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1 Introduction

The concept of infinite arrays has been accepted as the most promising for accurate
evaluation of phasing properties of large periodic arrays, frequency selective surfaces,
diffraction gratings, artificial dielectrics, etc. It is found that the boundary elements in
large arrays, although having a different environment than the interior ones, do not have
a significant influence on the overall array performance. Full wave analysis of phase arrays
is computationally very expensive (memory and time) so an alternative approach must
be used. By utilizing Floquet theory [1], an infinite periodic geometry can be accurately
modeled and analyzed with a single periodic array cell (to be refered as unit cell) and the
contributions of other elements can be included through the appropriate infinite periodic
Green’s function [2]. Infinite periodic arrays have been successfully modeled in the past
using integral equations [3] and finite element methods [4, 5, 6, 7].

In this report, we implement the finite element-boundary integral (FE-BI) method
for the analysis of infinite antenna arrays. We particularly emphasize the use of tetra-
hedral hierarchical mixed-order tangential vector finite elements (TVFEs) [8]. Also, the
infinite periodic Green’s function accelerated by the Ewald transform [7] is used as the
kernel of the radiation integral. Periodic boundary conditions (PBCs) for lower (0.5)
and higher (1.5) order tetrahedral finite elements are implemented through the element
matrix transformation algorithm [4]. It is found that by properly placing higher order
elements in regions where high field variations are expected and lower order elements
elsewhere, accurate values for the scanning reflection coefficient can be obtained with
relatively coarse discretizations. This is particularly true for scanning angles away from
blindness. To improve field modeling around scan blindness, higher order elements should
be placed throughout the unit cell. This way, power transfer between neighboring cells
is more accurately modeled. Due to the hierarchical nature of the employed vector basis
functions, the extension of the PBC algorithm from lower to higher order elements is
fairly straightforward, requiring reordering of the nodes along the faces on opposite unit
cell boundaries so that continuity of the tangential fields is preserved.

The important parameters and properties necessary for understanding an infinite array



analysis are briefly reviewed in section 2. Decomposition of the infinite domain down to
a unit cell and the appropriate FE-BI formulation are discussed in section 3. Tetrahedral
finite elements are used for the unit cell modeling inside the volume and the boundary
integral along with appropriate boundary conditions for enclosing the computational do-
main (section 3.1). Periodic radiation conditions (section 3.2) and periodic boundary
conditions (section 3.3) are also formulated. Five different examples necessary for the
validation are given in section 4. Conclusions and suggestions for future work are given
in section 5. Several ways of implementing periodic boundary conditions in the case of
unequal periodic boundary meshes are discussed in appendix I. Finally, several papers

important for understanding the developed tetrahedral elements are given in appendix II.



2 Infinite Arrays

In an infinite array with certain periodicity between the antenna elements, every element is
surrounded by the same environment. Thus, in a large array, all elements but those on the
boundaries have approximately the same properties. Consequently nearly all elements in
a large regular array can be represented by a single periodic element residing in an infinite
array. The following parameters are important in evaluating the properties of an infinite

array (see Fig. 1):

e Scan angle - the angle from broadside at which an array is phased for maximal

radiation;
e Plane of the scan - defines the plane where steering takes place;

e Polarization - polarization of the plane wave that radiates or scatters.

intercardinal
plane (IC) ;
b I e e =
SO I s s R
— EorH *"*# B
cardinal | —_ | —/
plane (C) ]
s ;][l:l yL
L]
; [ _—J €T X
broadside jradiation direction

direction (IC scan)
Figure 1: Important parameters of an infinite periodic array.
The effect of phase difference used for array steering is shown in Fig. 2(a) for plane wave

incidence and scattering and in Fig. 2(b) for radiation. The phase difference on opposite

sides of a rectangular unit cell can be calculated from
AV, = kogDgcos(6)sin(¢);
AV, = koDysin(8)sin(¢), (1)
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where D, and D, are spatial periods in z and y directions and (6, ¢) are the steering

angles.

Figure 2: Plane wave (a) incident on an array, (b) radiate from an array.

One of the principle problems in designing arrays is impedance matching between
the radiation space in front of the array and the internal circuit behind the array. The
objective is to reduce the reflection at the interface. A parameter often used to characterize

the behavior at the array element input port is the scanning (active) reflection coefficient

_ Zm(fa 9) - Zm(fae = 00)
Fscann = Zin(f,0) + Z5(f,0 = 0°) ?)

Here, Z;,(f,0) is scanning input impedance for scanning angle 6 in the plane ¢ = const ,
and Z;,(f,=0°) is the scanning input impedance at broadside. When TI';.,,=0 then no
wave is radiated and the angle(s) at which this occurs is referred to as ”scan blindness
angle(s)”. This corresponds to the physical interpretation that the excited surface wave
inside the substrate captures all energy. Another important parameter in the infinite
array analysis is the scanning (active) element pattern which can be easily obtained from

the scanning reflection coeflicient and is given by

Pscann = (1 - |Fscann(fa 0)|2)0059- (3)

1



This parameter can be referred to as the radiating pattern of the infinite array when
only one element (unit cell) is fed and all others are terminated with broadside matched

loads.



3 Formulation
3.1 Finite Element Boundary Integral

Consider an infinite double periodic antenna array as depicted in Figure 3. The most
rigorous of the implementations is to decompose the infinite periodic array down to a
single unit cell and employ the finite element method (with appropriate periodic boundary
conditions PBCs for the side walls) to model the unit cell volume. For truncating the
finite element mesh on the unit cell aperture (top and/or bottom) the boundary integral
provides for a rigorous implementation. The contribution of other cells is included through
the Floquet phasing conditions (see (1)) incorporated into the infinite periodic Green’s

function and the PBCs.

PBC |,/ ~Lppe

Bl or PEC

Figure 3: Geometry of an infinite double periodic antenna array.

To develop the necessary linear equations, one approach is to begin with the vector

wave equation for the electric field

Vx (@' VXE)-w E = —jwl. (4)



After applying Galerkin’s testing in conjunction with the weighting function T, introduc-

ing vector identity
V- (AXxT)=T-(VxA)-A-(VxT), (5)

where A=/, "'V x E, and the divergence theorem, we obtain the weak form of the vector
wave equation (weak form since the differentiability over E is ” weakened” by the derivative

over the weighting function T):

///V{(VXT)‘(MTI-VxE)—WQT.gT.E}dV _
_//VST.JdV-{—iw/SaT.(ﬁXH)dS’ 6)

As usual, E and H denote the electric and magnetic fields, €, and f, are the relative
tensor permittivity and permeability of the unit cell filling (possibly inhomogeneous), S,
represents the non-metallic portions of the aperture. The volume V refers to the volume
occupied by the impressed sources J. Note that the latter integral refers to H on the
antenna aperture S, and over the feed opening. Also, the unit normal 7 is directed
outward from the boundary surfaces S,,.

To solve (6) for E, we require knowledge of H over S,. In the context of the FE-BI

method, the relation between H and E is determined by the boundary integral equation

H = —2ikyY, / / G(r,r') - (5 x E(r')) dS' (7)
So
where G is the half space dyadic Green’s function
= = 1
G= (I - k_(%VV) Gy(r,1") (8)

with I is the unit dyad. Here G,(r,1’) is a free space infinite periodic Green’s function
(see 3.2).

To construct a linear set of equations from (6) and (7), we must first tessellate
the volume and introduce expansions for each of the tessellation elements. We chose to
work with hierarchical mixed order TVFE for tetrahedra [8]. Beside high flexibility in
modeling (owing to tetrahedral shape) the hierarchical nature of these elements allow the

introduction of higher order expansions over a chosen set of elements.

7



Figure 4: Edge based tetrahedral finite element.

Choosing tetrahedrals as the tessellation elements (see Fig. 4), the field is expanded
within the unit cell as
20

B =Y BWS = (W] {5} )

j=1
where (W], = [{W,}, {W,},{W.}] and {E®} = {E{, EX, ..., E%}T. 20 basis functions are
needed for higher order expansion: twelve are associated with edges (six provide constant
tangential components at edges and six model the corrections from constant values of the
tangential fields), and eight are face based expansions. These and other higher order basis

functions available in literature are given in Tab. 1 [18].

