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Adaptive Integral Method for Hybrid FE/BI Modeling of 3D
Doubly Periodic Structures

Thomas F. Eibert and John L. Volakis
Radiation Laboratory, EECS Department
The University of Michigan, Ann Arbor, MI 48109-2122

Abstract

The adaptive integral method (AIM) is applied in conjunction with a hybrid finite element
(FE)/boundary integral (BI) approach for the electromagnetic analysis of three-dimensional
(3D) doubly periodic structures. Starting from the conventional mixed potential integral
equation (MPIE) formulation, AIM is derived using Taylor series expansions for the involved
coupling integrals. Implementation issues are discussed as related to the periodic formulation
and central processing unit (CPU) timings / memory requirements are given and compared
to the conventional BI implementation.

1 Introduction

The application of hybrid FE/BI methods to infinite periodic structures (antennas or frequency
selective surfaces) [1, 2, 3| is very attractive because it provides full 3D modeling flexibility.
Basically, the FE method is used to model a unit cell representing the periodic structure,
whereas the BI provides for a rigorous mesh truncation at the upper and/or lower surfaces of
the discretized unit cell. Most practical problems can be analyzed using planar BI surfaces and
the corresponding half-space periodic Green’s functions. However, for large unit cell apertures,
the resulting fully populated BI matrix leads to CPU intensive solutions. To alleviate the
CPU and memory bottleneck, fast integral algorithms such as the fast multipole method
(FMM) [4, 5, 6, 7, 8] or the adaptive integral method (AIM) [9, 10, 11] may be employed.
Until now, fast integral methods were mostly used in conjunction with pure integral equation
formulations. An application of the FMM to the FE/BI method was presented in [6] and [7].
However, for planar BI terminations, AIM is the method of choice because it directly results in
low O(ng) storage and O(nglogng) CPU time requirements for executing the matrix-vector
products in the iterative solver (ng: number of BI unknowns). In contrast, FMM must be
implemented in its more involved multi-level formulation [8] to achieve the same O(ng logng)
complexity. Also, FMM cannot be directly applied to periodic problems because it is based
on a multipole expansion of the free-space Green’s function.

The speed-up and memory savings of AIM are attained by taking advantage of the Toeplitz
properties of the Green's functions when uniform grids are employed. The underlying concept
which is based on the convolution theorem and use of Fast Fourier Transform (FFT) algorithms
has been extensively applied in Conjugate Gradient (CG) — FFT like algorithms for many years
[12, 13]. Originally, these methods were limited due to their inherent requirement for uniform
meshes. To obtain more flexibility, it was necessary to project arbitrary irregular meshes
onto a uniform mesh and vice verca. Such a procedure can produce accurate results only
for far interactions and therefore near interactions are usually calculated in a conventional
manner. The latter can be considered as a correction to the FFT-based fast algorithm. In
(14, 15], algorithms referred to as “Precorrected-FFT Methods” were presented and applied
to electrostatics. The projections between the uniform and irregular meshes were achieved
via multipole expansions of the potentials as described in [16] and J-functions were used



to expand the charges on the uniform grid. In [17], a full-wave method was published for
the analysis of cavity backed antennas. Both the uniform and the irregular BI meshes were
based on triangular surface elements and the projection operators were generated by simple
interpolations between the basis functions on the different meshes.

The AIM concept for radiation and scattering calculations was first suggested in [9] and
described at some detail in [10]. It employs d—functions on the uniform grid and generates the
projection operators between the uniform and irregular meshes by equating a finite number
of multipole moments of the basis functions (not multipole expansions of the Green’s function
as in the pre-corrected FFT). Even though the authors mention in [10] that other projection
methods might be superior to the described matching of moments, we consider this projection
algorithm as the characteristic feature of AIM. Its most important advantage as compared to
the pre—corrected FFT is that it can be applied directly to any integral equation independent
of the Green’s function as long as the convolution property is retained. Therefore, AIM can
be applied to periodic problems in a straightforward manner.

