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Agenda for Ferrite Antenna Review Project
with MRC/UM

December 17, 1997
Univ of Michigan
3400 EECS Building, Ann Arbor, MI

8-12am
It is assumed Questions will be asked only at the end of each presentation.

8:15-8:40 Updates on PRISM (Volakis/Eibert/Ozdemir)

o Spiral modeling and design using combined distorted PRISMs/BRICKs
e Periodic version of PRISM (FSS_PRISM)
o Fast integral methods (AIM/FMM) performance in PRISM

8:40-9:10 Measurements and MRC Project Activity (Kempel/Trott)
9:10920 Overall Project Status at UM (Volakis)

9:209:40 PRISM/TETRA Geometry Driver (Zhifang Li)

e Description and Status

Break
10:15-1045 GMRES Solvers (Arik Brown)
Eigenvalue Solver Issues (Lars Andersen/Volakis)

1451115 Tetrahedral Ferrite Code Implementation (A. Brown)
e Formulation
e (Code Status
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MRC Presentation

Leo Kempel
Keith Trott



PRISM/TETRA Geometry Driver

Zhifang Li and John L. Volakis
Radiation Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109-2122, USA



Outline

e Features of the Driver

o Mesh Generating Steps

e Mesh Formats and Examples

o Surface Mesh
¢ Volume Mesh



Features of the Driver

e Capable of meshing rectangular /circular/log-periodic
patches/slots

e Non-uniform surface mesh available

o Volume elements could be right /distorted prisms/tetrahedrons

e Mesh truncation wih boundary integral (BI) or artificial absorber

(AA)

e Mesh generated by FORTRAN code and can be viewed in Mat-
Lab or [-DEAS



Mesh Generating Steps

Surface Mesh

|
Y

Surface Mesh Grows
Above and Below

|
Y

Volume Mesh
Using Tetras

|
y

Prisms Divided
into Tetras

|
Y

Volume Mesh
Using Prisms




Mesh Termination Options

e Boundary integral (BI)
e Artificial Absorber (AA)

Ground plane (PEC)

Antenna

Cavity-backed: e
Cavity

Substrate

Microstrip:

Ground plane (PEC)

Modeling of the above two configurations with Bi and AA terminations:

(Computation space is circled with dashed lines)

Termination

echnique
Boundary Integral (BI) Artificial Absorber (AA)

Configuration

Absrober

==

Cavity-backed -

CR e
-

Microstrip Does not apply




Surface Mesh

e Structured mesher

o Input file format for structured mesher

Line#1: I I I P .
» | =Boundary Integral (BI), 0= Artificial Absorber (AA) / R: Real
» | =Log-periodic, 2= Circular, 3 =Rectangular ) I . Integer

#» ] =Printed, 0=Slot /

Lines #2-4 depend on the entries on Line #1 (see the following pages).

o Output files

o SurfMesh - connectivity table of surface nodes and tri-
angles

o MatLab files for mesh viewing on all platforms
o Could also viewed by MeshView on PC

e Unstructured mesher: will not be discussed in details here



Surface Mesh Examples 1 - Format

Bl termination - Rectangular Meshin

Line#1: 131 or 130

Line#2: RR 11
» Ax1 (sampling cell size in x-direction)

= Ay1 (sampling cell size in y-direction)
= NxA (number of antenna cells in x-direction)
» NyA (number of antenna cells in y-direction)

Line#3: RR I I ) o o
Ax2 (sampling cell size in x-direction)

Ay2 (sampling cell size in y-direction)
NxC (# of cells between the antenna and the cavity wall in x-direction)
NyC (# of cells between the antenna and the cavity wall in y-direction)

Yy ¥v ¢

#

NI/

AN VIN e

yas ; Ji / s ; / ; ; s /
' 7 S/
) Y

Ve S . H

S / " |

s ™, H

P ) Ay2
Ax2 - —AXT -

For this example: NxA=10, NyA=2, NxC=2, NyC=2



Surface Mesh Examples 1 - View with MatLab

MeshlIn - 9

Bl termination / Rectangular - 2

Example run - 1

Line #1: 1 31 (printed)
Line#2: 1112 2
Line #3: 3 4

After running the mesher, one can view the mesh, number the nodes and assess the mesh quality
using MatLab as shown below:

MATLAB INTERFACE
1. Display the mesh

o, subscribe

>> etup 0
??7? Undefined function or |
variable etup. 4]

>> Setup
>> Mesh

| > []

2. Number the nodes and zoom in

Commands for more informa
tion: help, whatsnew, inf
o, subscribe “

>> Setup
>> Mesh
>>» GloNod
>> Zoom

P> 1

£l




Surface Mesh Examples 2 - Format

Bl termination - Circular Mesh Format

Line#1: 121 or 120

Line#2: R I
» ARI (radial thickness of antenna rings)
» Na (# of antenna rings)

Line#3: R I

» AR?2 (radial thickness of rings between the antenna and cavity )
» Nc (# of rings between the antenna and the cavity wall)

e -

NAYANY
=
>
]

AN
4

ay

AVAARES TR

N/

\/ X
AVAYVAYAYAYANAN
NSNININ/N N
\\

~. 7.

S
~
\/ N/

ANAVAVAVAVAYA

AYA

e

7\

N/
2VA
N/NAY 2

/

/
2\
2\
7
/
7

2N
\

i
/ N t\‘ \
VN LN
AN ‘/‘ N o NG
AN e / . i ™
N P ., TN |
\ N s P T e e . NG p
e‘/ // \\ \ N
VA o e Y :j
A ) N
/ g ;‘ . 7 . 5} AN -
M, : // N e

For this example, Na=5, Nc=3



Surface Mesh Examples 2 - View with MatLab

Bl termination - Circular Mesh Viewing

Line#1: 120 (slot antenna)

Line#2: 15
Line #3: 2

After running the mesher, one can view the mesh, number the nodes and assess the mesh quality
using MatLab as shown below:

MATLAB INTERFACE
1. Display the mesh

Commands to get started: i;
commands for more informat |

1
>> Setup |
>> Mesh

2. Number the nodes and zoom in

L _gropius - J
Commands for more informat:
ion: help, whatsnew, info,
subscribe ?

w/-‘ii .

>> Setup
>»>» Mesh
>> GloNod
>> Zoom
>> D

R




Mesh Grows to Whole Volume Using Prisms

e A single prism element

e Mesh grows up- and down-ward for planar/non-planar
substrates/superstrates

Non-planar substrate

Important!

Works with planar platforms with Boundary Integral termination and circular cavities.
Platform is asssumed to be located at z=0. Substrate accupies the z<0 space.

O — Locations for which the coordinates (z,r) are provided in "Mainln" file.

Example Geometry:

This example’s result is provided on the distribution disc under the directory
called "Demo-BI-NP". It is the same circular antenna modeled in Demo-AA-1
but with a non-planar substrate.

