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Forward

Project Goals

This report serves as the 4th quarterly and final report of the subject contract
with Compact software under the MAFET program. In summary, the first year goals

of this project were

1. to investigate the performance of perfectly matched absorbers for truncating

finite element meshes associated with microwave circuit modeling.

2. to recommend guidelines for using PML and recommendations for the optimum

PML loss and phase parameters.

3. to investigate convergence characteristics of finite element systems with PML

truncation.



4. to apply the research results for different microwave circuits and structures.

5. to suggest design guidelines for the PML parameters and to propose efficient

and robust scheme for splving the FEM system.

Because of the slower convergence of finite element systems with PML truncations,
we also proceeded (in consultation with Sponsor) to investigate improved solvers for
reliable solution with these systems. We began looking at improved solvers during the
middle of the year, but results of these investigations were not generated till the fourth
quarter. After a survey of solvers, we specifically concentrated on the generalized
minimal residual method (GMRES) with and without preconditioning and on the
sparse LU solver developed at NASA Langley. The latter became available over the
past year. A brief summary of our accomplishments during the one-year period is
given below. It should be noted that the subject of solver technology is evolving
quite rapidly and one could not therefore expect great strides over a period of few
months. This is particularly so for University efforts which are aimed at high risk
endeavors with higher than average payoff. At this moment, we have just began to
apply the new solvers to applications of interest and we have developed a good sense of
their capabilities over previously used solvers. Our results and recommendations are
therefore preliminary but very promising. It is highly recommended that the solver
study be continued before finalization of our present recommendations. Moreover,

new approaches and solvers are evolving. For example, it is worth examining the
e flexible GMRES
e new flexible preconditioning schemes
e optimized LU solvers like the FMS

o fast algorithms like the FMM and AIM
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e frequency extrapolation schemes

We have some experience with all of these solvers, but have not investigated them for
microwave circuit applications.

Summary of Accomplishments

The following is a brief summary of our accomplishments over the past year.

1- PML performance (1st quarter)

During our first report, we examined the performance of the PML developed by
Sacks et.al. [17] for truncating finite element domains associated with microwave cir-
cuits. It was found that the PML can deliver better than 60 dB absorption using an
anisotropic layer of 0.3 or so wavelengths for truncating the FEM domain. Of impor-
tance is that this absorption is nearly angle independent except near grazing and this
is a major advantage of the PML over the absorbing boundary conditions. It was also
found that the attenuation constant and discretization rate must be selected with care
for optimal performance. The optimality curves generated for the one-dimensional
study before the start of the contract were applied to the three-dimensional simula-
tions considered here and were found equally effective.

2- Convergence Study (2nd quarter)

Although the PML was found to be quite superior for wave absorption, our first
quarter study also indicated that the FEM system convergence deteriorates with PML
truncations. The convergence deterioration may actually be severe and prompted the
investigation of preconditioning schemes and new solvers. We found that the diagonal
preconditioning improved the convergence rate substantially without computational
effort. Most importantly, in our second quarter we found that an optimal phase pa-
rameter could be specified for improved convergence. The effect of the phase param-
eter was not realized till this now and an investigation was performed to determined

optimal loss as well as phase parameters. It was determined that setting o and § to
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unity was a good choice for most cases without a need to refer design curves.

During the second quarter we also began looking at the more robust GMRES
solver. Our preliminary study during the second quarter demonstrated that GMRES,
although requiring more resources, delivered faster convergence and without erratic
residual behaviors.

3- Applications (3rd quarter)

The solver study was interrupted to concentrate on applications of the designed
PML along with the preconditioned systems. We examined the extraction of the
S11 and Sy, parameters for coupled microstrip lines and gave coupling results. We
actually concentrated on the extraction of the S parameters using the vertical fields
underneath the transmission lines. These are equivalent to the currents on the mi-
crostrip lines which are typically used for the S parameter extractions. Our procedure
for parameter extraction was explained in the quarterly report. For feed excitation,
it was determined that 4 to 5 horizontal electric probes were sufficient to achieve
convergence. We concluded that the PML can be brought very close to the feed and
still get very good S parameter predictions. However, the PML distance from the feed
may need to be at least 0.5 wavelengths to permit the extraction of the S parameters
from the standing wave on the microstrip line.

During the 3rd quarter, we also generated results and validated our PML trun-
cation codes for the geometries provided by Compact. Specifically, we modeled a
benchmark geometry consisting of a spiral inductor with a via and compared our
computations for its frequency response with reference data. Our computations (with
the PML used for mesh truncation) were in excellent agreement with the reference
data, verifying our PML design and solvers. As expected, most of the time was spent
in developing the geometry for the spiral inductor.

