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CHRONOLOGY of Events (Updated Every Quarter)

e April 1996
o July 1996
e August 1996

e 20 Sept. 1996
UH)

e October 1996
e Qctober 1996

e 15 Nov. 1996
e 9 January 1997

e 28 February 1997

e 5 April 1997

e 30 May 1997

e 25 June 1997
e 5July 1997

Proposal Submission
Answers to Proposal Questions
Began Contract Negotiations

Kickoff meeting at Ann Arbor (attended by Sanders, UM and

Contract Signed between U-M and Sanders in Mid October

Subcontract to the Univ of Houston

(formalized in early November)

SERAT Review meeting (at Nashua)

Submitted First Quarterly Report

Report Described Code Plan and Progress on the Moment
Method FSS Code. Specifically, a new scheme was
developed to accelerate the convergence of the periodic
Green’s function

Prepared viewgraphs on the project’s progress review.
Showed first validation results for the moment method FSS
code with the new accelerated Green'’s function; showed
results for a new algorithm to accelerate the boundary
integral truncation of the planar and curved FSS hybrid
FEM code using the Adaptive Integral Method(AIM) and
CVSS, the new LU solver specialized to sparse matrices
Submission of Second Quarterly Report.

Report included the first validation results for the stand
alone small array FEM code (with dipole FSS elements and
dipole antenna elements). A similar validation was done
for the moment method FSS developed at Houston. The
fast AIM algorithm was described for boundary truncation
and the TRIANGLE surface mesher was introduced to
generate the aperture mesh, subsequently grown down to
the FSS.

Semi-annual review at the Univ. of Michigan

(attended by all parties)

Review covered progress up-to-date. At this meeting,
emphasis was on the validation of the three codes which
took 'shape and form' between March-May 1997 in
accordance with the proposed schedule. Theory, validations
and comparisons among the codes were presented.
SERAT review Meeting (Nashua)

Submission of Third Quarterly Report



The major component of this report was the description and
validation of the periodic hybrid FEM code, FSS-PRISM.
Comparisons among the FSS-EIGER, FSS-BRICK and
FSS-PRISM were given for the first time. Also, the
geometry drivers for the FSS-BRICK and FSS-EIGER
were given.

e 60ct1997 Submission of Fourth Quarterly Report
Delivered FSS-EIGER and FSS-BRICK, both with
manuals and preprocessors. Primitives are used to specify
antenna and FSS elements in each code. Report gives
example calculations for non-commensurate FSS panels for
the first time using the scaling approach implemented in
FSS-PRISM. Another first is the hybridization of the fast
multipole method with the finite element code PRISM as a
step toward the curved FSS modeling.

MEETINGS
No meetings were held during the 4" quarter (July 1- Sept 30, 1997)



Executive Summary and Project Status

This is our 4™ progress report and coincides with the completion of the first year on the
project. At this time we are on schedule with all tasks and in some cases we are ahead of
schedule as mentioned in our 3" quarterly report. In fact our third quarterly report
provides a good assessment of the project status and will not be repeated here.

To reiterate, the goal of this project is

¢ to develop and deliver a set of codes from simple/faster to complex/slower capable of
characterizing the SERAT array panels (with slot, strip and crossed dipole elements)
on planar and doubly curved platforms.

o the unique feature of our proposed effort was to employ well-established methods for
the simpler planar arrays on FSS panels (low risk approach) and new more capable
hybrid methods (higher risk) for finite/infinite planar and double curved arrays with
possible non-planar inhomogeneities. The hybrid FEM method was proposed for this
implementation using prismatic elements for ease in meshing and fast integral
truncation schemes.

As given in the simplified code development plan in Figure 1 (see also the Milestone
chart in Figure 2), four different codes were proposed to address the speed and
complexity requirements of the project.

1. Small array code (FSS-BRICK)

FSS-BRICK is an upgrade from an existing code developed under Air Force sponsorship.
It employs bricks for modeling the FSS and antenna volume in the context of the finite
element method (see Progress reports 035067-2-T and 035067-3-T) and a fast boundary
integral technique for mesh truncation. The intent is to use this code for fast finite array
computations by compromising somewhat geometrical fidelity due to the use of
rectangular bricks. Moreover, this code served as the reference to the future periodic
codes FSS-EIGER and FSS-PRISM.

FSS-BRICK was extended to handle multilayered FSS structures and a geometry driver
was added for ease of use. In accordance with the milestone chart, this code was finished
on schedule at the end of the first year. A users manual was prepared including sample
I/O files with example results and validations for finite arrays on multilayered SERAT
panels. Apart from a lack of full geometrical generality, FSS-BRICK permits modeling
of

o resistive sheets and cards at each dielectric layer

horizontal and vertical loads at each node/edge of the model

vertical and horizontal probe feeds

strip dipoles, slots and crossed elements separated by thin laminates.

vertical wire or strip feeds using a concatenation/combination of conducting posts at
any edge/node location within the domain (both, vertical and horizontal loads can be
handled)



Typically, any geometry of FSS or antenna element can be handled using FSS-BRICK
provided the geometry fits within the rectangular grid specified by the discretization rate.
However, for ease of use, direct use of the Driver permits a list of element choices
(primitives), thus, bypassing a need for geometry meshing. However, this SERAT driver
can be bypassed for a more general use of the code.

FSS-BRICK permits scattering and antenna calculations for metal backed panels as well
as transmission coefficient calculations for the FSS panels when no metal-backing is used
Since FSS-BRICK handle only finite arrays, non-commensurate FSS panels can be
handled with equal ease within its inherent gridding limitations

2. Moment Method Code (FSS-EIGER)

This code was developed by the SERAT team members from the Univ. of Houston. It is
based on the traditional moment method technique with the inclusion of the periodic
Green's functions to handle the multilayer FSS and antenna panels. Basically, each
periodic antenna element is modeled using triangular surface patches and the periodic
Green's functions is used to radiated and couple the patch currents among the different
periodic layers. By using separate periodic Green's functions for each FSS layer, different
periodicities (non-commensurate) for each of the individual layers can be handled in a
rather straightforward manner. Such an approach has been shown to be more effective
than the supercell method which although more accurate, enlarges the computational
domain and is furthermore restricted to layer periodicities that lead to rational ratios.