(-0.45,2.6) (-0.4,12) (-0.4,0)

€=16
p=12

(-0.95, 2.6)



Prisms Divided to Tetrahedrons

o Keep all the nodes generated in prism mesh
e Add three diagonal edges in each prism
e Fach prism is divided into 3 tetrahedrons

e Construct new connectivity tables for tetra mesh



Volume Mesh Input File Format

>

Mainln (Part1)

1 = Boundary Integral (BI) termination, 0 = Artificial Absorber (AA) termination

| = Adaptive frequency sweep, 2 = Uniform frequency sweep

[} I
® 1
[ ] R
[ ] I 1
[} I 1

1 = Printed, 0 = Slot,
1 = Compute memory allocation, 0 = Analysis

# of substrate layers

\\’ present if the previous line has
.2 theentry "l".

1 = all substrate layers are identical and planar, 0 = non-uniform but planar, 2 = Non-uniform and non-planar

|

>

» # of superstrate layers ( enter zero for no superstrate)

» | =all superstrate layers have the same thickness and material parameters, 0 = otherwise

Ordered from the bottom of the cavity up, each row corresponds to a substrate layer. Only one row
is needed if all layers are identical ( row has the info for a single layer ).

» Thickness of the layer
» Relative permittivity of the layer
P Relative permeability of the layer

substrate layers conforms to
platform

e R C
® R C
e RrRC
e 1 cC

z- r coordinates of the segment junctions (number of pairs
equals to the first entry on the previous line)

(] I C
[ ] R R
[ ] 1 C
[ ] R R

C
R

~» 1+ Number of linear segments AN

» Relative permittivity of the layer

» Relative permeability of the layer
...... R R Ordered from bottom up
(first entry for the bottom
ground plane. No entry for
the aperture, which is always
planar)

Geometric Parameters

substrate layers do not necessarily
conform to platform, which is planar
Works with B option only !

For this section, enter "2" for

the second entry on the previous line.



Volume Mesh Input File Format (Continued)

Mainln (Part2)

[ ] R C C
[} R C C Same as above but for the superstrate. Ordered from the antenna surface up (first row corresponds to the
layer just above the antenna surface).

b= » dofprobe feeds present only if there is superstrate

and works with the AA option only
Each row corresponds to a probe feed

C
-~ ~P  Surface node number #1
" Surface node number #2
» Layer # (layer within which the normally oriented probe is located, or the layer at top of which
the laterally oriented probe is located). Entry can be positive or negative and increase away from
the surface of the antenna with zero corresponding to the layer immediately below the antenna.
»  Complex amplitude of the probe current

[ ] R R R 1T R I

} Probe current flows from node #1 to node #2.

—

YYVYY VYV V-

Starting frequency in GHz

Final frequency in GHz

Increment frequency in GHz

Frequency run to save (1 = save the first freq. run, 2 = next frequency, etc.)

Tolerance ( ~0.01 )

1 = monitor convergence (dump residual error at each iter.), 0 = otherwise

1 = compute element matrices assuming distorted prism (must for doubly-cureved or non-planar substrates),

2 = compute assuming right prism (saves on CPU time for planar platform with planar cavity-bottom)
— Maximum number of iterations

o I ———-——-—— ——9 | =Read in user specified termination parameters (given in the following row),

0 = code will figure out the optimum parameters (this is the safe course if one is

not familiar with the artificial absorber termination).

——® Thickness of one layer (all layers have the same thickness)
= Total number of layers from the top of the outer-most superstrate layer to the termination boundary
P> Number of absorber layers
— » Relative permittivity of the absorbing layers. /

Electrical Parameters

For AA only !
(Ignored by BI)



Volume Mesh View with [-DEAS
e Prism Mesh

e Tetra Mesh




Format of Major Output Files from Volume Mesh

e Eidge Table 'EDGY’

edge number | x-coordinate | y-coordinate | z-coordinate

o Eidge Connectivity Table 'EGLOB’

ele no. | local edge no. | node 1 | node 2 | material no.

e Element Connectivity Table 'ELNO’

element no. | node 1 | node 2 | node 3 | node 4 | material no.

e Node Table 'ENODDY’

node number | x-coordinate | y-coordinate | z-coordinate

e PEC Surface Table 'ESURFC’

global edge number on PEC

e Aperture Edge Table 'ESURFD’

ele no. on aperture | edge 1 and two nodes | ...
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GMRES-AIPC Solver .0 (Fe-aD

Y’GL\: e,&M gpq\f
For 2173 Mk (75082 w«)

dB Error

)(xx
RS
o XX;(XXX
’ X
Xxx
. Xt
T ’% . XXXXXX
o X5

GMRES-DPC e

-6or 0 o GMRES-AIPC(1)
x  x  GMRES-AIPC(2)
* = GMRES-AIPC(3)

Il i 1 1 i 1 1 1 L
0 10 20 30 40 50 60 70 80 90 100

The effect of the number of NORM minimization
steps per column:

for i=1:N, N is the FEM size

for k=1:K, K is the No. of Norm minimization steps /column.

M(:,[)=M"1 (-,i); | is the identity matrix, M is the PC.
r=I0)- A"M(.0);

Ar=A’r; ’ is the confugate transpose

ar=Ar’r;

az=Ar*Ar’;

M., ))=M(.,1)+(at/a2)"r;

enda;

enda;

~\




r

Data for the used matrix:
No. of unknowns =2973.
No. of Non zero elments =601359.
Generating geometry: Spiral Antenna.
Mesh type: Non uniform.
Mesh elements: Mixed elements

| (bricks and prisms).
System nature: Badly conditioned.
BI part of the matrix: Size ~ 750.

7?1:60 A&Ml\/ev@
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Requirements for general-purpose eigenvalue solver

o Eigenvalue analysis is important for verification of computer
codes

e For the most general ferrite applications, we need an eigenvalue
solver that

¢ Solves the generalized eigenvalue problem

¢ Deals with complex-valued matrices

¢ Allows non-symmetric matrices

o Works well for large eigenvalue problems (limited CPU-time
growth as number of unknowns increases)

¢ Takes advantage of matrix sparsity (limited memory growth

as number of unknowns increases)

¢ Allows non-positive definite matrices

¢ Can handle ill-conditioned matrices

¢ Can handle eigenvalue multiplicity

¢ Can find eigenvalues in any user-specified range

¢ Is robust and accurate
e This is not a trivial task

e Several methodologies/packages were investigated

e ARPACK was finally opted for



Outline of Tetrahedral Code Development

¢ Variational Formulation

e FEM Formulation

e Validation



Variational Formulation

» Radiation

F(E) = ; [[ [ vxt) - (V) - 2(E, - By - Bhav
Vv

+[] Uk, 2z, E-R7t - B VxELdV
V

A JE {zkgsz (2 x E()] - Go(F, %’)dS}dS
S, S

2

» Scattering

F(E) = %Jjj[ﬁ;l(VxE) (VXB) - k2(E, - E) - E1dV
\%

%IJE | 2k22 % j! (3 x B(*)]- Gy, ?')dS}dS
+2jkOZO .J (3 X E(’x,,)] . HlnC(ls,.)dS
°S

a

50(%, M) = [1 + kizVV]G (7, 7') = Free Space Dyadic Green‘s Functior

o

» Surface integral containing the dyadic is where the Boundary-Inte-
gral(BI) is performed.

