035067-10-T

USERS MANUAL FOR FSSEIGER /FSSBUILD

D. R. Wilton and D. R. Jackson

April 1998

35067-10-T = RL-2490

PROJECT TITLE:
REPORT TITLE:
U-M REPORT No.:
CONTRACT
START DATE:
END DATE:

DATE:

SPONSOR:

SPONSOR
CONTRACT No.:

U-M PRINCIPAL
INVESTIGATOR:

CONTRIBUTORS

TO THIS REPORT:

PROJECT INFORMATION
Hybrid Finite Element Design Codes for the SERAT Array
Users Manual for FSSEiger / FSSBuild

035067-9-T

October 1996
September 1998

April 5, 1998

Roland Gilbert

SANDERS, INC, A Lockheed Martin Co.

MER 24-1583

PO Box 868

Nashua, NH 030601-0868

Phone: (603) 885-5861

Email: RGILBERT@mailgw.sanders.lockheed.com

P.O. QP2047

John L. Volakis

EECS Dept.

University of Michigan

1301 Beal Ave

Ann Arbor, MI 48109-2122

Phone: (313) 764-0500 FAX: (313) 747-2106
volakis@umich.edu
http://www-personal.engin.umich.edu/~volakis/

D. R. Wilton (Univ. of Houston) and D. R. Jackson (Univ. of Houston)

FSSEIGER / FSSBUILD

USER’S MANUAL

Applied Electromagnetics Laboratory
Department of Electrical and Computer Engineering

University of Houston

Donald R. Wilton
David R. Jackson

April 1, 1998

FSSEIGER / FSSBUILD
USER’S MANUAL

TABLE OF CONTENTS

L. INTRODUCTION..................

...

Table I (summary of modeling capabilities)................o.ooeiiiniiiinnn,
Table II (parameters computed by FSSEIGER).....................coos

II. GEOMETRY INFORMATION..

A. Layer information.........

..

...

B. Array element information..................coooiiiiii

C. Gridding information.................cooiuiiiiiiiiiniii

D. Source and 10ad infOrmation.ooeeeeeieeii i e,

E. Lattice information........

III. RUNNING FSSBUILLD..........

A. Introduction................

...

..

..

B. Screen prompts / explanations................ccooiviiiinii

C. Script files..................

D. Output from FSSBUILD

IV. OUTPUT FROM FSSEIGER...

..

..

...

APPENDIX A: Digital Visual Fortran 90 setup..............cocoooviiiiiiiiinnnn.

APPENDIX B: Sample *.scp file...

APPENDIX C: Sample *eig file. ...

APPENDIX D: Sample *.mnh file..
APPENDIX E: Sample MAKE file

..

..

...

...

10
10
11

13
13
13
23
24

25

27
30
32
40
43

I. INTRODUCTION

This user’s manual describes the use of two sets of Fortran 90 codes, FSSEIGER and

FSSBUILD, for the analysis of radiation and scattering from periodic structures in layered media.

FSSEIGER is a suite of Fortran 90 codes for the analysis of radiation and scattering from
periodic structures in a layered media. The FSSEIGER code consists of an existing general
purpose code, EIGER, together with an application module which extends its postprocessing
capabilities to provide parameters of interest to designers of frequency selective surfaces (FSS)
and phased arrays. EIGER has the capability to treat problems of radiation and scattering by
structures in either periodic or nonperiodic layered media. It implements a mixed potential
integral equation (MPIE) formulation using subdomain basis functions, thus allowing flexible
modeling of structures having arbitrary shape, including both planar and nonplanar objects,
inside a general layered media. Although the current implementation of the FSSEIGER and
FSSBUILD combination employs only a relatively small subset of the features of EIGER, it does
inherit EIGER’s flexible modeling characteristics. EIGER also provides the capability of

extending the suite’s usefulness in the future by employing other EIGER modeling features.

To meet the specific needs of current FSS and phased-array design requirements, a geometry-
building user interface called FSSBUILD has been created. FSSBUILD acts as a pre-processor
to the FSSEIGER set of codes. The FSSBUILD codes allow the user to easily construct the
necessary geometry and problem specification file (the *.eig file) which is used as input to the
FSSEIGER codes. Although the EIGER code can handle quite general geometries, the
FSSBUILD set of codes is restricted to geometry generation using four types of planar elements

only. These four types of planar elements are:

e Rectangular-shaped metallic patches or dipoles
e Cross-shaped metallic patches or dipoles
e Rectangular-shaped slot in a ground plane

e Cross-shaped slot in a ground plane

Each element type is constructed by FSSBUILD using triangular-element subdomains. (although
EIGER allows for planar rectangular or wire element subdomains in periodic structure modeling,
these capabilities have not been included in the geometry-building set of codes.) The complete
geometry may consist of arbitrary numbers of FSS arrays, each of which consists of a periodic
array of one of the above four element types. Each FSS array may reside inside a dielectric layer,
or at the interface between dielectric layers. The number of dielectric layers is arbitrary, and is
independent of the number of FSS arrays. The dielectric layers may also have arbitrary
permittivity, permeability, and loss tangent. For metallic array elements, the codes allow for

lumped loads to be placed across an arbitrary number of triangular edges.

For analyzing radiation problems, FSSBUILD allows the user to define (periodic) voltage
sources across an arbitrary number of triangular edges. For scattering problems, the user defines
the incident angle and the polarization of the incident wave. In either case, a scan range may be
selected to allow for multiple scan angles or angles of incidence. A range of frequencies may

also be selected.

EIGER generally outputs only basic information, such as a list of the equivalent currents
associated with the basis functions on the object (electric currents for metallic objects and
equivalent magnetic currents for apertures). In FSS and phased-array applications, EIGER
instead calls the FSSEIGER postprocessor application module, passing the equivalent currents to
it, which are then output to the user and also used to generate parameters of interest for periodic
structures. This includes, for example, the calculation of input impedance and element patterns

for radiation problems, and reflection and transmission coefficients for scattering problems.

A complete listing of the modeling capabilities of the FSSBUILD, EIGER, and FSSEIGER
codes is summarized in Table 1. A summary of the output parameters calculated by FSSEIGER

is given in Table 2.

In the following sections, the use of the FSSBUILD and FSSEIGER codes will be described in
detail. Most of the discussion will focus on FSSBUILD, since this set of codes acts as the user
interface to FSSEIGER. In most cases the user will not require an understanding of the *.eig file
that is created by FSSBUILD, which is the input file to FSSEIGER. In this sense, the FSSEIGER

set of codes is essentially transparent to the user.

The precise compilation, linking, and running of the FSSBUILD and FSSEIGER codes will
depend on the platform and version of Fortran that is being used. In Appendix A, a brief
discussion of how the codes would typically be set up and executed using Digital Visual Fortran

is given.

Summary of Modeling Capabilities

TABLE 1

FEATURES

FSSBUILD

EIGER

FSSEIGER

Excitations:

Plane wave

Voltage source

Element Geometries:

Planar dipole

< < (<2

Planar cross

Planar slot

Planar cross slot

Subdomains:

Triangular

<2 < |2 | <L

Rectangular

Wire

Wire/triangle junctions

Boundary Conditions:

EFIE

\I

2 2 |2 |2 |2 2 |2 |2 |2 2 |2

MFIE

(slots only)

CFIE

Dielectric (PMCHW)

Loading:

Lumped impedance

2

<|j<<

Surface impedance

Green’s Functions:

Homogeneous nonperiodic

Layered media:

Planar periodic (skewed)

<2_

2 | < 2 |2 (2 |2 2 |2 |2 (<2 2|2 (2 |2 < |2

<
< B <2
<

Noncommensurate periodic

<

Nonperiodic

2 |2

TABLE 2

Parameters Computed by FSSEIGER

Plane Wave Excitation:

Equivalent currents

Reflection coefficient

Transmission coefficient

Voltage Excitation:

Equivalent currents

Input power per element

Active impedance and admittance

Array element pattern

II. GEOMETRY INFORMATION

As mentioned in the previous section, FSSBUILD allows the user to generate a combination of
FSS arrays consisting of four element types, with each FSS or array structure arbitrarily located
within a dielectric layered structure. The geometry information for the layers and the FSS

elements is discussed separately in the following subsections.

A. LAYER INFORMATION

The geometry of the layered structure is shown below in Fig. 1.

_>N

region N

interface N
region 2

interface 2
region 1

interface 1
region 0

Figure 1. Geometry of the layered structure.