Univ. of Houston decided to begin development of the SERAT moment method code
starting with the existing EIGER code. EIGER was developed by the Univ. of Houston
in conjunction with Sandia Labs. and has the unique feature of being quite modular
(object oriented). The Green's function is provided through a separate object/module. For
the SERAT application, it was modified to include the periodicity of the array and the
FSS panel. For non-commensurate structures each layer will be associated with its own
Green's function.

FSS-EIGER for commensurate FSS is completed and delivered to the Univ of Michigan.
This code package includes:

e SERATBUILD: a preprocessor allowing the user to bypass the line by line raw input
to EIGER. Using this package, the user specifies the element types (slots, strip
dipoles etc.) for each of the antenna or FSS layers. As in the FSS-BRICK and FSS-
PRISM, meshing of these antenna/FSS elements is done internally without
intervention by the user. Specification of the usual discretization rates along each
direction is, of course, necessary. As noted above, by resorting to a set of '‘primitive'
shapes for the antenna and FSS elements we have eliminated a need for a complete
integration of these packages through a single meshing package.

SERATBUILD generates a input file which is then used as input to the FSS-EIGER
code.



e FSS-EIGER: This is the moment method code for simulating the FSS and the
periodic antenna elements. It was upgraded from the original EIGER code with the
inclusion of periodic Green's function. It is import to note that the periodic Green's
function for the free-space layer employs an acceleration scheme for summing the
modes which proved very crucial to developing a code that is rid of the usual
convergence difficulties associated with most periodic Green's function. The theory
of the formulation is described in the first quarterly report (Univ. of Michigan
Radiation Lab report 035067-1-T). Both reflection and transmission coefficients of
the FSS can be extracted from EIGER and in contrast to FSS-BRICK, the elements
can be of any arbitrary orientation. However, FSS-EIGER does not allow modeling of
vertical inhomogeneities as is the case with vertical wires, feeds, lumped loads, etc.
However, EIGER does allow modeling of resistive cards in the plane of each antenna
or FSS layer.

The users manual for FSS-EIGER is currently being written and will be delivered along
with the code at the end of October 1997. At the same time, Univ. of Houston is working
on completing the non-commensurate implementation using the method noted above and
described later in more detail. In accordance with the milestones chart, this code was to
be developed at the end of the first year and work on upgrades during the 5™ quarter.
Thus, its development is still within our original schedule plans.

Year 1 Year | Year | and 2 Year 2

MoM and
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FSS Code
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Figure 1. SERAT code development plan.



Milestone Chart for EM Model Development (Tasks 1 and 2)
Quarterly Progress

Task

Tth

8th

FSS Green’s function and Code for
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Planar and Curved-IBC

Planar-FEM/Moment Method

Curved-FEM for antenna and
FSS

Planar Periodic Array

FEM with IBCs

FEM for antenna and FSS

Curved Array

Cylindrical

Approximate Doubly Curved ' R

Software Integration and 1/0
Displays

Validation

Software Support




3. Finite Element Planar Periodic Code (FSS-PRISM)

FSS-PRISM refers to the hybrid FEM code. This code is the centerpiece of the proposed
development and combines the geometrical adaptability and generality of the FEM for
modeling materials and inhomogeneities with the rigor of the moment method for mesh
truncation. This code is therefore the most general for planar SERAT panels. As can be
understood this code is the slower of the FSS-BRICK and FSS-EIGER codes for planar
SERAT panels. However, we plan to improve the CPU speed of FSS-PRISM with the
inclusion of the adaptive integral method(AIM) for handling the matrix vector products in
the solver. This will be done in the 5" quarter.

The development of FSS-PRISM began in March 1997 as a modification of the non-
periodic finite element-boundary integral PRISM code, originally developed under Air
Force sponsorship. It was chosen for the SERAT project because its prism elements
permitted simplifications in specifying the geometric of the FSS panels and the antenna
elements. Basically, the constant thickness layers used for building the SERAT panels
eliminates a need to use the more general tetrahedral elements

PRISM was upgraded to FSS-PRISM with the addition of the periodic Green's function
obtained from FSS-EIGER and the implementation of periodic boundary conditions to
reduce the computational domain to within a single periodic element. These
modifications along with the inclusion of options for metal-backed or open FSS panels
provided us with the first version of FSS-PRISM at the end of the 3 quarter. Thus FSS-
PRISM was developed one quarter ahead of schedule. Validations and the theory relating
to FSS-PRISM were described in the 3™ quarterly report (Univ. of Michigan Radiation
Lab Report 035067-3-T).

Having completed the first version of FSS-PRISM, during the 4™ quarter we proceeded

o to develop a geometry Driver for FSS-PRISM, where again the user will specify
primitive shapes (slots, strips, crosses, etc.) to be internally used for developing the
mesh without user interference.

The user can specify such primitive shapes at each layer interface and distorted
prisms are used for connect the nodes from one layer to the next. At this moment, the
Driver can handle primitives which are oriented along the two principal directions
and will be generally in October to handle more arbitrarily oriented elements. In
addition, although FSS-PRISM can handle resistive cards, lumped loads, etc., these
items have yet to be included in the Driver.

o 1o generalize FSS-PRISM for modeling non-commensurate FSS panels.

Since no studies on this topic are available in the literature, it is necessary to pursue a
research investigation. As described later in the report, several approaches were
explored to find a method for modeling non-commensurate FSS. Among them, the
supercell method, element scaling and layer periodicity decoupling were examined.
As noted earlier, the supercell approach, although yielding exact results for a limited
class of problems, it was not found attractive due to its large CPU requirements and
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limited flexibility. The scaling approach is a theoretically sound method and was
rather straightforward to implement. With this method, the periodic cell's vertical
boundaries were adjusted (shrunk or expanded) to accommodate the periodicities of
each layer. The scaling method has already been implemented into FSS-PRISM and a
sample result is given in Figure 3. The comparison is made with data produced by
Aroudaki and Hensen using the layer periodicity decoupling method. As seen FSS-
PRISM data predict the similar FSS behavior.

At this moment, we are not as impressed with the CPU performance of the scaling
approach for non-commensurate FSS. Substantial distortion of the prismatic FEM
elements leads to slow convergence, a situation that also impact accuracy. Given that
delivery of FSS-PRISM is not scheduled till the end of the 5t quarter, we are now
looking at two possible ways to improve modeling of non-commensurate FSS. There
are:

e use of more robust iterative solvers

Our intent is to use the preconditioned Flexible GMRES and work toward this
direction is already under way.

e revert to an implementation based on layer periodicity decoupling

This implementation is based on the same principle to be used in FSS-EIGER and
will likely lead to much faster convergence. However, its implementation is more
complex and time consuming.