In this paper, we employ AIM to reduce CPU time and memory requirements of the BI portion
of a hybrid FE/BI approach pertaining to 3D doubly periodic structures. The paper focuses
especially on issues related to the implementation of AIM in connection with infinite periodic
structures. It begins by presenting an intuitive mathematical derivation of AIM using a Taylor
series expansion for the evaluation of the coupling integrals. The latter part of the paper
provides CPU speed—-up and memory reduction curves afforded by the AIM implementation.

2 Formulation

2.1 Hybrid FE/BI System

The conventional implementation of the hybrid FE/BI method for an infinite periodic structure
(e7“* time convention) results in a linear algebraic system of the form
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where only a unit cell of the array (see Fig. 1) is discretized. The A-matrices are sparse
(20 to 40 non-zero elements per row) and are associated with the FE portion of the hybrid
method. The BI matrices Z are fully populated and are associated with the boundary edges
on the top and bottom boundaries of the discretized periodic cell. The right-hand side vector
elements f account for excitations in the FE and BI portions of the method. Mesh termina-
tion at the side walls of the unit cell is achieved by imposing the appropriate phase boundary
condition (PBC) according to the Floquet theorem. In our implementation, we employ trian-
gular prismatic elements to generate the volume mesh giving rise to triangular surface meshes
with Rao-Wilton-Glisson basis functions [18] for the magnetic currents on the planar BI sur-
faces. For arrays with arbitrary scan angles, all matrices in (1) may be nonsymmetric due
to the PBCs and the periodic Green’s function. For the solution of the system, biconjugate
gradient (BiCG) or generalized minimal residual (GMRES) solvers are used, both of which
rely on an efficient evaluation of the matrix-vector products associated with (1) [19]. Due to
the non-symmetric properties of the system matrix, the employed BiCG solver requires two
matrix—vector products for the generation of one search vector whereas the GMRES solver
needs only one. However, the GMRES solver has a considerably higher memory demand due



to the storage of the search vectors within the restart loop. Also, additional computational
effort is required for the orthogonalization of the search vectors [19].

The computational complexity per matrix-vector product of the total A-matrix is of O(ny),
where ny denotes the number of volume edges. However, the complexity in executing the
matrix-vector products [Z]{z} is O(n%) and storage requirements are of the same order. For
a more efficient implementation of the method, it is therefore crucial to reduce the complexity
of the BI matrix-vector products. We propose to accomplish this by using AIM.

2.2 Derivaton of AIM Using Taylor Series

All elements of AIM together with a detailed error analysis are discussed in [10]. However,
for a more intuitive and straightforward derivation of AIM, we propose the introduction of
Taylor series expansions for parts of the integrands involved in the method of moments (MoM)
coupling integrals. Therefore, this subsection reviews AIM based on this new method before
we discuss its implementation into the BI portion of our hybrid FE/BI approach for periodic
structures.

The starting point of AIM is to decompose the Z-matrices as

(2] = [z + (2}, (2)

where [Z]™" contains the elements of [Z] which are “near” the self-cell. Correspondingly,
[Z])/ contains the remaining “far-zone” elements of [Z]. AIM reduces the CPU time and
memory demand of the iterative solver by exploiting the convolutional properties of the Green’s
function for the evaluation of the matrix—vector products associated with the mostly full matrix
[Z)fer [10]. That is, the far-zone matrices are not explicitly generated and the matrix-vector
products are performed in the discrete Fourier domain (DFT) utilizing appropriate 2D FFT
algorithms [13]. However, the convolutional properties can only be exploited on a uniform grid
and therefore, the basis functions on the original and possibly irregular triangular mesh must
first be replaced by an equivalent expansion using unknowns placed on a uniform grid. To do
so, we introduce auxiliary basis functions on a uniform rectangular grid which overlays the
original triangular grid. The auxiliary expansion for the magnetic surface currents (equivalent
to the tangential electric field intensities on the top and bottom BI surfaces of the unit cell)
is given by
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where (29, yo) is the lower left corner of the uniform grid and Az, Ay are the sample distances
in the z and y directions, respectively. M, M Y. are the expansion coefficients on the uniform