» In the case of a PML/Artificial Absorber, the surface integral term is
omitted

» Focus will be on the term:

%”J[ﬁ?l(VxE) .(VxB) - k2(E, - B) - Bldv
vV



FEM Formulation

Tetrahedral Element Node Connectivity Table

edge i iy ig

1

Al | &S| W N
W & DN | e | e
&I N| W& W] N

e Use edge elements of the form:
6
= YE.N;
11
» After substitution into the functional, need to solve:

AL +Bf = ”j (" VxN)) - (VXN ) - K2, N))- Nl



FEM Formulation (cont.)

e What is the form of the basis function?

* 3 different but equivalent forms for the edge basis functions.

1) N.=1(L, VL, —-L;. VL. ) i=1,.6
AN PE P P M
2) Ni:fl.+§lx’¥ [ =1, ,6
f-\ ll SEIVEY l7—llié7—l r(7_’)2 r(7_l)2
= —F. : = ,
LoV o 6v T I, _.

* 3) was used because of it’s simple implementation

- After substitution 3) yields a simple result for the element
matrices.
- Makes the programming implementation easier.



FEM Formulation(cont.)

* To solve for the element matrices the following formula is
used:

21,
l N N
VXN; = ;72(Ai1 xA;)

« Final closed form expressions for the element matrices:

1€1¢€
1 ] =— AN AN
A,e] = — (L, +b7-)) - bz j(£1)
B = 1 . om=1234
180V¢

fa=26,-&) A +E, A, A,-E, &) A,-(,.-4,)
f3=-2E,-A&) & -, A,) A+, A, A +E,.4,) A4,

fa= @A) A-(, 4

* Element matrix entries are simple and compact!



Geometry of a Circular Patch Used for
Validation

* BiCG solver
¢ 12,014 total edges, 2,168 PEC edges, 9,846 unknowns

<—— ¢r=2

er=1 —Pp - |
‘_ €r=1-j2.718

Ur=1 for all 3 layers

Circular Patch



Input Impedance(Zin=Rin+jXin) vs. Frequency

1 OO I T U [ . I I
50+
ok + : f :
=501
* ~N
-100+ RN
© ~ -
€ -150r % _
£ S o
i ~
-200+ *
— Rin, isotropic form.
=250 - — Xin, isotropic form.
+  Rin, anisotropic form. K
-300+ v .
%" Xin, isotropic form.-
-350
-400 1 ] | ! 1 ]
0 0.5 1 1.5 2 2.5 3.5

Frequency(GHz)




Eigenvalue computation using ARPACK

e Development :
¢ Lehoucq, Sorensen and Yang at Rice
o Availability :
¢ Public domain - Netlib
e Methodology :
¢ Implicitly restarted Arnoldi method (Krylov method)
e Main advantages :

¢ Fulfils all requirements from the previous slide

¢ Does not assume anything about the matrix storage format.
Via a reverse communication loop, the user specifies the ac-
tion of a matrix on a vector. The user can do this using any
desired storage format (full, banded, sparse, ...)

¢ Fixed pre-determined storage requirements
¢ User-specified numerical accuracy

¢ Numerous sample drivers available for a variety of problems
= often requires very little implementation to solve a given
problem



Eigenvalue computation using ARPACK

e Consider the generalized eigenvalue problem

Ax = \Mx

e This is equivalent with the standard eigenvalue problem

1

(A —ocM)'Mx = —

X

e Eigenvalues A closest to o of the generalized eigenvalue problem
correspond to the numerically largest eigenvalues (A — o)™ of
the standard eigenvalue problem

e To solve this eigenvalue problem, ARPACK requires the compu-
tation of

w=(A—-oM)'Mv
for many vectors v
e This is not trivial since (A — ¢M)~! is not explicitly known
e However, the computation of w corresponds to solution of
(A —oM)w = Mv
for w

e This can be done effectively using an LU-decomposition scheme
that takes advantage of matrix sparsity

e Presently, an algorithm based on banded matrices is used



Figenvalue computation using ARPACK

e The flow of the code then becomes the following

¢ Compute A and M

o Convert A and M to banded matrices (REDUCE)
o Compute A — ¢M (banded)

o LU-decompose A — oM (banded)

¢ Enter reverse communication loop. When ARPACK requires
the computation of

w=(A - oM) ' My,

simply solve

(A —ocM)w = Mv

for w using substitution. Note that the same LU-decomposition
1s used every time.

¢ Upon exit of the reverse communication loop, extract eigen-
values

e The LU-decomposition is currently based on a LAPACK rou-
tine requiring storage of all elements in the band - zeroes as well
as non-zeroes. This is (though significantly better than stor-
ing full matrices) a complete vaste of memory and should be
changed. Note, however, that this storage issue is independent
of ARPACKSs eigenvalue computation.



Hierarchical tangential vector finite elements

e Tangential vector finite elements (TVFEs) are superior to node
based finite elements

e Nédélec pointed out the attractiveness of mixed-order TVFEs
e Hierarchality is of interest for certain applications

e Development of hierarchical mixed-order TVFEs for triangular
element

e Thorough test of these for two-dimensional scattering computa-
tions

e Conclusion : When hierachality is exploited, we obtain more
accurate results using less CPU time and less memory as com-
pared to the case where the same TVFE is used throughout the
computational domain

e Hope/expectation : Conclusion holds for three-dimensional ap-
plications

e Development of hierarchical mixed-order TVFEs for tetrahedral
element

e Thorough test of these for computation of eigenvalues of metal-
lic cavities (partly) filled with isotropic or anisotropic dielectric
and /or magnetic materials is in progress

e If hierarchality offers advantages for modeling ferrite materials,
more advanced ferrite structures will be analyzed
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Designing Broad-Band Patch Antennas Using the
Sequential Quadratic Programming Method

Zhifang Li, Panos Y. Papalambros, and John L. Volakis, Fellow, [EEE

Abstract— The utility of numerical codes is greatly enhanced
if they can be used in design, a situation that typically in-
volves iterative optimization algorithms. An attractive way is to
use gradient-based algorithms developed for solving nonlinear
programming (NLP) problems. In this letter, we examine the
performance of a general sequential quadratic programming
(SQP) optimization algorithm for designing patch antennas in
conjunction with a finite-element boundary-integral code.

