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Forward

This document represents our 2nd quarterly report on this project. In our previous report
we presented new design guidelines and curves for the PML and reported that the PML
showed substantial improvement in absorption performance. However at the same time, it
also caused some deterioration of the iterative solver convergence. Our efforts over the past
quarter were therefore concentrated on improving the convergence of the solver when the
PML is used for mesh truncation which typically consumes 90% of the CPU time. Three
solvers were examined in this regard and curves are shown in the report which demonstrate
solver performance when a preconditioner is used. Most importantly, we re-examined the
values of the absorber’s parameters in terms of both performance and convergence. As a
result of this study, we concluded that certain ranges of the propagation constant (in
addition to the phase constant) led to must faster convergence rates. The given curves
demonstrate the appropriate values of the PML loss and phase constants.

Having developed a good set of design criteria for the PML absorber, we began their
applications (as planned, this is a 3rd quarter task) to more complex microwave structures.
One of the geometries considered in this report is a pair of coplanar microstrip transmission
lines. Our goal is to use such a geometry to examine the utility of the PML as a mesh
truncator. We are looking at feed modeling (some curves are reported) and at coupling
reduction issues, particularly when a dielectric well is used to better isolate the co-planar
microstrip lines.

Of potential interest to this project is a recent investigation which we are carrying out for a
different project dealing with large scale systems for modeling antenna arrays. To handle
the large number of unknowns (at the expense of some additional memory requirements),
we looked at a recently introduced method for solving sparse systems using a new type of
LU solver referred to as CVSS. This solver was originally written for parallel platforms
and we recently implemented it for workstations. We have really been impressed with the
performance of this new solver. Below are some examples of the run times on an HP
workstation rated at 47 Mflop peak speed:

Cases #of Eqns  # of Nonzero Elements Time (secs)
1 2,800 37,595 5.34

2 6,448 89,365 22.12

3 21,200 305,845 119.81

4 62,769 650,355 690.10

Cases number 3 and 4 are truly impressive and correspond to large scale microwave circuit
computations. Such system sizes refer to real-world microwave circuit applications and
therefore CVSS should be considered as a possible alternative to iterative solvers. In the
next few months we would like to provide some comparisons of CVSS with the iterative
solvers for typical microwave circuits. As planned, our primary focus will be to continue
with the application of PML for modeling complex microwave structures.
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Abstract

When solving Finite Element systems, the solver performance is crucial
to the efficiency of the simulation since it often consumes most of the CPU
time (90 % or more). This is particularly so when modeling the FEM do-
mains with a perfectly matched layer (PML) absorber. In this report, we
address approaches to improving the solver performance. Specifically, the
PML absorber parameters are optimally selected for improving the con-
vergence. Using these optimal values, the system matrix is preconditioned
using the simple diagonal preconditioner. We also examine the performance
of three different iterative solvers interms of their convergence character-
istics. In all cases, three dimensional examples representing microwave

circuits are utilized.
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1 Introduction

When using the Finite Element Method (FEM), it is necessary to truncate the computational
domain by a suitable artificial non reflecting surface. Such termination schemes can be clas-
sified into two main categories; Absorbing Boundary Conditions (ABCs) and the Material
Absorbers. The latter can be either isotropic or anisotropic. Absorber layers offer several
advantages over the ABCs, including ease of implementation, parallelization and conformal-
ity. Recently, a superior perfectly matched layer (PML) material absorber was introduced
for truncating finite element meshes. This truncation scheme was introduced by Sacks et.
al. [1] and a two dimensional parametric extensive study for their design, performance and
optimization was performed in [2]. In [3] and [4], the superior performance of the PML was
demonstrated and their implementations were extended to circuits, filters and scattering
problems. In all of these studies, the PML reflectivity was the main concern and its per-
formance was addressed with respect to the phase shift, attenuation, number of layers and
thicknesses. However, the solver convergence issue was not addressed in these investigations.

To make the PML absorbers useful for three dimensional implementations, it is necessary
to improve the associated system convergence rate and to determine the optimal selection
of the parameters when used in numerical codes. This report has two main issues, the
optimization of the PML absorber with respect to both absorption and convergence and the
application of the optimal absorber to real microwave circuits. These applications include
the computations of the fields in a microwave circuit.

Regarding the PML optimization, we first discuss the effects of the absorber parameters
(attenuation and phase shift) on the convergence of the resulting FEM system. Then, we
proceed by preconditioning the system matrix so that faster convergence is achieved. Finally,
we discuss the different solvers and compare their performance. For the microwave circuits

study, we solve the FEM system and we extract the fields in the different parts of the circuit



using the results obtained from the PML parametric design using the appropriate iterative

solver.