In addition to the above tasks, during the 5™ quarter we will also incorporate a fast
integral method in FSS-PRISM for further CPU speed-up.

Figure 2. Illustration of the scaling approach

11
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4. Doubly Curved SERAT code (FSS-CURVE)

We began development of the curved SERAT code during the 4t quarter in accordance
to the milestone chart and project plan in our proposal. As stated in our proposal, two
approaches will be pursued.

e One is an approximate method and will rely on results from the planar FSS code
(FSS-PRISM, FSS-EIGER, FSS-BRICK). This implementation is really a
modification of these planar FSS codes and will be carried out during the 6™ quarter
as a last resort. Basically, this is an approximate method based on the relocation of
the unit cell currents (with the appropriate phase terms) as computed from the planar
ESS codes.

e The mainstream approach that was proposed is based on an exact implementation of
the curved panels. Our approach combines the finite element method for interior
modeling and fast integral methods for mesh truncations. Practically, this approach
combines the geometrical adaptability of PRISM with the speed of fast integral
methods such as the fast multipole method(FMM)

During the 4™ quarter we began the integration of the non-periodic PRISM with the fast
multipole method. Our goals were

to examine the speed-ups attained with this method

to find the appropriate region (array size) for applying fast integral method
to examine the practical CPU requirements for typical SERAT problems
to provide a validation for the approximate curved SERAT code

As of this moment, we have completed a first version of the PRISM code incorporating
the FMM and have obtained several validations for large planar arrays. An example 6x6
antenna element array with the employed FMM grouping approach is displayed in Figure
4. The corresponding CPU time (fill time) is given in Figure 5 (this example corresponds
to 2500 boundary integral unknowns) and shows a factor of 3 for this example. Since
PRISM is capable of curved FSS modeling the generalization of this code to curved FSS
panels is straightforward.

This code is scheduled for completion at the end of the 6™ quarter and we will report on it
with more details in the 5 and 6" quarterly reports.

13



Figure 4. Grouping approach for implementing the FMM method in PRISM array
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Figure 5. Matrix-fill CPU speed-up when the FMM is used in PRISM for array
analysis
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Project Goals

The goal of the SERAT project at the University of Michigan (with subcontract to Univ.
Of Houston) is to develop a suite of software for the analysis of strip and slot dipoles on
multilayered substrates backed by a frequency selective surface. The dipoles are equipped
with photonic switches permitting variable electrical dipole lengths for broadband
performance and the FSS is suitably designed to simulate a variable substrate thickness
for optimal operation. A general view of the geometry is given in Figure 1.

The UM/UH team proposed to construct a code which combines various computational

modules interfaced with appropriate pre-processors and post-processors. The

computational modules include:

o Stand-alone moment method simulation of the FSS with up to 10 layers with
commensurate and non-commensurate periodicities.

¢ Simple moment method simulation of the antenna elements on the FSS panels

e Hybrid FEM simulation modules for small arrays, planar periodic arrays and curved
arrays on FSS panels.

Various options for modeling the FSS and for mesh truncation were proposed to provide
a compromise between speed and accuracy. These are outlined in the proposal and
summarized in the included milestone chart (repeated from the proposal).

As called for in the milestone chart, we are proceeding in accordance with the schedule in
our proposal. Specifically:

1. The commensurate moment method FSS and moment method periodic array code
was completed and tested by Houston and delivered to UM. This code is referred to
as FSS-EIGER and will be delivered in October 1997 as scheduled. A formulation
for the non-commensurate version of the code has been developed and is under
implementation at this time.

2. A geometry driver has been developed for FSS-EIGER to handle the dipole, crossed-
dipole, slot and crossed-slot elements.

3. UM completed ahead of schedule the small array FSS code. This code will be
delivered in October 1997 along with a geometry Driver for antenna and FSS
elements

4. A first version of the centerpiece of this Code-Suite, the hybrid FEM code FSS-
PRISM, is completed for commensurate arrays and combines the powerful FEM for
material modeling with the robust boundary integral method. A Driver is now under
development and a non-commensurate version of the FSS-PRISM is being tested in
accordance to the schedule.

5. Several code validations have been given for slot/dipole periodic arrays on FSS

structures and example data for non-commensurate panels will be shown in October
1997

15



6. We have already began the incorporation of fast algorithms into the SERAT hybrid
code as scheduled for an accurate model of the curved SERAT panels
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Figure 6. Illustration of the SERAT panel (Planar and Curved)
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Summary of Code Features

in FSS-BRICK and FSS-PRISM

In the project proposal, the following input/output (I/O) operations are
described for the SERAT codes to be developed :

1)

4)

5)

6)

7)

Automatic meshing of the required FSS and antenna elements in mul-
tilayered media should be available in the codes. Bricks and distorted
prisms can be used for automated meshing.

The user can enter the number of layers above and below the antenna
elements; the number of FSS layers, each layer’s physical and material
characteristics; the element type, its location and dimensions; period-
icity; resistive sheet specifications; feed type and location; lumped load
values and location; excitation information, and so on.

Strip dipoles, single slot elements, dual polarized (crossed) dipole and
slot elements should be available as FSS and antenna elements. The
crossed-dipole antenna element can be specified as two dipoles sep-
arated by a thin laminate. These elements can be oriented in any
arbitrary direction at any layer interface. In addition, the automatic
mesher can include square patches as an option element.

The user can have options of placing vertical and horizontal complex
lumped loads between any two node location in the structure.

Complex resistive sheets can be placed at any location on the specified
interface, between the elements and on the elements.

Horizontal as well as vertical feeding can be specified at any node lo-
cation using current probes or potential specifications.

Modeling of a metal-backed or a free standing FSS panel should be
available in the code. An option to model the bottom of the FSS as
a perfectly matched absorber may also be included. Also, impedance
boundary conditions may be allowed at all walls, in the vicinity of
platform surface and on the base of the SERAT structure.

17



8) The user will have the option of defining the geometrical features of
the feed/balun model along with its electrical composition.