4- Continuation of Solver Studies (4th quarter)



During the 4th quarter, we returned to the solver study. After consultation with
the Sponsor, we limited our concentration to the GMRES iterative solver and the
VSS sparse LU solver. The latter is a solver recently introduced by Dr. Olaf Storaasli
at NASA Langley (o.o.storaasli@larc.nasa.gov) and Majde Buddourah (LBL) . This
solver is continuously under revision and should be noted that the results in this report
are based on the VSS 1.3 version. The solver is only available to U.S. organization
and cannot be transmitted to third parties. We found the performance of this solver
quite impressive. We were able to solve 60,000 unknown sparse FEM systems in 10
minutes of so. For a 20,000 unknown system, the VSS solver was at least 3 times
faster than standard iterative solvers.

Our greatest effort during the 4th quarter was devoted to optimization, precondi-
tioning and case studies for the GMRES solver. Various preconditioning schemes were
implemented, including an approximate inverse preconditioner. These precondition-
ers allowed for much faster convergence and removed uncertainty with the 'restart’
number associated with all GMRES algorithms. We generated results which showed
that for microwave circuit structures, the preconditioned GMRES algorithms con-
verges with the number of restarts equal to only 1% of the total unknown count.
This leads to substantial memory and CPU savings. Specific account of our results

are given in this report.



Abstract

The superior absorption characteristics of the developed uniaxial perfectly
matched layer (PML) absorbers increases their utilization as a robust, effi-
cient and reliable mechanism for truncating finite elment meshes. Because of
their anisotropic characteristics, their implementation becomes equivalent to
imposing active elements inside the main mesh. Thus, the system condition
is deteriorated and the overall convergence scheme will be affected. Also, be-
cause of their implementation as part of the main, the size of FEM system
increases. Therefore, in this work, we focus on the convergence characteristics
for FEM systems terminated by the ficticious PML absorbers. Starting by the
PML parameters, we attempted to optimize the loss and phase shift param-
eters to speed up convergence while keeping the desired levels of absorption.
Resulting linear systems are solved using iterative solvers and because of the
ill-conditioning nature of such systems, convergence rate becomes slow and in
some cases convergence may not be achieved at all. Therefore, our work was
basically based on two aspects, the first is to develop and test different kinds
of preconditioners and propose one or two of them. The latter involves the se-
lection of a robust iterative solver. The preconditioned iterative solver should
be able to achieve several goals. Among them, it must a convergence even with
ill-conditioned systems. Also, it must be independent of any outside parame-
ter or case specific. After dealing with several types of solvers, we concluded
the Generalized Minimal Residual (GMRES) family of solvers can be tailored
and optimized to achieve these features. The preconditioned GMRES solver
was applied and tested for several systems. Numerical examples representing

actual circuits and systems are considered at the end of the report.
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1 Introduction

When Introduced by Sacks et al [17], the perfectly matched layer (PML) absorbers
were considered a novel, efficient and reliable way for terminating finite element
method (FEM) computational domains. Their excellent absorption characteristics
for waves incident at different angles and frequencies resulted in employing them
extensively. In addition to their superior performance, they offer the ease of imple-
mentation because of their inclusion as part of the main mesh. Also, they avoid the
use of any boundary derivatives. Due to their outstanding absorption features, the
computational domain can be enclosed by a perfect electric conductor (PEC) without
affecting the accuracy of the calculations. Unlike the absorbing boundary conditions
(ABCs), the PML termination scheme does not require any a priori knowledge about
the propagation constants in all parts of the system. Moreover, PML termination
scheme facilitates deembedding and parameter extraction. Based on all these ad-
vantages and due to the huge number of applications that use the PML for mesh
truncation, we started to look at their implementation aspects to recommend or sug-
gest an optimal design for these ficticious layers.

In the first stage of the project, we summarized the PML theory and proceed by
applying it to an extensive number of the applications. These applications included
microstrip lines, filters and scattering problems. Because of the anisotropy nature of
the PML, the system condition is deteriorated and this slow convergence of iterative
solvers significantly. This encouraged us to study the solver convergence to speed up
the convergence rate. We briefly studied the convergence as a function of the PML
parameters to find their range that achieve faster convergence. After this study, we
examined the effect of simple preconditioners on the convergence and three different

types of solvers were studied and tested. Then, we carried out and implemented



examples representing actual circuits and filters to validate our proposed approach.
Finally, in this quarter, we implemented an efficient preconditioner in conjunction
with the GMRES solver.

In the next following three sections, we summarize the work during the first three
quarters. We will quickly review the major contributions by presenting some of the

results we generated.

