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Fast Spectral Domain Algorithm for Hybrid Finite
Element/Boundary Integral Modeling of Doubly Periodic
Structures

Thomas F. Eibert and John L. Volakis
Radiation Laboratory, EECS Department

The University of Michigan, Ann Arbor, MI 48109-2122

Abstract

A new fast integral equation algorithm is introduced for an efficient evaluation of the bound-
ary integral (BI) termination of hybrid finite element (FE)/BI methods applied to three-
dimensional doubly periodic structures. The proposed method is referred to as fast spectral
domain algorithm (FSDA) since it makes use of the spectral Green’s function representation
to evaluate the matrix-vector products carried out within an iterative solver. FSDA avoids
explicit generation of the usual fully populated method of moments (MoM) matrix. Instead,
at each iteration the actual current distribution is summed up in the spectral domain and
the spectral Floquet mode series for evaluation of the BI is carried out only once per testing
function. Thus, given a fixed set of modes, FSDA leads to a central processing unit (CPU)
time complexity of O(N) (N: number of BI unknowns) for the evaluation of the matrix-vector
products in the iterative solver. In this case, the memory requirement is also of O(N) since
only the precomputed values of the spectral Floquet mode series for each basis function are
stored. Validation and timing results of FSDA are given in this report and compared with

results obtained by a conventional BI formulation as well as a BI formulation based on the
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Adaptive Integral Method (AIM). In contrast to AIM and other fast integral methods , FSDA
does not require use of the original near-zone MoM matrix elements. Thus, it leads to con-
siderable speed-ups of about two orders of magnitude even for relatively small numbers of

unknowns.

1 Introduction

Application of hybrid FE/BI methods to infinite periodic structures (antennas or frequency
selective surfaces) [1, 2, 3, 4] provides full 3D modeling flexibility. Basically, the FE method
is employed to model a unit cell representing the array, whereas the BI provides for a rigorous
mesh truncation at the upper and/or lower surfaces of the discretized unit cell. Practical arrays
can usually be analyzed by employing the appropriate half-space periodic Green’s functions for
the boundary integral. Because of the dense nature of the Bl MoM matrix, the CPU require-
ments of the hybrid FE/BI method are dominated by the BI’s O(n?) complexity. Therefore,
considerable speed-up of the method can only be achieved by accelerating the BI termination.
Over the past few years, attention has been given to developing fast integral algorithms such
as the fast multipole method (FMM) [5, 6, 7, 8, 9] or AIM [10, 11}, both are aimed at accelerat-
ing the execution of the pertinent matrix-vector products within iterative solvers. The FMM
achieves its speed-up by employing a multipole and plane wave expansion of the free-space
Green’s function to calculate the far-zone interactions efficiently for clusters of basis functions.
AIM achieves its speed-up by recasting the basis functions on a uniform grid making use of
the Toeplitz properties for the resulting BI matrix to calculate the far-zone interactions in
the discrete Fourier domain. That is, in both techniques, the far-zone matrix elements are

not explicitly generated. This is possible because in the discrete Fourier domain, the source



and observation points are decoupled whereas in the FMM the coupling between source and
observation points is calculated via the centers of the expansion function clusters. The same
type of decoupling observed in the discrete Fourier domain is inherent to the conventional
spectral domain formulation. In the case of periodic arrays, the spectral FSDA simply takes
advantage of mode decoupling to realize a fast alternative evaluation of the BI.

FSDA starts with the conventional Floquet mode representation of the BI termination; how-
ever, the BI matrix elements are not explicitly calculated. Instead, at each iteration the
Fourier transforms of the basis functions multiplied with their actual expansion coefficients
are summed up. The spectral integral (Floquet mode series) is then calculated only once
for every testing function to evaluate the matrix-vector products in the iterative solver. In
contrast to AIM or FMM, this procedure does not even require an explicit calculation of the
near-coupling BI matrix elements. That is, FSDA is completely free of any system matrix.
Therefore, memory demand is mostly determined by the storage of the Fourier transforms
of the basis functions which are calculated before the iteration process is started. For fixed
numbers of Floquet modes, memory demand is O(N) and CPU complexity for the calculation
of the matrix-vector products is also O(N). Typically, FSDA results in considerable speed-ups
of about two orders of magnitude or more, even for relatively small BI systems.

