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CHRONOLOGY of Events (Updated Every Quarter)

e April 1996

o July 1996

e August 1996

o 20 Sept. 1996
e October 1996
e October 1996

e 15 Nov. 1996
e 9 January 1997

Proposal Submission

Answers to Proposal Questions

Began Contract Negotiations

Kickoff meeting at Ann Arbor (attended by Sanders, UM and UH)
Contract Signed between U-M and Sanders in Mid October
Subcontract to the Univ of Houston

(formalized in early November)

SERAT Review meeting (at Nashua)

Submitted First Quarterly Report
Report Described Code Plan and Progress on the Moment Method FSS

Code. Specifically, a new scheme was developed to accelerate the convergence of the periodic

o 28 February 1997

e 5 April 1997

e 30 May 1997

e 25 June 1997
e 5 July 1997

Green’s function

Prepared viewgraphs on the project’s progress review.

Showed first validation results for the moment method FSS code with
the new accelerated Green’s function; showed results for a new
algorithm to accelerate the boundary integral truncation of the planar
and curved FSS hybrid FEM code using the Adaptive Integral
Method(AIM) and CVSS, the new LU solver specialized to sparse
matrices

Submission of Second Quarterly Report.

Report included the first validation results for the stand alone small array
FEM code (with dipole FSS elements and dipole ~ antenna elements).
A similar validation was done for the moment method FSS
developed at Houston. The fast AIM algorithm was described for
boundary truncation and the TRIANGLE surface mesher was introduced
to generate the aperture mesh, subsequently grown down to the FSS.
Semi-annual review at the Univ. of Michigan

(attended by all parties)

Review covered progress up-to-date. At this meeting,

emphasis was on the validation of the three codes which took 'shape and
form' between March-May 1997 in accordance with the proposed
schedule. Theory, validations and comparisons among the codes were
presented.

SERAT review Meeting (Nashua)

Submission of Third Quarterly Report

The major component of this report was the description and validation of
the periodic hybrid FEM code, FSS-PRISM. Comparisons among the
FSS-EIGER, FSS-BRICK and FSS-PRISM were given for the first time.
Also, the geometry drivers for the FSS-BRICK and FSS-EIGER were
given.



6 Oct 1997

24 Oct. 1997

Dec 1997

MEETINGS

¢ A semi-annual review meeting was held on Oct. 24, 1997,
e Detailed viewgraphs was handed out along with manuals for

Submission of Fourth Quarterly Report

Delivered FSS-EIGER and FSS-BRICK, both with manuals and

preprocessors. Primitives are used to specify antenna and FSS elements

in each code. Report gives example calculations for non-commensurate

FSS panels for the first time using the scaling approach implemented in

FSS-PRISM. Another first is the hybridization of the fast multipole

method with the finite element code PRISM as a step toward the curved

FSS modeling.

Review at the Univ. of Michigan

Attended by U-M and Houston project people, Gibert,

Pirrung and Asvestas.

Presented status of FSS-BRICK, FSS-EIGER, FSS-PRISM

and FSS-CURVE.

Delivered manuals for FSS-EIGER and FSS-BRICK (and codes);

Successes for non-commensurate array modeling were presented (5

layer example); Update on FSS_EIGER for non-commensurate was

given; Initial implementation

of finite curved array code was presented with the

fast multipole method for mesh truncation.

5" Quarterly Report

The major highlights of this progress report are

e Implementation of the fast integral method into FSS-PRISM, making
prism a practical analysis code, even when the sampling
requirements are very high

e Completion of FSS/Antenna geometry Driver for FSS-PRISM

o First implementation of curved arrays with the FMM for mesh
truncation.

e Additional validations for non-commensurate FSS

FSS-EIGER and FSS-BRICK.
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Executive Summary and Project Status

In our previous quarterly report we gave an extensive description of the project status which was
followed by the semi-annual project review held on 24 October 1997. Our last report along with the
viewgraph slides and code manuals given at the review provide a clear picture of the project's status.
Basically, as of this moment we have four operational codes whose development is either on schedule
or ahead of schedule (refer to Milestone chart given on page 6).