In the labeling scheme used by FSSBUILD and FSSEIGER, the lowest region is a half-space
designated as region number 0. Each dielectric layer is then labeled with an increasing number in
the positive z direction, with the last layer being layer number N. The half-space above the
structure is the final layer N. The total number of dielectric layers is then N-1 (1,2,...N-1), and

the total number of interfaces is N (1,2,...N). Each region (half-space of layer) has its own

complex permittivity and permeability. The layers 1,2,...N-I also have arbitrary independent

thicknesses.

Any ground planes present are also considered to be interfaces. For example, the bottom interface
number 1, between region 0 (lower half-space) and region 1 (the first layer) may be a ground
plane. If an interface is a ground plane, then it may have slot elements in it (one of the two basic

slot array elements mentioned previously).

The number of separate FSS arrays does not have to coincide with the number of interfaces. An
FSS array may lie either at an interface or interior to any dielectric region at an arbitrary position

Z.

B. ARRAY ELEMENT INFORMATION

As mentioned, FSSBUILD allows the user the choice of four basic elements from which the

periodic FSS arrays may be constructed. These are the metallic rectangular patch, the metallic
cross, the rectangular slot, and the cross-shaped slot. The slot elements are the exact
complements of the metallic elements (metal replaced by aperture and aperture replaced by
metal). Each separate FSS array may be constructed from any one of these four element types.

The four element shapes are shown in Fig. 2 and are described individually in more detail below.

Rectangular patch elements

The rectangular elements shown in Figs. 2 (a) and (b) may have arbitrary length w along the x
axis and height % along the y axis. There is no restriction that the length must be larger than the
height, so the patch may be square in shape, or rectangular with the long dimension aligned with

either the x or y axis.

The user also has the option of specifying a general planar quadrilateral that is determined from

the specified locations of the four corners, as shown in Fig. 2c. The quadrilateral may be a

rectangle that is rotated with respect to the x-y axes, or it may be a general quadrilateral with non-

parallel edges.

Cross elements

Two additional element types that may be specified are the metallic cross and the cross-shaped
slot in a ground plane, shown in Figs. 3 (a) and (b), respectively. The cross elements are assumed
to be symmetric, so that the width and length of each arm is the same, with the two arms

intersecting at the middle. The arms of the cross are assumed to be aligned with the x and y axes.

For any of the four elements, the center of the (0,0) element may be located arbitrarily within the

unit cell (although centered elements are depicted in Figs. 2 and 3).

y y
} !

" -

- <

— X

Figure 2. The rectangular patch element types from which the unit cell in a FSS
array may be constructed, using the code FSSBUILD. (a) A metallic rectangular
patch. (b) A rectangular slot in a ground plane. (c) A metallic quadrilateral patch.
(d) A quadrilateral slot in a ground plane.

— X

w

(a) (b)

Figure 3. The cross elements that may be constructed using FSSBUILD. (a) The metallic cross.
(b) The cross-shaped slot in a ground plane.

C. GRIDDING INFORMATION
The elements are gridded by FSSBUILD with triangular subdomains. Although FSSEIGER also

allows the use of rectangular or even wire element subdomains, this capability has not been
included in FSSBUILD at the present time. The user has control over the number of subdomains
along the width and height of a rectangular element (Fig. 4 (a)), and independent control of the
number of subdivisions along two adjacent edges of a general quadrilateral element (Fig. 4 (b)).
An independent number of subdivisions can be specified along the length and width of one of the
four identical arms for the cross elements (Fig. 4 (c)). The gridding of the center region of the
cross is automatically determined once the number of subdivisions across the width of an arm is

specified.

10

D. SOURCE AND LOAD INFORMATION

For radiation (antenna) problems, voltage sources may be placed across any of the edges in the

mesh. For either radiation or scattering problems, lumped impedance loads may be placed across

any of the edges in the mesh.

- <
- <

"BEEE -~ - x

- <

W

(c)

Figure 4. An illustration of the gridding scheme used by FSSBUILD, which subdivides the
elements into triangular subdomains. (a) A rectangular element with 4 subdivisions along the
width and 2 along the height. (b) A general planar quadrilateral with 4 subdivisions along one
edge and 2 subdivisions along the adjacent edge. (c) A cross element with 2 subdivisions along
the length and 2 subdivisions along the width of each arm.

11

E. LATTTICE INFORMATION
FSSBUILD allows the flexibility of specifying a unit cell that may be either rectangular or

skewed. The geometries of the unit cell are shown in Figs. 5 (a) and (b) for the rectangular and
skewed cases, respectively. For the rectangular lattice, the input parameters are the unit-cell
dimensions in the x and y directions. For the skewed case, the user is asked to input the two

lattice vectors S, and S, that define the boundaries of the unit cell.

- <

— X

(a) (b)

Figure 5. Geometry of the unit cell. (a) A rectangular unit cell is specified by the dimensions a
and b along the x and y axes. (b) A skewed lattice is specified by the lattice vectors s, and

s, that define the boundaries of the unit cell.

12

II1. RUNNING FSSBUILD

The FSSBUILD code is designed so that the user may enter the geometry data directly from the
screen. Alternatively, a “script” file may be created, which contains the answers to the questions
that the user would normally be interactively prompted for. Creating a script file is very helpful
for the construction of large or complicated structures, or when slight modifications to an
existing structure are desired. The interactive input of the data is described first, and then the use

of a script file is discussed.

A. INTRODUCTION
The FSSBUILD code is designed to interactively prompt the user for the all of the necessary

information required to generate the *.eig file, which is subsequently used as input to the
FSSEIGER code when this code is run to solve the radiation or scattering problem. The
interactive questions on the screen during the execution of FSSBUILD are designed to simplify
the data entry as much as possible for the user, by making the specific questions dependent on the
answers to preceding questions. For example, one question is whether or not all of the regions
have a relative permeability of unity. If the answer is “yes”, than the code will not query the user
for relative permeabilities later. Similarly, if the user specifies that a rectangular patch element
has all of the edges parallel to the x and y axes, the code will prompt the user for one of the
rectangular elements shown in Fig. 2 (a) or (b), and not for the general quadrilateral element

shown in Fig. 2 (c) or (d). The specific questions that are asked interactively are listed below.

13

B. SCREEN PROMPTS / EXPLANATIONS

FSSBUILD first asks the user a series of questions that determines the mesh geometry.

Afterwards, the user answers questions to determine the layer geometry and the excitation. The
geometry information part is complete after the user tells the code to save the data using the save
command. The questions and explanations of the appropriate answers are explained here. For
convenience, the questions are divided into separate sections, covering the geometry information,

layer information, and excitation. All letters entered as input should be in lower case.

Mesh information
The following prompts are given to the user, and are used to determine the meshing information.

1. Does geometry data exist:
(“y77=yes’ ((n)’=n0’ “q”:quit)

The yes option means that an existing *.bld file already exists. The program will then ask for the
name of the existing *.bld file. The no option means that a new *.bld file will be created. The
quit option terminates the program.

2. Enter one line problem description to be used as a file header.

The description you input will be written to the top of the *.bld file, which then serves as a
description of the file. For example, the description might be “two-layer FSS with TM
incidence”.

3. Do you wish to...

rect - add a rectangular element?

cros - add a cross element?

quer - query nodes, edges, and/or faces

modi - add, delete, or move a node or edge?

save - save geometry data and enter remaining code input?
rest - restart (start over)?

quit - quit and save nothing?

The first two options, rect and cros, will result in the code adding the indicated element type,
which may either be a metallic or a slot element. If the z coordinate of the element coincides with
the location of a ground plane, it will be assumed to be a slot element. Otherwise, it is assumed
to be a metallic element. The quer option is used to obtain information about a node, edge, or
face that already exists. The modi option is used to add, delete, or move a node or edge that
already exists. The save option will prompt the user for the name of the *.bld file, and the
existing element data will be written to that file. The rest option will restart the program over
from the beginning. The quit option terminates the program without creating a *.bld file (unless

14

it has already been created previously using the save option). The first four options are described
in more detail below.

If the “rect” option is chosen:

Enter z coordinate for planar rectangular structure:

The user is asked to input the z coordinate of the element, in meters. The z coordinate is arbitrary,
and does not have to be at an interface between two regions. The origin (z = 0) is arbitrary.
However, the user will be asked later to specify the z coordinates of the layer boundaries, and the
origin should be consistent so that the elements are positioned properly within the layers.

Are the elements edges parallel to the x- and y- axes?

€«

(((y”=yes’ n”=n0)

If the yes option is chosen, a rectangular element is assumed, with edges parallel to the x and y
axes (Figs. 2 (a) and (b)). If the no option is chosen, a general planar quadrilateral is chosen
(Figs. 2 (c) and (d)). The user will then be asked to input the coordinates of the four corners of
the element.