Index Terms— Microstrip antennas.

I. INTRODUCTION

NTENNA design involves the selection of the physical

antenna parameters to achieve optimal gain, pattern per-
formance, VSWR, bandwidth, and so on, subject to specified
constraints. Over the past ten years, sophisticated computer
codes have been developed for antenna analysis [1]-[3] based
on a variety of popular methods. By and large, these codes
have not been extended to include design capabilities pri-
marily because of their complexity and nonlinearity with
respect to the physical properties of the antenna (material
constants, dimensions, feed location, and type, etc.). Some
design algorithms have been proposed but these are applicable
to specialized antenna shapes and do not address the general
antenna optimization problem [4].

Recently, genetic algorithms (GA’s) have been examined
for array design and absorber optimization [5]-[7]. However,
GA'’s, although robust, require large number of function evalu-
ations to complete the optimization study. Also, GA’s are more
suitable for discrete variable problems. In contrast, antenna
simulations rely on complex computationally intensive codes,
which generate continuous functions. It may, therefore, be
impractical to generate a sufficiently large sample space for
carrying out an optimization study using GA’s.

An alternative optimization algorithm is the sequential
quadratic programming (SQP) method, suitable for continuous
nonlinear objective functions such as the input impedance,
gain, pattern shape, etc. with both equality and inequality
constraints. Convergence is typically achieved in a few
iterations and, therefore, their interface with rigorous (but
expensive) numerical antenna analysis codes is much more
practical. SQP and other similar algorithms are routinely used
for large structural design problems involving finite-element

Manuscript received April 18, 1997; revised July 10, 1997.

Z. Liand J. L. Volakis are with the Department of Electrical Engineering
and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA.

P. Y. Papalambros is with the Department of Mechanical Engineering and
Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 USA.

Publisher Item Identifier S 0018-926X(97)07992-1.

analysis [8] and, thus, we can benefit from the extensive
experience available in other disciplines.

In this letter, we examine the performance of a general SQP
code [9] for designing patch antennas in conjunction with a
finite-element boundary-integral code [10]. Both are rigorous
general-purpose codes. The main point of the paper is to exam-
ine the suitability of SQP for antenna parameter optimization
to achieve the design objectives subject to constraints. We
will illustrate the performance of the optimizer using a few
illustrative examples from simple to more complex.

II. SEQUENTIAL QUADRATIC
PROGRAMMING ALGORITHM DESCRIPTION

SQP is a gradient-based class of methods that became
prominent in the late 1970’s [11]. They are considered the most
efficient general-purpose nonlinear programming algorithms
today. The basic principle of sequential approximations is to
replace the given nolinear problem by a sequence of quadratic
subproblems that are easier to solve.

Consider the equality constrained problem

min f(z)
subject to h(z) =0 (1

where z is the design variable vector, f(z) is the objective
function, and h(z) is the vector of equality constraints. Using
a Lagrange-Newton method (see, for example, [11]), at the
kth iteration, we have

W, AT se | _ [-VfT 2
Ar 0 || Aeqa —hy
where W = V2f + \TV2h, A = Vh, and ) is the vector of
Lagrange multipliers. Solving the above equations iteratively,
we obtain the iterates zx41 = 4 + S and Ag,; which should

eventually approach £ and ), the optimal values.

We observe that the above equation can be viewed as the
first-order optimality (Karush-Kuhn-Tucker) conditions for
the quadratic model

min q(sx) = fx + Ve Lisk + %stksk
subject to Agsy + hy =0 3)

where Vz Ly = Vfi + Al Vhy. Solving the quadratic pro-
gramming subproblem (3) gives the same s, and A..; as
solving (2) and thus the two formulations are equivalent. The
values of z and A can be obtained from solving a sequence

0018-926X/97$10.00 © 1997 IEEE



1690

Design Vaniables
Start | o8 > FEM Code ¢
| Parameters 4
ANALYSIS
Converge? NO PROCESS
YES Y Function Values
Upda!_sd design Optimization Code
variables and
gradients
NO Converge? DESIGN
PROCESS
YES Y

B

Fig. 1. Flow chart of SQP combined with FEM.

of quadratic programming (QP) subproblems, hence the name
SQP methods for the relevant algorithms.

Proper convergence proeprties are achieved with some mod-
ifications on this basic SQP algorithm. We may view s, as
a search direction and define the iterate as zy,, = x4 +
oSk where the step size ay is introduced and computed by
minimiznig an appropriate merit function along the search
direction. The QP subproblem can be solved efficiently by
well-developed QP solvers, based, for example, on projection
or augmented Lagrangian methods. Using an active set strat-
egy, problems with both equality and inequality constraints
can be solved.

[1I. COMBINING SQP WITH THE FINITE-ELEMENT METHOD

In the next section, we give two examples of microstrip
antenna optimization using the SQP algorithms. For the cal-
culation of the objective function, a hybrid finite-element
algorithm is used to compute electromagnetic scattering and
radiation by an open three-dimensional rectangular cavity
recessed in an infinite ground plane [10]. The cavity may
support microstrip patch or slot antennas and may be filled
with layered dielectric material. The problem is formulated
using the finite-element boundary-integral method and the
resultinng system of equations is solved via the biconjugate
gradient method. Besides different layers of dielectrics, the
cavity may also have lumped loads, probe feeds, and short
circuit pins. The flow chart of the whole process is shown
below in Fig. 1.

Accordingly, the finite-element method (FEM) code first
computes the objective function using an intial set of antenna
parameters which is used by the optimizer to determine the
new search direction and step size. The process is repeated
until convergence within the given tolerance is achieved.

[V. EXAMPLE APPLICATIONS

A. Probe-Fed Dual Patch

A number of techniques have been suggested and imple-
mented to improve the bandwidth of the microstrip patch
antenna. One of them is stacking patches horizontally or
vertically [12]. Several parameters (size of patches, substrate
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Cavity (14.325 cm x 12.375 cm) Patches (5.73 cm x 6.60 cm)
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Fig. 2. Geometry of the dual-patch antenna.
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Fig. 3. Tteration history for the optimization of the dual-patch antenna.

thicknesses, feed locations, etc.) can be used to maintain a low
voltage standing wave ratio (VSWR) over a given frequency
range. For our purposes, we choose the VSWR to be around
two, which corresponds to a return loss of about 3 dB. Thus,
we can write the problem statement as Ry/R;, <2 where
Ry refers to the input resistance at resonance and R;, is the
corresponding resistance at nearby frequencies.