Summary of Code Modules and Capabilities

CODE DESCRIPTION AND STATUS
FSS-BRICK Small (finite) Array Code

o Finite element-Boundary Integral (FE-
BI) code using brick elements

e Completed and Validated

e Geometry Driver described in Report
035067-5-T

FSS-EIGER Moment Method code

o Uses multilayered Green's function and
triangular boundary elements (Rao-
Wilton-Glisson formulation)

o Uses Ewald acceleration for periodic
Green's function

e Validated (slot and dipole elements)
and delivered for commensurate FSS

e Geometry Driver Manual delivered in
October 1997

e Non-commensurate FSS modeling still
in progress

FSS-PRISM Finite Element-Boundary Integral Code

e Combines flexibility of finite elements
for volume and boundary element for
robust mesh truncation

o Uses Ewald acceleration for periodic
free space Green's function

¢ Incorporates Adaptive Integral Method
for fast Boundary element evaluation

o Uses layer de-coupling to handle non-
commensurate FSS.

e Validated for commensurate and non-
commensurate FSS and slot and printed
antenna elements

e Geometry Driver is now available
completed for commensurate and non-
commensurate FSS



FSS-CURVE Curved SERAT array code

¢ Based on the non-periodic version of
PRISM

¢ Incorporates the fast multipole method
(FMM) for fast non-planar boundary
integral evaluation

o Tested for planar large array
simulations

¢ Extended to non-planar simulations

e Under testing for curved array
simulations

o FSS Geometry driver to be developed
in the 6" quarter.

This Quarter's Accomplishments

As of this time we continue to be ahead of schedule in developing FSS-PRISM and FSS-CURVE as
well as their associated geometry drivers and validations.

This quarter's summary of accomplishments are as follows (refer to the attached document for more
technical details):

1. After examining several approaches (see previous quarterly report), we finally
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Figure 1. Validation of FSS-PRISM for a 5-layer non-commensurate FSS structure; details of the
geometry are given later.

resorted to the method of layer de-coupling to handle non-commensurate FSS. This approach was
successfully implemented and tested using reference data for a 5-layer FSS structure as depicted for
example in Figure 1. Clearly, this is a major highlight of the project since it readily permits the



implementation of non-commensurate FSS structures without any geometrical or material restrictions
and with good control on the accuracy of the implementation. Any antenna radiator (slot or printed) or
FSS element can be accommodated provided the geometry and mesh is appropriate discretized and
specified using the supplied geometry Driver or an external mesher.

2. Substantial speed-up was achieved with the implementation of the adaptive integral method
(AIM) for calculating the boundary integral portion of the matrix-vector products. This
implementation was considered as optional in the proposal due to its recent introduction and
uncertain level of success. Also, our intend was to only include a fast integral method with curved
array only. Nevertheless, its implementation into our most capable general code FSS-PRISM will
allow to deliver a software package that incorporates the best and fastest computational approaches
for SERAT modeling. We have already performed (see later section) several CPU and memory
comparisons to evaluate the savings when AIM is invoked in the iterative solver.

More specifically, for a 32x32 elements periodic cell (see Table 1)

¢ memory was reduced by a factor of 10 (an order of magnitude)

e CPU was reduced by a factor of 2.5
allowing the calculation of each frequency point within 50 minute on a conventional workstation for a
system which included over 40,000 unknowns, 6000 of which were part of the dense boundary integral
subsystem

For a large 44x44 elements periodic cell grid, use of AIM resulted in solving a system over 70,000
unknowns (with 12,000 as part of the dense boundary integral subsystem) using only 70MB.
Without using AIM, the corresponding system would require 850MB of memory and would therefore
be beyond the capability of desktop workstations. The CPU time was only 2 hours for this very large
problem demonstrating that the developed FSS-PRISM code is also a very practical code for the
analysis (and possibly design) of very complex multilayered FSS and antenna geometries.

3. Validated and extended the capability of FSS-PRISM for modeling bandgap antennas such as
those shown in Figure 2.

Figure 2. Illustration of a bandgap substrate layer modeled with the FSS PRISM (see later section for
details).



Table 1. CPU and Memory Reduction after Implementation of AIM
into FSS-PRISM

CPU Times 32x32 Grid Run Data

DOFs = 35,432(vol) + 2x3136(Surface)

Memory: with AIM: 2183k elements (26MB)
w/o AIM: 20,000k elements (240MB)

CPU(IBM RS6000):
FILL=
38sec(FEM)+1930sec(BI)+95sec(BI)
BCG Solver= 415 Iterations (1081sec)
Total CPU=3049sec (~50min)
FILL=38sec(FEM)+7330sec(BI)

Conventional BCG Solver=364 Iter. (1446sec)
Total CPU=8814sec(~2.5 hours)

AIM reduced
memory by a factor of 9
CPU by a factor of 3
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4. Completed the Geometry Driver of FSS-PRISM for commensurate and non-commensurate
elements. With this, the periodic planar codes were completed on schedule (end of fifth quarter).
A manual is currently being written which will parallel the manual written delivered during this
quarter for the FSS-BRICK (see UM Radiation Lab report 035067-5-T)

5. Developed a first version of the curved finite periodic array code FSS-CURVE which incorporates
the fast multipole method (FMM) to speed-up boundary integral calculations. The FMM was
employed rather than AIM because FMM is easier to implement for non-planar geometries.
Nevertheless, AIM is much more attractive for planar geometries and is the reason for using it in
connection with the planar code FSS-PRISM. At this stage we have already extended the
implementation to curved arrays as shown in Figure 3. Again the fast integral method, FMM,
plays a crucial role in reducing the CPU by a factor of 5 or more. We therefore anticipate that the
resulting curved SERAT code will also be a practical useful tool.