2 PML Theory and Implementation

In the first quarter, we utilized the PML for terminating finite element meshes. Based
on a simple one-dimensional study,the PML design curves was generated as shown
in figure 1. Using these design curves, PML, we proceeded by applying the PML for
a given set of three dimensional applications. This set includes, radiation problem,
filters and scattering applications. Referring to Figure 1, the several parameters of
the PML that achieve a desired dB absorption can be directly extracted from this set
of figures. These parameters include the loss value, layer thickness and the number

of PML layers.

3 Convergence Study on FEM Systems with PML
Implementation

In the second quarter of the project, we started to look closer to the PML imple-
mentation. The PML implementation deteriorates the solver convergence and thus
the CPU time increases dramatically. For any FEM system, the solver consumes at
least 90% of the execution time and as a result significant increases in the CPU time

are observed. This problem affects badly problems of moderate and big sizes. Our



strategy to address this issue involved three different steps

1. For a certain number of circuits, we tried to optimally select the PML parame-
ters required for fast convergence concurrently with high absorption character-

istics.
2. After getting these values (ranges), we proceeded by preconditioning the result-
ing linear system. The ideal preconditioner should:
e work for all the iterative solvers.
e achieve significant improvements for all the systems.
e have trivial computational effort and memory requirements.
e not affect the parallelization.
3. Finally, we reached the stage of selecting the iterative solver suitable for a given
linear system. For each kind of solvers we tried to examine its:
¢ robustness.
o speed.
e memory requirement.

e convergence characteristics.

3.1 The Effect of the PML Parameters

We first started to discuss the effect of the PML material parameters on the conver-
gence. It was found that when o (phase parameter) and 3 (loss parameter) becomes
close to unity, both convergence and absorption were optimized. This conclusion was

based on microstrip and patch antenna geometries. The design curves for o and J
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are indicated in Figures 2 and 3. The physical interpretation behind these ranges for

« and @ is as follows:

1. For the case where a is less than unity, the system will be highly ill-conditioned
due to the presence of active elements inside the main mesh. Thus, we expect
slower convergence. On the other hand, when « is equal or larger than unity,

the condition of the system is improved and hence convergence becomes faster.

2. For (3, low values of this parameter leads to lower dB absorption and higher
values will lead to large field variations between the adjacent elements in the

FEM mesh. Therefore, the solver ability to track the solution will be reduced.

3.2 Diagonal Preconditioning and Solvers

Regarding the preconditioning of the FEM matrix, we tested the Diagonal Precondi-
tioner (DPC) and found that it reduces the overall CPU time by a percentage ranges
from 30% to 60%. An example is indicated in figure 4 where the number of iterations
(and consequently the CPU time) is reduced by a factor of two when DPC was in-
voked. A more complicated and rebust preconditioner will be discussed later in the
solvers study.

Also, in the second quarter, we began to look at different solvers by implementing
and testing three different kinds of solvers. The first is the BiConjugate gradient
and it has the ease of implementation feature plus a low CPU and memory costs.
However, it lacks the robustness and does not guarantee convergence. Also, it has
irregular convergence characteristics with two breakdown possibilities. In addition
to that, for ill-conditioned systems (as in the PML case), it may not converge at
all. Therefore, with large and badly ill-conditioned systems, it is not recommended.

The Quasi Minimal Residue (QMR) solver has better convergence features and lower
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breakdown or divergence possibilities. For a fixed system, both BCG and QMR
converge nearly in the same number of iterations but QMR has better error history.
On the other hand, the Generalized Minimal Residual (GMRES) solver is the most
robust solver since it guarantees convergence for all the systems and it leads to the
smallest residual for a fixed number of iterations. Figure 5 shows the outstanding
convergence scheme of the GMRES over the BCG and QMR for a typical standard

problem of a microstrip line terminated by the PML.

4 PML Applications

In the third quarter, after obtaining some guidelines for the implementation of the
PML and solvers, we started to test actual circuits representing more complicated
structures. Because of the numerical uncertainty associated with the parameters ex-
traction process, we had to address the feeding issues for different circuits and struc-
tures. We found that the minimum number of feeding (excitation) probes required
for stable parameter calculations was on the order from 3 to 5. With this number
of probes, we were able to achieve stable and converging S parameters. Then, we
studied the coupling between two parallel transmission lines printed on a planar sub-
strate. We obtained the coupling amount as a function of the operating (excitation)
frequency. Finally, with our computational model, we matched the measured data for
a spiral inductor with an air bridge. The spiral geometry was discretized accurately

and applied to our FEM code that has:
o The PML as a mesh truncation scheme.
o Diagonal preconditioning.

o GMRES solver with 40 restarts.
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The geometry and the dimensions are shown in Figure ?? and the results of our
FEM simulator and the measured data supplied to us are illustrated in Figure 8.
As displayed in this figure, excellent agreement exists between the computed and

measured data.