9) The above input options are supplied by a driver in the code. Before
proceeding with the final analysis, there will be a display of the input
geometry and mesh for verification by the user. The output file should
list all input parameters and computed results and will be available in
graphical and tabulated form (on screen and postscript). The graphical
output should include the capability to plot/display :

a) Antenna gain as a function of angle, polarization, and frequency;
b) Input impedance (VSWR) vs. frequency;

c¢) Mutual coupling between any two elements in the array vs. fre-
quency;

d) Scattering as a function of incidence and scattered angles, polar-
ization and frequency;

e) Antenna gain or scattering at specific angles and frequency vs.
variations in design parameters;

f) The capability of computing the reflection (or transmission) coef-
ficient at each FSS layer.

The geometry driver development status for FSS-BRICK and FSS-PRISM
codes are summarized in Table 1. Most of the I/O operations described above
are included in FSS-BRICK Driver. After addition of the plotting package
(XMGR), FSS-BRICK will be delivered with its user’s manual in October
1997. FSS-PRISM Diriver is still in progress, and the manual will be ready
in November 1997.

18



| Input Features

| FSS-BRICK (Finite Array)

FSS-PRISM (Infinite Array) ‘

Antenna Elements

Dipole
Slot
Crossed-dipole

FSS Elements

Strip

Slot
Crossed-strip
Crossed-slot

Arbitrary Orientation

Resistive Cards (surface)

<D

Lumped Loads (between
any two grid location)

Vertical (z-directed)

<

Horizontal (z- or
y-directed)

DS

Feed Wires
(or Short-ckt. Pins)

<<

Sources
(at any grid location)

z-directed Probes
y-directed Probes
2-directed Probes

LK

Output Features

Y%

v
374 week of Oct’97

Vv

v
37 week of Oct’97

37 week of Oct’97
End of Oct’97
2" week of Oct’97

2" week of Oct’97
27 week of Oct’97
2™ week of Qct’97
27 week of Oct’97

2" week of Oct’97
2" week of Oct’97

Radiation Pattern
(with the closed backing)

Antenna Gain

Input Impedance

(as a function frequency,
and scan angles)

<<

Scattering Pattern
(with the open backing)

Transmission Coefficient
Monostatic RCS
(as a function frequency,
and scan angles)

<

Output Display Format

Tabulation
Plotting (XMGR)

v
1%t week of Oct’97

Manual

Almost done

3™ week of Oct’97
37 week of Oct’97

v

2md week of Oct’97

v
37 week of Oct’97

1%t week of Nov’97

Table 1: Geometry Driver development status.




Non-Commensurate F'SS Modeling in
FSS-PRISM

T. F. Eibert

In the hybrid finite element (FE) method the actual periodic structure is modeled
by finite elements and the solution domain is terminated using a boundary integral
formulation for the top and bottom half spaces, respectively. If unique periodicities
can be defined for the whole structure, it is sufficient to only model one unit cell
for an exact analysis. For non-commensurate structures, one has to account for
different layers each having different periodicities. If the individual periodicities
of the layers are integer multiples of each other the so-called supercell approach
can be employed. This approach combines groups of several FSS elements in a
single periodic cell which runs vertically through the FSS structure. However, for
irrational ratios the periods of the supercell tend to infinity and an exact solution is
no longer practical. Nevertheless, it is possible to construct approximate supercell
periodicities of finite size which can give reasonably accurate results.

In general, the supercell approach is very time consuming. So, our goal is to
work with FE meshes that can employ different periodicities for each layer as it
is illustrated in Fig. 1. This approach in general introduces some approximation

Figure 1: Scaled PRISM mesh for a periodic cell involving non-commensurate FSS
layers

into the model, but it is very flexible and can easily be adapted to meet arbitrary
requirments on the performed analysis. Within the PRISM-BI code the surface
mesh structure in the individual layers is fixed. However, a variation of the periods
can be relatively easily introduced by scaling the surface meshes in each layer as
be seen in Fig. 1. A difficulty with this approach is that the periodic boundary
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condition for the scaled mesh must be implemented for vertical edges which are at
skew angles with each other. Thus, some distortion of the fields near the boundaries
will be introduced by scaling the mesh. The differences between the scaling factors
in the various layers should not be very large to maintain accuracy. However, as
mentioned above, the amount of scaling can easily be controlled by grouping more
or less unit cells within the various layers of the periodic structure.

Another very interesting effect of the scaling approach is that the resulting fields
must be also scaled. This can be illustrated by the following reasoning. If we
assume a plane wave in the upper half-space is travelling towards the periodic
structure a certain amount of power enters the FE mesh on its top aperture. The
amount of this power is determined by the power intensity as well as the cross
sectional area (parallel to the layers) of the FE mesh. A scaling of the FE mesh
changes the cross sectional area of the mesh dependent on the mesh height. Thus, a
fixed amount of power is maintained over the cross sectional areas of the periodic
cell as the wave travels through the mesh. This causes changes to the power
intensity as well as the associated fields at each layer. For a correct modeling of
the interactions between neighboring layers of the mesh this is not an issue and
for an evaluation of reflection and transmission coefficients the scaling of the fields
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can easily be removed.

In the numerical solution of the discretized field problem the scaling of the FE
mesh can result in higher numbers of iterations to achieve convergence when an
iterative solver is employed. This is due to the broader eigenvalue spectrum that
is typical for irregular meshes. Some compensation of this effect can be obtained
by the introduction of small losses in the dielectrics of the layers, a situation that
is usually true for practical problems.

As an example a 5-layer FSS structure with non-commensurate periodicities was
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investigated as illustrated in Fig. 2. The structure was presented in [1] and it was
used as a low-pass filter for radioastronomical measurements. The mesh used for
the calculations with the FSS-PRISM code consisted of fourty prism layers and
comprised a total of more than 50 000 unknowns. In the uppermost layer four
unit cells were meshed so that periods of 18 um resulted for this layer equal to the
periods of the layers below. In the lowest layer also four unit cells were meshed,
but this resulted in periods of 24 um for this layer. Thus, for all layers of the mesh
scaling factors of 1.0 could be employed except for the lowest layer where a scaling
factor of 1.333 was needed. In the transition region between the lowest layer and
the immediate layer above the scaling factor was adapted gradually.

First, as a sanity check all layers were assumed to be air and the metallic patches
were not present. Hence, we had a situation as illustrated in Fig. 3 for a commen-
surate structure which transmission coefficient should be exactly 1. The results
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for the scaled mesh are given in Fig. 4. It can be seen that the transmission coeffe-
cient exhibits errors of some percent due to the vertical edges at skew angles with
each other at the periodic boundaries. As can be expected, the error decreases for
higher frequencies.