At this point, the development of the curved SERAT code is ahead of schedule. Over the next
quarter, our goal will be to

e validate and examine capabilities of the curved SERAT code for several practical
geometries, including the five layer FSS modeled by planar SERAT code FSS-PRISM

e incorporate the PRISM geometry Driver into the curved SERAT array code.

11
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Figure 3. Calculations for a planar and a curved SERAT array of dipole elements.

Upper left: Planar array geometry

Upper right: Curved array geometry

Lower left: CPU comparisons with and without FMM

Lower right: Comparison of radiation patterns of the shown curved and planar array
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Project Goals

The goal of the SERAT project at the University of Michigan (with subcontract to Univ. Of Houston)
is to develop a suite of software for the analysis of strip and slot dipoles on multilayered substrates
backed by a frequency selective surface. The dipoles are equipped with photonic switches permitting
variable electrical dipole lengths for broadband performance and the FSS is suitably designed to
simulate a variable substrate thickness for optimal operation. A general view of the geometry is given
in Figure 1.

The UM/UH team proposed to construct a code which combines various computational modules

interfaced with appropriate pre-processors and post-processors. The computational modules include:

e Stand-alone moment method simulation of the FSS with up to 10 layers with commensurate and
non-commensurate periodicities.

e Simple moment method simulation of the antenna elements on the FSS panels

e Hybrid FEM simulation modules for small arrays, planar periodic arrays and curved arrays on FSS
panels.

Various options for modeling the FSS and for mesh truncation were proposed to provide a
compromise between speed and accuracy. These are outlined in the proposal and summarized in the
included milestone chart (repeated from the proposal).

As called for in the milestone chart, we are proceeding in accordance with the schedule in our
proposal. Specifically:

1. The commensurate moment method FSS and moment method periodic array code was completed
and tested by Houston and delivered to UM. This code is referred to as FSS-EIGER and will be
delivered in October 1997 as scheduled. A formulation for the non-commensurate version of the
code has been developed and is under implementation at this time.

2. A geometry driver has been developed for FSS-EIGER to handle the dipole, crossed-dipole, slot
and crossed-slot elements.

3. UM completed ahead of schedule the small array FSS code. This code will be delivered in October
1997 along with a geometry Driver for antenna and FSS elements

4. A first version of the centerpiece of this Code-Suite, the hybrid FEM code FSS-PRISM, is
completed for commensurate arrays and combines the powerful FEM for material modeling with
the robust boundary integral method. A Driver is now under development and a non-
commensurate version of the FSS-PRISM is being tested in accordance to the schedule.

5. Several code validations have been given for slot/dipole periodic arrays on FSS structures and
example data for non-commensurate panels will be shown in October 1997

6. We have already began the incorporation of fast algorithms into the SERAT hybrid code as
scheduled for an accurate model of the curved SERAT panels

13
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FSS-BRICK Driver Description
Refer FSS-BRICK Manual (UM Radiation Lab report 035067-5-T)

FSS-BRICK is used to analyze electromagnetic scattering and radiation characteristics of
planar finite antenna arrays and/or frequency selective surfaces (FSS) residing in a three
dimensional metal-backed cavity. The general multilayered FSS geometry is shown in
Figure 1.

Figure 5: General multilayered FSS structure.

The driver is an I/O tool which enables the users to enter the necessary geometry and
excitation information for antenna or FSS analysis. It is also employed to display the
computed gain and input impedance or transmission coefficient characteristics of the
corresponding structure. Using the geometrical input data, the FSS-BRICK driver
generates the antenna mesh consisting of rectangular brick elements without a need for an
external meshing package. The details of the Driver features are described in FSS-
BRICK User’s Manual (UM Radiation Lab report 035067-5-T).