For rectangular elements (parallel edges):

Enter center coordinates of rectangular element in the form “x,y”:

If a rectangle with edges parallel to the x and y-axes was chosen, the user is now asked to input
the coordinates of the center of the rectangle, with units in meters. For example, the center might
be entered as “0.5, 0.75” (but without the quotes in the input expression).

Enter element width along x-axis in meters:

The width w along the x-dimension is entered in meters (see Fig. 2 (a) or (b)).

Enter no. of segments (subdomains) along the width:

The number of subdivisions along the width (x-dimension) is entered (see Fig. 4 (a)).

Enter height along y-axis in meters:

The height & along the y-dimension is entered in meters (see Fig. 2 (a) or (b)).

Enter no. of segments (subdomains) along the height:

The number of subdivisions along the height (y-dimension) is entered (see Fig. 4 (a)).

For general quadrilateral elements:

15

Enter x and y coordinates in the form “xy” for the four comers in clockwise or
counterclockwise sequence.

Corner 1?
Corner 2?
Corner 3?
Corner 4?

For each of the four corners, the coordinates are entered in meters. For example, corner 1 might
entered as: “1.0, 2.5” (but without the quotes in the input expression).

How many edges (subdomains) along the edge formed by the first two corners?

Enter the number of subdivisions along the edge of the quadrilateral that runs between the first
two corners that were input above. This will also be the number of subdivisions along the
opposite edge (see Fig. 4 (b)).

How many edges along the adjacent side?

Enter the number of subdivisions along the edge of the quadrilateral that runs between corner 2
and corner 3. This will also be the number of subdivisions that runs along the opposite edge (see
Fig. 4 (b)).

If the “cros” option is chosen:

Enter center coordinates of cross element in form “x,y,z”:

The user inputs the coordinates of the center of the cross, in meters. For example, the center
might be specified as “0.5, 0.5, 1.5” (but without the quotes in the input expression).

Enter the width of the cross arm in meters (all arms assumed identical):

The width w of the cross arms is entered in meters (all arms have the same width).

Enter no. of segments along the width of a cross arm:

Enter the number of subdivisions along the width of each arm of the cross (all arms are
identically subdivided along their widths). The central portion of the cross to which all arms are
attached is automatically subdivided based on the arm width segmentation information. (see
Fig. 4 (¢)).

Enter overall cross dimension (end of one arm to end of opposite arm):

Enter the overall dimension L (spanning two collinear arms of the cross) in meters (all arms are

identical).

Enter no. of segments along length of one arm:

16

Enter the number of subdivisions along the length of an arm, i.e., from its point of attachment at
the center of the cross to the tip of the arm. Each arm has the same number of subdivisions along
its length. (see Fig. 4 (c)).

If the “quer” option is chosen:

g »”

Information on a node, edge, or face? Input “n” or “e” or “f” or “q

Input the letter (without quotes) to find out information about either a node, edge, or face that has
been previously created. The first three options are described below. The “q” option will abort
this query.

Enter node number

Enter the number of the node you would like information on. For example, enter “1” (without the
quotes) to determine information about node 1. The coordinates of the node are then displayed,
as well as the edges that are connected to it.

Enter edge number

Enter the number of the edge you would like information on. For example, enter “1” (without the
quotes) to determine information about edge 1. The program then responds by indicating which
nodes are connected to the specified edge.

Enter face number

Enter the number of the face you would like information on. For example, enter “1” (without the
quotes) to determine information about face 1. The program then responds by indicating which
edges make up the face. Note: this option has not been implemented yet.

If the “modi” option is chosen:

[)

Do you want to add, delete, or move? Input “a”, “d”, “m”, or “q

Input the letter (without quotes) to add, delete, or move a node or edge. The first three options are
described below. The “q” option will abort this query.

4 ” “_n €« ”

Do you wish to add a node or insert edge? Input “n”, “e”, or “q”.

669

Input the letter (without quotes) to insert a node or an edge. The “g” option aborts the insert
process.

Input (x,y,z) for node newnode

Input the coordinates of the new node, in meters. The new node is automatically numbered with
number newnode, which is one larger than the previously highest node number. The format for
the entry is “x,y,x”. Do not include the quotation marks or any parentheses in the input
expression.

17

Input “from” and “to” nodes

Input the node numbers of the starting and ending nodes that define the new edge. These nodes
must already exist. Note: No warning message is given if one of the nodes does not exist. The
user must insure that the nodes already exist.

[2 €« ”» “ ”

Delete nodes or edges? Input “n”, “e”, or “q

Input the letter (without quotes) to indicate if it is a node or an edge that you wish to delete. The

€69

q” option aborts the delete process.

Input range of node numbers

Input two node numbers, separated by a space. This range of node numbers will be deleted, and
the remaining nodes will be automatically renumbered. For example, suppose the original
structure has four nodes, numbered 1-4. If the range is input as “1 3”, then the first three nodes
will be deleted, and node 4 will be renumbered to become node 1.

Input edge number

Input the number of the edge you wish to delete. The remaining edges are renumbered, starting at
number 1.

Which node?

Input the node number of the node you wish to modify. The program then prompts for the new
(x,y,z) coordinates of that node. Enter the new coordinates in the format “x,y,z” (without the
quotes).

Layer information
After the user has chosen the save option, the program provides the following prompt.

At this point you may begin to add layer and excitation data or quit and continue later. Do you

({3 [”

wish to continue entering input data? (input “y” = yes or “n” =no)

The yes option allows the user to complete the data entry process for the layer and excitation
data. The yes option will cause the code to prompt the user for the name of the *.eig file to which
the meshing, layered media, and excitation information will be written. The no option allows the
user to add this data later. Entering no will cause the program to terminate. Choosing the yes
option results in the following prompt:

Count each of the following planar surfaces as an interface:
- a dielectric-to-dielectric interface
- a conducting ground plane (with or without slots)

Enter the number of layer interfaces:

At this point the user should enter the total number of interfaces, including the number of
dielectric interfaces and the number of ground planes. (If a ground plane is at the boundary of

18

two different dielectric regions, this is counted as one interface, not two.) See Fig. 1 for the
scheme for labeling interfaces.

The program then systematically prompts the user for the z coordinate for each of the interfaces,
using the following prompt:

Layer boundary # k:
Enter the z-coordinate of the boundary:

Is boundary # k a ground plane?
(y = yes, n = no)

where k is the number of the interface. The user should first input the z coordinate in meters. The
z coordinates of the layer boundaries relative to those of the elements (which have already been
specified) determine the FSS locations within the layers. The answer to the second question
determines whether the boundary layer is an interface between two different dielectric regions, or
is a ground plane (possibly with slots). If the user specifies that the boundary layer is a ground
plane, the program then asks if this ground plane contains a (periodic) slot element:

Does the conductor at boundary # k contain a slot element or aperture?
(y = yes, n = no)

If the answer is yes, the z coordinate of an element that was previously specified should agree
with the z coordinate of this conducting interface. The z coordinates should agree to within a
small number (the default value of which is 2.0E-05) in order for the program to treat the element
as a slot element that is on the conducting interface. Otherwise, the element will be treated as a
metallic element that is not on the conducting interface.

After the layer boundaries are established, the program will prompt the user for the complex
relative permittivities and permeabilities. The program first asks the following question:

Is the relative permeability (mu_r) unity for all layers?

« ”»

(“y” =yes, “n” =no)

The user should input either “y” or “n” without the quotes. If the answer is “y”, the program will
not prompt for any permeabilities, thus simplifying data input. The program then prompts the
user for the complex permittivity of each region, starting with region zero in Fig. 1, which is a
half-space. The initial prompt is

Enter COMPLEX relative permittivity, (RE eps_r, IM eps_r),
for lower or left half space:

The complex relative permittivity for region zero should be entered, in the form indicated in the

prompt, with the parentheses included. The program then systematically prompts the user for the
complex relative permittivities of the different layers (1, 2,...,N -1 in Fig. 1). The number of

19

layers is determined by the number of layer interfaces that was previously entered. The form of
the prompt is:

Layer # k:
Enter COMPLEX relative permittivity, (RE eps_r, IM eps_r):

The complex relative permittivity is entered in the same format as mentioned above (including
the parentheses). After the data for layer N has been specified, the program prompts the user for
the complex permittivity of the upper half space, region N in Fig. 1. The prompt is

Enter COMPLEX relative permittivity, (RE eps_r, IM eps_r),
for upper or right half space:

This value should be entered using the same format as for the other regions.