The report is organized as follows. After presenting the formulation for FSDA [12] within
the context of hybrid FE/BI methods for infinite periodic structures, the convergence of the
Floquet mode series is discussed and validation results are given. Subsequently, timing com-

parisons of FSDA versus conventional and AIM accelerated BI implementations are provided.



2 Formulation

2.1 Basic Hybrid FE/BI Formulation

The conventional implementation of the hybrid FE/BI method for doubly periodic arrays

leads to a linear algebraic system of the form [1, 2, 3, 4]

i 1 ¢ 3 r 1 3 ( 3\
int cros cross int int int
A 1,tops 1,bot E 0 0 0 E f
cros bound bound bound = bound 1
cross bound bound bound bound
| “*2,bot 0 Aot { 2% J L 0 0 Zuo It 12% ) | Jbottom |

where only a unit cell of the array is discretized (see Fig. 1). The A-matrices are sparse
(20 to 40 non-zero elements per row) and are associated with the FE portion of the hybrid
method. The BI Z-matrices are fully populated and are associated with the edges on the
top and bottom boundaries of the discretized unit cell. As is usually the case, the right-hand
side vector elements f represent excitations in the FE volume or the BI apertures. At the
side walls, the unit cell mesh is terminated by imposing phase boundary conditions (PBCs)
in accordance with Floquet’s theorem. In our implementation, volume tessellation is based
on triangular prismatic finite elements [13, 14]. This results in triangular surface meshes
with Rao-Wilton-Glisson basis functions for the magnetic currents on the top and bottom BI
surfaces of the unit cell. We do note that for arbitrary scan angles of the array, matrices in
(1) can be non-symmetric due to the PBCs and the periodic Green’s function. Thus, non-
symmetric biconjugate gradient (BiCG) or generalized minimal residual (GMRES) solvers are
used for solution. The major computational burden in both of these solvers is the matrix-
vector product represented by the left-hand side of (1). Since the total A-matrix is sparse, its
complexity (per matrix-vector product) is O(Ny), where Ny denotes the number of volume

edges. However, the complexity of the matrix-vector products [Z,,, /bot]{Ef:;‘/’;,‘gt} is O(Nfop Jbot)
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(Ntop/bot: number of BI unknowns in top/bottom BI surfaces) and storage requirements are
of the same order (using direct solution methods). For a more efficient implementation of
the method, it is therefore crucial to reduce the complexity of the BI matrix-vector products.
Also, for array problems it is essential to reduce the number of the explicitly calculated BI
matrix elements as far as possible since the numerical cost for generating the periodic Green’s
function is relatively high. That is, if a fast integral method like AIM or FMM is applied to the
periodic problem, the total solution time for most practical problems will mostly be determined
by the evaluation of the near-zone coupling elements needed to overcome the approximations
of these fast algorithms. Therefore, FSDA being completely free of generating any BI matrix
elements, is especially attractive for reducing the complexity of the matrix-vector products in

array modeling.

2.2 Fast Spectral Domain Algorithm

The [Ztap/bot]{Ef:;‘/’},‘;t} portion of the equation system in (1) is a result of discretizing the

boundary integral (¢! time dependence is assumed and suppressed throughout)

H(r) = —2j—§—°a //é,,(r,rs) (B(ry) x 1) dsy + H®(r) (2)
S

via Galerkin's method. Here, H®®(r) is a possible external excitation in the presence of
a metallic interface in the periodic aperture S (incident and reflected waves). The spatial

domain periodic Green’s function G (r,rs) is given b
p P g Y

Gyl = (F+ 5TV) 30 3 ethmon CT ®)
r,rs) =T+ —=VV e /™00 pq 3
7 ’ k(2) P=—00 g=—00 47‘-}?‘110

with

R‘P(I = I’I‘ —Ts— ppq[ (4)



and

Pog =P Pa+qPs, (5)

in which p,, p, are the lattice vectors parallel to the zy-plane (see Fig. 1). Also, I denotes
the unit dyad and r and r; specify observation and source points. As usual, kg and Z; are
the free-space wavenumber and characteristic impedance, respectively. Furthermore, kyo in