2 Formulation

Consider a wave incident upon the interface between two media shown in Figure 1. Layer 2
is a uniaxial absorber with T, and €, representing the relative constitutive parameter tensors

for medium 2 of the form

ag 0 0
== 0 b 0 (1)
0 0 C9

According to [1], a zero reflection coefficient along the interface can be obtained by choosing
ay = by = 1/c; = a — jB where o represents the phase shift factor and j represents the
attenuation coeflicient. Because of this property of the interface, the interface is referred as
to a Perfectly Matched Layer (PML). Our two and three dimensional study in the previous
report [3] focused on understanding and improving the reflectivity of the PML. However,
none of these studies discussed the issue relating to the convergence of the iterative solver.
In this report, we will carry out such a study In all steps of the convergence study, the
discretization (sampling rate) and dimensions of the domain will be kept the same. Also,

the performance of the solver will be evaluated using the parameter

Number of Iterations before Convergence @)
r=
FEM system size

For small values of r, the system is considered as rapidly converging but for r near unity,

the system is poorly converging.



3 Convergence as a function of the Absorber Parame-

ters

The phase and loss parameters of the PML play a key role on the convergence of the FEM
system. Therefore, there is a need to find certain ranges for these two parameters so that
convergence is optimized without deteriorating the PML performance. As an example, we
considered the convergence of the FEM system for the microstrip line shown in Figure 2. The
FEM system size was approximately 3000 and the Standard BiConjugate Gradient (BCG)
routine for non-symmetric matrices was used to solve the system. In studying the effects of
the phase factor a, we fixed the value of # at unity. We also fixed @ = 1 to study the effects

of 3 on the convergence. Below, we discuss the results of the study

3.1 Effect of a on solver convergence

To discuss the effects of varying the phase coefficient o (with § =1), we scanned its value
from zero to 5 using a step size of 0.25. At each value of a, we examined the three main
quantities during and after completion of the FEM system solution. These are the number of
iterations required for convergence and the corresponding iteration ratio r, the fields under
the microstrip line and the corresponding value of the Reflection coefficient R and the residue
error history.

Figure 3 shows the reflection coefficient curves. They indicate that maximum absorption
occurs around a = 1 and the corresponding r was approximately 0.15. It is clear that
increasing « deteriorates the absorption with no benefit to the convergence rate. We can
therefore conclude that the maximum absorption occurs when the value of « is around unity.
Also, at this value, the convergence rate is best when compared to the other values of . It

should be noted that o =1 represents the free space case and as deduced from the graphs,



it also offer the best absorption and convergence.

3.2 Effect of / On the convergence

In this part, a parametric study is performed on # with « = 1. The J range is scanned
from zero to 5 with .25 increments. The number of convergence iterations, field under the
microstrip line and the residue value at every iteration are calculated during and after the
completion of the solution to extract the convergence parameters as well as the reflection
coefficient.

Figure 4 displays R in dB and the ratio r as a function of 3 for @ = 1. As shown, the value
of # around unity is optimum interms of the convergence rate and maximum absorption. We
also observe that the convergence rate deteriorates with increase in . This is related to
the abrupt changes in the field values among the adjacent segments when the attenuation
coefficient is increased. Thus, the iterative solver finds it difficult to extract the fields in all
the segments and hence more iterations are needed unless a much higher sampling rate is
employed. From Figures 3 and 4, we can conclude that the optimal values for achieving both

convergence and minimal reflection coefficient are @ = f = 1.



4 Preconditioning the FEM system

Using the optimal values for o and 3, we now proceed to discuss the effects of the precon-
ditioner on the solver convergence. To improve the system condition, we implemented and
tested a diagonal preconditioner. There are two reasons for selecting this type of precondi-
tioner. Among them is its simplicity minimal computational overhead. Also, the performance
of this preconditioner is superior when compared to more complicated preconditioner such as
the block preconditioners [5] and [6]. The significance of the preconditioner is illustrated in
Figure 5, where the number of iterations ratio dropped from 0.155 to 0.95 when the diagonal
preconditioner is applied to the FEM system before starting the BCG solver. In the next
section, we will use the diagonal preconditioners with each of the implemented solvers. In
general, the diagonal preconditioner saves from 30 percent to 60 percent of the total number
of iterations for all of the iterative solvers. This percentage is highly dependent on many
factors and parameters. The element shape employed in the computational domain, the
sampling or discretization rate, the layer (absorber) parameters, etc . . ., all affect the

performance.