Lattice information

After the layer permittivities have been entered (the last one being region N), the program
prompts the user for information about the lattice dimensions. The element locations specified
previously for each FSS array are actually the coordinates for the center of the (0,0) unit cell, and
the periodicity of the FSS lattices determines the layout of the other elements in that FSS. All
FSS layers are assumed to have the same lattice periodicity in this version of the code. The
program first asks the user if the lattice is rectangular with the prompt

Is the periodic lattice rectangular?

((‘y)) =yes’ ((n” = nO)
[{3%4)

If the answer is “y”, the program asks only for the dimensions of the unit cell. If the answer is
“n”, the program asks for two lattice vectors that determine the boundaries of the unit cell (see
Fig. 5).

For a rectangular lattice the next prompt is as follows:

Enter x and y lattice dimensions, respectively:

The x and y dimensions, labeled as a and b in Fig. 5 (a), are entered in meters. The format is “x
y”. that is, the dimension x is entered, then a space, and then the y dimension. Do not include the
quotes in the input expression.

For a skewed lattice the next prompt is as follows:

Enter lattice vectors s_1 and s_2 defining the boundaries of a unit cell of the periodic structure.
(The cross product s_1 X s_2 should point in the direction of the + z-axis.)

Enter s_1 vector as “s_1_x, s_I1_y” (s_Iz assumed 0):
Enter s_2 vector as “s_2_x, s_2_y” (s_2z assumed 0):

20

The x and y components of the lattice vectors s; and s, are entered as indicated, with dimensions
in meters.

The program then gives the following message:

All geometrical data has now been entered and only excitation data remains. You may wish to
stop and examine the *.eig file now to locate edges at which voltage sources are applied.

Do you wish to enter remaining input?

(input “y” or “n”)

A “y” response will allow the user to continue entering the excitation data. A “n” response will
terminate the program. The user may wish to terminate the program now if the problem is a
radiation (antenna) problem, because the user will want to know at which edges to put voltage
sources. This can be done by examining the *.eig file to determine the edge numbers. (The edge
numbers could have also been determined by using the quer option interactively, as described
previously). For a scattering problem, there is no need to examine the *.eig file at this point
unless one or more elements has a lumped load across an edge.

Lumped load information

Assuming a “y” response above, the next information the user is prompted for is the number of
lumped loads. If this number is greater than zero, the program systematically prompts the user for
the value and location of each complex load impedance. The prompt has the form

Enter complex impedance in Ohms, the element number to which one terminal is attached, the
local node number opposite the edge to which it is attached.

(Re Z, Im Z), element number, local node number

The user first inputs the complex load impedance in the format indicated in the prompt, including
the parentheses and comma. After the load impedance is entered, the number of the element
(triangle) that contains the edge at which the load is to be connected is entered. Finally, the local
node number of the node on element element number that is opposite to the edge containing the
load is entered. The load is then assumed to be connected between the two triangles that share
this edge. The triangle number and the local node number can be obtained by examining the *.eig
file.

Excitation information
After the load impedances are entered, the excitation data is entered. The excitation may consist
of voltage sources across edges for a radiation (antenna) problem, or an incident plane wave, for

a scattering problem.

Scan or incidence angles:

21

The first prompt is for the angles of incidence of an incident plane wave, or the scan angles for a
phased array:

Enter the scan or incidence angle ranges in degrees.
Beginning theta, ending theta, number of theta values:

The angle 6 is the usual spherical coordinate angle 6 measured from the z-axis. It is interpreted as
the array scan angle for a radiation (antenna) problem and as the angle of an incident ray for a
scattering problem. In either case, the angle is in degrees. The user inputs the beginning scan (or
incidence) angle, followed by the ending scan (or incidence) angle, and then the number of
angles to be calculated between the beginning and ending angles. For example, the input “30.0,
60.0, 31” would produce output at every degree, starting at 30 degrees and ending at 60 degrees.

The user is then prompted for the angle range in ¢ over which the scan or incidence angle ranges.
The angle ¢ is measured from the x-axis and is the projection of the scan or incidence direction
onto the x-y plane. The prompt is

Beginning phi, ending phi, number of phi values
This data is input with the same format as for 8, described above. The angle is in degrees.

Voltage source information:

The program then queries the user for any voltage sources that might be present (indicating that
the problem is a radiation or antenna problem). The program checks this by issuing the following
prompt:

Multiple (simultaneous) voltage sources are allowed.
How many voltage source locations
exist for each excitation?

The user inputs the number of voltage sources. The number of voltage sources is assumed to be
the same for all scan angles. If there is at least one voltage source, the program assumes that this
is a radiation (antenna) problem. If there are no voltage sources (the number zero is entered) the
program assumes that this is a scattering problem, and will prompt the user for information about
the incident plane wave. The two cases are discussed separately.

The program asks the user to specify the complex voltage of the source, and to identify the edge
at which the source is connected. The voltage source is assumed to maintain a specified voltage
between two elements having the edge in common. The following prompt is given
systematically for each source:

Enter voltage in COMPLEX format, the element number of positive reference terminal, local
node number opposite edge to which voltage source is attached.
(Re 'V, Im V), element number, local_node

The complex voltage is first entered in the format shown, including the parentheses and comma.
This is followed by the number of the triangle element to which the positive reference terminal of
the voltage source is attached. This is followed by the local node number of the node on element
element number opposite the edge at which the source is attached. The information regarding the
triangle number and local node number can be obtained by examining the *.eig file.

22

Incident plane wave information:

The program prompts the user to provide the properties of the incident plane wave. The first
prompt is:

Incident plane waves are normalized to have unit electric field components in the plane
transverse to the z-axis. They may be polarized TE or TM to this plane. Only the polarization
needs to be specified.

Is the polarization of the incident plane wave TE or TM to the z-plane?

(((T ” Or (‘TM”)

The phrase “TE” or “TM” (without the quotes) is entered to specify the polarization of the
incident plane wave.

Frequency data

After the specification of the voltage sources or the incident plane wave properties, the user is
requested to enter the frequencies at which the calculations are to be performed. The prompt is

Enter beginning and ending frequencies (in Hz) and
the number of excitation frequencies:

The user inputs this data with a space between entries. For example, the input “10.0E+9
15.0E+09 6” would result in a calculation at every 1.0 GHz from 10.0 to 15.0 GHz.

Computational parameters

The program prompts the user to enter data for the limits on the spectral sums used to compute
the layered media Green’s functions. The settings of these sum limits are a tradeoff between
accuracy and computation time, and acceptable values usually must be determined by a trial and
error process. Generally speaking, higher sum limits are needed when array or FSS elements are
near or at an interface, especially if the interface involves a high dielectric contrast. Also if the
elements are near thin layers, M_limit and N_limit may need to be set to higher values to achieve
convergence. For periodic structures whose unit cells have a high aspect ratio, the limits should
be set such that the relation Is,| N_limit = IS, | M_limit is approximately true. The prompt to

enter the summation limits is
Enter summation limits, M_limit, N_limit for spectral sums:
The user inputs two integers corresponding to M_limit and N_limit, separated by a space.

Next, the user is prompted for the number of quadrature points used in the testing scheme on the
triangles. Usually this number can be taken as 1 for maximum efficiency; for some applications,
however, greater accuracy is obtained by choosing a higher number. The prompt is

Enter number of quadrature points for testing on triangles.
Must be 1,3, or 7:

23

An integer having the value 1,3, or 7 may be entered; any other value will cause an error.

This completes the data entry for FSSBUILD.

C. SCRIPT FILES

As an alternative to entering the data interactively from the screen, a “script” file may be created

and read in as input. This file is an ASCII file that contains the answers to the same questions
that would be asked interactively. Since the answer to certain interactive questions determines
what the following questions will be, it is very important that the user pay close attention to the
entries in the script file. A sample script file is given in Appendix B. A discussion of how the
script file is read into the FSSBUILD program using Digital Visual Fortran is included in the

discussion given in Appendix A.

D. OUTPUT FROM FSSBUILD

The FSSBUILD code produces two output files, the *.eig file and the *.bld file. The *.bld file
may be considered a temporary file containing descriptions of the nodes and edges. The * eig file
is used as the input to FSSEIGER. A sample * .eig file, also corresponding to the *.scp file in
Appendix B, is listed in Appendix C.

24

IV. OUTPUT FROM FSSEIGER

Once the * eig file is obtained from FSSBUILD, the set of codes called FSSEIGER may be run.
When FSSEIGER is executed it will ask for the name of the *.eig file to be used as input; since
the code assumes the .eig extension, the extension should not be entered by the user. The code
will then ask for the name of the output file to which the results will be written; again, the file
extension should not be entered, as the code assumes it to be *.mnh. The code will also prompt
for the name of a file to which any error messages will be written; the code assumes the

extension for this file to be *.err.