15



FSS-PRISM Driver -Update

The PRISM driver has an I/O operation similar to that of the BRICK driver. The Driver
allows the interactive specification of resistive cards, horizontal and vertical loads,
vertical short-circuit pins, horizontal and vertical probe feeds in a multilayered structure.
The FSS elements can be either strip dipoles, slots and cross elements. The user can also
specify FSS elements other than those primitives by bypassing the geometry Driver and
making use of a commercial meshing tool. Commensurate as well as non-commensurate
geometries can be handled by the PRISM driver.

Using the input data, the Driver generates a surface mesh consisting of triangular
elements at each interface. The volume mesh is then grown along the depth of the
structure forming three-dimensional prismatic elements. The surface mesh for each FSS
layer and a 3-D view of the whole geometry can be displayed using MatLab which is a
platform independent tool and reads the output file of the Driver/PRISM mesher. Each
discrete element in the structure is assigned a different colors in the Matlab display. The
Driver stores the necessary excitation and mesh information in data files to be used by
FSS-PRISM. The development of FSS-PRISM User's Manual is now in progress, and
the Driver features will be described in detail in an upcoming Manual.

16



Hybrid FE/BI Modeling of Commensurate and
Non—-Commensurate 3D Doubly Periodic Structures

Thomas F. Eibert and John L. Volakis
Radiation Laboratory, EECS Department
The University of Michigan, Ann Arbor, MI 48109-2122

1 Introduction

By applying appropriate periodicity conditions, the computational domain of infinite periodic
structures can be reduced down to a single unit cell. Previous analyses have mainly been
restricted to the application of Floquet’s theorem to construct periodic Green’s functions in
the context of integral equation formulations. Fully three-dimensional modeling capability
can be achieved by using hybrid finite element (FE) / boundary integral (BI) methods as
presented in [1, 2]. Both of these methods are based on FE modeling employing tetrahedral
meshes and a spectral domain Floquet mode expansion of the BI fields.

In this paper we propose a hybrid FE/BI method employing distorted triangular prismatic
elements for volume tesselation and a mixed potential integral equation (MPIE) formulation
in spatial domain for mesh truncation. The triangular prismatic elements provide for full
geometrical adaptability in the plane of the triangles and structured meshing along the depth
of the cell. For the evaluation of the spatial periodic Green’s function the Ewald acceleration
technique is applied [3].

In general, an exact formulation of the periodic array problem is possible only, if the whole
structure has a unique periodicity (commensurate case). However, if the periods change from
layer to layer, referred to as non-commensurate periodicity, an exact analysis is also possible,
if a super-period can be defined which is an integer multiple of all different layer periods.
Although this approach does provide a solution option, in many cases it is an expensive
alternative since the super—cell may include a large number of the different layer periods.

In principle, arbitrarily accurate solutions for non-commensurate periodic lattices can be found
by separately modeling each of the periodic layers and tracking the individual Floquet modes
forward and backward from one layer to the other. This cascading procedure is also very time
consuming prompting the introduction of approximate methods that can give good results
with lower computational effort. Such an approach was proposed in [4] and [5] for planar
integral equation methods and is based on decoupling the periods of the currents residing in
different layers. In the case of the hybrid FE/BI method the situation is somewhat involved
because the fields themselves are modeled within the layers and the meshes of neighboring
layers must be connected to each other. Therefore, we propose an approach which is based
on decoupling of the field periodicities in the single layers. By grouping together several unit
cells of the individual layers, the accuracy of the method can be improved but with higher
computational effort.

2 Formulation

We consider the periodic structure illustrated in Fig. 1. For time harmonic electromagnetic
fields (e’“* time convention) the pertinent finite element functional is
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where E, is the solution of the adjoint field problem, J™ denotes an excitation current within
the FE domain, S represents the planar surfaces on top and/or bottom of the FE domain, and
7 is the unit surface normal directed out of the FE domain. Also, kg and Zj are the free space
wave number and wave impedance, respectively. Invoking the surface equivalence theorem,

Figure 1: Infinite periodic structure

the magnetic field in the surface S of (1) can be expressed as

__2] {// r,v') (E x 7) ds+k2V//grr EXTL)dS}‘*‘HiTlc, (2)

where g(r,r') is the appropriate scalar Green’s function and H™® is an incident wave in the
presence of a metallic interface in S. Assuming an array periodic in the zy-plane with Dxp
and Dyp as the periods in the z— and y-directions, respectively, the periodicty condition for
E in a rectangular lattice is given by

E(z+mDxp, y+nDyp) = E(z,y) e /P=mDPxp e=ifinDyp (3)
where
B = kosindgcos g, By = kosindgsin gy (4)

and (Jo, o) represent the scan direction of the array. Using the periodicity condition and
the boundary integral representation (2) the computational domain can be reduced to a single
unit cell of the array. In the implementation of the hybrid FE/BI method this requires the
imposition of appropriate phase boundary conditions in the FE and in the BI portions of the
method. Moreover, in (2) g(r,r’) must be replaced by the Green’s function for an infinite
array of d-sources. In our implementation, the infinite series representation of the periodic
Green’s function is calculated using the Ewald transform [3] which subdivides the series into
spatial and spectral domain components in a manner that achieves optimal convergence.