Fig. 2 illustrates the configuration of the stacked antenna
under investigation. The top and lower substrates have a
dielectric constant of ¢, = 2.2 and thickness A = 1.59 mm
and the driven patch is designed to operate at 1.53 GHz. The
middle substrate has a relative permittivity of e, = 1.1. We
wish to find the optimum length, width, and separation of the
patches to achieve a 15% bandwidth. As a starting point in the
optimizer, we use the values from the cavity model [13], i.e.,
L =5.73 cm and W = 6.60 cm, respectively. The top patch
was chosen to have the same dimensions.

After nine iterations of the optimizer, a value of dy = 14.25
mm was determined which delivers a bandwidth of 15%. The
VSWR is less than 2.09 within the entire bandwidth. The
center frequency is 1.53 GHz, if the patch size is 5.73 cm X
6.6 cm and Fig. 3 gives the iteration history for the dual-patch
optimization.

B. Slot-Fed Dual Patch

There are many ways to improve impedance bandwidth
such as impedance matching and multiple resonances [14].
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Fig. 4. Three-dimensional view of the stacked patches with aperture.

The latter (borrowed from tuned electronic amplifier design)
is a popular approach and introduces additional resonant
patches to provide two or more closely spaced resonances. The
design principle of the previous example falls into this cate-
gory. However, that example dealt with only a single-variable
optimization. To improve the bandwidth for a dual-patch
configuration, we now consider a multivariable optimization.

The structure of the stacked-patch antenna is shown in
Fig. 4. The size of the top patch is slightly larger than that
of the bottom patch to get a better bandwidth and a slot
feed is put below the bottom patch. Among all geometric
parameters which are sensitive to the design, we choose three
for optimization. Specifically, the slot length, and the two
substrate thicknesses were chosen for optimization with the
goal of achieving a bandwidth more than 15% with VSWR
< 2. The dimensions of the other parameters are given below:

TOP PATCH: length = 3.89 mm/ width = 5 mm
thickness to be decided; ¢, = 2.33;
BOTTOM PATCH: length = 3.5 mm
width = 4.5 mm
thickness to be decided; ¢, = 2.2;
SLOT FEED: slot-width = 0.5 mm
slot length to be decided;
GROUND SUBSTRATE: thickness = 0.508 mm;
£, = 2.2.

The stacked patches are residing in a cavity 1.4 cm x 1.8
cm in size.

The problem statement is the same as in the last example,
i.e. min Ry/R;, plus some size constraints, and the antenna
analysis simulation is also based on the same hybrid finite-
element code. After six iterations, the SQP optimizer found the
following optimal values for the three unknown parameters:
thickness of the substrate supporting top patch = 0.85 mm;
thickness of the substrate supporting the bottom patch = 0.55
mm; and slot length = 4 mm. The performance of this antenna
is shown in Fig. 5, with a VSWR equal to only 1.414 over an
18% bandwidth.

V. CONCLUSION

The advantages of the SQP algorithm are fast convergence
and reduced number of function evaluations. This is attractive

Input Resistance (ohm)
(wyo) 9oueyoeay indug

17 17.5 18
Frequency (GHz)

18.5 19

Fig. 5. Performance of the optimized dual patch-slot antenna.

when expensive computations are needed within the optimiza-
tion loop. SQP achieves its speed by restricting its search
in a more narrow range (local optimization) than genetic
algorithms and by making use of gradient information. This is
suitable for a large class of antennas where a limited range of
parameter values is sufficient for good performance.
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Abstract

Patch antennas on ferrite substrates allow for pattern control, frequency shifting, and scat-
tering reduction. This is achieved by external magnetic field biasing coupled with the inherent
magnetization of the ferrite substrate. Measurements and analytical studies based on the Mo-
ment Method (MoM) have verified these attractive properties of ferrite substrates. However,
verification of the analysis is difficult, and furthermore previous models have relied on uniform
biasing across the substrate. In this paper, we present a hybrid finite element-boundary integral
(FE-BI) method which permits modeling of the true non-uniform bias fields within the substrate
for a more accurate prediction of the ferrite patch performance. After validation of the proposed
simulation, and a demonstration of the inherent properties of the ferrite patch, it is shown that
non-uniform biasing is responsible for additional frequency shifts. We also identify the poor
condition of the resulting matrix systems and relate this situation to the predictable occurrence
of non-propagating substrate modes. A more robust iterative solver with preconditioning is
therefore proposed and applied to handle these situations.

1 Introduction

Patch antennas on ferrite substrates are attractive because they offer greater agility in control-
ling the radiation characteristics of the antenna. Their inherent anisotropy and non-reciprocal
properties [1], permit variable frequency tuning [2], [3], [4], and antenna polarization diversity [5).
External biasing of the ferrite substrate also allows for beam steering [6], [7], [8], [9], pattern shape
control, and radar cross section control [10], [11] by forcing the ferrite into a cut-off state [12].
Several papers have already considered the performance of ferrite patch antennas. These
works [13], [14] employed the Moment Method (MoM) technique in conjunction with the sub-



strate Green’s function. Validation of the results given in [13], [14] have so far been difficult to
achieve. Also, MoM formulations do not permit modeling of non-uniform biasing and inhomoge-
neous constitutive parameters, a situation which inherently occurs when the ferrite is biased. To
provide for greater flexibility in modeling the ferrite substrate and the substrate cavity (see Fig-
ure 1), we performed an analysis of the ferrite patch using the Finite Element-Boundary Integral
(FE-BI) method. As usual, the substrate housed within the cavity is modeled by the Finite Ele-
ment Method (FEM) using an edge-based formulation [15], [16]. Consequently, multiple substrate
(and superstrate) layers can be handled easily including lateral material inhomogeneities within
each layer. In our formulation, the FE mesh is truncated at the surface of the cavity using the rig-
orous BI method. Thus, the proposed FE-BI implementation is equally rigorous to the traditional
MoM (employing the substrate Green’s function) and allows modeling of finite and inhomogeneous
substrates.

In the following sections, we first give a brief description of the formulation and it’s implemen-
tation for ferrite materials. We then proceed with the presentation of some simple ferrite patch
antenna calculations involving scattering and radiation examples. These serve to validate the im-
plementation and preciseness of the results. They also reveal that serious solution convergence
difficulties can arise for certain bias states of the substrate. It is shown that these difficulties can
be predicted @ priori. For our implementation we resorted to a more robust iterative solver, the
Generalized Minimal Residual Method(GMRES) with preconditioning. Calculations showing the
effects of biasing on the antenna resonance and scattering characteristics are given in the latter
part of the paper. Our final example is a calculation simulating a non-uniform substrate (due to
natural biasing). This example demonstrates the importance of modeling these non-uniformities
accurately for evaluating the performance of the radiating element.