TVFE Vector basis functions
Order Label Edge-based Face-based
0.5 Whitney QVCJ’ - QJVQ

1.5 Peterson and QVCJ Ck(CzVCJ - CJVQ)
Savage GVG Gi(G VG = GV G)
1.5 Graglia (3G = GV = GVG) | GGV = GVG)
et.al. (3¢ — DGV = GVG) | GGVEG = GV G)
1.5 Andersen and QVCJ — CJVC, (k(CzVCJ - CJVC,)
Volakis (G = )GV = GVG) | GGVE = GVE)
1.5 Webb and GVG = GVG CG(GV¢G = GVE)
Forghani GV§ + GV Gi(G VG = GV &)

1.5 Lee and GV GGV

Cendes GV CeCi VG

Table 1: Vector basis functions for six different TVFEs; (i, j, k) follow cyclic order, with

each index ranging form 1 to 4.




On the unit cell aperture, the electric field is reduced to
Z E:Si(r) = [S)T{E*} (10)

where [S]; = [S;, S,] and
li
24¢°

Here, r and r; refer to the position vector within the triangle and at the sth node of

S, =

x (r —1;) (11)

the triangular face on the aperture. The parameters /; and A® denote the length of the
ith edge of the triangle and its area, respectively.

To generate a linear system for E¥, (9) and (10) are substituted into (6) and (7) and
Galerkin’s method (setting T = W) is employed to yield the assembled system

atied o wl{ B -{ ) e

In this system, {EV} denotes the field unknowns within the unit cell volume enclosed
by S,, whereas {ES} represents the corresponding unknowns on the boundary S,. The

excitation column {b"'} are due to internal sources.

3.2 Periodic Radiation Conditions

The edge-based basis functions for tetrahedra reduce to Rao-Wilton-Glisson basis func-
tions [9] on the unit cell aperture. Therefore, these basis functions are used to represent
the field in the boundary integral in (3). In the spatial domain, the periodic Green’s

function G,(r,r’) has the form

_JkORmn

where
Rpn =t =1 = ppy. (14)
In the spectral domain, Gp(r,r’) becomes
Golr¥) =g Y 3 g e P gt (15)
m=—o0 n=—co 2J Kzmn



where A = |pa X pp| is the cross sectional area of the unit cell,

r = p+z2, (16)
2T

ktmn = ktOO + Z [m(pb X 2) + n(i X pa)] (17)

is the so-called reciprocal lattice vector, and

kzmn = \/kg - ktmn : ktmn y (18)

where Re(k,mn) > 0,Im(k,mn) < 0. In many cases, the spectral domain representa-
tion (15) has satisfactory convergence behavior if applied in a spectral-domain formulation
of the integral equation. However, for arbitrary array configurations analyzed in the space
domain, having strongly as well as weakly coupled array elements, it is necessary to have
a representation that converges faster than either (13) or (15). This can be achieved by
employing the so—called Ewald transformation [12, 13]. The Ewald transformation starts
from the spatial domain representation of the periodic Green’s function (13) and makes

use of the identity
e_jkORmn

—R2 _(2%
. \/, / ds, (19)

where s is a complex variable. In order that the integrand converges as s — 0 for a

wavenumber ko with an arbitrary amount of loss, the path is chosen so that arg(s) = § as
s — 0. To have convergence as s — 0o, the path is chosen so that —7/4 < arg(s) < /4.
Next, (19) is substituted into (13) and the parameter E is introduced to split the integral

into two terms as

G,,(r, r') = Gpu(r,r') + Gpo(r, 1) (20)
where
o0 o0 2 k2
Gp(r,1') = 47r Z Z o~ 7kt00"Prng ﬁ/o o~ Fnns*+ 3% ds | (21)
2 ko
Gp2(r) I‘,) = 47r Z Z e_Jk“"’ Prn ﬁ/E‘ R?""S2+4_8% ds. (22)

Using the identity [14] (eq. 7.4.34)

\/_/ _R2 '% ds = ———2len le‘jkORm" erfc (Rmn - —g%)

+ elkoRmn orfe (RmnE + ;Z )} (23)

10



where erfc is the complementary error function, Gpe(r,r’) can be written as

, e~ Jktoo" pmn ikoR wlr m- ]k
uler) = ¥ Y {e erc( i 2E)
gk
Thoftmn erfe | Ry E + =— 24
+ e erfc (Rm + 2E>] (24)

which is essentially a “modified” spatial domain portion of the periodic Green’s function.
Making use of the Poisson transformation, or alternatively following the procedure in
[13, 15], employing a transformation formula for the series expansion of the J-function,

(21) is finally transformed to

Gp(r,1) = Z Z

m——oo n=-—00 4 kzm"

_jkzmn|z_zll ]kzmn _ )
[e erfc <_2E |z z[E)

; / ik
]kzmn|z"z| f JRzmn )
+e erc(———QE + |2 z|E>} : (25)

¢~ kemn- (P—P)

where A is defined immediately after (15)). Equation (25) can be identified as a “modified”
spectral domain portion of the periodic Green’s function. For planar BI surfaces, we can

select z = 2z, =0, giving the simplified form

Gy Z >

m—-oo n=-—oo

e~ (PP erfe (”;‘zénn) - @9

2 kzmn
The two expressions (24) and (25) or (26) both converge exponentially (Gaussian con-
vergence) and their computation is therefore very efficient requiring only a few terms of
the series. The parameter I controls the convergence rate. As E becomes larger, the
spatial series (24) converges faster, but (26) converges slower. The optimum parameter
is that which makes the two series converge at the same rate, so that equal numbers of
terms are required in the calculation of both series (assuming the same calculation time

for corresponding terms in each of the two series). By analysis of the asymptotic behavior

of the series terms, the optimum parameter E,, is found to be [15]

Eop = \E | (27)

Choosing this value for F and adjusting the summation limits so that the most dominant

terms are kept, in almost all practical cases it is sufficient to include only 9 summation

11



terms in (24) and (26) (i.e., the summation limits are from -1 to +1). With these few
terms, the error level is usuzﬂly less than 0.1%.

For the implementation of the BI portion of the method, we apply the same phase trans-
formations to the matrix elements associated with edges on I';; and 'y, (see Fig. 5) as
done in the FE portion of the implementation (see section 3.3). For our approach, source
and test triangles are always inside the unit cell, therefore guaranteeing that the singu-
larities of the neighboring array cells are never inside the test triangle. However, it is still
necessary to carefully deal with the singularities of the neighboring array elements that

are close to the test triangles.

3.3 Periodic Boundary Conditions

The derivation of PBCs for unit cell meshes with equal surface meshes on opposite side
faces, starts from a FE mesh of the whole infinite periodic structure. Thus, the bounding
surface S of the FE solution domain only consists of the top and bottom termination
surfaces of the mesh. The PBCs for the vertical side faces of the finite mesh of one unit
cell are derived in a way that each unknown of the unit cell mesh sees an environment
as it would see in the infinite mesh. If we consider for example a unit cell mesh as
illustrated in Fig. 5, typically all unknowns on the right and upper side faces, I',; and
[y, are eliminated and matrix elements involving these unknowns are transformed to
the corresponding unknowns on the left and lower side faces, I';, and T';,. Thus, the unit
cell mesh is wrapped around and connected at opposite side faces so that no vertical
boundaries are present anymore. The relation between opposite unknowns is found from

the periodicity condition

E(r+me,+ng) = E(r)e/oominty),
H(r+mg,+ng,) = H(r)e koo(m@,ney) (28)
with
koo = kxoo X + kyoo ¥ = ko sin 6 cos o X + ko sin g sin o ¥ . (29)

12
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Figure 5: FE mesh consisting of tetrahedral elements.

Here, kg is the wave number of free-space and 6y, ¢y describe the scan direction of the
array. If e is the unknown field at an edge on one of the vertical side faces, the value ey

of the field at the corresponding edge on the opposite side face is given by
€x = ernjkwo.Ar ) (30)

where Ar = (£p, or £ p,) is the vector joining the two edges (see Fig. 3 for definitions of
p, and p;). Special treatment is needed for the unknowns on the edges at the upper right
corner of the unit cell. These unknowns need to be transformed two times so that they
finally relate to the unknowns corresponding to the edges in the left lower corner of the
unit cell mesh. To obtain the correct phase relation, valid for this two stage transformation
process, Ar must be set to +(p, + p,).

The necessary transformation algorithm for the matrix elements Az encountered in

the matrix generation process can be summarized as
Akl — Ak’l’ = Akle—jktOO'Arkk/e-l-]ktoo-Ar”/ (31)

and means that a matrix element Ay, is multiplied by a phase factor and creates a new
element A;p. Basically, this equation can be applied to all matrix elements. However,
it is only necessary if either edge k or edge [ is on the right or upper vertical side walls.