In Fig. 5 results are given for the 5-layer low—pass filter. One curve shows the re-
sults from [1] which where obtained using a MoM code based on spectral domain
Green’s functions. These results were also validated by measurements. A second
cuve in the figure shows results of the PRISM code being calculated with a scaling
factor of 1.0 for all layers. So, the periods of the lowest layer were 18 pm as in
all layers above. The transmission factor for this commensurate filter shows simi-
lar frequency behavior as the reference curve from [1]. However, the transmission
factor in the passband is considerably larger than in the reference curve. At this
point it has to be mentioned that the results in [1] were obtained with relatively
high dielectric losses for the layers. The values of the losses are not given in the
paper. The calculations with the PRISM code were performed with tan é = 0.02.
The third curve in the figure gives the results for the scaled PRISM mesh. It can
be seen that its transmission factor is closer to the results of 1], but the irregu-
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lar behavior of the transmission factor with respect to frequency also reveals that

there are some convergence problems in this case.
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EIGER PROGRESS REPORT

This report summarizes the features of FSS/EIGER, as currently implemented. Some
changes and improvements are to be expected, particularly regarding input and output
data formats, but the basic computational engine for periodic structures and the
preprocessor for setting up the problem description are essentially complete. Additional
features that have not been implemented, but which may be considered for possible future
extensions to the code, are also mentioned here.

The Preprocessor

Preprocessor organization

FSS/EIGER currently comprises two codes: SERATBUILD, a preprocessor for setting up
problem description for periodic structures, and EIGER, a general purpose computational
engine with integrated postprocessor for deriving figures-of-merit for periodic FSS and
array structures. The preprocessor has been designed so that it may be integrated with
EIGER by changing only a few lines of code. However, the codes have been left separate
at this time for the following reasons:

e It is anticipated that a number of changes or additions to the preprocessor may be
required to improve the user interface. Furthermore, during the testing phase a
number of different users or testers may need access to the user interface source code.
Since the preprocessor has no licensing or access restrictions, it was separated to
facilitate such access.

e The process of generating the geometry and problem specification file is often an
iterative process which the user must go through before obtaining a correct data file
for running EIGER. This is particularly true during the learning phase in running the
code(s). Separating the preprocessor therefore quite naturally separates this problem
definition phase. As a user becomes more familiar with the code, it may be desirable
to integrate the preprocessor with EIGER, and this can be done by changing only a
few lines of code.

In most computational electromagnetics applications, it is desirable to also separate the
postprocessing software from the preprocessor and computational engine. Primarily this
is because once one has solved for the currents on a structure (electric and equivalent
magnetic) at a given frequency, one may then examine afterwards any number of
quantities, such as pattern cuts, near fields, surface fields, impedances, etc. Keeping this
process separate also separates the field observation location data from the problem
geometry and excitation data.
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Indeed, this approach was originally taken with FSS/EIGER since some of the needed
postprocessing software already existed. However, it was later decided to integrate the
postprocessing phase with the computational phase for the following reasons:

For periodic structures, the most important observables are simply the amplitudes and
phases of a few of the excited Floquet harmonics (and, for radiation problems, the
input impedance); practically any other desired data or figures-of-merit may be easily
computed from this data. Furthermore, all the data needed to specify and determine
such quantities - such as the wavenumbers of the Floquet modes - is immediately
derivable from the excitation data. Hence, FSS/EIGER always assumes that these
quantities will be of interest and automatically computes them without the need for
user specification.

From a software point of view, 95% of the software needed to perform the
postprocessing function resides within EIGER. Indeed, most of the postprocessing
can be performed with the addition of only one or two subroutines. Hence, from a
resources point of view, it also makes sense to integrate this function within EIGER.

Preprocessor functions
The functions and features of the current preprocessor, SERATBUILD, may be
summarized as follows:

SERATBUILD constructs planar, rectangular or cross-shaped elements which are
assumed to be metallic - unless they lie in a ground plane, in which case they are
assumed to be apertures (slots). Although EIGER is not generally restricted to planar
elements, the current version for periodic structures is so limited because Green's
function acceleration procedures have not yet been developed for out-of-plane
geometries. Most of the other modeling restrictions which follow are not due to
limitations of EIGER, but of the preprocessor.

All FSS or antenna elements are constructed from triangles. This choice was initially
dictated by the desire for flexibility in geometry modeling, as well as the perceived
need to generate numerical Green's functions for Michigan's PRISM code. For the
strictly rectangular geometries proposed for SERAT, however, it would probably be
computationally more efficient to use rectangular patches. Indeed, EIGER accepts
rectangular patches as input, and this feature has been successfully tested, but
unfortunately the input data to EIGER must be generated by other means;
SERATBUILD only generates a triangular mesh.

The element arrangement may be arbitrary, i.e., the periodic lattice may be composed
of rectangular or parallelogram unit cells. Specifying a rectangular geometry
simplifies data input.

While the maximum number of layers is currently dimensioned within
SERATBUILD to 15, a simple change in the dimensions allows an essentially
arbitrary number of material layers to be considered. Layers may have complex
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relative permittivities and/or permeabilities (choosing unit permeabilities simplifies
data input). The boundaries between any of the layers may be specified as ground
screens and any ground screen may contain a slot or aperture of rectangular or cross
shape.

For antenna modeling, one may specify delta-gap voltage sources whose terminals
establish a potential difference of arbitrary complex amplitude between any number
of pairs of adjacent triangles of the mesh.

For FSS modeling, incident plane waves of arbitrary polarization (TE or TM to the
direction normal to the layer boundaries) and arbitrary angle of incidence may be
specified. The amplitudes of the incident waves are automatically chosen to produce
unit-amplitude transverse electric field components, so that similar components of the
scattered Floquet modes may be directly interpreted as scattering coefficients.

A desirable feature which is currently missing in FSS/EIGER is an option to compute
a structure's response to both incident polarizations (TE and TM) at the same
frequency and incidence angles, without having to recompute the impedance matrix.
Also missing is the ability to specify arbitrary reference planes for measuring
reflection and transmission coefficients (i.e., Floquet modal coefficients). Currently,
the z=0 plane is always taken as the reference plane.

EIGER and Postprocessor Functions

This section summarizes the current features and functions of the EIGER computational
engine and the integrated postprocessor. They are as follows:

The unknown quantities computed by EIGER are the electric and magnetic currents
induced on metallic and aperture (slot) elements, respectively.