5 Iterative Solvers

During this quarter, we looked at the performance of three following solvers
e The BiConjugate Gradient (BCG).
¢ The Quasi-Minimal Residual (QMR).

¢ The Generalized Minimal Residues (GMRES)

These are implemented and tested for the three dimensional example in Figure 2. The
systems are preconditioned using the diagonal preconditioner. The results in Figure 6 demon-
strates that r is approximately 0.095 for both the BCG and QMR algorithms and 0.045 when
GMRES is used. Also, the error history is smoother for the GMRES when compared with

the QMR. Below, we make a brief comparison of the attributes for the three solvers.

5.1 The BiConjugate Gradient (BCG) Solver

This solver can be applied to nonsymmetric matrices. It requires matrix-vector products
with the coefficient matrix and its transpose. The two matrix-vector products and the
preconditioning steps are independent. Thus, these operations can be done in parallel, or
their communication stages can be packaged. For a matrix of order N, the BCG storage
requirement is given by the matrix itself plus 10/N. It is observed here that the convergence
behavior may be quite irregular and the method can breakdown. The breakdown or near
breakdown situations can be sometimes avoided by a restart at the iteration step immediately

before the breakdown (near breakdown step). Another method is to switch to a more robust

(but more expensive) method such as GMRES.



5.2 The Quasi Minimal Residual (QMR) Solver

The QMR system is also applicable for nonsymmetric matrices. It is designed to avoid the
irregular behavior of the BCG and possible breakdowns. Its improvement per iteration step
is similar to the BCG. However, when the BCG starts to diverge, QMR may still produce
better residue behavior. QMR requires one matrix-vector product with the coefficients of
the matrix and its transpose. As in BCG, these two matrix-vector products (as well as the
preconditioners) are independent. Therefore, parallelization is easily achievable. The storage
requirements for QMR are those needed for the matrix itself plus 16 N. As a whole, QMR

produces similar performance to the BCG with lower breakdown possibilities.

5.3 The Generalized Minimal Residual (GMRES) Solver

The GMRES system is applied to nonsymmetric systems and leads to the smallest residual
for a fixed number of iteration steps. However, each of these iteration steps become increas-
ingly expensive. To limit the increasing storage requirements and work per iteration step,
restarting is necessary. Depending on the system matrix [A] and the excitation vector {b},
the number of restarts should be chosen carefully. The proper choice of this number requires
a priori experience and it is fully dependent on the system parameters and sampling rate.
Regarding the number of operations, the GMRES requires only one matrix-vector product
but the number of inner products increases linearly with the iteration step. For storage, the
matrix is needed plus (2 +1)N where ¢ is the iteration step starting from one up to the total

number of restarts.



6 Three Dimensional Example

In this section, we apply the optimal parameters, values and techniques to a practical three
dimensional example representing actual microwave circuits and structures. We first start by
evaluating the fields under the conductor microstrip of the circuit shown in Figure 2. Finally,
we consider a multiconductor configuration to study the coupling between two adjacent
transmission lines. We also look at methods of reducing the coupling among for complex

multiport microwave circuits.

6.1 Microstrip Lines and Feed Probes

The configuration is shown in Figure 2 and to truncate the microstrip line, we used the
optimal values of the PML absorber parameters (o« = = 1) with a sampling rate on the
order of 15 samples per wavelength. A simple diagonal preconditioner was employed and
the BCG algorithm was used to solve the resulting linear system. To evaluate the efficiency
of the PML, we examine the fields under the microstrip line. Figure 7 shows the field under

the microstrip for the following cases:
1. The parameters are optimally selected.
2. With a non optimal PML parameter selection.

It is clear that the optimal selection of the parameters gives the best reflection from the
line termination. Figures 8 shows the field under the microstrip line when the number of
probes modeling the feed is increased from 1 to 5. It is clear that the field increases linearly
with the number of probes. This is expected because the input power to the transmission
line is increased. However, the input impedence remains constant and levels off when the

number of feeding probes increases to 4.

10



6.2 Coupling Study

We have already begun this study of the multiconductor geometry shown in Figure 9. Anal-
ysis of coupling between two transmission lines in conjunction with the FEM method is now
being developed. As shown in Figure 9, the left transmission line is excited while both back
ports are matched. The scattering parameters of this multiport will be evaluated after solv-
ing the resulting FEM system with the domain truncated using the optimal PML discussed

in this paper.