grid, M,, are the expansion coefficients on the orlginal mesh, and Afjn, A%" are the equivalent

expansion coefficients on the uniform grid for each single expansion functlon on the original
mesh. That is, summation over the expansion coefficients M,, of the original mesh multiplied
by the equivalent expansion coefficients AZ",Ay’ gives the expansion coefficients M, M v
of the total surface current densities on the uniform mesh. Since we work with a MPIE



formulation for the BI implementation, we introduce the additional expansion
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for the surface divergence of the surface currents.
To find an appropriate relationship between the uniform expansion (3), (4) and the basis func-
tions on the original possibly irregular triangular mesh for evaluation of the far interactions,
we start with the common MPIE expression [18]
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for the calculation of an arbitrary coupling element for the original expansion. Here, 7 and
r are the source and observation points, whereas f, and f,, are the source and testing basis
functions on the triangles with the areas S, and Sy, respectively. Also, Gp(r|rs) is the scalar
periodic Green’s function of the array problem (for instance see [1, 2, 3]), ko is the free space
wave number, and V- denotes the surface divergence. With the definitions
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Without loss of generality, the evaluation of the coupling integrals can be performed in the
plane z = 0. Based on this observation and introducing the Taylor series expansion
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around the expansion point » = (z1,y;) in the plane z = 0, Z,(rfr)l can be written in the form
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which is equivalent to summing up the moments of the testing function ¢,, multiplied by the
Taylor coefficients aq. In principle, the expansion point (z1,y1) can be selected arbitrarily



but it is numerically advantageous to put it at the center of the edge for which g¢,, is defined
[10]. The Taylor series converges if the Green’s function singularity is outside the integration
domain which is guaranteed for non-overlapping source and test subdomains. Based on (10),
Z@ can be calculated exactly by employing the equivalent basis functions on the uniform
grid if the moments of the equivalent basis functions are equal to the moments of g,,. So, in
principle the equivalent amplitudes AQ ™ for the mth basis function on the uniform grid can
be obtained by enforcing the equahty
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where the filter property of the J—functions was utilized. In a numerical implementation, only
a finite number of moments can be enforced to be equal. However, if the distance between
source and test subdomains is not too small, the function g(r) is well-behaved and an accurate
evaluation of the coupling integrals can be achieved with a small number of the lowest order
moments. We restrict ourselves to 3 X 3 = 9 moments, so that each basis function g, must
only be related to nine basis functions of the uniform grid. That is, (11) is evaluated for
indices i = (i, — 1), ..., (im +1) and j = (j;m — 1), ..., (j;m + 1), where i,, and jp, are the indices
of the uniform grid point which is closest to the center of edge m. The resulting 9 x 9 linear
algebraic system can then be solved for the nine AZQj’m coefficients. Note that the moments of
the Rao—Wilton—Glisson basis functions on the irregular mesh can be evaluated analytically
as for instance discussed in [11]. The approximate expression for Z,(,%,)L can be finally written
as
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where again the filter property of the é—functions in (4) was utilized. A similar procedure can
be employed for the source integral in (7). For this purpose, a Taylor series expansion of the
Green’s function G is introduced with respect to the source point r, for a fixed observation
point . The obtained approximate expression for g is
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where kn,l are the indices of the closest uniform grid point with respect to the center of edge
n and A " are the equivalent amplitudes for the respective basis functions on the uniform
grid for ba51s function n on the original irregular mesh. The combination of (12) and (13)
results in
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in which zo, yo were omitted because of the shift invariance of G,. In matrix form, we can
write

(2)® = 2 [A]Q[G[ATg - (15)



Expression (15) represents a matrix product of the two sparse A-matrices and the fully pop-
ulated Green’s function matrix [G,] of Toeplitz form. In some way, the A-matrices can be
interpreted as mapping operators from the irregular mesh onto the uniform grid and back.
Usually reverse mapping for a given operator is obtained by taking the inverse of the operator.
The inverse matrix of a sparse mapping matrix would in general give a fully populated matrix
resulting in an ineflicient and possibly useless method. Therefore, in the case of AIM it is
important to note that the A-matrices or “mapping operators” between the two grids are
constructed in a way which avoids the generation of inverse matrix.