In the case of non-commensurate arrays, the fields in the different layers are assumed to fulfill
the periodicity conditions of that layer resulting in a decoupling of the different periodicities.



This is achieved by meshing the structure according to the geometric periods of each layer as
illustrated in Fig. 2. For the implementation of the phase boundary condition within the FE
mesh we must carefully deal with the staircased side walls. By periodic continuation of the
different decoupled layers the unknowns for the edges on the horizontal boundaries separating
the layers can be related to the corresponding edges inside the volume mesh to bound the FE
domain (see Fig. 2). In general, for the boundary integrals the method requires that Green’s
functions with different periodicities for the top and bottom layers must be utilized.

Figure 2: FE/BI modeling of non-commensurate structures (gridded portion is the computa-
tional domain which comprises a single period from each of the layers)

3 Results

Bandgap Lattices: As a first example let us consider the dielectric slab in Fig. 3 with em-
bedded periodic material blocks. These lattices are often referred to as photonic bandgap
materials. The diagram in Fig. 3 shows the reflection coefficient of a normally incident plane
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Figure 3: Specular reflection coefficient of a plane wave (9 = 0, = 0) from a dielectric slab
(e = 4) with planarly embedded periodic material blocks (¢, = 10); Slab height: 0.2 cm,
period: 2x2 cm, block side length: 1x1 cm.

wave onto the slab. The reflection coefficient curve exhibits the typical resonances of photonic
bandgap materials. Compared to calculations obtained by a volume integral equation method
[6] the first resonance is slightly shifted to a lower frequency whereas the frequency shift for the
second resonance is larger due to the decreasing sampling rate per wavelength. Calculations
for TM-waves with oblique incidence resulted in a shift of the resonances to higher frequencies
and this is in agreement with [6].

Low-Pass FSS: Fig. 4 gives the geometry and results for a 5-layer low-pass FSS filter
with non-commensurate layer periodicities (periods as illustrated in the graph). The given
curves represent FE/BI results for different models based on the proposed method for non-



commensurate periodicities and compare well to calculations performed using a spectral do-
main integral equation method [5].
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Figure 4: Transmission coefficient of a 5-layer FSS with non-commensurate periodicities for a
plane wave (d9 = 0,9 = 0). FE/BIL: ¢, = 2.301 — 50.12. Model 1: 2x2 patches with period
9 um, 1 patch with period 18 um, 1 patch with period 12 pm. Model 2: 2x2 patches with
period 9 pm, 1 patch with period 18 pm, 2x2 patches with period 12 pm. Super—cell: 4x4
patches with period 9 pm, 2x2 patches with period 18 pm, 3x3 patches with period 12 pm.
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1 Introduction

The application of hybrid finite element (FE) / boundary integral (BI) methods to infinite
periodic structures (antennas or frequency selective surfaces) [1, 2] is very attractive because
it provides full 3D modeling flexibility. Basically, the finite element method is used to model
the dielectric section of the unit cell, whereas the boundary integral provides for a rigorous
mesh truncation at the upper and/or lower surfaces of the unit cell. Most practical problems
can be analyzed by using planar BI surfaces and the corresponding half-space periodic Green’s
functions. However, for large unit cell apertures, the resulting BI matrix still becomes the most
CPU intensive portion of the method.

To alleviate the CPU and memory bottleneck, in this paper we present an acceleration and
memory reduction scheme for the BI portion of a hybrid FE/BI method. The approach is based
on the adaptive integral method (AIM) [3] and is adapted here to periodic structures. For the
given problem, AIM results in low O(ng) storage and O(nglogns) CPU time requirements
for the execution of the matrix vector products in the applied iterative solver (ng = number
of surface unknowns). The paper focuses especially on AIM issues related to infinite periodic
structures. Also, we present CPU time and storage comparisons with the more conventional
implementation of the FE/BI method.