A sophisticated acceleration procedure is used to evaluate the layered-media Green's
functions for the scalar and vector potentials. The Green's functions are initially
formulated in spectral form as a doubly infinite series. When appropriate, the direct
and (up to) three quasi-static periodic image contributions are extracted from the
spectral representation. These contributions are efficiently evaluated by the Ewald
method. Under a variety of conditions, however, the remaining spectral series is still
slowly convergent and thus dominates the computation.

The active element input impedance and admittance are computed whenever only one
voltage source is specified for a problem.

Both polarizations of the specular component of the scattered or radiated fields are
computed from the induced electric and magnetic currents. In the plane-wave
illumination case, because of the normalization of the incident field, the amplitudes of
the scattered fields are equivalent to the generalized reflection coefficients
(corresponding to the field scattered into the TE and TM specular waves from a TE or
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TM incident wave). In the antenna problem, the fields radiated by the induced
currents may be directly related to the active element pattern.

One additional output item which would be desirable is the calculation of reflection and
transmission coefficients for higher order (including cutoff) Floquet modes. This
information would provide some assessment of effects of grating lobes whenever several
modes are propagating, as well as provide data for analyzing cascaded FSS structures by
the generalized scattering-matrix method.

Other features which might be considered in future development plans are
the following:

* The specification of resistance cards. There are two problems which precluded
developing a treatment of resistance cards during the current effort:

1y

2)

It is extremely difficult to specify and mesh the geometry to the detail needed.
This is particularly true if the resistance cards overlap the conductors so that
the mesh must conform to the boundaries of the overlap region. This modeling
would also be simplified if the cards and conductors still maintain a
rectangular geometry so that rectangular subdomains can be used.

The modeling procedure may depend on knowledge of the thicknesses and
conductivity properties of the resistance cards, especially if it is deemed
necessary to model the region of overlap region between cards and
conductors.

* The modeling of feed lines. Only EIGER's current restriction to handling planar
equivalent currents in the periodic case prevents the modeling of feed lines which are
non-planar. An extension of the mixed-potential integral equation approach to non-
planar periodic sources must be developed to implement this feature. Wire-to-surface
junction modeling features are already available within EIGER.

» Further acceleration of the remaining spectral series in the Green's functions. Several
approaches could be considered here, among which are the following:

¢

Since singular contributions have been removed, the resulting residual Green's
function should be relatively smooth and hence could possibly be efficiently
evaluated by interpolation from precomputed tables.

Since exact image representations (in complex space) for current sources in
half spaces are available, these additional image contributions could also be
extracted. This would result in Green’s functions that always decay
exponentially, even when the FSS elements are at an interface (the most
typical case). The complex half-space image theory could be combined with
the Ewald acceleration scheme to efficiently evaluate the resulting periodic
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half-space Green’s functions. If adjacent layers are thin, however, the
presence of nearby higher-order images may partially defeat this approach.

¢ The calculation of self impedance and mutual coupling between isolated
antenna elements in the presence of the FSS layers. This is an extremely
computationally-intensive ~ calculation, involving integration over all
wavenumbers in a unit cell of the reciprocal (wavevector) lattice, in addition
to the double summation in the spectral series. Considerable effort would be
required to implement this feature.

Modeling Non-Commensurate Structures

The analysis of noncommensurate structures has been considered, where the ratios of the
periods of the FSS layers are not rational numbers. The presence of noncommensurate
FSS layers introduces significant challenges into the analysis that are not met in the
commensurate case. For a commensurate structure, where the ratios of all periods are
rational numbers, it is always possible to define a superperiod that contains an integer
number of elements of each FSS layer. Therefore, the composite structure can, in
principle, be modeled in the usual way as a periodic structure with a period equal to the
superperiod. A structure consisting of noncommensurate FSS layers, on the other hand, is
in actuality a nonperiodic structure, which never repeats. That is, there is no well-defined
unit cell for the composite structure. Therefore, strictly speaking, the concepts of
“reflection coefficient” and “active scan impedance” are not well-defined. Ultimately,
however, the solution of any FSS structure by a periodic moment-method code (such as
FSS/EIGER) must rely on the successful decomposition of the problem into one or more
periodic structure solutions. Several different approaches to this have been considered.
These are outlined below.

1) The simplest method is an approximate one, similar to methods that have been used
in the literature by Vardaxoglou and others [1], [2]. In the proposed method, the
currents on each FSS layer are assumed to be periodic, with a uniform progressive
phase shift corresponding to the incident wave (or voltage excitation). This is an
approximation, since the composite structure is not really periodic. The field
produced by each periodic FSS layer is then found using a periodic Green’s function,
using the periodicity appropriate to the particular layer. The field at any observation
point is then a superposition of the fields radiated by the different FSS equivalent
currents, each one having the form of a periodic summation of Floquet modes (with a
different Floquet mode set for each source layer). The resulting superposition of
fields would not be a periodic function with a uniform progressive phase shift.
Therefore, different results for the solution of the equivalent currents will be obtained
depending on which unit cell in each layer the testing procedure is performed in the
moment method solution.

2) A perturbational method has been considered. This method can be viewed as an
extension to the previous method. In this method, a zero-order perturbational solution
for the FSS currents is found first. This is the solution that is obtained by assuming a
uniform progressive phase shift on all FSS layers. In this zero-order all Floquet
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3)

4)

modes are accounted for when calculating the reaction between the field of a
particular FSS layer and the currents on the same FSS layer. However, only a single
Floquet mode, corresponding to the incident wavenumber, is used to calculate the
reaction between different FSS layers. After the zero-order approximation is obtained,
a first-order perturbation for the FSS currents is found by including the interaction of
the Floquet modes launched by the zero-order currents, accounting for all Floquet
modes except the ones corresponding to the incident wavenumber (since this
wavenumber has already been used to find the zero-order currents). The process can
then in principle be repeated to obtain higher-order perturbational corrections. This
method has the advantage that it would be somewhat compatible with the existing
EIGER code, and would probably not require extensive code modifications, at least if
the solution were restricted to the first-order solution only. If the solution process was
automated to allow for an arbitrary number of perturbations, the coding could become
much more involved. The disadvantage of this method is that it is not exact, unless
the number of perturbations were allowed to increase indefinitely. However, this
method would be an improvement over the first method discussed above, and even
the first-order perturbation may be sufficiently accurate for FSS layers that are not too
closely spaced.