Z,(,%,)l in (5) is evaluated in a similar way as Z,(,%,)l except that the £ and y components of the
magnetic currents must be considered. Therefore, the resulting representation for Z,, in
matrix form is

12) % [Z)arne = 25 (AL [GHIIATY + (AL [GH][ATY ) + 2 [Alq[GlIATg (16)

where [A]; and [A], are sparse matrices containing the equivalent current amplitudes intro-
duced in (3).

2.3 AIM Implementation for Periodic Arrays

For the implementation of AIM, it is assumed that [Z]a7ps is sufficiently accurate for [Z]/*"
but not so for the near-zone elements. Therefore, we decompose the AIM matrices as

(Z)an = (21585 + (217 (17)
and when [Z)/% in (2) is approximated by [Z]/¥,,, we can rewrite the original Z-matrices as
[2)%P7°F = (2] - [Z14Th) + [Z)arm - (18)

With this approximate representation of [Z], the near-zone elements are evaluated without
compromise in accuracy. However, since the great majority of [Z]*PP"°® includes the Toeplitz
kernel [G,)], the associated matrix-vector products can be performed using only O(ns) memory
and O(nglogng) CPU time. In the final numerical implementation, a near-zone threshold
is defined so that [Z]%PP"*® is a sufficiently accurate representation of [Z]. This threshold is
mostly affected by the quasi-static singularities of the Green’s function and can be reduced if
the density of the uniform grid is increased. In the case of periodic structures, the test func-
tions in the near-zone around the source function must be extended by test functions whose
supports are close to an image source in one of the neighboring periodic cells (see Fig. 2).

For the calculation of the matrix-vector products in the iterative solver, [Z]ﬁ% is not com-
puted explicitly. After mapping the actual source distributions onto the uniform grid through
the A—matrices, the pertinent matrix—vector products are performed in the DF'T domain using
a FFT algorithm for the corresponding transformation (see for instance [13]). After transfor-
mation back into the spatial domain, the fields on the original mesh are obtained by reverse
mapping between the auxiliary unknowns and the original grid unknowns. As indicated by
(18), [Z]arm not only contains the intended far-zone contributions but also near-zone con-
tributions, even though these near-zone contributions are not a good approximation to the
original near—zone elements. These AIM near—zone contributions are calculated prior to start-
ing the iterative solver and subtracted from the original near—zone coupling elements to obtain
the exact near—zone terms after performing the matrix—vector products. For the computation
of [Z]%%y, it is essential that the coupling contributions on the uniform grid are collected



in the spatial domain (performing the convolutions) before the Toeplitz Green’s function is
transformed to the DFT domain. In the DFT domain, for each basis function the whole FFT
procedure must be performed to obtain the elements of one column of [Z]}5%,;. Therfore,
computation of [Z]%5%; in the DFT domain would require O(n% logng) CPU time.

3 Results

For validation of the AIM accelerated array analysis FE/BI code, we first consider a simple
strip dipole FSS structure as presented in [21]. The geometry of the structure is illustrated
in Fig. 3 together with resonance curves of the power reflection coefficients for different dis-
cretization models. The prismatic FE volume meshes were expanded from triangular surface
meshes using 20 x 20, 32 x 32, and 44 X 44 subdivisions, respectively. The density of the
uniform AIM grid on the BI surfaces in the top and bottom of the unit cell mesh was chosen
so that on average approximately 3.5 uniform grid points were placed per triangle side. The
near—zone threshold was set so that the original matrix elements were used within 15 uniform
grid samples in the z and y directions around the source element center. That is, the near zone
was a square of 30 x 30 uniform sample distances. The near-zone threshold was kept constant
for all frequencies. Based on the above AIM parameters, the accuracy of the obtained results
is equivalent to results obtained with a conventional FE/BI implementation. Keeping in mind
that the evaluation of the far interactions in a conventional FE/BI formulation is usually done
with a low-level numerical integration (one point sampling), AIM might even provide more
accurate representations of the far-zone integrals.