5 GMRES Solver Studies and Preconditioners

In this quarter (4th quarter), we focused on three different issues related to the con-

vergence study. They are:

1- The GMRES as a robust, efficient and reliable solver.
2- Simple and complicated preconditioners and their effects on the solvers espe-
cially on the GMRES.

3- The proposed Approximate Inverse Preconditioner (AIPC) combined with the
GMRES solver.

5.1 GMRES Solver

A detailed careful study of the GMRES was carried out and several systems with
different sizes and conditions were implemented and tested The GMRES was chosen

because of the following reasons

1. GMRES solver is robust solver with regular convergence characteristics.
2. Tt guarantees convergence even for ill-conditioned system.

3. It leads to the smallest error among all the solvers for a fixed number of itera-

tions.
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4. Tt allows for optimization by changing the number of restarts, preconditioning

scheme or by using different versions and the GMRES techniques.

A detailed careful study of the GMRES was carried out and several systems with
different sizes and conditions were implemented and tested and the results will be

discussed later after summarizing the preconditioners.

5.2 Preconditioners

Preconditioners are used in conjunction with iterative solvers to improve the condition
of the system and hence achieve faster convergence. As indicated before, large and
ill-conditioned systems may not converge at all without preconditioning. Moreover,
with the PML implemented, there is a huge deterioration in the system condition and
thus robust and efficient preconditioners are needed. There are enormous types of
preconditioners with different CPU and memory costs. We will implement and test
two types of these preconditioners, the diagonal and the approximate inverse ones.
The first is the Diagonal Preconditioner (DPC) and it simply scales the element of
the FEM matrix using its diagonal values. Thus, it leads to substantial improvements

in the overall condition number. The main features of DPC are:

—

. It is easy to implement (diagonal scaling of the matrix elments).
2. It is implemented with no computational effort or cost.

3. Achieves significant improvement with most of the systems (This was shown

before).

4. This kind of preconditioning techniques works for all kinds of solvers and nearly

if affects them in the same way.

5. Diagonal Preconditioning does not affect the parallelization of the code.
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On the other hand, the approximate inverse preconditioner (AIPC) is more com-
plicated and it involves the evaluation of an approximate inverse to the FEM matrix.
As a result, ill-conditioned systems will be directly mapped to well conditioned ones
with dramatic improvements in the condition. It is obvious that the AIPC will need
more computational effort than the DPC but it will eventually eliminate any con-
vergence problems even for indefinite systems. The AIPC algorithm tries to find the

matrix M that minimizes the frobenius norm of the residue R given by
R=1-AM (1)

where 1 is the identity matrix, A is the FEM matrix and M is the right approximate
inverse of A.

The norm minimization can be done by one of the minimal residual methods such
as the Global Steepest Descent (GSD) [23] or the column oriented algorithms. The
GSD type of techniques needs the storage of an extra matrix with the same size
as A plus it performs two matrix matrix products per iteration and that increases
dramatically the computational costs. The column minimization algorithm depends
on the minimization of the individual columns of the residual R and this will be done
via any of the known methods such as the Minimal Residual (MR)or the Steepest
Descent (SD). The MR algorithm will be utilized in our simulations [23]. In the
following section, we will present the effects of DPC and AIPC on the convergence of
the GMRES and from the results, we will be able to obtain the main features of the
AIPC.

As a conclusion, the AIPC has the following features

1. It achieves dramatic improvements in the system condition and this leads to
significant improvements in the convergence rate. In many cases, the total

number of iterations dropped by large factors (may be 50 or more).
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2. This preconditioning scheme can be used independent of the system type or
condition. The worst ill-conditioned systems can be preconditioned using the
AIPC at no extra cost (because the preconditioning is done once before starting

the iterative solver).

3. It does not affect the parallelization.

5.3 Preconditioned GMRES

According to the previous results, combining the AIPC with the GMRES solver may
have huge impact on the convergence. Thus, we had implemented and tested an ill-
conditioned system representing a microstrip line terminated by the PML. The size
of this system was approximately 7000 unknowns. We will apply this system to the

following three solvers:

o GMRES with no preconditioning.
e GMRES with DPC.

e GMRES with AIPC.

In each case, we compute the total CPU time as a function of the number of restarts

(m). The results are shown in Figure 6 and from them, we can deduce the following:

1. Without preconditioning the CPU time was high for any m. Moreover, it is
very difficult to predict m that leads to minimal CPU times. This is due to
the fact that the optimal selection of m depends on the geometry, parameters,

sampling rate, basis functions, problem size,...etc.

2. With the DPC applied, the CPU times become lower and the dependence on

m was reduced.
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3. With the application of the AIPC, the CPU time values were minimized and

the dependence on mwas greatly removed.