A sample *.mnh output file, corresponding to the *.scp file in Appendix B, is included in
Appendix D. In addition to listing some of the user-specified excitation data for each case, the
* mnh file lists the condition number of the moment-method matrix solved so the user can
monitor any potential problems due to ill conditioning. The output file also contains the electric
and / or magnetic surface current densities normal to the interior edges of the mesh. For radiation
(antenna) problems with a single voltage source, the so-called active input impedance and
admittance are listed. The input power per element is also given. Also listed are the components
of the electric far field vector in the direction of the array scan. This far-field is obtained by
taking the calculated currents on a particular element (the (0,0) element) in the periodically-
excited phased array, and calculating the far-field from these same currents on a nonperiodic
element (i.e., all other elements are assumed to be absent). It can be proven that the resulting
radiation field, calculated in the direction of the array scan, is equal to the element pattern of the
phased array in that direction. The element pattern of a phased array is the pattern that would be
obtained if a single element in the array were excited (with the same voltage sources that were
present on the (0,0) element of the phased array), with all other elements present but passive
(voltage sources short-circuited on those elements). Since the code only outputs the far-field in
the direction of the array scan, it would be necessary to rerun the code with different scan angles

in order to obtain the complete element pattern of the phased array for all observation angles.

For a scattering problem, the *.mnh file lists the reflection and transmission coefficients of the

periodic structure for both the TE and TM polarizations. The reflected waves are those

25

propagating at the specular reflection angle, designated as S11_00_00_TE and S11_00_00_TM,
respectively. S11 indicates that the excitation is from side “1” of the array and that the scattered
fields on side “1” are observed. The 00_00 notation indicates the (0,0) Floquet mode reflected
from the structure due to an incident (0,0) Floquet mode (either TE or TM). The transmission
coefficients are designated S21_00_00_TE and S21_00_00_TM, where S21 denotes the field
transmitted through the array to side “2” due to an incident field on side “1.” Unfortunately, the
current version of FSSBUILD does not set up data for FSSEIGER so that one may obtain
S21_00_00_TE and S21_00_00_TM for both polarizations simultaneously. Hence if one wishes
to obtain data for excitation by the opposite polarization—even for the same angle of
incidence—the problem must be re-solved. To obtain S22_00_00_TX and S12_00_00_TX,
(X=E or M), one must merely change the angle of incidence 8 such that the excitation is from
side “2” of the array, re-solve the problem, and interchange the interpretation of “1” and “2” in

the results.

The output file also lists the squares of the magnitudes of the reflection and transmission
coefficients and their values in decibels. A “power check” is then given, which gives the sums of
the squares of the magnitudes of the TE and TM waves for both the reflected and transmitted
fields. For lossless structures with no higher-order Floquet modes propagating, these quantities,
IS11_00_00_TEl**2 + IS11_00_00_TMI**2 and IS21_00_00_TE**2 + S21_00_00_TMI**2,
should sum to unity since power must be conserved. Hence, for lossless structures, this sum can
serve as a check on the validity of the numerical results. Failure to sum to unity, on the other
hand, suggests perhaps that the parameters M_limit, N_limit, and/or the number of testing points
should be increased. For lossless structures, the sum of the squared magnitudes of the reflection
and transmission coefficients in principle approaches unity as these numerical parameters tend to
infinity, regardless of the geometrical subdivision scheme. Hence summing to unity is not a

sufficient check on the convergence of the geometrical subdivision scheme.

26

APPENDIX A
DIGITAL VISUAL FORTRAN 90 SETUP

I. Recommended directory structure
A recommended directory structure for the FSSBUILD and FSSEIGER codes, and the various
input and output files, is shown below. We describe the setup as it might appear on a

workstation using Digital Visual Fortran 90.

FSSSUITE (top directory)

FSSBUILD (FSSBUILD codes)
Main.f90
FSSbuild.f90
Writebld.f90
Cross.f90
Filemod.f90

Iounit_m.f90

FSSEIGER (FSSEIGER codes)
There are a total of 43 *.f and *.f90 modules in this directory. The *.f files are fixed

format source files, while the *.f90 files use free format.

asmbly_m.f90 basis_m.f90 cerfc.f cmptpt_m.f90
cnstnt_m.f90 curvpt.f eiger.fo0 elemat_m.f90
elemnt_m.f90 elevec_m.f90 excit_m.f90 filemod.f90
FSSEiger_m.f90 gauss_m.f90 geom_m.f90 gltramod.f90
initr.f intrfc_m.f90 iounit_m.f90 juncpt_m.f90
linear_m.f90 load_m.f90 matrix_m.f90 numparm.f90
pproj.f p_file.f90 p_period.f90 p_potent.f90
p_somint.f90 p_spfun.fo0 p_tline.f90 reg_m.f90

27

solutn_m.f90 solver.f stript.f surfpt_m.f90

sylpy_m.f90 triapt.f tripar.f tubept.f90

utilmod.f90 vecasy_m.f90 vector_m.f90

SCPFILES (directory for storing *.scp files)

BLDFILES (directory for storing *.bld files)

EIGFILES (directory for storing *.eig files)

OUTFILES (directory for storing *.mnh files)

TEMPEIG (directory for storing *.eig files while testing installed code)

TEMPBLD(directory for storing *.bld files while testing installed code)

28

IL. Digital Visual Fortran setup notes

To compile, link, and execute the Fortran programs in the FSSBUILD or FSSEIGER directories,
follow these steps:

a)

b)

d)

e)

g

From the “File” menu, click on New, and select Projects.

Click on “Win32Console Application”, and enter the name of the project workspace.
Then chose the project “location” (the browser button may be used to locate the
project in the FSSBUILD or FSSEIGER folders with object and executable files in
subdirectories just below them).

From the “Project” menu, choose “Add to Project” and then “Files”. To build
FSSBUILD or FSSEIGER, select all of the *.f or *.f90 files in the FSSBUILD or
FSSEIGER directories.

In the Project / Settings / Fortran / Fortran Data menu, set Default Real to 8. This will
maintain the correct level of precision (“double precision”) required by the codes.

To compile and link the Fortran files in the project, select the “Build” menu and then
select “Update all Dependencies.”

Select “Build FSSBUILD.exe” (or FSSEIGER.exe) to run the compiled and linked
program.

To read input from a script file rather than from the console, go to the Project /
Settings / Debug menu , and enter in the “Program Arguments” box the path and
name to the *.scp file in the format <path\filename.scp name. For example, the entry
might be “<d:\FSSsuite\scpfiles\pozarvolt.scp”

29

APPENDIX B

SAMPLE SCRIPT FILE

The following script file, pozarvolt.scp, is designed to solve for the input impedance of an
infinite phased array of printed dipoles on a single grounded dielectric layer. The file has been
commented so that the input lines can be easily understood.

n ! data does not exist; title on next line

Pozar dipole, voltage excited, unloaded, single scan angle & freq.

rect ! build a rectangle

0.0 I z-coordinate of rectangle

y ! yes, rectangles is aligned with x-,y-axes
0.0. I x,y coordinates of center of rectangle
0.01 ! width of rectangle along x-axis

1 ! number of subdivisions along x-axis
0.39 ! height of rectangle along y-axis

12 ! number of subdivisions along y-axis
save ! save geometry in a *.bld file
d:\FSSsuite\bldfiles\pozarvol I' name of *.bld file
y ! yes, continue entering data
d:\FSSsuite\eigfiles\pozarvol ! name of *.eig file
2 ! number of interfaces

-0.19 ! z-coordinate of 1st interface

y !'yes, it is a ground plane

30

0.0

y
(2.55,0.0)

(1.0,0.0)

y
0.5 0.5

1.0 1.0 1

0.0 0.0 1

1

(1.0,0.0) 13 1
3.0e8 3.0e8 1
11

1

! no, it doesn't contain a slot

! z-coordinate of 2nd interface

!'no, it isn't a ground plane

! permeabilities are all unity

! complex relative epsilon of layer # 1

! complex relative epsilon of upper half space
! lattice is rectangular

! x, y dimensions of rectangular lattice

! yes, enter remaining input

! number of lumped loads

! theta_start, theta_end, # theta values

! phi_start, phi_end, # phi values

I # voltage source excitations

! complex voltage; element, local node excited

! begin freq, end freq, and # of frequencies
! sum limits on periodic Green's function