(3) is given by
koo = kz00 £ + kyoo J = £(ko sin g cos g £ + ko sin g sin g §) , (6)

where 99, o are the spherical coordinates corresponding to the scan angles of a phased array
(positive sign) or the arrival angles of an incident plane wave (negative sign). In the spectral

domain, (2) can be written as

- _21— / Gy (kay ky) - (Bkay ky) ) dkad, + HE(r), (1)
0%k,

where é'p(kx, ky) denotes the spectral representation of the periodic Green’s function, given

by [1]

Gp(kz, ky) = m =Z_°° ;oo E \ , d(kt - ktpq) . (8)

Here, A = |p, X py| is the cross sectional area of the unit cell’s top/bottom bounding surface

(see Fig. 1),

ki = ko + kyg, 9)
2T R R

kipg = Koo + 7 [p(py X 2) +q(2 X p,)] (10)

is the so-called reciprocal lattice vector, and

k., =/kZ —k;- Ky, (11)



with the branch of the square root taken so that Re(k.) > 0,Im(k.) < 0. Also, E(k;, ky) is
the Fourier transform of the electric field intensity on the top/bottom apertures of the unit
cell. Throughout the report, the “™” denotes two-dimensional Fourier transforms.

In proceeding with the description of FSDA, let us first introduce the expansion

Ntop/bot

E(r)= Y Euwu(r), (12)
n=1

where w,, (r) are Whitney edge elements [13, 14] and E,, represent the expansion coefficients.

Introducing (12) into (7) and applying MoM testing with the weighting functions
bn(r) =7t x wiy(r), ‘ (13)

which are the well-known Rao-Wilton-Glisson basis functions, we get

(b(r,H(r)) = Z Z by (kzpgs kypq) - koZo Ak
p=—00g=—00 00+%%zpg k K2 _ k2
Tpq™ypq 0 ~ MNxpq
Ntop/Nbot .
Z Enbn(kquakypq) + (bm('r),Hezc(r)) ) (14)
n=1

where “*” denotes complex conjugation.

Apart from the latter term, (14) is the mth row-vector product of [Zop/bot){ Efepsper}- 1O

generate all row-vector products, we let m = 1,2, ..., Nyo, /pos -

For a conventional implementation of (14), the summation over n along with the coefficients
E, is moved in front of the spectral sums (p and q). The spectral series is then evaluated
for each (m,n) combination to compute all matrix elements of the BI submatrices [Z;op/pot]-
That is, the spectral series is evaluated Nfop + N2, times. Similarly, in an iterative solver, the

0

evaluation of the pertinent matrix-vector products requires N2 + N2, multiplications.

top
To evaluate the matrix-vector products [Ztop/bot]{E?:;ﬂzt} using O(Nygp/pot) CPU time com-

plexity (fixed set of Floquet modes assumed), the following steps are instead executed:



Step 0: Precompute the Fourier transforms of the basis functions by, (k, ky) and of -2 %%C—Jp(k,, ky)
for the discrete wavenumbers k; = kzp and ky = kyp.

Step 1: Compute the iteration field vector

Ntop/bot

qu= Z Eni?n(kzpakyq) (15)

n=1

in the spectral domain for all (p,q) modes. If the totality of the (p,q) modes is assumed to
be constant, this step requires CNyop/p0¢ Operations, where the constant C; depends on the
number of included modes.

Step 2: Compute

ko =
Wpe = ‘2J‘Z%Gp(kzp’ kyg) Vg (16)

for all (p,q) modes. For a constant number of Floquet modes, this step requires a constant
number of C; operations.

Step 3: Finally, compute

Z Z B:n(kzpqa kypq) : qua m= 1,27 '--’Ntop/Nbot (17)
P q

to complete the evaluation of [Ztop/bot]{Efg:ﬁ,‘,i,t}- Again, for a constant number of the (p,q)
modes, the evaluation of (17) for all m = 1,2, ..., Ny, ¢ Tequires C3Niop/bot OPerations, with
the constant C3 dependent on the number of included modes.