11
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5 Field under the microstrip line for different number of probes

x 10
2.5 T T T T T T T ;
: : — 5 probes
O 1 probe
________ probes .. _
15_+ ....... + ............................................................................... _1
3 + :
3 ++ X X : : ‘ : ‘
g -*x* N R KK N 3 3¢ 3K K K K K K K K KKK K 1 X K K K K X
- X : : ; . : ‘
° | X %
iC x* X
1 R L R EE TP EREREETRTPEPEREN SEPERRPRS _
s XXRXEXX X 53X XXX XXX XX XXX XXX XXX XXX XK
X XX: . . . . : : ;
x .
05k - G ...... _
©50000000000000000000000000000000000000 -
: : , ; ; XK
: : : : +
© : Xx*
: X'x
: : . . : (oFe}
O [l 1 1 | 1 l | |
0 5 10 15 20 25 30 35 40 45

Segments

Figure 8: Fields under the microstrip line when different number of probes are used to model

the feed

21



Uniaxial absorber

Microstrip Line
(parasitic)

Feeding Probes

Figure 9: Geometry of the Circuit for Coupling Studies

22



7 Appendix A: The Solver Input Data

For each of the following solvers, we will input the following four vectors produced by the

FEM code. These are:

1. rvec is a vector specifying the row indices of the non-zero elements of the overall FEM

matrix. That is, rvec gives the 1 index of the matrix entry A(i,j).

2. cvec is a vector specifying the corresponding column indices of the non-zero elements

of the overall FEM matrix. That is, gives the j index of the matrix entry A(i,))
3. Cvec is a vector containing the entries of the non-zero elements of the FEM matrix.
4. b is a complex Excitation Vector.

Example: If [A] is give by

15 0 20 0
0 16 0 40 |
A= (3)
0 0 12 —4

10 14 0 —10J
then rvec={1,1,2,2,3,3,4,4,4}
cvee={1,3,2,4,3,4,1,2,4}

Cvec={15,20,16,40,12,-4,10,14,-10}

8 Appendix B: BCG Subroutine
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function [x,iter,flag,ebcg,nfbcg]l =bicg(rvec,cvec,Cvec,b)

% Input vectors:

h 1- rvec--- row indices of the non-zero entries of the matrix A.

h 2- cvec--- column indices of the non-zero entries of the matrix A.
h 3- Cvec--- Values of the non-zero entries of the matrix A.

% 4- b --- excitation (feed) vector

A=sparse( rvec, cvec,Cvec);
flops(0)

t01=10"(-2);
FEMsize=length(b);

FEMsize

max_it=FEMsize;
iii=ones(1:FEMsize);
mmm=1:FEMsize;

M=sparse (mmm,mmm,1ii);
x=zeros (FEMsize,1); %initialization of the iterations.
Ad=diag(A);

M=sparse (mmm,mmm,Ad) ; %diagonal preconditioning.

% bicg.m solves the linear system Ax=b using the

% BiConjugate Gradient Method with preconditioning.

h
% input A is the input Sparse FEM Matrix for the solver.
/ M is the diagonal preconditioner matrix

24



p'e initial guess vector (put as zeros).
b right hand side vector (excitation vector).
max_it maximum number of iterations and we set it here equal to the tot:
tol error tolerance (the error is defined as (norm(A*x-b)/norm(b))
output x solution vector
ebcg error norm history (the error in each iteration).
iter INTEGER number of iterations performed.
nfbcg Number of flops used in the solver.
flag INTEGER: 0 = solution found to tolerance.
1 = no convergence given max_it.
-1 = breakdown.
iter = 0; % initialization
flag = 0;

bnrm2 = norm( b );

if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - A*x;

error = norm( r ) / bnrm2;

if ( error < tol ) return, end

r_tld

r;

25



for

iter

error

iter = 1:max_it
z=M\ r;
z_tld = conj(M’) \ r_tld;
rho = (conj( z’)*r_tld );

if ( rho == 0.0 ),
break

end

if (iter > 1),

beta = rho / rho_1;

P =2z + betaxp;

p-tld = z_tld + beta*p_tld;
else

p =12z

p-tld = z_t1d;
end
q = A*p;
q-tld = conj(A’)*p_tld;
alpha = rho / (conj(p_tld’)*q );
X = X + alpha*p;

r = r - alphaxq;

26

% begin iteration

% direction vectors

% compute residual pair

% update approximation



r_tld = r_tld - alpha*q_tld;

error = norm( r ) / bnrm2;

if ( error <= tol ), break, end

rho_1 = rho;
e(iter)=error;

end

if ( error <= tol ),
flag = 0;

elseif ( rho == 0.0 ),

flag = -1;
else

flag

]
(==
..

end

nfbcg=flops;
ebcg=e;

% END bicg.m

27

% check convergence

% converged

% breakdown

% no convergence



9 Appendix C: QMR Subroutine

function [x, error, eqmr,nfqmr] = qmr(rvec,cvec,Cvec,b)

% Input vectors:

h 1- rvec--- row indices of the non-zero entries of the matrix A.