! number of testing points on each triangle

31

APPENDIX C

SAMPLE EIG FILE

This sample*.eig file, pozarvolt.eig, was obtained from running FSSBUILD using the script file

pozarvolt.scp.

pozar dipole, voltage excited, unloaded, single scan angle & freq

1
1 pec
1
1 1 3 triangle
5
1 ordinary vector T F pec_efie 1 3
1
11 0
2 ordinary vector T F pec_efie 1 3
1

11 1
3 ordinary vector T F pec_efie 1 3
1
21 1

4 ordinary vector T F pec_efie 1 3
1

21 2
5 ordinary vector F T aperture_gndp 1 3
2
1 2 -1 1 1 1

32

2
1 layered periodic 2
(1.00000, 0.00000) (1.00000, 0.00000)
-0.190000E+00 (1.00000, 0.00000) (1.00000, 0.00000)
-0.190000E+00 (1.00000, 0.00000) (1.00000, 0.00000)

0 1
0.500000000000000 0.000000000000000E+000 0.0
0.000000000000000E+000 0.500000000000000 0.0

2 layered periodic 2
(1.00000, 0.00000) (1.00000, 0.00000)
-0.190000E+00 (2.55000, 0.00000) (1.00000, 0.00000)
0.000000E+00 (1.00000, 0.00000) (1.00000, 0.00000)

1 0

0.500000000000000 0.000000000000000E+000 0.0
0.000000000000000E+000 0.500000000000000 0.0

26 24 23

1 -5.000000E-03 -1.950000E-01 0.000000E+00
2 5.000000E-03 -1.950000E-01 0.000000E+00
3 -5.000000E-03 -1.625000E-01 0.000000E+00
4 5.000000E-03 -1.625000E-01 0.000000E+00
5 -5.000000E-03 -1.300000E-01 0.000000E+00
6 5.000000E-03 -1.300000E-01 0.000000E+00
7 -5.000000E-03 -9.750000E-02 0.000000E+00
8 5.000000E-03 -9.750000E-02 0.000000E+00
9 -5.000000E-03 -6.500000E-02 0.000000E+00
10 5.000000E-03 -6.500000E-02 0.000000E+00
11 -5.000000E-03 -3.250000E-02 0.000000E+00
12 5.000000E-03 -3.250000E-02 0.000000E+00
13 -5.000000E-03 0.000000E+00 0.000000E+00
14 5.000000E-03 0.000000E+00 0.000000E+00
15 -5.000000E-03 3.250000E-02 0.000000E+00
16 5.000000E-03 3.250000E-02 0.000000E+00

33

17
18
19
20
21
22
23
24
25
26

= P~ WL w

-5.000000E-03
5.000000E-03
-5.000000E-03
5.000000E-03
-5.000000E-03
5.000000E-03
-5.000000E-03
5.000000E-03
-5.000000E-03
5.000000E-03
triangle 1 1 1

triangle 1 1 1

triangle 1 1 1

triangle 1 1 1

—_— W

6.500000E-02
6.500000E-02
9.750000E-02
9.750000E-02
1.300000E-01
1.300000E-01
1.625000E-01
1.625000E-01
1.950000E-01
1.950000E-01

34

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

5 triangle 1 11
3
6 5
1 0
6 triangle 1 1 1

3
8 5
0 1

3

triangle 1 1 1

o0

triangle 1 1 1

10 7

9 triangle 1 1 1

10 triangle 1 11

35

11

10

14

-10

11

13

-11

12

16

-12

13

15

-13
14

18

12

11

12

12

14

13

14

14

16

15

16

triangle

11

triangle

11

triangle

13

triangle

13

triangle

15

111

111

111

111

111

36

14

15

17

-15

16

20

-16

17

19

-17

18

22

-18

19

21

-19

16 triangle
3

18 15

0 1

17 triangle
3

18 17

1 0

18 triangle
3

20 17

0 1

19 triangle
3

20 19

1 0

20 triangle
3

22 19

0 1

111

111

111

111

111

37

20
21 triangle 1 1 1
3

24 22 21

1 10

22 triangle 1 11
3

23 24 21

1 01

23 triangle 1 11
3

26 24 23

1 10

24 triangle 1 1 1
3

25 26 23

1 00

0
1
0 1
(1.00000000000000,0.000000000000000E+000)
periodic
1.00000000000000 0.000000000000000E+000
1
300000000.000000 1

38

13

39

APPENDIX D

SAMPLE OUTPUT FILE

This sample *.mnh file, pozarvolt.mnh, was obtained from running the EIGER input file

pozarvolt.eig.

pozar dipole, voltage excited, unloaded, single scan angle & freq

Condition number is 1088.14845788561

Excitation Data:

Voltage source excitation:

Number of voltage_sources: 1

Voltage source # l:
(1.00000000000000,0.000000000000000E+000) volt source
has positive reference location opposite local node 1
on element number 13

Frequency = 300000000.000000 (Hz)

Scan or incidence angles:
theta = 1.00000000000000 (degrees)
phi = 0.000000000000000E+000 (degrees)

The following list of currents may contain electric and/or

magnetic currents.

40

Currents
1 (6.565731934023700E-002,-8.674246712370985E-003)

2 (0.400795342207085,-4.630691065875420E-002)
3 (0.165804360963758,-1.631057668891133E-002)
4 (0.715116278438726,-5.841633214872675E-002)
5(0.250702495245538,-1.606402344797198E-002)
6 (0.976468970289026,-4.505386186626879E-002)
7 (0.318688285073875,-8.531682677355471E-003)
8 (1.17468548004381,-7.282339940805895E-003)
9(0.366413281852113,6.217523756258755E-003)
10 (1.29874304892746,5.595956688213395E-002)
11 (0.391052198916468,2.932048279695615E-002)
12 (1.34099525963193,0.172100365619750)

13 (0.391052198903325,2.932048401338074E-002)
14 (1.29874304928390,5.595956577662674E-002)
15 (0.366413281810504,6.217527209712278E-003)
16 (1.17468548067320,-7.282341933284076E-003)
17 (0.318688284997910,-8.531677541812327E-003)
18 (0.976468971037168,-4.505386434331438E-002)
19 (0.250702495127010,-1.606401745189373E-002)
20 (0.715116279103085,-5.84163345817088 1 E-002)
21 (0.165804360792612,-1.631057077953985E-002)
22 (0.400795342540654,-4.630691242167102E-002)
23 (6.565731911993074E-002,-8.674241790833849E-003)

Active input admittance and impedance:

admittance = (1.340995259631933E-002,1.721003656197502E-003) Mhos

impedance = (73.3631449903800,-9.41526376411248) Ohms

41

Input power = 6.704976298159667E-003 Watts/element

Normalized far field element pattern, front of array
E_phi*kr*er(jkr) = (-3.48063892696124,-6.15374612713675)
E_theta*kr*e/(jkr) = (8.145507192787088E-003,5.328939165829523E-003)

Normalized far field element pattern, rear of array
E_phi*kr*eA(jkr) = (0.000000000000000E+000,0.000000000000000E+000)
E_theta*kr*e”(jkr) = (0.000000000000000E+000,0.000000000000000E+000)

42

APPENDIX E

SAMPLE MAKE FILE

A sample MAKE file for compiling FSSEIGER in a UNIX environment follows.

EIGER_DEP = filemod.o gltramod.o utilmod.o iounit_m.o cnstnt_m.o \
vector_m.o sylpy_m.o numparm.o gauss_m.o linear_m.o reg_m.o \
elemnt_m.o geom_m.o basis_m.o tubept.o surfpt_m.o juncpt_m.o \
intrfc_m.o excit_m.o p_file.o p_spfun.o p_tline.o p_period.o \
p_somint.o p_potent.o cmptpt_m.o elemat_m.o asmbly_m.o elevec_m.o \
vecasy_m.o matrix_m.o load_m.o fsseiger_m.o solutn_m.o eiger.o curvpt.o \
initr.o solver.o pproj.o stript.o triapt.o tripar.o cerfc.o

fmin.o Insrch.o lubksb.o ludcmp.o newt.o

EIGER_DB_DEP = filemod.do gltramod.do utilmod.do iounit_m.do cnstnt_m.do \
vector_m.do sylpy_m.do numparm.do gauss_m.do linear_m.do reg_m.do \
elemnt_m.do geom_m.do basis_m.do tubept.do surfpt_m.do \
juncpt_m.do intrfc_m.do excit_m.do p_file.do p_spfun.do \
p_tline.do p_period.do p_somint.do p_potent.do cmptpt_m.do \
elemat_m.do asmbly_m.do elevec_m.do vecasy_m.do matrix_m.do \
load_m.do fsseiger_m.do solutn_m.do eiger.do curvpt.do initr.do solver.do \
pproj.do stript.do triapt.do tripar.do cerfc.do

fmin.do Insrch.do lubksb.do ludemp.do newt.do

EIGER_FLAGS = -c -18 -O

EIGER_DB_FLAGS = -c -r8 -g -check underflow -check overflow -check bounds -ladebug

eiger: $(EIGER_DEP)
90 -o eiger $S(EIGER_DEP)

