FDTD 38400

IV Conclusion

A Haar wavelet based 2D MRTD scheme was devel-
oped and applied to analyse the fields in a waveguide
and a shielded stripline. The wavelet coefficients ob-
tained are significant only in regions of rapid field
- variations. Thus the FDTD multigrid capability us-
ing MRTD technique has demonstrated significant
economy in memory.
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