Otherwise the image edge is the same edge as the original one and no transformation

13



needs to be carried out. Important to note is that Ar is oriented from the original edge
(on right or upper side wall) to the image edge (primed). The phase factor for the column
index [ in (31) is directly obtained from (30) by writing the original unknown in terms of
the image unknown. However, for the row index transformation, it must be kept in mind
that within the weak formulation of the FE problem, the basis function related to the row
index is the test function. Therefore, in order to perform testing with the image unknown
instead of the original unknown, the phase transformation must be carried out the other
way round. This means that the original unknown is multiplied with the corresponding
phase factor and replaced by the image unknown, as directly implied by (30).

Due to the nature of the implemented higher order elements, three types of matrix
elements are encountered for the matrix element transformation algorithm. If the global
directions of parallel edges on opposite boundaries are opposite, then to preserve the con-
tinuity of the fields (in infinite environment), the transformed matrix element (associated
with the Whitney basis function (;V(; — (;V(;) should be multiplied with —1. This is
not the case for the other edge-based basis function ((¢; — (;)(G;V(; — V() since the
tangential component of the field is always directed from the edge end to the edge center.
To assure proper transformation of the matrix elements associated with a face-based basis
function ((x(GV(; — V() it is necessary that global numbering for the parallel faces
on opposite sides be the same. In that case, the continuity of the electric fields is also

preserved (see appendix II).

14



4 Numerical Results

To examine the use of tetrahedral hierarchical mixed-order TVFE for modeling infinite

periodic arrays and validate presented formulation, three test cases are analyzed:
e IPSA - infinite periodic slot array;
e IPMPA - infinite periodic microstrip patch array;
e WGSMP - waveguide simulator for microstrip patch array.

‘The geometries are given in Fig. 6 and appropriate design parameters are given in Tab. 2.

Dx
Px

A
v

A
\

Dy Py

syl €

d| £ |
1
(b)

Figure 6: Infinite periodic (a) slot array, (b) microstrip patch array.

Q

First, consider the infinite periodic, horizontally fed, slot array given in Fig. 6(a)
(operating wavelength A\g=10cm). The reference results are found using the FE-BI method
with prismatic finite elements (a code developed at the University of Michigan) [7]. These
results will be referred to as FE-BI-PRISM. To achieve convergence, \/40 discretization
has been applied. The mesh discretization for the FE-BI method with hierarchical mixed-
order tetrahedral elements (referred to as FE-BI-TETRA) is A\¢/20. Since the slot is very

15



Example Parameters defined in Fig. 6(a),(b)

Case | Problem | Dx | Dy |Px| Py | Fx | Fy d |e| €
1 IPSA 9.9 9.0 | 9 | 0.5 ] 25 - 05 | - 1
2 IPMPA 9 9 3 3 |07 15| 02 |1]255
3 IPMPA b 5 15098 0 (075 0.6 | - |12.8
4 | WGSMP | 237 | 222 |1.8] 1.8 | 09 |1.32]0.159 | - | 2.33
5 | WGSMP | 2.378 | 2.215 (1.8 | 1.8 | 0.9 | 1.32 | 0.242 | - | 2.58

Table 2: Parameters for testing cases. (Unit for length is cm.)

narrow, higher field values can be expected in the proximity of the slot. Higher order

elements are therefore placed in the light gray area in Fig. 6(a)

. The results for the

scanning input impedance in the E-plane (¢=90°) are given in Fig. 7. While there are

differences in results when only lower order elements are used (HO0), introduction of higher

order elements (HO/H1) leads to significant improvements. A similar trend is obtained in

the H-plane.
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Figure 7: Case 1: Infinite periodic slot array (E-plane)(a) Input resistance, (b) Input

reactance.

Next, consider the vertically fed microstrip patch array on a thin substrate shown

in Fig. 6(b) (Ap=10cm). In addition to the FE-BI-PRISM results, method of moments

(MoM) reference results [3] are also used for comparison. The computational cost, array

broadside resonance and broadside input impedance (Zy,q4) at the analysis frequency

3GHz for the examined cases (H0-0.5 elements, HO/H1-0.5/1.5 elements in the light gray

16



area with linear PBCs, and H1-1.5 elements with higher order PBCs) are given in Tab. 4.
The unit cell mesh discretization is Ag/40 for FE-BI-PRISM and A,/28 for FE-BI-TETRA
(HO, HO/H1, H1). For better field modeling on the substrate surface, an extra layer of air is
added (see Fig. 6(b)). The expected higher field variations at the surface are now modeled
with higher order vector basis functions. Results for broadside scanning impedance and
scanning reflection coefficient in the E-plane (¢=0°) and H-plane (¢=90°) are given in

Fig. 8 and Fig. 9 respectively.

Method Broadside resonance Lyroad Number of | Time per angle
[GHz] Q) unknowns [min]
FE-BI-PRISM 2.903 43.8-118.7 2744 -
FE-BI-TETRA (H0) 2.725 3.934+13.7 2542 22.1
FE-BI-TETRA (HO/H1) 2.915 24.1-311.03 10360 34.1
FE-BI-TETRA (H1) 2.913 24.1-111.4 13127 56.1

Table 3: Infinite periodic microstrip patch array.
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Figure 8: Case 2: Input scanning (a) resistance, (b) reactance.
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The curves in Fig. 8 display a clear shift in a resonance frequency predected by the
solutions based on the HO and H1 elements. This clearly shows that lower order elements

can not accurately predict scanning properties of an array. This is particularly revealed
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in Fig. 9. When the array is phased for scanning in the H-plane, the FE-BI-TETRA re-
sults converge to the FE-BI-PRISM values provided higher order elements are introduced
throughout the unit cell. In the E-plane, scan blindness cannot be perfectly reached,
but the maximum scanning reflection coefficient is shifted to 83.4° (85.6° in [3]) and the
resulting curve closely follows the reference. Since the broadside resonant frequency is
shifted toward lower frequencies, i.e. the broadside resonant wavelength is larger than the
operating wavelength (A..s > Ao as compared to Aqes=Ag in [3]), scan blindness occurs
at lower scanning angles, as observed. To obtain better agreement with MoM, a denser
mesh is needed with higher order elements throughout the unit cell at scanning angles
near grazing. As expected (see Fig. 9), a very small difference for broadside resonance
and Zy.0q between the HO/H1 and H1 cases is observed (area around radiated edges is
modeled with higher order elements). Also, the total CPU time for the H1 case is in-
creased as compared to the HO/H1 case, not only due to the larger number of unknowns

but also due to the deteriorated convergence when higher order PBCs are applied.
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Figure 9: Case 2: Infinite periodic microstrip patch array (a) E-plane, (b) H-plane.

Infinite periodic arrays, of vertically fed microstrip patch antennas on a thick high
dielectric constant substrate (case 3 in Tab. 2) are considered next. For a comparison
with our method, referenced MoM results [3] and hybrid FE-BI results from [4] obtained
with linear tetrahedral elements (refered as the HFEM in Fig. 10) are also included. The
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computational costs for the two finite element based methods are given in Tab. 4, and
scanning reflection coefficient results are given in Fig. 10 (b). Also, the 3D meshes used for
both methods are displayed in Fig. 11. Due to the nature of the problem (thick dielectric

with high dielectric constant) the H1 simulation did not converge.

Method Number of | Number of | Solve time / | Matrix size
mesh cells | mesh edges | fill time [M By]

HFEM 4291 4862 4.45 6.2

FE-BI-TETRA (HO/HI1) 2352 2838 2.4 12.8

Table 4: Computional costs for HFEM [4] and FE-BI-TETRA.
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Figure 10: Case 3: Infinite periodic microstrip patch array, E-plane scan.