Finally, our recommendations for robust, efficient solvers are:
a- For any system Ax=Db, try to find a matrix M that is a good approximation for
the inverse of A. This can be achieved by several methods, one efficient way is the

minimal residual algorithm.

b- Use this matrix to precondition the GMRES code from the right or the left.

Then, proceed by applying the normal GMRES iterations.
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6 Appendix I: Code Manual

The following notes are helpful in running the FEM codes we are enclosing. We start
by giving some details about the main file fem_compact.m that generates the FEM
system. This system will be solved by one of the attached iterative solvers. It also
includes the input geometry file as well as the layers (materials) inside the cavity. In
addition to that, it has the other external parameters such as the absorber used to

terminate the FEM mesh (isotropic or anisotropic) and the operating frequency.

6.1 The FEM main code

In this section, we present a simple introduction to the main FEM code utilized in
generating the FEM system. this code dumps the overall FEM matrix A as well as the
excitation vector b in addition to some geometrical data needed for field calculations.

The name of this file is fem_compact.m.

o The file fem_compact.m generates the FEM matrix based in the geometry

parameters given at the top lines of the code and these parameters are:

1. Ix,ly,lz are the cavity dimensions in x,y and z directions respectively. It

should be noted that all of these values are given in cm.

2. nxe, nye and nze indicate the sampling rates in the x,y and z directions

respectively. Note that the longitudinal direction is along the y-direction.

3. xst, yst and zst give the starting segments of the non-conducting material
filling in the corresponding direction of the cavity. The length (number of
elements) in each gives the number of the non-metallic layers inside the

cavity.
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10.

11.

12.

13.

14.

15.

. xend, yend and zend are the ending segments of the same layers previ-

ously described.

. xstc is a vector containing the starting segments of the metallic (pec)

patches parallel to the x-direction.

. ystc is a vector containing the starting segments of the metallic (pec)

patches parallel to the y-direction.

. xendc is a vector containing the end segments of the metallic (pec) patches

parallel to the x-direction.

. yendc is a vector containing the end segments of the metallic (pec) patches

parallel to the y-direction. It should be noted that the length of any of
xstc, ystc, xendc, and yendc gives directly the number of metallic

(conductor) patches existing inside the cavity.

. ep and mu are the complex diagonal elements of the permittivity and

permeability of the filler or absorber. The length of each should be equal
three times that of xst or yst. This is because each layer of the filling has

three diagonal parameters.

Jy is the feeding currents in y direction (complex in general). Note that

the feeding is put along a certain segment in the y-direction.
xf, yf specify the node location of the feeding probes.

hc gives the node location of the height of the conducting patches. The

length of this vector equals the number of patches inside the cavity.
zf is the node location of the feeding probes along the z-direction.
freq is the operating frequency in Hz.

a and j are the PML real and imaginary part respectively.
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e As indicated, the input file specifies the permittivity and permeability tensors
for all the layers inside the cavity and for the included example, these layers are

as follows:

1. The substrate which is defined by the first three elements of the vectors ep
and mu represent the diagonal part of both permittivity and permeability
tensors respectively. It should be noted that for isotropic substrates, these

three elements must be equal.

For example, in the attached input file, the substrate is isotropic with

relative permittivity of 3.2 and unity permeability .

2. The cavity filling (between the substrate and the walls) is represented by
the next three elements in both ep and mu vectors. Usually, this layer of

filling is considered to be air.

3. The PML absorber termination for the substrate layer is given in elements
7t0 9 of both tensors. If the isotropic termination is desired, the two lines

of the PML termination should be commented out by removing the ”%”.

o The FEM code fem_compact.m will produce the file data_compact.mat

which contains the following:

1. rvec is a vector specifying the row indices of the non-zero elements of the

overall FEM matrix. That is, rvec gives the i** index of the matrix entry
A(iyj)-
2. cvec is a vector specifying the corresponding column indices of the non-

zero elements of the overall FEM matrix. That is, cvec gives the j** index

of the matrix entry A(i,j).
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3. Cvec is a vector containing the entries of the non-zero elements of the

FEM matrix.
4. b is the complex Excitation Vector.

5. Example: If A is give by

15 0 20 0
0 16 0 40
A= 2)
0 0 12 —4
10 14 0 -10

then

rvec={1,1,2,2,3,3,4,4,4}
cvec={1,3,2,4,3,4,1,2,4}
Cvec={15,20,16,40,12,-4,10,14,-10}

6. SS3 is a vector containing the numbers ”Global numbers” of the non-

metallic edges.

7. edgel is a matrix containing the global edge numbering with zeros in the
locations of the metallic elements. For example, if the element edge1(i,j)=k,
this means that the global number of the j** edge of the i element is equal

to k.

8. fel is a vector containing the element numbers which have the feed probes

and b7 is a vector containing the global numbers of the feed edges.