43

fsseiger_m.o: fsseiger_m.f90 matrix_m.o iounit_m.o vector_m.o geom_m.o \
excit_m.o reg_m.o elevec_m.o cnstnt_m.o vecasy_m.o

f90 $(EIGER_FLAGS) -o fsseiger_m.o fsseiger_m.f90
numparm.o: numparm.f90 reg_m.o iounit_m.o

f90 $(EIGER_FLAGS) -o numparm.o numparm.f90
filemod.o: filemod.f90

f90 $(EIGER_FLAGS) -o filemod.o filemod.f90
gltramod.o: gltramod.f90

f90 $(EIGER_FLAGS) -o gltramod.o gltramod.f90
utilmod.o: utilmod.f90

90 $(EIGER_FLAGS) -o utilmod.o utilmod.f90
iounit_m.o: iounit_m.f90

90 $(EIGER_FLAGS) -0 iounit_m.o iounit_m.f90
cnstnt_m.o: cnstnt_m.f90

90 $(EIGER_FLAGS) -o cnstnt_m.o cnstnt_m.f90
vector_m.o: vector_m.f90

f90 $(EIGER_FLAGS) -0 vector_m.o vector_m.f90
sylpy_m.o: sylpy_m.f90 vector_m.o

f90 $(EIGER_FLAGS) -o sylpy_m.o sylpy_m.f90
gauss_m.o: gauss_m.f90 cnstnt_m.o iounit_m.o numparm.o

90 $(EIGER_FLAGS) -o gauss_m.o gauss_m.f90
linear_m.o: linear_m.f90 vector_m.o iounit_m.o

90 $(EIGER_FLAGS) -o linear_m.o linear_m.f90
reg_m.o: reg_m.f90 vector_m.o cnstnt_m.o gltramod.o iounit_m.o

f90 $(EIGER_FLAGS) -0 reg_m.o reg_m.f90
elemnt_m.o: elemnt_m.f90 reg_m.o linear_m.o sylpy_m.o vector_m.o cnstnt_m.o \

iounit_m.o

90 $(EIGER_FLAGS) -0 elemnt_m.o elemnt_m.f90
geom_m.o: geom_m.f90 elemnt_m.o iounit_m.o

f90 $(EIGER_FLAGS) -0 geom_m.o geom_m.f90
basis_m.o: basis_m.f90 elemnt_m.o cnstnt_m.o

90 $(EIGER_FLAGS) -o basis_m.o basis_m.f90

44

tubept.o: tubept.f90 vector_m.o
90 $(EIGER_FLAGS) -o tubept.o tubept.f90

surfpt_m.o: surfpt_m.f90 elemnt_m.o gauss_m.o vector_m.o cnstnt_m.o iounit_m.o
90 $(EIGER_FLAGS) -o surfpt_m.o surfpt_m.f90

juncpt_m.o: juncpt_m.f90 surfpt_m.o elemnt_m.o gauss_m.o vector_m.o \
cnstnt_m.o iounit_m.o
90 $(EIGER_FLAGS) -o juncpt_m.o juncpt_m.f90

intrfc_m.o: intrfc_m.f90 surfpt_m.o tubept.o elemnt_m.o vector_m.o iounit_m.o
90 $(EIGER_FLAGS) -o intrfc_m.o intrfc_m.f90

excit_m.o: excit_m.f90 reg_m.o vector_m.o cnstnt_m.o iounit_m.o utilmod.o
f90 $(EIGER_FLAGS) -0 excit_m.o excit_m.f90

p_file.o: p_file.f90 reg_m.o cnstnt_m.o
f90 $(EIGER_FLAGS) -o p_file.o p_file.f90

p_spfun.o: p_spfun.fo0
90 $(EIGER_FLAGS) -o p_spfun.o p_spfun.f90

p_tline.o: p_tline.f90 p_file.o p_spfun.o
f90 $(EIGER_FLAGS) -o p_tline.o p_tline.f90

p_period.o: p_period.f90 elemnt_m.o vector_m.o numparm.o
90 $(EIGER_FLAGS) -o p_period.o p_period.f90

p_somint.o: p_somint.f90 p_tline.o p_spfun.o p_file.o vector_m.o iounit_m.o
f90 $(EIGER_FLAGS) -0 p_somint.o p_somint.f90

p_potent.o: p_potent.f90 p_somint.o p_period.o p_tline.o p_spfun.o \
p_file.o excit_m.o juncpt_m.o intrfc_m.o elemnt_m.o \
linear_m.o gauss_m.o vector_m.o
f90 $(EIGER_FLAGS) -0 p_potent.o p_potent.fo0

cmptpt_m.o: cmptpt_m.f90 p_potent.o p_file.o juncpt_m.o intrfc_m.o elemnt_m.o \
gauss_m.o vector_m.o cnstnt_m.o iounit_m.o
f90 $(EIGER_FLAGS) -o cmptpt_m.o cmptpt_m.f90

elemat_m.o: elemat_m.f90 cmptpt_m.o basis_m.o elemnt_m.o gauss_m.o vector_m.o \
cnstnt_m.o iounit_m.o
f90 $(EIGER_FLAGS) -o elemat_m.o elemat_m.f90

asmbly_m.o: asmbly_m.f90 elemat_m.o elemnt_m.o geom_m.o reg_m.o

45

f90 $(EIGER_FLAGS) -0 asmbly_m.o asmbly_m.f90
elevec_m.o: elevec_m.f90 p_potent.o p_file.o excit_m.o basis_m.o elemnt_m.o \
reg_m.o gauss_m.o vector_m.o cnstnt_m.o iounit_m.o
90 $(EIGER_FLAGS) -o elevec_m.o elevec_m.f90
vecasy_m.o: vecasy_m.f90 elevec_m.o excit_m.o geom_m.o elemnt_m.o iounit_m.o
f90 $(EIGER_FLAGS) -0 vecasy_m.o vecasy_m.f90
matrix_m.o: matrix_m.f90
90 $(EIGER_FLAGS) -0 matrix_m.o matrix_m.f90
load_m.o: load_m.f90 geom_m.o elemnt_m.o cnstnt_m.o
f90 $(EIGER_FLAGS) -o load_m.o load_m.f90
solutn_m.o: solutn_m.f90 matrix_m.o vecasy_m.o asmbly_m.o excit_m.o load_m.o \
gauss_m.o cnstnt_m.o iounit_m.o fsseiger_m.o
f90 $(EIGER_FLAGS) -0 solutn_m.o solutn_m.f90
eiger.o: eiger.f90 solutn_m.o excit_m.o geom_m.o elemnt_m.o cnstnt_m.o \
filemod.o iounit_m.o numparm.o
90 $(EIGER_FLAGS) -o eiger.o eiger.f90
curvpt.o: curvpt.f
90 $(EIGER_FLAGS) -o curvpt.o curvpt.f
fmin.o: fmin.f
f90 $(EIGER_FLAGS) -o fmin.o fmin.f
initr.o: initr.f
f90 $(EIGER_FLAGS) -o initr.o initr.f
Insrch.o: Insrch.f
90 $(EIGER_FLAGS) -o Insrch.o Insrch.f
lubksb.o: lubksb.f
f90 $(EIGER_FLAGS) -o lubksb.o lubksb.f
ludemp.o: ludecmp.f
f90 $(EIGER_FLAGS) -0 ludcmp.o ludcmp.f
newt.o: newt.f
90 $(EIGER_FLAGS) -0 newt.o newt.f
solver.o: solver.f

f90 $(EIGER_FLAGS) -o solver.o solver.f

46

pproj.o: pproj.f

90 $(EIGER_FLAGS) -o pproj.o pproj.f
stript.o: stript.f

90 $(EIGER_FLAGS) -o stript.o stript.f
triapt.o: triapt.f

90 $(EIGER_FLAGS) -o triapt.o triapt.f
tripar.o: tripar.f

90 $(EIGER_FLAGS) -o tripar.o tripar.f
cerfc.o: cerfc.f

90 $(EIGER_FLAGS) -o cerfc.o cerfc.f

eiger.db: $(EIGER_DB_DEP)