2 Formulation

The conventional implementation of the hybrid FE/BI method for an infinite periodic structure
(e’“! time convention) results in a linear algebraic system of the form

int Ccross cross int int
A bl,topd Al,bot lgm J 0 0 0 Iz—:m d fint
cross oun oun oun —
cross oun oun oun
2,bot 0 Abot Ebot 0 0 Zot Ebot

The matrices A are sparse (20 to 40 non-zero elements per row) and are associated with the
FE portion of the volume. The BI matrices Z are fully populated and are associated with
the boundary edges on the top and bottom boundaries of the discretized periodic cell. In our
implementation we employ triangular prismatic elements in E field formulation to generate the
volume mesh giving rise to triangular surface meshes with Rao-Wilton-Glisson basis functions
for the magnetic currents on the planar BI surfaces. For arrays with arbitrary scan angles,
all matrices may be non-symmetric and this is due to the phase boundary conditions and the
periodic Green’s function. For the solution of the system the biconjugate gradient (BiCG)
or generalized minimal residual (GMRES) solver is used, both of which rely on an efficient
evaluation of the matrix-vector products associated with (1). The computational complexity
per matrix-vector product of the total A matrix is of O(ny) where ny denotes the number
of volume edges. However, the complexity in executing the matrix-vector products [Z]{z}
is of order O(n%) and storage requirements are also of the same order. For a more efficient
implementation of the method, it is therefore crucial to reduce the complexity of the latter



matrix—vector product. Here we propose to accomplish this using AIM.
The basic idea of AIM is to split the Z matrices as

(2] = [z + [277], (2)

where [Z™¢%"] contains the elements of [Z] that are near the self-cell and correspondingly [Z/°7]
contains the remaining ”far-zone” elements of [Z]. AIM reduces the CPU time and memory
of the iterative solver by exploiting the convolutional properties of the Green’s function for
the evaluation of the matrix-vector products associated with the mostly full matrix [Z/"] [3].
That is, the far-zone matrices are not explicitly generated and the matrix—vector products are
performed in the discrete Fourier domain (DFT) utilizing appropriate 2D FFT algorithms [5].
However, the convolutional properties can only be exploited on a regular grid and therefore,
the basis functions on the original and possibly irregular triangular mesh must first be mapped
onto a regular grid. To do so, we introduce auxiliary basis functions on a regular rectangular
grid which is coincident with the original triangular grid [6]. The auxiliary expansion for the
magnetic surface currents is given by

N
M§ = 3" 3 M5, + MY,§]0(z — 20 — mAz) (y — yo — ndy), (3)

m=1n=1

where (zg,7o) is the lower left corner of the regular grid and Az, Ay are the sample distances
in the z and y directions, respectively. Since we work with a mixed potential integral equation
(MPIE) formulation for the BI implementation, we introduce an additional expansion

Maux _ Z Z q1nn 1; — X9 — mAl‘) (S(y =Y — nAy) (4)

m=1n=1

for the divergence of the surface currents. In mapping the original basis functions onto the regular
grid we relate each basis function to the auxiliary §-basis functions on the 9 closest grid points
of the regular grid. This is done by equating a sufficiently large number of the corresponding
moments of basis functions from the two coincident grids [3]. All the moments can be evaluated
analytically and for each basis function of the original mesh three linear algebraic systems of
order 9 must be evaluated. This leads to the construction of the sparse mapping matrices [A],,
[A]y, and [A], with ng rows and 9 columns. So, the Z matrices for the rectangular grid can be
expressed as

(21315 = (AL[GIIAL; + [Al[G][Aly + [Al,[GIAT; , (5)

which can be interpreted as the result of a numerical integration of the original Z matrices
[3]. [G] is a Toeplitz matrix whose elements are the periodic Green’s function evaluated on the
grid points of the regular grid. For the implementation of AIM it is assumed that [Z]%% is
sufficiently accurate for [Z/9"] but not so for the near-zone elements. Therefore, we decompose

the AIM matrices as

(21515 = (21555 + [ 2VaT (6)
and when this is combined with (2), we can rewrite the original Z matrices as
[Z)77res = (2] ~ (2] + (21555 )

With this representation of [Z] the near-zone elements are evaluated without compromise in
accuracy. However, since the great majority of [Z]*PP™** includes the Toeplitz kernel [G], the



associated matrix-vector products can be performed using only O(n,) memory and O(ng logns)
CPU time. In the final numerical implementation, a near-zone threshold is defined so that
[Z]2PProz is a sufficiently accurate representation of [Z]. This threshold is mostly affected by the
quasi-static singularities of the Green’s function and can be reduced if the density of the regular
grid is increased. In the case of an infinite periodic Green’s function, we must also account for
the singularities associated with the elements which neighbor the boundaries of the unit cell since
the latter are adjacent to the next periodic cell. Therefore, test basis functions which supports
are close to these singularties have to be considered to be in the near—zone of the source element.
For the calculation of the matrix—vector products in the iterative solver [Z] "1 is not computed
explicitly. After mapping the actual source distributions onto the regular grid through the A
matrices, the pertinent matrix-vector products are performed in the DFT domain using a FFT
algorithm for the corresponding transformation. After transforming the results back into spatial
domain, the fields on the original mesh are then obtained by reverse mapping between the
auxiliary unknowns and the original grid unknowns. However, for the computation of YAbvile
it is advantageous to collect the contributions of the regular grid in spatial domain before the
Toeplitz Green’s function is transformed into the DFT domain.