Finally, two examples of a waveguide simulator (case 4 and case 5 in Tab. 2) are
studied and results are given in Fig. 12. The results are in terms of the clasically defined
reflection coeficient (Zy=5082). To achieve better agreement with the referenced results
([3] in Fig. 12(a) and [11] in Fig. 12(b)) better feed modeling is required. However, the

accuracy improvement when H1 elements are used is obvious.
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Figure 11: Case 3: Mesh (a) HFEM,(b) FE-BI-TETRA.
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Figure 12: Waveguide simulator measurement (a) Case 4, (b) Case 5.
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5 Conclusions and Future Work

A hybrid FE-BI method for infinite periodic array analysis is developed. The method
utilizes tetrahedral hierarchical mixed-order TVFEs for modeling the unit cell volume.
Radiation boundary conditions are implemented using the standard boundary integral
with the appropriate free space periodic Green’s function. Due to the slow convergence
of the double infinite sum, Ewald’s transform is used for accelerating the computation of
the periodic Green’s function. Periodic boundary condition based on the matrix transfor-
mation algorithm are used for bounding side walls of the unit cell, and its implementation
is carried out in both the finite element and boundary integral part. These PBCs are de-
veloped for linear and higher order tetrahedral TVFEs. For validation, several examples
are given and the general agreement is very good. It is shown that by using hierarchical
basis functions and combining lowest and higher order elements, the field modeling is
dramatically improved and the array scanning properties are therefore more accurately
evaluated. To predict the scanning angle at which blindness occurs, higher order elements
must be used throughout the unit cell. This is very important for phased arrays where
the energy is trapped into the excited substrate surface waves. Finally, a detailed dis-
cussion on various aspects of the periodic boundary conditions and observations on their
robustness is included. Several methods were implemented and obtained results were not
satisfactory. However, improved ways for attacking the problem are proposed and these
should be thoroughly investigated and implemented in the near future. Beside that, the

following topics should be investigated in the future:

e Implementation of the PBCs discussed in Appendix I for unequal meshes on periodic
boundaries. This type of implementation has been carried out for simpler prismatic
elements and is quite promising. Its implementation for tetrahedral elements is more
complex and carries more risks. Nevertheless, the success of this implementation
will lift the serious restriction of having identical meshes (image-like meshes) on
the opposite periodic boundaries. In any case, it should be noted that drastically

unequal meshes between periodic boundaries are not easy to handle and would lead
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much worse system condition.

Inclusion of the option of LU and iterative solution and comparison the two in terms

of time and memory.

Inclusion of the option of using Lee-Cendes H1 elements vs. the Andersen-Volakis
elements. This involves a straightforward transformation and will allow for a simpler

inclusion of the periodic array code as a module into the HFSS.

Implementation of the second order ABC truncation scheme with PBCs to conform
with the current methodologies used in HF'SS. Note that ABCs will introduce inac-
curacies and given our experience in computing the scanning reflection coefficient,
the resulting numerical system may be inadequate for predicting this necessary array

parameter.

Introduction of fast integral algorithms into the present FE-BI-TETRA version for
low memory and much faster computation. The fast spectral domain algorithm
(FSDA), adaptive integral method (AIM) and fast multipole method (FMM) are
already available in other University of Michigan codes. This code will be a faster

and more rigorous module for reliable array analysis.
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6 Appendix I

6.1 Extension of the matrix transformation approach for non-
equal sideface meshes

In the case of unequal surface meshes an opposite sidefaces, the individual unknowns
corresponding to the edges in the right and upper vertical sidewalls cannot be directly
related to one unique image unknown. However, the matrix transformation algorithm
can formally be extended to account for this case, if it is assumed that each unknown
is now related to several image unknowns. Thus, by applying the transformation, each
transformed matrix element results in several new matrix elements. This generalized

transformation can be written as

Ay — [Ak;zg] = A [f(k L k; l")] ; (32)

y Uy gy 05

where i =1,..,I, j=1,...,J;.
Therefore, the unknowns k and [ are related to I, and J, image unknowns, respectively
and [A;;] denotes a matrix with elements a;;. f(k,1,k;, ;) is a complex coefficient which
represents the mapping of the original unknowns on the image unknowns and also contains
the phase informationa in accordance to the scan direction of the array. At this point,
the formal transformation of the matrix elements is defined. However, the mapping of
the unknowns on the right and upper vertical walls on their image unknowns on the left
and lower sidewalls still needs to be specified. This is equivalent to the determination of
the coefficients f(k,[, k,1%). In principle, there should be several ways of mapping the
unknowns. However, it is obvious that each mapping procedure must resemble to the one
by one relation for equal sideface meshes. Also, it cannot be expected that the resulting
algorithm will give good results for strongly unequal meshes since the derivation is kind
of heuristic and there is obviously no theoretical foundation for the whole procedure.

In the following, a mapping algorithm is presented which is based on a weak enforce-
ment of the periodicity conditions for the electric field intensity. The mapping relation
must allow to calculate all unknowns related to the right and upper vertical side walls

from the unknowns related to the left and lower vertical sidewalls. Unknowns in the cor-
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ner of the unit cell mesh belonging to a right/upper sidewall and a left /lower sidewall are
considered to belong to the right/upper sidewall only and need to be eliminated. Using

(28), the fields in the opposite vertical sidewalls can be related by (as discussed earlier)

E.(u,v) = Ep(u,v)e kooPa
Ey(s,t) = Els,t)e k0o (33)
where (u, v) and (s, t) are appropriate parametrizations of the left/right and lower/upper

sidewalls, respectively.

Introducing the FE discretization of the unit cell, the relations become

Ny Nle ‘
Z E"m‘fnr,-(u’ U) = Z Enle fnle (U, ’U) e—JktOO'pa ’
npi=1 nle:1
Nup Nlo .
Z Enup fnup (S’ t) = Z Enlo fnlo (S, t) e—kaO.pb s (34)
’nup:]_ Nig=1

where f denotes the tangential components of the basis functions refered to the verti-
cal sidefaces. Multiplying the equations with weighting functions f,, = and fm,, and

integrating over the right/left and upper/lower sidefaces, respectively, gives

Mo Nie
ZEn”//f (w,v) £, (u,v) dudv = ZEnle//f (u,v) o, (u,v) dudve™ koo Py
it Me=1 (uyw)
My = 1, ...,NM,
Nup Nio
Z En.,, //fmu,, s, t)f Pup (s,t)dsdt = Z E,, //fm W t)f nz (s,t) dsdte ]ktoopb
Nyp=1 (s:t) nig=1
Myp = 1, ...,Nup (35)

as a weak enforcement of the periodicity condtions.

The two equation systems in (35) are coupled via the unknowns belonging to both the
right and upper sidefaces. Therefore, the two equation systems are combined to one
equation system. This is achieved by introducing new numberings for the unknowns in
the sidefaces. All unknowns in the right and upper sidefaces get a unique index 7y,
and the remaining unknowns in the left and lower sidefaces, which do not belong to the

right or upper sideface at the same time, get a new index n;,. Now, the equations in
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(35) can be rewritten in a way that the Ny, unknowns with indices n,,, and the Ny,
unknowns with indices nye, are collected on the left-hand and right-hand sides of the
resulting equation system, respectively.

This equation system can be written in matrix form as

[Amnvien) {Brviey } = [Ariapin] (B} (36)

Solving this equation system for the F,, according to

Tiu

(Bu} =[] [Amssmiss] (o) (37)

gives the necessary relations for the generation of (31).

As already mentioned, the above extended matrix transformation algorithm was im-
plemented in a test code utilizing prismatic elements. Initial results imply that the al-
gorithm works for slightly different surface meshes on opposite sidefaces, however, strong

instabilities were encountered for larger differences.