2 Formulation

The geometry to be considered, (see Figure 1), consists of a patch situated in a rectangular cavity.
The presence of the cavity eliminates radiation loss via surface waves, and does not affect the
radiation pattern provided the cavity perimeter is placed at some small distance from the patch
edges. To obtain the unknown field, in the context of FEM, the variational equation

§F(E) =0 (1)

is solved [16], where
F(E) = 1/// [(V X E)-(V X E) - k26,E - EJdV
2 vV ly
+ / / / [k, 2,30 . E HiM‘“t (V x E)jdV
14 r
-|-jkoZo//(E « H) - 2dS 2)
S

2



Patch Antenna

Ferrite Substrate

Figure 1: Geometry for a patch antenna on an anisotropic substrate.

In this equation, V denotes the cavity volume, S is the cavity aperture, ¢, and p, are the relative
permittivity and permeability of the ferrite substrate, Ji"* and Mt are internal electric and
magnetic sources due to the antenna feeds, and the last term in (2) is the BI term. Discretization
of (1) using Galerkin’s method leads to the linear system,

[A{E} = {B)} (3)

where [A] is an NxN matrix and {B} is an Nx1 column vector given by [15].
When modeling gyromagnetic substrates, the functional must be modified to incorporate the
inherent anisotropy of the ferrite material. Specifically, for general anisotropic media, we have

F(E) = %///V[ﬁ‘l.(VxE)-(vXE)_k}jﬁE-E}dv
-|—///V[jkoZoJi“t E- MLMint (VX E)dV
+jkoZO//S(E x H)-5dS (4)
where € and [z, are the relative permittivity and Polder permeability tensors. The element matrices

in the FE assembly process, resulting from this functional, are given in Appendix A.
For a z-biased ferrite, i, is given by



i=| —-jk p 0 |. (5)

and for other biasing directions(x and y), the tensor entries are simply rotated accordingly [1]. Here
the parameters, u and k, are functions of frequency given by

WoWnm
:u:,uo(l-l"wg_wg) (6)
W,

K= No(w) (7)

where
wo = Y(poH,) (8)

and

Wi = 7o Ms). (9)

Also, M; is the saturation magnetization, H, is the DC bias field, v is the gyromagnetic ratio, and
w, and w,, are the precession and forced precession frequencies, respectively.

When dealing with ferrite materials, the field behavior is determined by the propagation direc-
tion and its orientation with the applied magnetic bias field direction. There are two separate cases
which determine the effective permeability(p.ss) within the ferrite [1], [19] - the longitudinal case
where propagation is parallel to the applied bias field and the transverse case where propagation
is perpendicular to the applied bias field. In the longitudinal case

Peff = Pt (10)

whereas in the transverse case

u2 - K2

©
For both propagation modes, the propagation constant within the ferrite is calculated as

7= jw\/€ofrﬂoﬂeff (12)
= 01+]ﬁ (13)

feff = (11)

The modes due to the propagation constant play a major role in the FE solution.

Because of their tensor properties, ferrites introduce a great deal of complexity into the for-
mulation when solving radiation problems. When using the FE method, it is observed that the
system matrix becomes asymmetric and can be poorly conditioned at certain values of the ferrite
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parameters. Initially, the Bi-Conjugate gradient(BiCG) method was used for solving the matrix
system. To improve performance, a preconditioned BiCG algorithm was also examined. However,
the BiCG was not robust under certain bias conditions. In these cases we resorted to the GMRES
method as described later.

3 Applications and Validation

3.1 Probe-Fed Patch Antenna

Consider the probe fed patch antenna geometry given in Figure 1. For this example the ferrite
substrate parameters were 47 M, = 650 G, H, = 600 Oe, and ¢, = 10. The calculated input
impedance and radiation pattern are given in Figures 2 and 3. As expected, biasing caused a shift
in resonance and this is clearly seen in Figure 2. Specifically, the ferrite substrate decreased the
lowest resonance of the patch from 4.44 GHz to 2.24 GHz, thus reducing the overall size of the patch
for operation at the same frequency. From Figure 3, we also observe that the biased patch exhibits
a null along the horizontal direction. This patch was also considered by Schuster and Luebbers [17)
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Figure 3: Radiation pattern in the yz plane on an x-biased ferrite substrate(Frequency = 2.2 GHz,
— Isotropic Substrate, - - Anisotropic Substrate)

using the Finite Difference Time Domain (FDTD) method. Our computed resonance shift was
within 40 MHz of their values (1.8%). Although this type of agreement is considered very good
for patch antennas, the small difference may be attributed to possible numerical implementation
inaccuracies. Our simulation used a cavity size of 4.085cm x 4.085cm X .015cm and the FE-BI
system consisted of 3766 unknowns.

3.2 Ferrite Filled Cavity
3.2.1 Biased Substrate

Consider now a cavity with several magnetized layers as shown in Figure 4. Layers 2 and 4 are
magnetized in the § direction, e.g.

p o 0 gk
=1 0 pu 0 (14)
—Jk 0 p

This is a particular example considered by Kokotoff [18]. The RCS of the layered ferrite cavity for
different biasing values(H,) is given in Figure 5, and our calculations are seen to be in agreement
to those of Kokotoff [18] for all cases.

This example again demonstrates the frequency shifting property of ferrite materials with bias-
ing and validates the employed FEM formulation. The number of unknowns for this example was
6,776(BI unknowns = 420).

3.2.2 Unbiased Substrate

We next consider a 3 layer cavity consisting of a ferrite layer between two free space layers. The
ferrite layer is magnetized with parameters ¢, = 13.9 and 47 M, = 800 G. However, no biasing is
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Figure 6: Ferrite Cavity Geometry

applied. As shown in Figure 7, calculations using the BiCG solver for M = 0 were in complete
agreement with results given by Kokotoff. Figure 8 shows results for the same geometry with the
ferrite layer magnetized. About 780 unknowns (BI unknowns ~ 180) were used to simulate this
cavity. This example presented us with convergence difficulties when the BiCG solver was used.
An investigation of several other cases demonstrated that, in general, convergence difficulties were
encountered when the propagation constant 3, as given in (13), was zero for one of the modes. For
this example, § vanished for one of the longitudinal modes corresponding to p.rs = p 4+ & and the
transverse modes. The actual values of § for all three modes are given in Figure 9 and we observe
that for the aforementioned two modes, § vanishes from about 1 GHz to 2.5 GHz (see Figure 9. In
concert, the BiCG solver failed to converge within this frequency range. Results based on a direct
solver were also inaccurate due to the poor system condition. To overcome convergence difficulties
for those frequencies where § = 0 for one or more of the modes, we resorted to a more robust
iterative solver such as the preconditioned flexible GMRES (FGMRES) [20].