Summing up all operations needed for the evaluation of [Z,,, /bot]{Efg;,‘/';‘it} within the iterative
solver, we obtain CNyp et + C2 + C3Niop/por Operations, i. e. a CPU time complexity of
O(Niop/bot)- Also, CyNyyppor ODerations are needed in Step 0 before the iteration process
is started. Therefore, compared to other fast integral methods like FMM or AIM, where the
near-coupling elements must be calculated explicitly, this overhead with CPU time complexity

O(Niop/bot) is extremely low. As seen later, the overhead reduction for matrix fill is the major
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reason for the speed advantage of FSDA. The memory demand of FSDA is mostly determined
by the pre-computed Fourier transforms of the basis function and is therefore Cs Nyp pot, i- €. Of
O(Niop/bot)-

As noted above, the constants Cj, Cs, C3,Cy and C5 depend on the numbers of Floquet modes
included to achieve convergence in the spectral series. Typically, for increasing unit cell sizes,
increasing numbers of modes are needed. However, this is also the case for conventional BI
implementations even when acceleration techniques are used like the Ewald transformation
[16, 17). Also, it should be noted that the convergence of the spectral series is determined
by the total field distribution in the BI surfaces rather than the spectrum of the individual
basis functions or the Green’s function. Based on this observation, convergence of the spectral
series can often be dramatically improved by shifting the BI surface a small distance from the

inhomogeneities of the FE volume domain (see also [2]).

3 Results

Example 1: Strip dipole array

As a first example in demonstrating the efficiency of FSDA, we calculated the power reflection
coefficient of the strip-dipole array shown in Fig. 2 which was proposed in [19]. We applied
FSDA with different numbers of Floquet modes and the results are compared with data
obtained by a MoM code involving a multilayered media Green’s function [20]. In the figure,
FSDA 0 refers to using only 1 Floquet mode and gives unacceptable errors; however, FSDA
1 (implying p and q range from -1 to 1, i. e. 9 terms of the modal representation) is already
converged. The small frequency shift between FE/BI data with FSDA acceleration and the

reference MoM results [20] was also observed for the conventional FE/BI implementation.
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For this example, the unit cell was meshed using triangular prismatic elements resulting in
a total of 55370 volume unknowns and 4880 BI unknowns in each of the top and bottom
BI surfaces. The corresponding CPU time requirements on a Pentium II PC/266 MHz were
244 sec, 281 sec, and 330 sec per frequency for p and ¢ ranging from 0 to 0, -1 to 1, and -2 to

2, respectively.

Example 2: Slot array

The second example is the slot array depicted in Fig. 3 and also analyzed in [19]. Again, we
present FSDA calculations for different numbers of Floquet modes and contrast them to MoM
results [20]. For FSDA, convergence is now achieved when p and g range from -5 to 5 (FSDA
5). However, data using FSDA 3 and FSDA 4 (not shown in the diagram) are very close to this
curve, as well. In comparison to the previous example, the larger number of Floquet modes
is necessary due to the “more complicated” field distribution in the top BI surface which is
exactly in the slot plane. As noted earlier, the convergence behavior can be considerably
improved if the top BI surface is slightly shifted away from the slot. This is shown by an
additional curve in Fig. 3 obtained when an air layer of thickness 0.5 mm and modeled by a
single vertical prism is included on top of the slot. Then, FSDA 1 (p and ¢ ranging from -1
to 1, named FSDA 1+) agrees almost exactly with the MoM data. For this example, the first
unit cell mesh contained a total number of 3361 volume edges and the second mesh with the
additional air layer involved 4961 volume edge. For the first mesh, the number of BI edges was
1240 at the bottom surface and 161 over the slot plane on the top BI surface. For the second
mesh, with the air layer added at the top BI, both apertures consisted of 1240 unknowns.
The corresponding CPU times on a Pentium II PC/266 MHz were 7.5 sec, 11.0 sec, 34.0 sec,
and 11.8 sec per frequency for FSDA 1, FSDA 2, FSDA 5, and FSDS 1+, respectively. That