A “ray-bounce” method has been considered. In this method the Floquet modes
(plane waves) that result from multiple internal reflections and transmissions from the
different FSS layers, starting with the incident plane wave, are tracked and summed
to yield a total solution in terms of a mixture of Floquet modes. Each time a Floquet
mode impinges on an FSS layer in the solution process, the mode spawns a new set of
Floquet modes that have a periodicity corresponding to the FSS layer. Thus, the total
number of Floquet modes could potentially rise very quickly in the numerical
solution. However, only Floquet modes with an amplitude above a specified threshold
would be kept in the tracking process. This method has the potential of being
accurate, with a user-controlled convergence, defined by the threshold value. This
method would probably be the most efficient for FSS layers that are relatively far
apart, and for periodicities that are small enough so that only the incident
wavenumber corresponds to a propagating mode in each region.

A “discrete spectral propagator” method has been considered. In this method the
entire two-dimensional transverse wavenumber space is discretized into a set of plane
waves, both propagating and evanescent. A generalized scattering matrix is then
found for each FSS layer. This involves treating each plane wave in the discrete
wavenumber set as an incident plane wave, and then finding the amplitude of the
scattered plane waves in the discrete set by solving a periodic-structure scattering
problem. Once the generalized scattering matrix has been obtained for each FSS
layer, the matrices may be cascaded to obtain a generalized scattering matrix for the
composite structure. This method is quite general and does not assume anything about
the periodicities of the FSS layers. In fact, the same methodology may be used to
solve for the scattering from a composite structure consisting of arbitrary scattering
bodies, not necessarily periodic FSS layers. In principle, the method is limited in
accuracy only by the density of the sample wavenumber space. In practice, the
computation time may become prohibitive for even moderate densities. The
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computation time should not depend on the periodicities or the spacing between the
FSS layers, however.

The present plan is to implement method (1) above, which is the simplest method, but
also the most approximate. The implementation of the other methods, which are
potentially more accurate, but also more computationally expensive, could be done in the
future.

In the implementation of method (1), the location of the unit cell on each FSS layer that
will be used for the moment-method testing procedure can be specified by the user. The
resulting solution for the equivalent currents on the structure will depend on the choice of
the unit cell locations. The user will thus have the ability to study how the solution varies
with the testing cell locations. The variation of the reflection coefficient with unit cell
locations may give an approximate appraisal of how the true reflection coefficient varies
with position on the structure.

Code User's Manual

A user manual for the SERATBUILD preprocessor and the FSS/EIGER computational
engine and postprocessor is underway, and should be finished shortly. This manual will
discuss the use of SERATBUILD to construct the FSS geometries, providing examples
and illustrating with sample input and output files. Sample output data from the EIGER
postprocessor will also be presented to allow for easy validation checks by the user.
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Hybrid FEM Code with the
Fast Multipole Method for
Curved SERAT Panels

Kubilay SERTEL, RadLab, UM.

In the simulation of doubly-curved SERAT problems, the periodicity
properties of the geometry cannot be utilized to reduce the size of the problem
as is done in the planar periodic SERAT problems. The size of the resulting
matrix equation by the discretization of the reallistic doubly curved SERAT
geometry is usually large. The conventional FE-BI can no longer be utilized
due to its large memory requirement and computational complexities.

1 Fast Algorithms

The current FE-BI version of FEMA-PRISM code is being modified to be
capable of solving larger problems involving curved geometries in a shorter
time period using less memory. To be able to solve large problems on a given
hardware in a shorter time, the large storage and computational complexities
in the current version version should be decreased. This can be accomplished
by employing the Fast Multipole Method (FMM) in the boundary-integral
formulation of the problem.

Direct implemantation of the FE-BI method requires the computation of
N, double surface integrals appearing as the elements of the resulting BI
matrix. Iterative solvers dominantly require O(N3,) operations per iteration.
The memory requirement of the direct formulation is also O(N3;). This
large order for storage limits the size of the problem that can be solved on
a given hardware, and the high operation cost poses a limit to the size of
problems that can be solved in a practically acceptable period of time. On the
other hand the FMM reduces the computational complexity and the memory
requirement complexity to O(N}7) without sacrificing solution accuracy.

For the simulation of large, doubly-curved, non-periodic (finite) SERAT
configurations, the FMM is being implemented and tested in terms of solution
time, memory requirement and solution accuracy. At this moment, we have
completed a first version of the PRISM code incorporated with the FMM
and obtained several results for validation and comparison with the direct
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method (without the FMM). We are examining the speed-ups attained with
this method, the reduction in the memory demand and the practical CPU
requirements for typical SERAT problems. Generalization of the code to be
capable of curved FSS modeling is straightforward. The lower storage and
computational complexities of the FMM code makes it very attractive in the
solution of large realistic problems such as large antenna arrays on multiple
FSS layers.

The next section outlines the formulations used in the FMM and the
following section present some results and comparisons between the FMM
and the convensional method in terms of execution times.
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2 FMM Implementation

In FEM formuations the weighted error in the computational volume V' of
Figure 1 is forced to be zero in an average sense.

/ [v x (lv x E) - k%,E] W,dv = —iwpg / I Widv (1)
v Kr v

After a series of algebraic manupulations Eq. (1) can be converted into

v
/( ux E) -(V><WJ-)dv—’€2/(frE)-Wfd”"""""/(H">< Wa) s

= —-z'wpg/.] - W;dv. (2)
The unknowns E field is expanded in terms of known basis functions as

E= Z #:N; (3)

where ¢;’s are the edge unknowns (average tangential electric field along the
1'th edge). Hence Eq. (1) is converted into a matrix equation provided that
H appering in the surface integral is expressed in terms of E. Making use
of the surface equivalence theorem and after some algebraic manipulations,
this surface integral can be converted into a form

Zi= — 2 / ds [ / ds'Go(r, ') (N xé)] (W x 2) (4)
+ % / ds [ / ds'Go(r,r')V' - (N; x 2)] V(W x3).  (5)

By defining a new set of testing and basis functions, this integral can be

converted into the form
eikR

Zi=2 [ dsty(r)- [ as [j,-(r') ; %V' - j,-(r’)V] e (6)

When the basis functions of Tayfun and Volakis[1] are used in the FE for-
mulations, the new set of basis and testing functions (j;’s and t;’s) appearing
in Eqn. (6) are exactly the basis functions of Rao, Wilton and Glisson[2]
defined for the approximation of the surface currents.
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Figure 1: The geometry layout of the problem.