Features that made the FGMRES algorithm attractive were its guaranteed convergence, ability
to adapt variable preconditioners, and a predictable error history (i.e. a smooth and monotonic
convergence pattern as compared to the erratic convergence pattern of the BiCG algorithm). An
important parameter for the GMRES solver is the number of interior iterations(m) before restarting
the solver. These initial iterations control the number of spanning basis vectors used for an initial
approximation of the solution. For our examples, the minimum m used was 70 while the maximum
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m was 280. For frequencies where the system is ill-conditioned a higher value for m is required along
with preconditioning. From our analysis, these points occur near resonance, which is approximately
1.98 GHz (Figure 8).

Using the GMRES solver, with the Approximate Inverse Preconditioner(AIPC) [20], conver-
gence was obtained at all points for the geometry in Figure 6. Figure 8 shows the results, and we
observed that the GMRES solution tracks the data in [18] quite well. Given the poor condition of
the system, it is not clear as to which of the curves in Figure 8 is not accurate.

4 Nonuniform Biasing

When building a ferrite antenna a permanent magnet is required to produce the applied magnetic
bias field. Due to the finite nature of the magnet, the field is no longer uniform and thus the electrical
material properties become inhomogeneous. Since many analysis methods assume a uniform bias
field, this produces a solution which is no longer accurate. In contrast, the FEM allows for arbitrary
specification of the material within the volume which is an inherent advantage of FEM over other
numerical methods.

To observe the effect of non-uniform magnetization, let us consider the modeling of the measured
bias field in a ferrite cavity as given in Figure 10 [18]. Indeed, Figure 10 reveals a difference of more
than 1000G at different locations within the cavity, showing the necessity of the FEM technique to
handle this inhomogeneous behavior. RCS calculations for this non-uniform biasing are provided
in Figure 11 for a 6x6x1 cm cavity filled with this material. It is clear, that the resonance of the
cavity is substantially affected by the non-uniformity of the bias field.

10



5 Conclusion

In this paper we presented several results and validations demonstrating the attractive properties
of ferrite patch antennas. The high dielectric constant of the ferrite, inherent magnetization, and
external biasing all serve to minimize the size of the patch, in addition to providing pattern control
and lower radar cross section over a given band. The employed hybrid FE-BI method also permitted
an investigation on the effects of the typical non-uniform bias fields which occur across the substrate
volume. These non-uniform bias fields cause inhomogeneities which affect the operation frequency
and overall response of the antenna and may be a cause of discrepancies between measurements
and calculations.

Our study also showed that poor matrix conditions and solution convergence difficulties may
be traced to band regions where one or more ferrite modes are non-propagating. This situation
prompted the use of more robust iterative solvers, and, to achieve convergence, a preconditioned
version of the GMRES method was used. GMRES proved effective in cases where the usual conju-
gate and biconjugate gradient algorithms failed.
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A Anisotropic Formulation

In the FEM formulation, the relevant integrals to be computed in the volume domain are

E;?j:///VEVXN,(ﬁ;l-VxNj)dVe (15)

F%:///VGN,--(E-N]-)dVe (16)

where
— l]':cx llxy ﬂxz
B = | gz flyy  flyz (17)
ﬂzz ﬂzy ﬂzz
_ €rx €ry €z
€ = | € €y €y (18)
€x €zy €z
Ea:x Ery E:cz
E°=| E, E, E,; (19)
E.. Ezy Ezz
and
Fm: ny sz
Fo=| Fp Fy Fy (20)
an: Fzy Fzz

The values for the brick element matrices, in a general anisotropic medium are

2 -2 1 -1
-2 2 -1

e R (21)
-1 1 -2

15



=
&
I

6

2 1 -2 -1
1 2 -1 =2
Ky = -2 -1 2 1
-1 -2 1 2
-1 -1 1 1
1 1 -1 -1
Ks = -1 -1 1 1
1 1 -1 -1
1 -1 1 -1
-1 1 -1 1
Ky = 1 -1 1 -1
-1 1 -1 1
2 1 -2 -1
-2 -1 2 1
Ks = 1 2 -1 =2
-1 -2 1 2
1 1 -1 -1
1 1 -1 -1
Ks -1 -1 1 1
-1 -1 1 1
lolofizs Iolyji Iojl Lol
— K K ny T ZyK THYyz T
61, 1+ ol 2 + 1 3+ 1 K3
la:ly/]m: l lzﬂzz l ﬂ l ﬂ
K Y K yhHrz yMzz T
6, 17" 6l 2t Kat =Ky
Lyl fiyy lol,fi Lj Lji
K wa:K z er zMzy T
—Glz 1+ 61, 2+ 2 3+ 1 K3
_lz,[tzz l

Ky + LK

Ly lplyfiys
y/;y K¢ + yHy K3T

41,
l

- gy | bl
Yy

6

16

Ks+

z,azy lzﬂyz‘
K
7 Ki + 1 Ks

(23)

(25)

(27)

(28)

(29)

(30)

(31)



—_ N DN W

z/lzy lyﬂa:y lzﬂzx
K K K .
g, et T Bt T Re (32)
2 21
4 1 2 ) ..
1 4 2 71_]72_:E7y7z (33)
2 2 4
21 2 1
21 2 1
1 2 1 2 (34)
1 2 1 2
Llyl €y
—=L
54 1 (35)
Lolyls€ys - 7
= —=1
ey (36)
[ —
— 1
lplyl €.n
L
op 1 (38)
lplyl €y,
lplyl€my 1
— =27,
oy (40)

17



Hierarchical Tangential Vector Finite

Elements for Tetrahedra

Lars S. Andersen and John L. Volakis

Radiation Laboratory,
Department of Electrical Engineering and Computer Science,
University of Michigan,
Ann Arbor, MI 48109-2122, USA

Abstract

Tangential vector finite elements (TVFEs) overcome most of the shortcomings of
node based finite elements for electromagnetic simulations. Hierarchical TVFEs are of
considerable practical interest since they allow use of effective selective field expansions
where different order TVFEs are combined within a computational domain. For a
tetrahedral element, this paper proposes a set of hierarchical mixed-order TVFEs up to
and including order 2.5 that differ from previously presented TVFEs. The hierarchical
mixed-order TVFEs are constructed as the three-dimensional equivalent of hierarchical
mixed-order TVFEs for a triangular element. They can be formulated for higher orders

than 2.5 and the generalization to curved tetrahedral elements is straightforward.



1 Introduction

Tangential vector finite elements (TVFEs) based on expanding a vector field in terms of
values associated with element edges have been shown to be free of the shortcomings of node
based finite elements [1]. TVFEs are therefore of considerable practical interest. Nédélec
pointed out [2] [3] that it may not necessarily be advantageous to employ polynomial-
complete TVFEs when applying the finite element method (FEM). This lead to the in-
troduction of attractive mixed-order TVFEs. A set of TVFEs is referred to as hierarchical
if the vector basis functions forming the nth order TVFE are a subset of the vector basis
functions forming the (n 4 1)th order TVFE and this desirable property allows for effective
selective field expansions combining different order TVFEs in difterent regions of the com-
putational domain. For a large class of electromagnetic problems, hierarchical mixed-order

TVFEs are therefore attractive for FEM discretization.