3 Results

To show the speed improvements and the storage reduction due to AIM, we consider here a
relatively simply strip dipole frequency selective surface (FSS) as shown in Fig. 1 (see also [4]).
We calculated the reflection coefficient for three different FE meshes as described in Table 1 using
triangular surface meshes for discretizing the surface of the unit cell and right-angled prisms for
modeling the volume. As described above, the BI was applied on top and bottom of the volume
meshes resulting into two fully populated identical BI matrices for the given problem. Therefore,

1.0

[1-0-O- FE/BI 20x20
0.8 || FEBI32x32
’ & FE/BI 44x44

[] %% MOM 9x18
0.6 || *® MOM 3x8

04}

Power Reflection Coefficient

12 14 16 18 20 22 24
Frequency (GHz)

Figure 1: Resonance curves for strip dipole FSS

only one of the matrices was computed. Table 1 shows the model parameters and the size of
the system matrices with and without AIM for the BI matrix computations. The given numbers
of matrix elements, which determine the storage requirements, in columns 5 and 6 of this table
comprise both the top and bottom BI matrices. In the case of AIM, only the near-elements of
the BI matrices have to be calculated explicitely. This results in memory savings of upto a factor
of 15 for model 3. Moreover, the saving will increase further for surface meshes with a larger
number of unknowns. The CPU times for the different models are summarized in Table 2. The



FE matrix fill time is, of course, the same for AIM and the conventional implementation of the
hybrid method. For the investigated problem the largest CPU savings were obtained due to the
reduced BI matrix fill time. In the solver, the necessary AIM overhead even resulted in a slightly
higher CPU time for model 1, but for the larger systems, the lower complexity of AIM resulted
in considerable CPU reduction (see CPU for model 2). For model 3 we only performed the
calculations based on AIM since the storage requirements of more than 850 MByte without AIM
are too large for desktop calculations (AIM reduced the storage down to about 70 MByte). The
obtained resonance curves for the FSS structure in Fig. 1 show that the FE/BI results for lower
resolution exhibit a small shift to a lower resonance frequency when compared to data calculated
with a moment method code using multilayered media Green’s function. The FE/BI curves for
model 2 and 3 are identical implying that convergence was achieved with about 32 elements per
linear wavelength (at resonance). However, we should note that our converged results still have
a small frequency shift of about 1% between the FE/BI and the moment method results.

Mod. | Surf. mesh | Surf. unk. | Vol. unk. Matrix elements
AIM | Conv.
1 20x20 2*1240 7435 588 079 | 3 000 000
2 32x32 2*%3136 35432 | 2 183 120 | 20 000 000
3 44x44 2*5896 67000 | 4 672 610 | 71 000 000

Table 1: Unknowns and storage for the different discretization models

Mod. | FE fill BI fill Solver Iterations Total

AIM ‘ Conv. | AIM I Conv. | AIM l Conv. | AIM | Conv.
1 3 736 | 1400 228 166 | 227 234 967 | 1569
2 38 11930 | 7330|1081 | 1446 | 415 364 | 3049 | 8 814
3 70 | 3 821 5073 676 8 964

Table 2: CPU times (in sec) for the different discretization models
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1 Introduction

Finite element - boundary integral formulations have been successfully applied to the anal-
ysis of cavity-backed antennas that possess fine details as is the case of with slot arrays,
spirals, log-periodic and other broadband antennas. In those cases, the computational
demand of the boundary-integral is large compared to that of the finite-element volume
sub-system. Therefore, a fast integral method is attractive to speed-up the solution al-
gorithm. For cavity-backed antennas recessed in an infinite ground plane, the boundary-
integral formulation is quite straightforward[l, 2, 3]. However, if the cavity resides in a
curved platform periodic boundary conditions cannot be applied for array modeling. In
this paper we present an approximate fast multipole method (FMM) solution to problems
involving antennas recessed on doubly curved platforms. The approach is to use the half-
space Green’s function as if the cavity resides in a flat ground plane. Clearly the limit of
this approximation is applicable for geometries which are not highly curved. The region of
validity of the approximation is investigated.