The FMM is developed using two elementary identities. The first is the
expansion of the scalar Green’s function appearing in Eq. (6) as

tkjr+d| © A
ray = D@ DAk (k) R(d - 5) (7)
r+ I =0

which is a form of Gegenbauer’s addition theorem(3]. Here j; is the spherical
Bessel function, h§1) is the spherical Hankel function of the first kind, P,
is the Legendre polynolmial, and d < r is the condition for the validy of
the expansion. In the FMM formulations of scattering problems, where the
source point is denoted by x’ and the observation point by x, r will be chosen
to be close to x — x’ so that d will be small as depicted in Fig. 2. The second
identity is the expansion of j; P, product appearing in Eq. (7) as a sum of
propagating plane waves:

snitji(kd)P(d - 7) = / Phe*ap (k- 7). (8)

The Green’s function in Eq. (7) can be rewritten using Eq. (8) as

etklr+d|

k[ o kd S i
=2 [ 2he*d S @1 + 1)AO (k) Bk - 7), )
lr + d[ 47 / g [
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r

Figure 2: The basic geometry illustrating the relationship between x,x', r,
and d.

where the orders of summation and integration are mterchanged The idea
of the FMM is that the function

L
L(kr, k- 7) = Y20+ 1)AM (kr) Pk - 7) (10)
=0

can be computed for various values of kr which is independent of kd[4]. The
series is truncated at the Lth term in numerical practice. The number of
terms kept, L + 1, depends on the maximum allowed value of kd, as well as
the desired accuracy. The choice of L will be mentioned later. Using Eq. 9,
Eq. (7) becomes

eik|r+d|

v+ d|

ko[ A
~ %r-/dzke*'dn(kr,k.f), (11)

The direct path from a source point to the field point can be decomposed
into three parts as in Fig. 3, where

Iji = TCjm + Cmm! — Fipr. (12)

The unknowns are geometrically grouped into M clusters. The idea to
be noted is that the same path will be used for all source point in cluster m’
to translate their field to all observation points in cluster m. Equation (9)
can be rewritten as

eikr_,.

-k n . by
N Z_r/d2ke'k'(""'_r""')TL(krmm"k'7:"""') (13)

7'j,'
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Figure 3: The geometry construction used in FMM formulations, illustrating
the relation between source point, field point and the group centers.

and the Green’s function becomes

eikr]',‘

Grjrs) = [I-EEVV’]

~ / &k [i _ %W’] et Ty (ko i)

7‘]','

= / d*k [T = kk] 0o ) Ty (Kt s, b - o). (14)
Using the above equations, a matrix element as in Eq. (6) is approximated
by
ikR

Znn = 2 [ dstn(r) - [ ds' [Jn )+ LV ()Y e

i‘/dzi‘;‘,fmj(k) ) TL(krmm’a k ’ f'mm')vsm z(l}) (15)
T

2

where

Vsm'.'(iC) = /ds' KT I kk] < Ji(Timt),
Vimi(h) = /S dse'*rim [I-kk]-t,-(r,-m) (16)

are the Fourier transforms of the basis and testing functions, respectively,
and the superscript * denotes complex conjugation.

The memory required for the FMM can be considered in two parts, the
sparse-matrix storage and the FMM elements’ storage. The storage of the
sparse Z' near-field matrix requires O(N%/M) memory locations where M
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is the number of clusters generated. The FMM aggregations need O(KN)
memory locations, and the FMM translations need O(K LM?) memory lo-
cations. Hence the total memory storage needed is O(N?/M) + O(KN) +
O(K LM?). Using the proportionalities K oc L?, D* o N/M, and L o« D,
this expression can be simplified to Cy(N?/M) + Co(NM/N/M), where C,
and C are machine- and implementation-dependent constants. The coeffi-
cient (5 is so small compared to C; for all problem sizes that can be solved
with the FMM that the memory required is dominated by the O(N?/M)
term.

The computational complexity of the FMM can be determined by count-
ing the number of floating-point operations required at each step of the al-
gorithm. The aggregation step requires MKN/M = KN operations. The
translation step requires K M? operations with the precomputed K M? val-
ues of the translation function given in Eq. (10). The disaggregations re-
quire MKN/M = KN operations, and finally the sparse matrix-vector
product requires N2/M operations. Using the proportionalities K oc L?,
D? x N/M, and L D, the total cost of the matrix-vector product is found
as O(NM) + O(N?/M). This can be minimized by choosing M = /N and
the result is an O(N'®) algorithm. The memory required for the FMM also
becomes O(N'®). Both the operation cost and the memory requirement of
the FMM is less than those of standart MoM formulation for problem sizes
larger than 1000, which makes the FMM more suitable for the solution of
large problems.
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3 Examples and Comparisons

YA

feed

Figure 4: The patch antenna used as the elements the arrays. The antenna is
a 3.5cm.Xx2.5cm. patch antenna residing in a 4.5cm. x3.5cm. x16cm. cavity.
The cavity is filled with a dielectric with ¢, = 2.17. The feed is located at
(0.75cm,0.25cm) away from the origin as depicted. The antenna is operated
at 2.64GHz. The FE-BI discretization results in 104(56 for BI) unknowns.

270

Figure 5: Normalized E- and H-plane radiation patterns of the single patch
antenna. (—) E-plane, (——) H-plane.
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Figure 6: 3x3 element patch antenna array constructed from the patch an-
tenna of Figure 3. The elements are uniformly excited.The FE-BI discretiza-
tion results in 1120(600 for BI) unknowns.

270

Figure 7: Normalized E- and H-plane radiation patterns of the 3x3 uniformly
excited patch antenna array. (—) E-plane, (——) H-plane.
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Figure 8: 6x6 element patch antenna array constructed from the patch an-

tenna of Figure 3. The elements are uniformly excited.The FE-BI discretiza-
tion results in 4699(2496 for BI) unknowns.

270

Figure 9: Normalized E- and H-plane radiation patterns of the 6 x6 uniformly
excited patch antenna array. (—) E-plane, (——) H-plane.
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Figure 10: Comparison of the CPU times consumed per one iteration in the
iterative solution of the resulting matrix equation.
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Figure 11: Comparison of the CPU times consumed for the filling of the full
BI-matrix.
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