% 2- cvec--- column indices of the non-zero entries of the matrix A.
% 3- Cvec--- values of the non-zero entries of the matrix A.

% 4- b --- excitation (feed) vector

A=sparse( rvec, cvec,Cvec);
flops(0)

t01=10"(-2);
FEMsize=length(b) ;

FEMsize

max_it=FEMsize;
iii=ones(1:FEMsize);
mmm=1:FEMsize;

M=sparse (mmm,mmm,iii) ;
x=zeros (FEMsize,1); %initialization of the iteratioms.
Ad=diag(A);

M=sparse(mmm,mmm,Ad) ; %diagonal preconditioning.

% bicg.m solves the linear system Ax=b using the
% BiConjugate Gradient Method with preconditioning.
h

% input A is the input Sparse FEM Matrix for the solver.

28



%
%
h
h
[/

%

%
.
%
%
b
.
%
h
%

is the diagonal preconditioner matrix

initial guess vector (put as zeros).

right hand side vector (excitation vector).

maximum number of iterations and we set 1t here equal to the tota:

error tolerance (the error is defined as (norm(A*x-b)/norm(b))

solution vector
error norm history (the error in each iteration).

INTEGER number of iterations performed.

nfbcg Number of flops used in the solver.

INTEGER: 0 = solution found to tolerance.

M
X
b
max_it
tol
output x
ebcg
iter
flag
breakdown:
iter = 0;
flag = 0;

1 = no convergence given max_it.

-1: rho
-2: beta
-3: gamma
-4: delta
-5: ep
-6: x1

% initialization

29



bnrm2 = norm( b );

if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r=>0 - A*xx;
error = norm( r ) / bnrm2;

if ( error < tol ) return, end

(M1,M2] = 1u( M );

v_tld = r;
y = M1 \ v_tld;

rho = norm( y );

w_tld = r;
z = conj(M2’) \ w_tld;

xi = norm( z );

gamma = 1.0;

eta = -1.0;

theta = 0.0;
xo0ld=x;

for iter = 1:max_it, % begin iteration
iter

30



if ( rho == 0.0 | xi == 0.0 ), break, end

v = v_tld / rho;
y =y / rho;

w = w_tld / xi;
z =z [/ xi;

delta = conj(z’)*y;

if ( delta == 0.0 ), break, end

y_tld = M2 \ y;

z_tld

conj(M1’)\ z;

if ( iter > 1),

p = y-tld - ( xi*delta / ep )*p;
q = z_tld - ( rho*delta / ep )*q;
else
p = y_tld;
q = z_tld;
end
p-tld = Axp;

ep = conj(q’)*p_tld;

if ( ep == 0.0 ), break, end
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h direction vector



beta = ep / delta;

if ( beta == 0.0 ), break, end

v_tld = p_tld - beta*v;

y = ML\ v_tld;

rho_1

rho;
rho = norm( y );
w_tld = ( conj(A’)*q ) - ( betaxw );

z = conj(M2’) \ w_tld;

xi = norm( z );

gamma_1 = gamma;

theta_1 = theta;

theta

rho / ( gamma_1l*beta );

gamma = 1.0 / sqrt( 1.0 + (theta"2) );

if ( gamma == 0.0 ), break, end

eta = -eta*rho_1*(gamma"2) / ( beta*(gamma_1"2) );

if ( iter > 1), % compute adjustment

d = etaxp + (( theta_l*gamma )~2)*d;
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s =
else
d = etaxp;
s = etaxp_tld;
end
X =Xx + d;
r=r - 8;

error2=norm(x-xo0ld)/norm(x)
error = norm( r ) / bnrm2;
eqmr (iter)=error;

if ( error2 <= tol ), break, end

xold=x;

end

if ( error <= tol ),
flag = 0;

elseif ( rho == 0.0 ),
flag = -1;

elseif ( beta == 0.0 ),
flag = -2;

elseif ( gamma == 0.0 ),

flag = -3;