6.2 Iterative Solvers

e We include three kinds of solvers, the BCG, QMR and GMRES and each of

them will produce the following data files:

21



1. BCG: It dumps the following in the file out_compact_bcg.mat:
X — the solution vector for the system Ax=Db.

ebcg — the error history.

error — error at the last iteration.
iter — no. of iterations before convergence.
flag — indication if convergence was achieved.

nfbcg — the total no. of flops.
E2 — the field under the microstrip line.

timebcg — total CPU time.

2. QMR: It dumps the following in the file out_compact_gmr.mat :

x —— the solution vector for the system Ax=b.
eqmr —— the error history.

error — error at the last iteration.

iter — no. of iterations before convergence.
flag — indication if convergence was achieved.

nfqmr —- the total no. of flops.
E2 — the field under the microstrip line.

timeqgmr — total CPU time.

3. GMRES: It dumps the following in the file out_compact_gmr.mat :
x — the solution vector for the system Ax=b.
egmres — the error history.
error — error at the last iteration.
iter — no. of iterations before convergence.

flag — indication if convergence was achieved.
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nfgmres — the total no. of flops.
E2 — the field under the microstrip line.

timegmres — total CPU time.

6.3 List of Files

We are enclosing the following matlab files:

1. fem_compact.m: generates the FEM system and has the option of ter-

minating the mesh by either isotropic or anisotropic (PML) schemes.

2. fem_compact.mexhp7: the matlab executable (binary) file which can be

run directly from the matlab environment. It can be generated as follows:

— Make all the necessary changes in the main file fem_compact.m.
These changes may be in the frequency, geometry or termination

scheme.

— From matlab screen, type mecc -1 fem_compact.m and then two
files will be directly generated: the stand alone C code which name is
fem_compact.c and the matlab executable (mex) file fem_compact.mexhp?7.

The latter can be run from matlab.

— From the matlab screen, type fem_compact to run the code and

generate the output data file data_compact.mat.

— The solvers are run directly from the matlab prompt without compi-

lation by typing the following:

(a)- [x, error, iter, flag,ebcg,nfbcg,E2,timebcg] =bicg_compact

to run the BCG. solver.
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(b)- [x, error, egmres,nfgmres ,iter,E2,timegmres]= gmres_compact
to run GMRES solver.
(¢)- [x, error, eqmr,nfqmr,E2,timeqmr,iter] = gqmr_compact to

run the QMR solver.

3. bicg_compact.m : BCG solver.

4. gmres_compact.m: the GMRES solver.

5. qmr_compact.m: QMR solver.

6. rotmat.m: file needed when running the GMRES.

7. data_compact.mat, FEM data generated by the files fem_compact.mexhp7

or fem_compact.m.
8. out_compact_bcg.mat: output data file generated by BCG solver.
9. out_compact_gmr.mat: output data file generated by the QMR solver.

10. out_compact_gmres.mat: output data file generated by the GMRES

solver.

11. readme.tex, readme.ps, printrawps.ndvips.tex and macros: postscript

and latex file documentation of this manual.

6.4 Validation Results

e For checking the codes performance, the normalized values of the electric field

under the microstrip line should be as follows:

E2=

-0.8618 - 0.09261
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.7120

.4555

.1281

.2239

.5513

.8084

.9589

.9818

.8734

.6480

.3365

.0184

.3682

.6648

.8678

.9494

.8984

.7219

.4446

.1046

.2511

.5734

.8178
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.9530

.8253

.33011

.63041

L79791

.82441

.71461

.48901

.18281

.15901

48711

. 75451

.92301

.96861

.88401

.68021

.38511

.03871

.31151

.61731

.83681

.94001

.91251

. 75821

.49861

.16911

.18491

.51431
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0.5848 - 0.77401
0.2648 - 0.92841
-0.0905 - 0.95611
-0.4324 - 0.85351
-0.7135 - 0.63501
-0.8950 - 0.33111
-0.9517 + 0.01631
-0.8754 + 0.35871
-0.6764 + 0.64871
-0.3810 + 0.84571
-0.0289 + 0.92101
0.2182 + 0.57791
0.2837 + 0.29801
0.2548 + 0.1022i
0.1920 - 0.01821

0.1333 - 0.08131

7 Appendix II: Answer to Questions

In this section, we answer the questions received during the forth quarter. It should
be noted that the main objective of the project during the first year was to charac-
terize the PML performance, obtain the optimal PML parameters and improve the
convergence scheme for the systems terminated by this kind of anisotropic absorbers.
Below are the questions and their answers.
Q1) We have not found where the S parameter output is.