6.2 Generalized PBCs based on a finite-sized FE domain

The matrix transformation algorithm was derived under the assumption that the finite
sized unit cell mesh behaves like an equivalent infinite mesh of the whole periodic struc-
ture. This strategy is obviously strongly dependent on the mesh structure and its exten-
sion to unequal surface meshes on opposite sidefaces of the unit cell is not straightforward.
A theoretically correct statement of the problem can be obtained by deriving the FE for-
mualation for a finite-sized FE domain, which is the unit cell under consideration. This
requires that the vertical sidewalls of the unit cell are considered to be part of the bound-
ing surface S in (6). In the FE implementation, this is achieved by evaluating the surface
integral term in (6) also for the vertical sidewalls. For this purpose, an expansion of the
tangential components of the magnetic field intensity H in the vertical sidewalls is intro-
duced. In the following, it is assumed that H is discretized using the same set of basis
functions as used for E and that the numbers of basis functions with nonzero expansion

coefficients in the individual sidefaces are the same for H and FE.
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Based on this assumption, the H fields in the four sidefaces can be written as

Nle

Hle(u,v) = Z Hnlefnle(u7v)’

nie=1

H”'(U,U) = Z Hnri.fnri(u’v)’

npi=1
Nlo

Hlo(sat) = Z Hnlofnlo(sat)7

nlO:I
Nup

H,(st) = Y Hypfn, (5,1) (38)

Nup=1
where (u,v) and (s,t) are defined as in (33).
Now, the surface integral terms in (6) can be evaluated and assembled into the global
FE equaiton system. For this purpose, the global numbering scheme, which typically
only involves the E field unknowns in the FE solution domain, must be extended so that
it also accounts for the H field unknowns on the vertical sidewalls. Nevertheless, the
resulting FE equation system has less equations than unknowns and can, therefore, not
be solved. However, the remaining equations necessary to form a uniquely defined system
can be obtained from the periodicity conditions for the the E and H fields in the vertical
sidewalls. The necessary relations for the fields in the lef/right and lower /upper sidewalls

are derived from (28) and result in

= E(u,v)e k0P

= Ey(s,t)e koo, (39)
= H(u,v)e 7F0o0Pa

H,(u,v

H,,(s,t

)
)
)
) = Hi(s,t)e7Ps. (40)

Introducing the expansions for the fields gives

Nri Nle A

Z En”fn”' (u’ U) = Z En, fnle (u’ U) e Ihio0 P )

nTizl nle:]-

Nup Nlo )

Z En""f”up(s’ t) = Z Enlof’nlo(87 t) e k0o Py ) (41)
nup=1 ne=1

Nri Nle '

Z Hnm‘fn”-(U, 'U) = Z Hnle fnle (U, 'U) e~ Tktoo P, :
nei=1 Nia=1
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Nup Nlo

Z 'ﬂupfnup Sy t = Z Hn,o.fnlo (S’t) e—jkmo-Pb . (42)

nup=1 no=1
For identical surface meshes, these equations can be fulfilled in a one-by-one relation for
the individual expansion coefficients, however, for the general case of arbitrary surface
meshes on the opposite sidefaces, a weak enforcement of the equations is carried out.
Therefore, the equations are multiplied by appropriate weighting functions and integrated
over the domains of the parametrizations (u, v) and (s, ).

The resulting linear algebraic equations are

Nle

Z En,. //fml u,v) (u,v) dudv = Z En, //fm, u,v) Fn, (u,v) dudve” Tkt00-Pq
npi=1 nie=1
7 --aNlea
Nup Nlo
2. Bn, //‘fmt 8, 8)Fn,,(5,1) dsdt = > Eu, //fml 8,) Fp,, (5,1) dsdt e Ike00 Py
nup=1 (s,t) nyp=1 (s:0)
mp=1,...., Ny, (43)
Nri Nie
Z H, //fm (u,v)f, . (u,v) dudv = Z H,, //f (1, 0) f, (1, 0) dudv e koo Py
N me=l (o
my; = 1, ...,N”,
Nup Nio
Y H,, //fmu (5,8)fp,(s,t)dsdt = > Hp, //fmu (8,8) F (5,1) dsdt e=TH00 Py
nup=1 (s5t) np=1 (s:0)
Myp = 1,..., Nyp . (44)

In contrast to the matrix transformation method described in section 6.1, these equation
can be assembled into the global FE equation system to obtain a final discretized formu-
lation of the periodic FE problem. The global numbering scheme, which typically only
involves the E field unknowns in the FE solution domain, needed already to be extended
to account for the H fields in the surface integral contributions of (6). All equations
related to global row indices of the E field expansion functions are obtained from the dis-
cretization of the functional (6). Therefore, the equations in (43) and (44) are considered
to be global equations corresponding to the global row indices of the H field expansion
functions. Since the unknowns related to the vertical edges in the four corners of the

unit cell mesh belong to two vertical sidewalls, the corresponding two equations in (43)
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and (44) add up to one equation in the global system. Also, it should be noted that
the left /lower basis functions are used for testing in (43) whereas the right/upper basis
functions are used in (44). This guarantees that the correct number of equations equal to
the number of H field unknowns is generated.

The presented generalized PBC algorithm was implemented in a FE code based on
prismatic elements. First results are very promising, however, severe problems with the
condition of the final equation system were encountered. It is necessary to solve the
equation system by singular value decomposition since several eigenvalues are extremely
small. It is assumed that these problems arise from an unproper handling of the connection
between the BI surfaces and the vertical sidewalls. The explicit introduction of the H
fields on the vertical sidewalls is obviously not compatible with the H field free formulation
of the BI termination. Therefore, it is suggested to investigate this problem further and
try to find a consistent formulation. Another issue may arise with the handling of metallic
sections in the vertical sidewalls for which the electric field unknowns must be set to zero.
At the moment, it is not completely clear what this would mean for the magnetic field
unknowns and how a consistent system of equations can be obtained. This points needs

also further investigation.

6.3 Modified generalized PBCs based on a finite-sized FE do-
main

The algorithm presented in section 6.2 contains redundancy with regard to the H field
expansion. Basically, there is no need to discretize the H fields in both sidewalls which
are opposite to each other. The evaluation of the surface integral term in (6) can also be
carried out if only one discretization is introduced. In this case, the periodicity conditions
for the H fields are enforced in a strong way according to (40).

This implementation is, of course, more efficient than the one presented in section 6.2,

however, the discussed issues, which need to be solved, still remain.
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7 Appendix II

7.1 On Hierarchical Tangential Vector Finite Elements for Tetra-
hedra

This appendix contains four papers written by Lars S. Andersen and John L. Volakis on a
new class of hierarchical mixed order TVFEs for tetrahedra. These TVFEs are also used

in developing the formulation for the periodic array analysis. These are:

e Development and application of a novel class of hierarchical tangential
vector finite elements for electromagnetics - this paper proposes a new class

of hierarchical mixed-order TVFE for solving various boundary value problems [16].

e Hierarchical tangential vector finite elements for tetrahedra - higher order
basis function for tetrahedra are presented in this paper as a natural extension of

2D basis function for a a triangle [8].

e Accurate and efficient simulation of antennas using hierarchical mixed-
order tangential vector finite elements for tetrahedra - the efficiency of an-
tenna modeling when both lower and higher order elements are used is demonstrated

in this paper [17].

e Condition numbers for various FEM matrices - the analysis of the system con-
dition arising when different interpolatory and hierarchical TVFEs are used within

the contex of finite element is provided in this paper [18].
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Development and Application of a Novel
Class of Hierarchical Tangential Vector Finite

Elements for Electromagnetics

Lars S. Andersen and John L. Volakis

Radiation Laboratory,
Department of Electrical Engineering and Computer Science,
University of Michigan,
Ann Arbor, MI 48109-2122, USA

Abstract

Tangential vector finite elements (TVFEs) overcome most of the shortcomings of
node based finite elements for electromagnetic simulations. For a triangular element,
this paper proposes a class of hierarchical TVFEs that differ from traditional TVFEs.
The hierarchical nature of the proposed TVFEs makes them ideally suited for employ-
ing an efficient selective field expansion (the lowest order TVFE employed within part
of the computational domain and a higher order TVFE employed within the remain-
ing part of the computational domain). This is an attractive feature not shared by
non-hierarchical TVFEs for which a more traditional approach (the same TVFE em-
ployed throughout the computational domain) must be applied. For determining the
scattering by composite cylinders, this paper argues that the performance (in terms of
accuracy, memory and, in most cases, CPU time) of the proposed class of hierarchical
TVFEs when applying selective field expansion is superior to that of the lowest order
TVFE and a traditional mixed-order TVFE. This is the case when an artificial ab-
sorber as well as a boundary integral is used for truncating the computational domain.
A guideline is given as to how lowest and higher order TVFEs shall be combined for

optimal performance of the proposed class of hierarchical TVFEs.



1 Introduction

Node based expansions in finite element method (FEM) solutions are suitable for modeling
scalar quantities but typically not so for simulating vector electromagnetic fields. When
assigning vector field values to element nodes, values may need to be specified at locations
where the true field is undefined (corners, edges), spurious modes can be generated and the
enforcement of the boundary conditions occurring in electromagnetics can be a challenging
task. Tangential vector finite elements (TVFEs) based on expanding a vector field in terms
of values associated with element edges have been shown to be free of these shortcomings [1]

and therefore TVFEs are of considerable practical interest.

A TVFE is referred to as polynomial-complete to a given order, say n, if all possible
polynomial variations up to and including order n are captured within the element and on
the element boundary. If a TVFE captures polynomial variations of order n interior to the
element and polynomial variations of order n — 1 on the element boundary, it is referred
to as polynomial-complete to order n — 7. For a triangular element, polynomial-complete

expansion to order %, 1 and 2 requires 3, 6 and 12 vector basis functions, respectively.