is, by a slight shift of the top BI surface away from the slot, not only was the accuracy of
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the results improved, but the CPU time was also reduced by nearly a factor of 3. A better
understanding of the convergence behavior of FSDA can be obtained by looking at the spectra
of the search vectors of the iterative solver, i. e. Vp, = E::f/ * Enbp (kzp, kyq). Fig. 4 shows
the normalized magnitude of the spectral distribution by (kz, ky) of one cartesian component
of a Rao-Wilton-Glisson basis function. In contrast to this relatively broad spectrum, the
spectral distribution of the search vectors at the bottom BI surface (shown in Fig. 5) is much
narrower. This type of spectrum results in a very fast convergence of the Floquet mode series
used in FSDA. If the BI surface is in the plane of the slot, the spectral distribution of the
search vectors is determined by the shape of the slot, especially in the direction along the
width of the slot, and the spectra are relatively broad (see Fig. 6). However, on moving the
BI surface away from the slot the spectrum of the search vectors is narrower and consequently

the convergence of the corresponding Floquet mode series is faster.

Example 3: Frequency selective surface (FSS) of slot-coupled microstrip patches
In Fig. 7, the geometry of an FSS array consisting of slot-coupled microstrip patches is de-
picted. This array was investigated in [21] and acts as a strongly resonant band-pass structure.
Because of its resonant characteristics, modeling of the fields between the patches with a local
method like FEM is a difficult task and the mesh density must be relatively high. Also, it
should be noted that the incidence angle ¥y varies with frequency according to the waveg-
uide measurement setup in [21]. Fig. 8 compares the transmission coefficients obtained by
FE/BI-AIM and FE/BI-FSDA 1+ solutions to measured data presented in [21]. The agree-
ment between the three curves is quite good and we note that the FSDA results are even
closer to the measured data than those obtained by the FE/BI-AIM approach. With respect
to complexity, the FE/BI-AIM solutiqn used 98636 volume and 5308 BI unknowns in each of

the top and bottom BI surfaces. Also, in the FE/BI-AIM approach, the BI was implemented
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as a conventional spatial domain formulation with Ewald acceleration of the Green’s function
modal series [16, 17] and AIM was employed to speed-up the BI portion of the code [10, 11].
The required CPU time for the FE/BI-AIM implementation on a Pentium II PC/266 MHz
was between 3 and 4 hours per frequency. On using FSDA, the CPU times were considerably
decreased even though the number of unknowns was increased by putting additional air layers
between the microstrip patches and the BI termination. Specifically, the number of volume
unknowns grew to a value of 137804 and the number on BI unknowns was increased to 14828
in each of the top and bottom BI surfaces. The required CPU time on the PC for FSDA 3+

(p and q ranging from -3 to 3.) was about 50 minutes per frequency.

CPU timings for FSDA

A final look at the CPU time dependence of FSDA as a function of BI unknowns is given in
Figs. 9 and 10. These CPU times correspond to a dipole array with metallic backing (BI only
on top of the mesh) and were obtained at a frequency very close to resonance with plane wave
excitation. To obtain CPU times as a function on the unknown count, several elements were
used to form a unit cell mesh. The largest investigated unit cell contained a 3 x 3 array with
one prism layer used across the height of the mesh. Again, the calculations were performed on
a Pentium II PC/266 MHz and the FSDA CPU curves are compared to those obtained by a
conventional and AIM accelerated BI implementation 10, 11). Further, the Green’s function
Floquet mode series for the conventional spatial domain (mixed potential) BI formulation were
accelerated by the Ewald transformation [16, 17]. The number of terms in the FSDA Floquet
mode series and in the Ewald series were chosen appropriately for the largest analyzed unit
cell (p and q ranging from -9 to 9 in FSDA). In all cases, a non-symmetric BiCG solver was
used which requires two matrix-vector products per iteration. Fig. 9 displays the CPU time