2 FE-BI Formulation for Cavity-Backed Antennas

Consider a cavity-backed antenna recessed in a ground plane as depicted in Figure 1. This
class of configurations have been modeled successfully using the finite element method
(1, 2, 3]. The most rigorous of the implementations is to employ the finite element method
to model the interior volume below the cavity and the boundary integral for truncating the
finite element mesh on the antenna/cavity aperture [1, 2].

Extensive finite-element method formulations of the problem have been presented by
various authors[1, 2, 3]. In the context of the FE-BI method, the mesh truncation condition
between H and E is given by the boundary integral equation

H=H% - 2ik0YO/S G(r,r')- (2 x E(r")) dS’ (1)

where G is the electric dyadic Green’s function of the first kind such that 7 x G = 0 is
satisfied on the metallic platform. For a cavity recessed in a ground plane, G becomes the
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Figure 1: Geometry of a cavity-backed slot antenna in a ground plane

half space dyadic Green’s function
~ 1 ¢ikoR
=(I- 5VV)-— 2
G (I kgv ) 4R )
with R = |r — r'| and I being the unit dyad. For this problem, H9 is equal to the sum

of the incident and ground plane reflected fields for scattering computations and zero for
antenna analysis. The linear system generated by applying the standard FE-BI procedure

is of the form
EV) 0 [0 || {E} {v"}
A { + = : 3
A { (£5) } o 8]\ (&) [T ) @
Here, {E"'} denotes the field unknowns within the volume enclosed by S,, whereas (ES}
represents the corresponding unknowns on the boundary S,. The excitation column ("}

are due to internal sources and {b%} is associated with incident field excitations (for scat-
tering).

3 The Fast Multipole Method

The FE-BI system (3) is partly sparse and partly dense. More specifically [A] is sparse,
whereas [B] is dense. Thus, although [B] is much smaller in rank than [A], it is usually
responsible for most of the CPU and memory when an iterative algorithm is used for solving
(3). To alleviate the CPU and memory requirements, fast integral methods have recently
been introduced to perform the matrix-vector product [B]E® much faster and with much
less memory. Two of these approaches are the adaptive integral method (AIM) and the
fast multipole method (FMM). Both FMM and AIM reduce the CPU time and memory
requirement from O(N?) down to O(N®) where a < 1.5. The main feature of AIM and
FMM is the decomposition of the matrix as

[B] = (B"**" + (B (4)

based on some threshold distance referred to as the near-zone radius. The matrix [B]"%"
contains the interactions between elements separated less than the threshold distance,
whereas [B])/%" contains the remaining interactions. The elements of [B]"¢*" are evaluated
without approximation. However, the product [B]farES is evaluated in an approximate



manner leading to a much faster execution. Extensive formulations of FMM and its varia-
tions have been presented by [4, 5, 6]. _

To realize the FMM speed-up the computational domain is divided into M groups.
The memory is then reduced to O(N%/M). Also, the CPU requirement of the FMM is
O(NM)+O(N?/M)[5, 6]. This can be minimized by choosing M = VN and the result is an
O(N'®) algorithm. The memory required for the FMM also becomes O(N'9). In practice,
both the computational complexity and storage requirements of the FMM are less than those
of standard FE-BI formulation for problem sizes larger than 1000 boundary unknowns. This
makes FMM more suitable for problems involving large number of boundary unknowns.

4 Results and Comparisons

We have applied the approximate approach to a 4x1 cavity-backed dipole array. Fig. 2
shows the layout of the curved array obtained by wrapping the flat array on a cylinderical
surface. The geometry was run for several spacings of the dipoles and several different
discretizations resulting in different numbers of boundary unknowns. The comparison of
the radiation patterns for the flat and curved array is given in Fig. 3(a). The effect of
curvature shows itself as an increase in the amplitudes of the side lobes and a decrease
in the amplitude of the main lobe. Fig. 3(b) is the comparison of the convensional FE-
BI method with and without FMM. The feasibility of FMM is observable for all problem
sizes of practical interest. Fig. 4(a) depicts the trend for the matrix filling time. Also
Fig. 4(b) shows the time consumed per iteration in the iterative solver. We can conclude
that the FMM implementation is both robust and reauires much less resources for large
scale implementations.
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Figure 3: (a) The radiation patterns of the planar and the curved array, (b) Comparison of
the total CPU time consumed for the solution.
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Figure 4: (a) Comparison of the CPU time consumed for BI matrix filling, (b) Comparison
of the CPU time consumed per iterarion.