Al) In all of the applications we studied, we used the following definition of the S
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parameters

Sik = vrj/vik (3)

where v,; is the reflected voltage at the j** port (location) due to the incident
voltage v, at port k. Because of the planner nature of our circuits, equation 3 can

be written in terms of the electric field values. Thus,
Sik = Erj[ Eix (4)

In the third report, we presented a detailed deembedding scheme for extracting the
incident and reflected fields after solving the finite element system. Therefore, we can
arbitrarily define the ports and put the excitation anywhere inside the mesh. Then,
the linear system is solved and the total (incident plus reflected) field values are ob-
tained everywhere inside the mesh. Then, using equations 3 and 4, the scattering
parameters can be obtained. In the examples used to characterize the PML perfor-
mance, we defined two main ports, the input and the output. The input port was the
one where we put the excitation probes while the output was the PML matched one.
According to the microstrip example, the S;; parameter is the reflection coefficient
at the input port. Because of the quasi TEM nature of the propagating mechanism
in this case, we have only one mode and to extract its Sy;, we selected three adja-
cent points at the input port and then computed the incident and reflected fields (as
indicated in the third report). Then, we obtained Sj; from equation 4. Regarding
the coupling example, we excite one port, terminate two by the PML and solve the
whole system. Again, using the deembedding scheme given in the third report, we
got the fields at all the locations and hence calculate the incident and reflected fields
at the excited and parasitic ports to calculate the scattering parameters between the

two ports. This parameter gives the amount of coupling between the two ports.
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Q2) The physical meaning of the field under strips is difficult to understand. What
is the quantity being plotted?
A2) This quantity represents the values of the total vertical electric field E, along
the microstrip line. The standing wave pattern obtained when plotting this quantity
examines the performance of the absorber. If the absorber is perfectly matched, the
field values along the line should be constant (flat). On the other hand, if this ab-
sorber performance is poor, high fluctuations will be observed. Cutting a section on
the microstrip line, we can get the total field at a specific location (segment) and if
we decompose this field to the incident and reflected values, we will be able to extract
the reflection coefficient at this section of the transmission line. In addition to this,
based on the field equivalence principle, these values are proportional to the current

on the microstrip line which is difficult to be extracted directly.

Q3) Provision of FEM formulation of the PML involved, the treatment on surface

integral and detailed feeding treatment.

1)- In the first quarter report of UofM, the formulation for the matrix element of
volume type has been provided (see page 5, 22-25 of their first report). However,
the matrix element of the surface type, which is related to the incident field at the
incident plane (their Sin in formula (1), page 5, first report) and the treatment on

Sout if it is otherwise not a PEC.

Ai)- Because of the high absorption nature of the PML, we can use it without
affecting the accuracy of the calculations and this allows us to enclose the PML with

a PEC layer. Thus, the surface integral vanishes.
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ii)- In the third quarter report of UofM, on page 12, the coupling between two
microstrip lines has been studied. However the formulation and how to extract S
parameters for this structure for this study has not been reported so far.

Aii)- As indicated in the answer of question one, the excited port is chosen as port
number k and the parasitic one is as port number j, after solving the FEM system,
we get the fields (total fields) E; and Ej, we use the deembedding technique provided
in the third report to extract the incident and reflected fields in these ports and by

utilizing equations 3 and 4, the S;; parameter is achieved.

Q4) Provision of the derivation for formulas (3) and (4), pages 5 and 6, Q1 report,
and the proof for conclusion that "By choosing a2 = b2 and c2 = 1/b2, it follows
that R(te) = R(tm) = 0 for ALL INCIDENCE ANGLES, ..” on page 6 of their first
quarter report.

A4) Answers to this question are directly found in the following reference:

Z.S. Sacks, D.M. Kingsland, R. Lee and J.F. Lee, “A perfectly matched anisotropic
absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and

Propagation, December 1994.

Q5) Information on how to input a test structure into the simulator.
Ab) The code manual attached to this report includes a full description of the input
files. It contains the geometry files, the absorber (isotropic or anisotropic) parame-

ters, feed specifications, sampling requirements,...etc.

Q6) The CVSS solver code and documentation.
A6) The CVSS solver is included in this report.
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Q7) Final simulator code and reports.

AT) We sent the codes to CSI last June with the manuals.
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Binary Release

---For UNIX Workstations
---For Electromagnetics FEM

JIAN GONG, Ph.D.

Radiation Laboratory
EECS Dept.

University of Michigan
Ann Arbor, MI 48109-2122

1  About CVSS
CVSS is a sparse system solver for numerical linear system of equations like
AX =b

and it was developed at NASA by Dr. OLAF O. STORAASLI and his group.
This solver belongs to a direct approach as opposed to iterative methods,
such as CG-type techniques. Direct solver has been very attractive since



limited user interface is required. Moreover it is usually considered problem
independent.