33

etaxp_tld + (( theta_lxgamma )"2)*s;

% update approximation

% update residual

% check convergence

% converged

% breakdown



elseif ( delta == 0.0 ),
flag = -4;

elseif ( ep == 0.0 ),
flag = -5;

elseif ( xi == 0.0 ),

flag = -6;

else % no convergence

n
-
-

flag
end
nfqmr=flops

% END gmr.m
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10 Appendix D: GMRES Subroutine

function [x, error, egmres,nfgmres,iter]= gmres(rvec,cvec,Cvec,b)

% Input vectors:

% 1- rvec--- row indices of the non-zero entries of the matrix A.

% 2- cvec--- column indices of the non-zero entries of the matrix A.
h 3- Cvec--- values of the non-zero entries of the matrix A.

% 4- b --- excitation (feed) vector

A=sparse( rvec, cvec,Cvec);
flops(0)

t01=10"(-2);
FEMsize=length(b) ;

FEMsize

max_it=FEMsize;
iii=ones(1:FEMsize);
mmm=1:FEMsize;

M=sparse (mmm,mmm,iii);
x=zeros(FEMsize,1); %initialization of the iteratioms.
Ad=diag(A);

M=sparse (mmm,mmm,Ad) ; %diagonal preconditioning.

% bicg.m solves the linear system Ax=b using the

% BiConjugate Gradient Method with preconditioning.
h
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%

max_1it

total FEM size.

%
%
h
/.
h
h
.
/)
/A

is the input Sparse FEM Matrix for the solver.
is the diagonal preconditioner matrix

initial guess vector (put as zeros).

right hand side vector (excitation vector).

maximum number of iterations (we set it here equal) to the

tol error tolerance (the error is defined as (norm(A*x-b)/norm(b)).
output x solution vector

ebcg error norm history (the error in each iteration).

iter INTEGER number of iterations performed.
nfbcg Number of flops used in the solver.
flag INTEGER: 0 = solution found to tolerance.

1 = no convergence given max_it.
-1 = breakdown.

iter

[}
o

"
o

flag

% initialization

bnrm2 = norm( b );

if ( bnrm2 == 0.0 ); bnrm2 = 1.0; end
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r=M\ ( b-A*xx );

error = norm( r ) / bnrm2;

if ( error < tol ) return, end

[n,n] = size(A);

m = restrt;

V(1:n,1:m+1) = zeros(n,m+1);

H(1:m+1,1:m) = zeros(m+1,m);

cs(1:m) = zeros(m,1);

sn(1:m) = zeros(m,1);
el = zeros(n,1);

el(1)

1.0;

for iter = 1:max_it,
iter
error
r=M\ ( b-A*x );
V(:,1) =1 / norm( r );
s = norm( r )*el;
for i = 1:m,
w =M\ (AxV(:,1));
for k = 1:1,
H(k,i)=w’ *V(:,k);

w=w - H(k,i)*V(:,k);
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% initialize workspace

% begin iteration

% construct orthonormal

% basis using Gram-Schmidt



end;

H(i+1,i) = norm( w );

V(:,i+1) = (w) / H(i+1,1);

for k = 1:i-1, % apply Givens rotation
temp = cs(k)*H(k,1) + sn(k)*H(k+1,i);
H(k+1,1) = -sn(k)*H(k,i) + cs(k)*H(k+1,i);
H(k,i) = temp;

end

[cs(i),sn(i)] = rotmat( H(i,i), H(i+1,i) ); % form i-th rotation matrix

temp = cs(i)*s(i); % approximate residual norm
s(i+1) = -sn(i)*s(i);

s(i) = temp;
H(i,1) = cs(i)*H(i,1) + sn(i)*H(i+1,1i);

H(i+1,i) = 0.0;

error = abs(s(i+1)) / bnrm2;
if ( error <= tol ), % update approximation
y = H(1:1,1:1) \ s(1:1); % and exit

x =x + V(:,1:1)*y;
break;
end
end
egmres (iter)=error;
if ( error <= tol ), break, end
y = H(l:m,1:m) \ s(1:m);

x = x + V(:,1:m)*y; % update approximation
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r=M\ ( b-Axx ) ;

s(i+1) = norm(r);

error = s(i+1) / bnrm2;

if ( error <= tol ), break, end;

end

if ( error > tol ) flag = 1; end;
nfgmres=flops;

% END of gmres.m
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% compute residual

% check convergence

% converged