Nédélec pointed out [2] [3] that it is not necessarily advantageous to employ polynomial-
complete TVFEs when applying the FEM. It was proven that a polynomial-complete ex-
pansion of a vector field A can be decomposed into a part representing the range space of
the curl operator (V x A # 0, A # V@) and a part representing the null space of the curl
operator (V x A =0, A = V). For representation of electromagnetic fields, it suffices to
employ a TVFE that is complete in the range space of the curl operator. Such a TVFE is
referred to as a mixed-order TVFE or (less commonly) a reduced-order TVFE. For rigor-
ous criteria for spurious mode elimination and extensive discussions of mixed-order TVFEs
versus polynomial-complete TVFEs, see [2] [3]. For discussions of element completeness and
spurious modes for TVFEs, see also [4] [5] [6] [7].

A class of TVFEs is referred to as hierarchical if the vector basis functions forming the
nth order TVFE are a subset of the vector basis functions forming the (n+1)th order TVFE.
This desirable property allows for selective field expansion using different order TVFEs in
different regions of the computational domain. Hence, lowest order TVFEs can be employed
in regions where the field is expected to vary slowly whereas higher order TVFEs can be

employed in regions where rapid field variation is anticipated. This selective choice of TVFEs



over the computational domain can lead to a memory and CPU time reduction as well as
improved accuracy. Scalar FEM analysis using hierarchical finite elements is a well-known

approach, see for example [8] [9].

For a triangular element, the lowest order TVFE was originally introduced by Whitney
[10] and is referred to as the ‘Whitney TVFE’ or the ‘Whitney element’. It provides a
constant field value along element edges and a linear field variation inside the element. Hence,
the Whitney TVFE is complete to order 7. Several non-hierarchical TVFEs of higher order
than the Whitney TVFE have been introduced by Mur and de Hoop [11], Lee et al. [12]
and Peterson [13]. Recently, Carrié and Webb [14] presented a hierarchical TVFE derived
directly from a set of scalar finite element basis functions [9]. A hierarchical TVFE for a
tetrahedral element (the special case of a triangular element follows trivially from the case
of a tetrahedral element) up to and including second order was introduced by Webb and
Forghani [15]. Recent reviews of TVFEs have been given by Peterson and Wilton [7] and by
Graglia et al. [16].

The discussion above presents the concepts of polynomial-complete, mixed-order and hi-
erarchical TVFEs and summarizes different TVFEs that have been proposed for a triangular
element. However, hierarchality has never been exploited for TVFEs for a triangular ele-
ment to numerically clarify whether selective field expansion using hierarchical TVFEs is
an advantageous approach. The purpose of this paper is to introduce a class of hierarchical
TVFEs for a triangular element and to demonstrate its performance when a selective field
expansion is employed. The hierarchical TVFEs differ from those previously presented for
a triangular element. The derivation is based on an attractive set of higher order vector
basis functions recently presented by Popovi¢ and Kolundzija [17] [18] for expanding surface
currents in conjunction with method of moments (MoM) solutions. We demonstrate the per-
formance of the proposed class of hierarchical TVFEs by comparing FEM results obtained
using the Whitney TVFE and the proposed hierarchical TVFEs (applying a selective field

expansion) to MoM solutions.

The structure of this paper is as follows. Section 2 presents the derivation of the proposed
class of TVFEs based on the expansion introduced by Popovi¢ and Kolundzija . Section 3
discusses the merits of the proposed TVFEs and compares them to existing TVFEs. Ex-
pressions in terms of simplex coordinates are given and vector plots are added to provide

a physical understanding of the TVFEs. Section 4 presents a set of numerical results that



demonstrate the performance of the proposed class of hierarchical TVFEs. Section 5 sum-
marizes and concludes the paper and outlines future work to be carried out. Parts of this

work were presented earlier [19].

2 Derivation of a class of hierarchical TVFEs

The proposed class of hierarchical TVFEs is based on an expansion introduced by Popovic
and Kolundzija [17] [18] for the surface current on a perfectly electrically conducting (PEC)
generalized quadrilateral. For this expansion, it is demonstrated in [17] [18] that the sur-
face current can be expanded using approximately ten unknowns per square wavelength as
opposed to approximately one hundred unknowns per square wavelength for traditional sub-
domain pulse basis functions. This suggests that the expansion introduced by Popovic¢ and
Kolundzija is very efficient and below we convert it to a class of TVFEs for a triangular

element.

As a degenerate case of the generalized quadrilateral considered in [17] [18], we consider
a triangular element with nodes 1, 2 and 3 described by position vectors ry, ro and r3 with
respect to the origin O of a rectangular coordinate system, see Fig. 1. The edges from node
1 to node 2, node 2 to node 3 and node 3 to node 1 are referred to as edge #1, edge #2
and edge #3, respectively. The area of the triangle is denoted by A. Simplex (or area)
coordinates (y, (; and (3 at a point P described uniquely by a position vector r are defined
in the usual manner, viz. (, = A, /A where A, denotes the area of the triangle formed by P
and the endpoints of the edge opposite to node n. We let n denote a unit normal vector to

the surface of the triangle.

Popovi¢ and Kolundzija expands the surface current J; over the triangle as [17]

3 3
Js :Zan:Z\I}nvn (1)
n=1 n=1

where
r—r,
= 2)

is a vector whose direction is from node n to P and ¥, is a polynomial function of position
that provides the amplitude variation of the vector current component J,, = ¥,V,. The

polynomial ¥, contains a number of unknown expansion coefficients. Its specific form is



irrelevant at this point and will be given later. As in the Rao-Wilton-Glisson expansion [20],
Js, has no normal component along the two edges sharing node n and J, has both a normal

and a tangential component along the edge opposite to node n. Thus, the quantity

By =i x Dy = Uyt x V= 0, T g gy (3)
24
with - )
Ax(r—r,
w, = X r=r) 4
54 (4)

has no tangential component along the two edges sharing node n and has both a tangential
and a normal component along the edge opposite to node n. This suggests that the vector
basis functions multiplying the expansion coefficients in the expansion of F,, can be employed
as vector basis functions for the edge opposite to node n when applying the FEM. Considering

all three edges, the FEM expansion of an unknown vector quantity F becomes

3 3 3
F=axJ,=) aixJy=) F.=) U, W, (5)
n=1 n=1 n=1

where expressions for ¥,, (depending upon the order of the expansion) and W, (independent

of the order of the expansion) are to be presented.

Introducing coordinates over the triangle and using relations from [17], it is shown in

Appendix A that

Wi =(GVE -GV (6)
W, =GVEa -GV (7)
Wi =GV -GV (8)

The polynomial ¥, is a function of position that in terms of a number of unknown expansion
coefficients provides the amplitude variation of the vector component W,,. It can be defined
using normalized coordinates u, and v, over the triangle. Specifically, we choose u, = 0 at
node n, u, =1 along the edge opposite to node n and v, = 1 along the two edges sharing

node n. From [17], we have

b =2 [bz;+ a:'z‘(u;-?—n} o



where n, and n, are integer constants determining the order of the approximation and &’
and a¥ are the expansion coeflicients. Also, uy = (o + (3, wivr = G — G5, uz = (3 + (1,

ugvy = (3 — (1, us = (1 + 2 and uzvs = (1 — (.

The expansion (5) for F along with the expressions (6)-(8) for W1, W5 and W3 and the
expression (9) for U, describes the proposed class of TVFEs. However, a certain simplifica-
tion provides a more familiar form. By regrouping the terms in (9) for W, the expansion

(5) for F can be cast into
Nnvnu

3
F=Y Y quwpe (10)
k=1 m=1

where N™" = n,(n, —1) denotes the total number of vector basis functions per edge for the
given values of n, and n,. Also, ¢ are expansion coefficients corresponding to edge #k
while W "™ are vector basis functions associated with edge #k. Wt is given (in terms of
the simplex coordinates (i, (; and (3) as a function of (;, (; and (3 times a direction vector
(G1VG — VG for k=1, (V3 — 3V, for k =2 and 3V — V(s for k = 3). Except

for normalization constants, the vector basis functions W;*"* form the proposed class of

TVFEs. Each choice of n, and n, gives a different set of vector basis functions WZ”;:“ and

thereby a different TVFE.