For a tetrahedral element, the lowest order TVFE was originally introduced by Whitney
[4]. Tt provides a constant tangential / linear normal (CT/LN) field along element edges and
a linear field at element faces and inside the element (complete to order 0.5). Mixed-order
TVFEs providing a linear tangential / quadratic normal (LT/QN) field along element edges
and a quadratic field at element faces and inside the element (complete to order 1.5) were
presented by Lee et al. [5], Webb and Forghani [6], Savage and Peterson (7] and Graglia et al.
[8]. Only the TVFE presented by Webb and Forghani compares to the Whitney TVFE in a
hierarchical fashion. Non-hierarchical mixed-order TVFEs providing a quadratic tangential
/ cubic normal (QT/CuN) field along element edges and a cubic field at element faces and
inside the element (complete to order 2.5) were presented by Savage and Peterson (7] (a

correction to this TVFE was recently given by Peterson [9]) and Graglia et al. [8].

Hierarchical mixed-order TVFEs for a tetrahedral element have only been proposed up to
and including order 1.5 [6] and these were written up by inspection. The purpose of this paper
is to propose a set of hierarchical mixed-order TVFEs for a tetrahedral element beyond order
1.5. Specifically, hierarchical mixed-order TVFEs are presented up to and including order
2.5 where the mixed-order TVFE of order 1.5 differs from the one presented by Webb and
Forghani [6]. We derive the hierarchical mixed-order TVFEs from existing non-hierarchical
mixed-order TVFEs for a tetrahedral element [7] [9] and existing hierarchical mixed-order
TVFEs for a triangular element [10] [L1] in a systematic fashion that makes the proposed set

of hierarchical mixed-order TVFEs for a tetrahedral element the direct three-dimensional
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equivalent of the set of hierarchical mixed-order TVFEs for a triangular element [10] [11].
Hierarchical mixed-order TVFEs for higher orders than 2.5 can be derived by modifying the
TVFEs proposed by Graglia et al. [8] and their extension to curved tetrahedral elements is

straightforward via a simple mapping, see for instance [8].

2 Formulation

We consider a tetrahedral element with nodes 1, 2, 3 and 4 as shown in Fig. 1. The volume
of the tetrahedron is denoted by V. Simplex (or volume) coordinates (;, (3, (3 and (4 at
a point P are defined in the usual manner, viz. (, = V,/V where V,, denotes the volume
of the tetrahedron formed by P and the nodes of the triangular face opposite to node n.
Below, vector basis functions will be formulated in terms of these coordinates. Vector basis
- functions associated with an edge or a face of the tetrahedron will be referred to as edge-
based or face-based vector basis functions, respectively. All other vector basis functions will

be referred to as cell-based vector basis functions.

A mixed-order TVFE of order 0.5 providing CT/LN variation along element edges and
linear variation at element faces and inside the element is characterized by 6 linearly inde-
pendent vector basis functions. Whitney initially presented 6 such vector basis functions
[4]. The three-dimensional equivalent of the two-dimensional CT/LN vector basis functions
presented in [10] [11] is identical to the vector basis functions presented by Whitney [4]. The

6 edge-based vector basis functions are !

GVG—=GVG 1<y (1)

A mixed-order TVFE of order 1.5 providing LT/QN variation along element edges and
quadratic variation at element faces and inside the element is characterized by 20 linearly
independent vector basis functions. Savage and Peterson [7] proposed the 12 edge-based

vector basis functions

CiVCj ) Z#Jv (2)

!The vector basis functions presented in this paper are not normalized. Furthermore, the indices #, j and
k in (1)-(12) are implicitly assumed to belong to the set {1,2,3,4}.



and the 8 face-based vector basis functions

G(GVE = GVG) } 1< <k. (3)

GG VG =GV ()

The 20 linearly independent vector basis functions (2)-(3) do not compare to the Whitney
vector basis functions (1) in a hierarchical fashion. We propose to replace the 12 edge-based
basis functions (2) by
GG~ VG } i<l "
(G = GGV = GVG)
The 20 linearly independent vector basis functions (3)-(4) form a mixed-order TVFE of order
1.5 that compares hierarchically to the proposed mixed-order TVFE of order 0.5.

A mixed-order TVFE of order 2.5 providing QT/CuN variation along element edges
and cubic variation at element faces and inside the element is characterized by 45 linearly
independent vector basis functions. Savage and Peterson ? 7] [9] proposed the 18 edge-based

vector basis functions

GG -1V 1 #7, (5)
GG(VG=VG) i<y, (6)

the 24 face-based vector basis functions

Ge(2C — V(GG = G VG) } i<k
Gi(2¢; — 1)(GV G = GVEk)

V(CiGiC) i <3<k, (8)
GGVEG - GYG)  i#T#k#4, (9)

and the 3 cell-based vector basis functions

(2G3(G V3 — GV G)
(26a(C1V G = (V) (10)
(3Ca((1 VG = V().

The 45 linearly independent vector basis functions (5)-(10) do not compare to the Whitney

vector basis functions (1) in a hierarchical fashion. We propose to replace the 18 edge-based

24 correction of the QT/CuN vector basis functions initially proposed by Savage and Peterson (7] was
given by Peterson [9]. This corrected set is the one presented here.
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basis functions (5)-(6) by

GVG = GVG
(G = GGV = GVG) ;1< J. (11)
(G = GGG - GVEG)

Further, we propose to replace the 8 face-based vector basis functions (7) by

GGV - GV6) } i<i<k (12)

G(GVG = GV k)

The 45 linearly independent vector basis functions (8)-(12) form a mixed-order TVFE of
order 2.5 that compares hierarchically to the proposed mixed-order TVFEs of order 0.5 and
1.5.

The vector basis functions (1), (3)-(4) and (8)-(12) form a set of hierarchical mixed-order
TVFEs of orders 0.5, 1.5 and 2.5, respectively. Such a set offers several advantages over non-
hierarchical mixed-order TVFEs, especially for FEM solution of electromagnetic problems
where the field varies non-uniformly over the computational domain. In such cases, a lower
order TVFE can be employed in regions where the field varies smoothly whereas a higher
order TVFE can be employed in regions where the field varies rapidly thus leading to an

effective discretization of the unknown electromagnetic field.

3 Conclusions

For a tetrahedral element, we proposed a set of hierarchical mixed-order TVFEs up to and
including order 2.5. These differ from previously presented TVFEs and were constructed
as the three-dimensional equivalent of hierarchical mixed-order TVFEs for a triangular el-
ement. TVFEs for higher orders than 2.5 can be formulated in a similar manner and the

generalization to curved tetrahedral elements is straightforward.
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