Increasing the mesh density for the unit cell in Fig. 3 from 20 x 20 to 32 x 32 subdivisions,
shows a shift of the resonance curves to higher frequencies. However, the 44 x 44 mesh reso-
nance curve coincides with the 32 x 32 curve. The data are compared to results obtained with
a MoM formulation employing a multilayered Green’s function. Two MoM curves with 3 x 8
and 9 x 18 subdivisons for the current expansion on the strip are depicted in the figure. The
higher current sampling on the strip gives a slight shift of the resonance curve to lower fre-
quencies. However, the converged FE/BI/AIM and MoM results still have a small frequency
shift of about 1%.

To illustrate the memory and CPU time savings of the AIM acceleration, we analyzed different
mesh configurations of a microstrip dipole array. All meshes consisted of one volume prism
along the depth of the array and a metallic backing on the bottom surface. Different meshes
with increasing numbers of BI unknowns were generated by grouping several array elements
into the discretized unit cell. The largest mesh was a four by four array and had 18208 BI un-
knowns (24448 volume mesh unknowns). The operation frequency was close to the half-wave
resonance of the dipole elements. The uniform AIM grid was constructed as described in the
preceding validation problem giving results without compromise in accuracy. In Fig. 4, the
number of matrix elements in the system matrix dependent on the number of BI unknowns
is depicted as a measure of the memory requirements of the algorithm (12 bytes per matrix
element for single precision and sparse matrix storage). In the conventional BI formulation,
the number of matrix elements increases with complexity O(n2) whereas AIM results in an
optimal complexity of O(ns). The most time consuming portion of our FE/BI approach was
the BI fill time which is given in Fig. 5 together with the total solution time. However, for the
given problem, the BI fill time was larger than that for most practical problems. Due to the
large unit cell having a sidelength of more than two wavelengths, the evaluation of the periodic
Green’s function needed relatively many terms of the applied series representation. To obtain



consistent timing results, we kept the same number of terms even for the smaller problems.
From Fig. 5, it can be seen that the AIM acceleration reduces the complexity of the BI fill
from about O(n?) to about O(ns) (constant number of terms in the series representation of
the Green’s function assumed for both values). The complexity of the CPU time per iteration
for the conventional and AIM accelerated BI approaches is depicted in Fig. 6. Results are
given for the BiCG and GMRES solvers. In all cases, the GMRES solver (restarted every
50 iterations) needs approximately half the CPU time required by the BiCG solver since the
GMRES solver needs only one matrix-vector product per iteration whereas the BiCG solver
needs two matrix-vector products. As illustrated in Fig. 6, the AIM acceleration reduces the
CPU time complexity per matrix—vector product from O(n?) to O(nslogn,). However, the
necessary AIM overhead leads to increased CPU time requirements for very small numbers of
unknowns. The total CPU time for the iterative solvers is given in Fig. 7. Due to the varying
numbers of iterations for the different problems, the curves show a more irregular behavior
than the timing curves per iteration. However, the trend of the reduced complexity of the
AIM accelerated formulation is still obvious.

4 Conclusions

In this paper, we demonstrated the application of the AIM acceleration scheme whithin a hy-
brid FE/BI approach for modeling doubly periodic structures. The AIM concept was reviewed
and an intuitive mathematical derivation based on Taylor series expansions of the coupling
integrals was given. Also, implementation issues relating to the array problem were addressed.
For the considered planar BI surfaces, the method leads to low O(ns) memory requirements
within the BI portion of the approach and the CPU time complexity of the matrix—vector
products in the applied iterative solver is reduced to O(nslogns). With properly selected
AIM parameters, results without any compromise in accuracy are obtained compared to the
conventional BI implementation.
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Figure Captions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Unit cell of array

Triangular BI mesh with periodic image sources

Resonance curves for strip dipole FSS as sugested in [21]

Number of matrix elements in the system matrix (FE and BI near-zone)

BI fill time and total solution time for test problem of microstrip dipole array
CPU time per iteration for test problem of microstrip dipole array

Total solver CPU time for test problem of microstrip dipole array
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