per iteration of the BiCG solver whereas Fig. 10 illustrates the total solution time including
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matrix fill of the three implementations. For small BI matrices [Z;4p/5,1), the conventional BI
needs the shortest time per iteration; however, due to the O(N log N) complexity of AIM and
the O(N) complexity of FSDA (constant number of Floquet modes assumed) this is quickly
changed as the number of unknowns increases. For the investigated problem sizes, AIM was
always faster per iteration than FSDA but the differences got less for increasing numbers
of unknowns. In terms of total solution time, FSDA was almost two orders of magnitude
faster than AIM and the conventional BI, even for small numbers of unknowns. Also, the
speed advantage compared to the conventional BI got increasingly more pronounced for larger
problems. The total solution time ratio between FSDA and AIM was almost constant for
increasing problem sizes (i. e. about two orders of magnitude). The largest portion of the
total solution time of the conventional BI and AIM is due to the CPU time needed for the
explicit calculation of the BI matrix elements. Therefore, the major advantage of FSDA is

that it is completely free of a need to form any elements of the BI matrix.

4 Conclusions

We introduced a new method, the fast spectral domain algorithm (FSDA) for mesh termination
in a hybrid FE/BI formulation as applied to doubly periodic structures. FSDA was derived
starting from the well-known spectral domain formulation of the planar BI. It was shown that
FSDA leads to large CPU time reductions as compared to conventional BI implementations
and other fast integral methods such as AIM. The improved speed of FSDA is mainly due to
that no matrix elements (including those in the near-zone) are explicitly calculated. Therefore,
a speed-up of about 2 orders of magnitude is obtained even for small numbers of BI unknowns

(as small as 500). For a fixed set of Floquet modes in the spetral series, CPU time complexity
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per iteration is O(N) and memory demand is of the same order. The presented results show
that 9 Floquet modes are often sufficient for practical problems if the FE mesh is chosen

appropriately.
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Figure Captions

Figure 1: Doubly periodic array configuration and unit cell with BI termination on the top

and bottom surfaces and periodic boundary conditions at the vertical side faces.
Figure 2: TE power reflection coefficient of a strip dipole array as presented in [19]. For
FSDA 0, 1, and 2, p and ¢ range from 0 to 0, -1 to 1, and -2 to 2, respectively. The MoM

results are from [20].

Figure 3: TM power reflection coefficient of a slot array as presented in [19]. For FSDA 1,
2, and 5, p and ¢ range from -1 to 1, -2 to 2, and -5 to 5, respectively. For FSDA 1+, p and ¢
range from -1 to 1 with the top BI surface placed one prism layer above the slot. MoM results

are from [20].

Figure 4: Normalized magnitude of the z-component spectrum of a Rao-Wilton-Glisson

basis function of the unit cell in Fig. 3 (p, ¢ are according to (8)).

Figure 5: Normalized magnitude of the z-component spectrum of the magnetic current

search vector in the bottom BI surface of the unit cell in Fig. 3 (p, q are according to (8)).

Figure 6: Normalized magnitude of the z-component spectrum of the magnetic current
search vector in the top BI surface of the unit cell in Fig. 3 (BI imposed in plane of the slot,

p, q are according to (8)).

Figure 7: FSS unit cell of the aperture coupled microstrip patches as suggested in [21]. The
parameters are £, = 2.2, d = 1.6 mm, a = 36.07 mm, b = 34.04 mm, Wy = 2 mm, L, = 8 mm,
Wy = L, = 28 mm.

Figure 8: TE transmission coefficient of the FSS structure in Fig. 7 for different FE/BI
models compared to measured results from [21]. ¢ = 0°, ¥y varying from 57° to 32° for f
varying from 2.5 GHz to 4.0 GHz, according to waveguide measurement setup in [21].
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Figure 9: CPU times per iteration as a function of BI unknowns for FSDA. conventional
and AIM accelerated BI implementations. The CPU times were obtained on a Pentium II
PC/266 MHz and refer to a microstrip dipole array with one prism layer.

Figure 10: Total solution times as a function of BI unknowns for FSDA, conventional
and AIM accelerated BI implementations. The CPU times were obtained on a Pentium II

PC/266 MHz and refer to a microstrip dipole array with one prism layer.
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