However, the direct solver in general requires factorization (or LU decom-
position) which consumes a significant computation effort. As compared to
iterative techniques, the LU decomposition needs the floating point opera-
tions (FPO’s) of order O(N?), where N is the dimension of the linear system
of equations. For a large N, it apparently becomes impractical to employ di-
rect solution. This is why the iterative solver has been extensively explored
especially in academic research. (Note that the FPQO’s for iterative tech-
niques is proportional to O(/N?), instead. One order of magnitude reduction
in computation with respect to the LU decomposition!)

For special numerical systems such as finite difference and finite element
analysis, the sparsity nature can however be used to significantly alleviate
the computational burden. This is exactly what CVSS does. The major
attraibutes of the current CVSS development include

(1) Low memory requirement

(2) Fast solution time

(3) Readily parallelized/vectorized

(4) Capable to handle structural (real) and EM (complex) systems

(5) Tested on multi-platforms (supercomputers, workstations and PC’s)

2 CVSS package

The CVSS package is written in Fortran 77 with multiple routines/functions
arranged in over 50 files. Since sophisticated dynamic memory allocation
(and out-of-core: not ready yet at the moment of this document prepara-
tion) technique has to be implemented to limit the redundant memory need,
certain functions of system calls have been used. This makes the compilation
and testing difficult on multi-platforms. (Note that the system functions are
platform-dependent.) It is therefore non-trivial to generalize the routine calls
available for all platforms.

The CVSS has been successfully compiled so far at the University of
Michigan on SUN, HP, SGI using both vendor’s compilers and the GNU
compiler. More importantly, in certain cases, it is preferred to use C to
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handle dynamic memory allocation, rather than using Fortran 77. This is
because the latter is too system dependent and sometimes the performance
may be deteriorated to certain degree. (No extensive testing on this has been
carried out. Hope to see more evidence.)

3 Binary Executable and Library Release

The binary executable and library release available for UNIX workstations
SUN, HP and SGI is intended for quick group usage. It is by no means
optimized (the CVSS package itself is not optimizaed anyway!) in terms
of function calls, I/O format, and convenience of interface with user’s own
packages. The installation will be soon ready on JLV’s group machines at
the University of Michigan. The location of those binaries accessible to the
group will be determined soon. Any possible changes and updates will be
timely posted to those having the access to the CVSS library.

The notation of the binary release is self-interpretable. Here are the file
names for the executables:

cvss_sun
cvss_hp
cvss_sgi

The library file names are given by

cvss_sun_1lib
cvss_hp_lib
cvss_sgi_lib

The size of the binary files ranges from 135 k to 191 k because of the
difference of the compilers. The numerical system to be handled can be as
large as 80,000 in dimension with 1.6 million non-zero entities.

4 How To Use CVSS Executables

The input/output has been made general and easy for interface. Here is how
you should use the executables.



(1) The output of your FEM code should provide two files: amat.dat and
bmat.dat, where amat.dat contains matrix A and bmat.dat stores the
right hand side excitation vector.

(2) They should be all in text mode. (See To-do List later.)

(3) bmat.dat is one-column vector with ascending order of vector entries.

(4) amat.dat is of the type:
fieldl field2 field3

in each row, where fieldl and field2 are both integer numbers indicating
the row and column indices (i,j), respectively, for the complex entry

field3.

(5) It should be noted that the entries stored contain only the upper tri-
angle AND diagonal terms of the matrix A.

(6) It is suggested to store (non-zero) matrix entries row by row. In specific,
all entries in the first row should be put into amat.dat one by one and
then the second row is scanned. The process is continued until all the
non-zero entities are scanned.

Two additional numbers are needed for the user to key-in for interface.
The first number is the numerical system dimension; the second one is the
number of non-zero entries stored. Note that these two numbers coincides
with the number of lines of the file bmat.dat and amat.dat, respectively. If
your FEM code does not provide these numbers (which it should), do the
following on UNIX:

cat bmat.dat | we -1 ! ==> record the standard output as N1
cat amat.dat | wc -1 ! ==> record the standard output as N2

To run the code on (e.g.) HP in the directory where the files amat.dat
and bmat.dat are located, type

cvss_hp

When the code prompts for key-in numbers, type



N1
N2

And wait... You should see a file called sol_cvss.dat storing your expected
solution X. It is then your own responsibility to extract the needed data from
sol_cvss.dat for post process or graphic display.

Enclosed in the binary version, you should see a sample of the following
files:

amat.dat
bmat.dat
in

To appreciate the performance of CVSS for the problem (of size about
500), simply type
cvss_xxx < in

on your system, where ‘xxx’ should be replaced with associated platform.
For instance, you should say

cvss_hp (for HP machines)
cvss_sun (for SUN machines)
cvss_sgi (for SGI machines)
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