90 -o eiger.db -g -check underflow -ladebug $(EIGER_DB_DEP)
fsseiger_m.do: fsseiger_m.f90 matrix_m.do iounit_m.do vector_m.do geom_m.do \

excit_m.do reg_m.do elevec_m.do cnstnt_m.do vecasy_m.do

90 $(EIGER_DB_FLAGS) -o fsseiger_m.do fsseiger_m.f90
numparm.do: numparm.f90 reg_m.do iounit_m.do

f90 $(EIGER_DB_FLAGS) -o numparm.do numparm.f90
filemod.do: filemod.f90

f90 $(EIGER_DB_FLAGS) -o filemod.do filemod.f90
gltramod.do: gltramod.f90

90 $(EIGER_DB_FLAGS) -o gltramod.do gltramod.f90
utilmod.do: utilmod.f90

f90 $(EIGER_DB_FLAGS) -o utilmod.do utilmod.f90
iounit_m.do: iounit_m.f90

90 $(EIGER_DB_FLAGS) -o iounit_m.do iounit_m.f90
cnstnt_m.do: cnstnt_m.f90

f90 $(EIGER_DB_FLAGS) -0 cnstnt_m.do cnstnt_m.f90
vector_m.do: vector_m.f90

f90 $(EIGER_DB_FLAGS) -o vector_m.do vector_m.f90
sylpy_m.do: sylpy_m.f90 vector_m.do

90 $(EIGER_DB_FLAGS) -o sylpy_m.do sylpy_m.f90

47

gauss_m.do: gauss_m.f90 cnstnt_m.do iounit_m.do numparm.do
f90 $(EIGER_DB_FLAGS) -0 gauss_m.do gauss_m.f90
linear_m.do: linear_m.f90 vector_m.do iounit_m.do
f90 $(EIGER_DB_FLAGS) -o linear_m.do linear_m.f90
reg_m.do: reg_m.f90 vector_m.do cnstnt_m.do gltramod.do 1ounit_m.do
f90 $(EIGER_DB_FLAGS) -o reg_m.do reg_m.f90
elemnt_m.do: elemnt_m.f90 reg_m.do linear_m.do sylpy_m.do vector_m.do \
cnstnt_m.do iounit_m.do
f90 $(EIGER_DB_FLAGS) -o elemnt_m.do elemnt_m.f90
geom_m.do: geom_m.f90 elemnt_m.do iounit_m.do
90 $(EIGER_DB_FLAGS) -0 geom_m.do geom_m.f90
basis_m.do: basis_m.f90 elemnt_m.do cnstnt_m.do
f90 $(EIGER_DB_FLAGS) -o basis_m.do basis_m.f90
tubept.do: tubept.f90 vector_m.do
90 $(EIGER_DB_FLAGS) -o tubept.do tubept.f90
surfpt_m.do: surfpt_m.f90 elemnt_m.do gauss_m.do vector_m.do cnstnt_m.do \
tounit_m.do
90 $(EIGER_DB_FLAGS) -o surfpt_m.do surfpt_m.f90
juncpt_m.do: juncpt_m.f90 surfpt_m.do elemnt_m.do gauss_m.do vector_m.do \
cnstnt_m.do iounit_m.do
90 $(EIGER_DB_FLAGS) -o juncpt_m.do juncpt_m.f90
intrfc_m.do: intrfc_m.f90 surfpt_m.do tubept.do elemnt_m.do vector_m.do \
tounit_m.do
f90 $(EIGER_DB_FLAGS) -o intrfc_m.do intrfc_m.f90
excit_m.do: excit_m.f90 reg_m.do vector_m.do cnstnt_m.do iounit_m.do utilmod.do
f90 $(EIGER_DB_FLAGS) -0 excit_m.do excit_m.f90
p_file.do: p_file.f90 reg_m.do cnstnt_m.do
90 $(EIGER_DB_FLAGS) -o p_file.do p_file.f90
p_spfun.do: p_spfun.f90
90 $(EIGER_DB_FLAGS) -o p_spfun.do p_spfun.f90
p_tline.do: p_tline.f90 p_file.do p_spfun.do
90 $(EIGER_DB_FLAGS) -o p_tline.do p_tline.f90

48

p_period.do: p_period.f90 elemnt_m.do vector_m.do numparm.do
90 $(EIGER_DB_FLAGS) -o p_period.do p_period.fo0
p_somint.do: p_somint.f90 p_tline.do p_spfun.do p_file.do vector_m.do \
1ounit_m.do
f90 $(EIGER_DB_FLAGS) -o p_somint.do p_somint.f90
p_potent.do: p_potent.f90 p_somint.do p_period.do p_tline.do p_spfun.do \
p_file.do excit_m.do juncpt_m.do intrfc_m.do elemnt_m.do \
linear_m.do gauss_m.do vector_m.do
f90 $(EIGER_DB_FLAGS) -o p_potent.do p_potent.fo0
cmptpt_m.do: cmptpt_m.f90 p_potent.do p_file.do juncpt_m.do intrfc_m.do \
elemnt_m.do gauss_m.do vector_m.do cnstnt_m.do \
iounit_m.do
f90 $(EIGER_DB_FLAGS) -o cmptpt_m.do cmptpt_m.fo0
elemat_m.do: elemat_m.f90 cmptpt_m.do basis_m.do elemnt_m.do gauss_m.do \
vector_m.do cnstnt_m.do iounit_m.do
90 $(EIGER_DB_FLAGS) -0 elemat_m.do elemat_m.f90
asmbly_m.do: asmbly_m.f90 elemat_m.do elemnt_m.do geom_m.do reg_m.do
f90 $(EIGER_DB_FLAGS) -0 asmbly_m.do asmbly_m.f90
elevec_m.do: elevec_m.f90 p_potent.do p_file.do excit_m.do basis_m.do \
elemnt_m.do reg_m.do gauss_m.do vector_m.do cnstnt_m.do \
iounit_m.do
90 $(EIGER_DB_FLAGS) -o elevec_m.do elevec_m.f90
vecasy_m.do: vecasy_m.f90 elevec_m.do excit_m.do geom_m.do elemnt_m.do \
iounit_m.do
90 $(EIGER_DB_FLAGS) -0 vecasy_m.do vecasy_m.fo0
matrix_m.do: matrix_m.f90
f90 $(EIGER_DB_FLAGS) -0 matrix_m.do matrix_m.f90
load_m.do: load_m.f90 geom_m.do elemnt_m.do cnstnt_m.do
f90 $(EIGER_DB_FLAGS) -0 load_m.do load_m.f90
solutn_m.do: solutn_m.f90 matrix_m.do vecasy_m.do asmbly_m.do excit_m.do \
load_m.do gauss_m.do cnstnt_m.do iounit_m.do fsseiger_m.do
90 $(EIGER_DB_FLAGS) -0 solutn_m.do solutn_m.f90

49

eiger.do: eiger.f90 solutn_m.do excit_m.do geom_m.do elemnt_m.do cnstnt_m.do \
filemod.do iounit_m.do numparm.do

90 $(EIGER_DB_FLAGS) -o eiger.do eiger.f90
curvpt.do: curvpt.f

90 $(EIGER_DB_FLAGS) -o curvpt.do curvpt.f
fmin.do: fmin.f

90 $(EIGER_DB_FLAGS) -0 fmin.do fmin.f
initr.do: initr.f

f90 $(EIGER_DB_FLAGS) -o initr.do initr.f
Insrch.do: Insrch.f

f90 $(EIGER_DB_FLAGS) -o Insrch.do Insrch.f
lubksb.do: lubksb.f

f90 $(EIGER_DB_FLAGS) -0 lubksb.do lubksb.f
ludemp.do: ludemp.f

f90 $(EIGER_DB_FLAGS) -0 ludcmp.do ludcmp.f
newt.do: newt.f

f90 $(EIGER_DB_FLAGS) -0 newt.do newt.f
solver.do: solver.f

90 $(EIGER_DB_FLAGS) -o solver.do solver.f
pproj.do: pproj.f

90 $(EIGER_DB_FLAGS) -o pproj.do pproj.f
stript.do: stript.f

f90 $(EIGER_DB_FLAGS) -o stript.do stript.f
triapt.do: triapt.f

90 $(EIGER_DB_FLAGS) -o triapt.do triapt.f
tripar.do: tripar.f

f90 $(EIGER_DB_FLAGS) -o tripar.do tripar.f
cerfc.do: cerfc.f

90 $(EIGER_DB_FLAGS) -o cerfc.do cerfc.f

clean:

rm *.mod *.0 *.do

50

51