3 Discussion and comparison to traditional TVFEs

In this section, we examine the properties of the TVFEs introduced in the previous section

and contrast them to those of traditional TVFEs.

From (10), it is seen that the total number of vector basis functions employed for expand-
ing a vector field over a triangular element is 3N™"™ = 3n,(n, — 1). For (n,,n,) = (1,2),
we have 3JN™" = 3. This is the number of vector basis functions required for the lowest
order polynomial-complete expansion (complete to order %) over a triangular element. For
other values of n, and n,, the expansion (10) can contain vector basis function of higher
order than that to which the element is complete. Note, however, that this does not imply
that the expansion (10) is not a polynomial-complete expansion. All polynomial variations
to a given order are represented for properly chosen n, and n,. In addition, polynomial

variations of higher orders may be represented and can be excluded if so desired.

From (10), we recover for (n,,n,) = (1,2) the lowest order TVFE introduced by Whitney



and characterized by three vector basis functions. For larger values of n,, and n,,. the proposed
TVFEs include additional vector basis functions all of which maintain the same fundamental
direction vectors ((;V(; — (oV(; for edge #1, (V{3 — (3V(, for edge #2 and GV — (VG
for edge #3). Thus, the proposed higher order vector basis functions differ from the lowest
order vector basis functions only in magnitude and hence in a given point of the triangle,
the field is represented as a linear combination of vector basis functions having only three
fundamental directions. This is one of the major differences between the proposed and
traditional TVFEs. For the latter, the higher order vector basis functions differ from the
lowest order vector basis functions in both magnitude and direction. The field in a given
point of the triangle is again represented as a linear combination of vector basis functions

but in this case the number of fundamental vector directions used for representing the field

grows with the order of the TVFE.

An important property of the proposed TVFEs is that the vector basis functions W7*™

kym

k=1,2,3, m=1,---,N™" are a subset of the vector basis functions W,(:;H)(n"ﬂ), k=1,2,3,
m=1,--- N+t - This shows that the proposed TVFEs are hierarchical, a very de-
sirable property. Hierarchical TVFEs are ideally suited for employing an efficient selective
field expansion where different order TVFEs (in this case different values of n, and n,) are
employed in different regions of the computational domain. Hence, for a uniform mesh, the
lowest order TVFE can be employed in regions where the field is expected to experience
smooth variation (regions where the relative material parameters are (nearly) unity, away
from edges, etc.) whereas a higher order TVFE can be employed in regions where the field
is expected to vary rapidly (near edges, close to material boundaries, in dense materials,
etc.). Similarly, for a non-uniform mesh (for example where geometric complexity requires
detailed meshing in a given region), the lowest order TVFE can be employed where the mesh
is dense while a higher order TVFE can be employed where the mesh is coarse. Regions
where higher order TVFEs are employed can be fixed a priori or an adaptive scheme can be
developed where lowest order TVFEs are initially employed throughout the computational
domain and higher order TVFEs are subsequently employed in regions where the error is

estimated to be large.

Below, we examine the TVFEs given by the expansion (10) for different values of n, and
n, and compare them to traditional TVFEs. Explicit expressions for some of the vector

basis functions discussed here are given in Appendix B.



For the special case of (n,,n,) = (1,2), we obtain a set of three vector basis functions
W%, k=1,2,3, forming a TVFE identical to the Whitney TVFE [10], see Appendix B. This
result was expected since the lowest order expansion adopted by Popovi¢ and Kolundzija
is identical to the Rao-Wilton-Glisson expansion [20] whose vector basis functions reduce
to the Whitney vector basis functions when converted using the procedure applied above.
This lowest order TVFE provides a constant tangential field along element edges, a linear
variation of the normal field component along element edges (referred to as CT/LN field

variation along element edges) and a linear field variation interior to the element.

A traditional second order polynomial-complete TVFE is described by twelve vector
basis functions, see [5]. However, by excluding the four vector basis functions associated
with the null space of the curl operator, this second order polynomial-complete TVFE can
be reduced to a mixed-order TVFE [2] [3] formed by eight vector basis functions as presented
by Peterson [13], see Appendix B. The latter provides a linear variation of the tangential
field component along element edges, a quadratic variation of the normal field component
along element edges (referred to as LT/QN field variation along element edges) and quadratic
field variation interior to the element. To compare Peterson’s mixed-order TVFE to one of
the proposed TVFEs, the TVFE corresponding to (n,,n,) = (2,3) is also reduced to eight
vector basis functions providing LT/QN field variation along element edges and quadratic

field variation interior to the element, see Appendix B.

Peterson’s mixed-order TVFE [13] has the desirable property of being complete to second
order in the range space of the curl operator. This property ensures a complete second order
expansion of a field with non-zero curl and guarantees eigenvalue solutions free of spurious
non-zero eigenvalues. Due to the existence of a linear transformation (see Appendix B)
from Peterson’s eight vector basis functions to the proposed eight vector basis functions, the
proposed eight vector basis functions form a mixed-order TVFE that has the same desirable
property. However, the two TVFEs are not identical. Their vector basis functions span the

same space but have different properties and may not be equally efficient numerically.

For both mixed-order TVFEs, six of the vector basis functions provide a linearly varying
tangential component along element edges while the remaining two vector basis functions
(identical for the two different TVFEs) provide a quadratic variation of the normal field
component along element edges. However, the linear variation of the tangential component

along element edges is obtained in two different ways. For Peterson’s mixed-order TVFE,



the two unknowns per edge represent the magnitude of the field at edge endpoints. For the
proposed mixed-order TVFE, the two unknowns per edge represent the average field value

along the edge and the deviation from this average value at edge endpoints.

To pictorically illustrate the behavior of the proposed vector basis functions, we consider
a triangular element where the nodes 1, 2 and 3 have the coordinates (0, 0), (1,0) and (0,1) in
a rectangular (z,y) coordinate system. The lowest order vector basis function (V{5 — {3V (;
associated with edge #2 is plotted in Fig. 2. For the proposed mixed-order TVFE, the
linear variation of the tangential field along edge #2 is provided by (;V(3—(3V(; (due to the
hierarchical nature of the proposed class of TVFEs) and by ((;—3)((2V{5—(3V(;) plotted in
Fig. 3. For Peterson’s mixed-order TVFE, the linear variation of the tangential field along
edge #2 is provided by (;V (3 and by (3V(; individually, see Fig. 4 and Fig. 5, and this
mixed-order TVFE therefore does not compare to the lowest order TVFE in a hierarchical
fashion. The two vector basis functions providing quadratic normal field variation along
element edges are the same for the two mixed-order TVFEs. The vector basis function
(1((V (¢ — (3V(y) associated with edge #2 (zero field along edge #2) is plotted in Fig 6.

All vector basis functions are seen to provide the desired variation.

For TVFE orders higher than (n,,n,) = (2,3), a similar procedure can be followed. A
proposed TVFE can again be reduced to form a hierarchical mixed-order TVFE differing
from (but spanning the same space as) a traditional mixed-order TVFE. The principle is
similar but the procedure becomes more cumbersome and such TVFEs shall not be explicitly

examined in this paper.

4 Numerical results

In the previous section, properties of the proposed TVFEs were examined. Specifically, the
lowest order TVFE (corresponding to (n,,n,) = (1,2), see also [10]), Peterson’s mixed-
order TVFE [13] and the proposed mixed-order TVFE (corresponding to (n,,n,) = (2,3)
and reduced from twelve to eight vector basis functions) were compared. It is the aim of
this section to numerically demonstrate the performance of the proposed class of hierarchi-
cal TVFEs when the field is selectively expanded using the lowest order TVFE in part of
the computational domain and the proposed mixed-order TVFE in the remaining part of
the computational domain. A guideline will be given as to how lowest and higher order

TVFEs shall be combined for optimal (with respect to accuracy, memory and CPU-time)



performance.

A FEM computer code was developed to evaluate the scattering of a transverse electric
(TE) or transverse magnetic (TM) polarized plane wave by an arbitrary infinite cylinder
composed of PECs and isotropic dielectric and/or magnetic materials. The code is based
on a standard FEM formulation for two-dimensional problems where the transverse field
component is expanded using a TVFE and the solution domain is truncated using a homo-
geneous isotropic artificial absorber (AA) (a fictitious material of relative permittivity and
permeability 1 — j2.7 backed by a PEC structure) of thickness 0.25) (Ao denotes the free
space wavelength) placed a distance 0.5)g from the scatterer [21]. The resulting sparse FEM
matrix equation system is solved using a quasi minimal residual solver [22]. For validation,
MoM results were successfully compared to FEM results using each of the three TVFEs

individually as well as the two different TVFEs selectively over the computational domain.

Let us consider a square PEC cylinder of side length Aq situated in a free space region
characterized by the permittivity eo and the permeability po. Centered on the upper side
of the cylinder is a rectangular groove of length Ao/2 and of height A\g/4. The groove is
filled with a material characterized by the relative permittivity e, = 2 — 72 and the relative
permeability i, = 2 — j2. The cylinder is illuminated by a TE (with respect to the cylinder
axis) polarized homogeneous plane wave whose propagation vector forms a 45° angle with

all sides of the cylinder, as illustrated in Fig. 7.

In the following, we compare the scattering by the cylinder using different TVFE options
and different uniform discretizations to demonstrate the merits of the proposed TVFEs when
the field is selectively expanded over the computational domain. In Fig. 8, we compare results
for the two-dimensional radar cross section (RCS) o3_p normalized to Ay as a function of
the observation angle ¢ *. The MoM result is denoted ‘MoM’. For a mesh where the generic
element edge size is 0.15)g, the FEM result using the lowest order TVFE is denoted ‘FEM -
1 TVFE - Coarse’ and the FEM result using selective field expansion (with the groove and a
layer surrounding the scatterer as the region in which the mixed-order TVFE is employed)
is denoted ‘FEM - 2 TVFEs - Coarse’. For a mesh where the generic element edge size is
0.1Xg, the FEM result using the lowest order TVFE is denoted ‘FEM - 1 TVFE - Dense’.

The ‘FEM - 1 TVFE - Coarse’ result is seen to compare reasonably well with the exact

1¢ = 45° corresponds to backscatter and ¢ = 225° corresponds to forward scattering, see Fig. 7.
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MoM result. However, discrepancies can be seen and this is not surprising since the mesh
is relatively coarse. For the denser mesh, the ‘FEM - 1 TVFE - Dense’ result shows a
slight improvement. However, by keeping the original mesh and employing the proposed
mixed-order TVFE close to the scatterer where the field can be expected to vary rapidly
and accurate modeling is therefore necessary, the ‘FEM - 2 TVFEs - Coarse’ result shows a
significant improvement. It matches the MoM result exactly except in regions surrounding
nulls and it was obtained using less computational resources (less unknowns, less non-zero
matrix entries and less matrix solution time) than the ‘FEM - 1 TVFE - Dense’ result.
In conclusion, we observe selective field expansion to be superior to the more traditional

approach of using a denser mesh and the same TVFE throughout the computational domain.

We now consider a slightly different cylinder geometry by introducing a slab of length Aq
and height A\o/4 on top of the cylinder. As depicted in Fig. 9, the groove is filled with free
space and the slab has the relative permittivity ¢, = 2 — 52 and the relative permeability
tr = 2 — j2. For the same illumination as before, results similar to those in Fig. 8 are given
in Fig. 10 and they reinforce the conclusions from the previous case : The ‘FEM - 1 TVFE
- Coarse’ result compares reasonably well with the exact MoM result and the ‘FEM - 2
TVFEs - Coarse’ result is, though found using less computational resources than the ‘FEM -
1 TVFE- Dense’ result, significantly more accurate than the ‘FEM - 1 TVFE - Dense’ result.

Explicit parameter values quantifying the computational savings for the results in Fig. 8
and Fig. 10 are given in Tab. 1 and Tab. 2, respectively. In both cases, improved accuracy

is obtained for less non-zero matrix entries (i.e., less memory) and less solution time.

To test the validity of the reported observations for an alternative mesh truncation
scheme, the FEM code was modified to use a boundary integral (BI) for truncating the
finite element mesh. Where the AA mesh truncation scheme is approximate, the BI is (at
least until discretized and coupled with a FEM system) exact and hence it is attractive for
truncating finite element meshes. For our test, the integral contour is situated a slight dis-
tance away from the scatterer so that a piecewise constant (lowest order) expansion can be
employed for discretizing the BI. As illustrated in Fig. 11, we consider a rectangular PEC
cylinder of width 3A and height 0.25)\; covered by a dielectric material of width 3)\¢ and
height Ay whose relative permittivity is e, = 2 — j0.5. On top of the dielectric is a grating
structure of height 0.25A, consisting of three PEC strips of lengths 0.75)¢, 0.5 and 0.75)¢,

respectively, separated by dielectric inserts of length 0.5\¢ having the relative permittivity

11



e, = 10. A structure of this type (but of different size and different material composition)
is of practical interest for guiding electromagnetic waves and below we demonstrate how a
selective field expansion can lead to accurate modeling of the fields in and near the grating
structure and hereby accurate prediction of the scattered field. The structure is situated in
free space and illuminated as the previous two cylinders. Results similar to those in Fig. 8
and Tab. 1 are given in Fig. 12 and Tab. 3. The results again reinforce the conclusions re-
ported above, except that the matrix solution time for the ‘FEM - 2 TVFEs - Coarse’ result
is larger than that for the ‘FEM - 1 TVFE - Dense’ result. This fact is due to the condition
number of the resulting FEM-BI equation system and might change if a different iterative
solver had been applied. Further, we note that the pre-processing time is significantly larger
for the ‘FEM - 1 TVFE - Dense’ result than the ‘FEM - 2 TVFEs - Coarse’ result due to
the larger BI system. This must be kept in mind when interpreting Tab. 3.

We note that at least two other approaches could be utilized for improving the accuracy
of FEM results. For example, higher order TVFEs (either Peterson’s mixed-order TVFE or
the proposed mixed-order TVFE) could be applied throughout the computational domain.
This approach was tested and the two mixed-order TVFEs gave similar and accurate results
but could not measure up with the selective approach in terms of computational resources.
Alternatively, non-uniform meshing could be utilized. However, this could be employed for
all the TVFE options described in this paper and was therefore not tested. Moreover, mesh
regeneration for improved solution accuracy is not an attractive option. Nevertheless, it is
reasonable to assume that this approach would lead to accurate results with a denser mesh

close to the scatterer where the field is expected to vary rapidly.

5 Conclusions and future work

We introduced a class of hierarchical TVFEs for FEM discretization. The properties of the
proposed class of TVFEs were discussed and a comparison to those of traditional TVFEs
was given. A set of numerical results were presented that demonstrate the effectiveness of
the proposed class of hierarchical TVFEs when the computational domain is selectively dis-
cretized using the lowest order TVFE in part of the domain and a mixed-order TVFE in the
remaining part of the domain. Hence, the computational domain can initially be discretized
using lowest order TVFEs and the accuracy of the solution can then be improved by selec-
tively superimposing more vector basis functions where rapid field variation is anticipated,

l.e. in regions near edges, near material boundaries, in dense dielectrics etc.
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Although the class of hierarchical TVFEs was presented for a triangular element, the
approach has the potential to be more general. The derivation of a class of hierarchical
TVFEs for a generalized quadrilateral and, as a special case, a curved triangle would again
begin with a suitable polynomial expansion for a surface current as presented by Popovi¢ and
Kolundzija . Such elements conform well to almost all geometries and are thus attractive for

FEM discretization. Further, corresponding three-dimensional elements could be developed.
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Appendix A

In this appendix, explicit expressions for Wi, W, and W3 are derived.

To derive an expression for Wy, we introduce two coordinates (uy,v;) over the triangle.
These are degenerates of similar coordinates for a generalized quadrilateral [17]. Their ranges
are Upmin < U < Upge and Vpip < V1 < Vg Where Uy = Upin, W1 = Umazy, V1 = Umin
and v; = v are constant coordinate lines describing the boundary of the generalized
quadrilateral. For a triangular element (which is a degenerate generalized quadrilateral), we
let v; = —1 along edge #3, v; = 1 along edge #1, u; = 0 at node 1 and u; = 1 along edge

#2. Using these coordinates, the position vector r defining P can be expressed as [17]

r'=T1 4 U Ly, + Uy Ty, (11)
where .
Fuy = 5l(e 1) 4 (12— 1) (12
1
| §(r2 —r3) (13)

Further, u; and v; can be shown to be related to the simplex coordinates (i, (; and (3 via

Uy = 4'2 + Cg (].4)
GG
e G2+ G3 (13)

From (4) for n = 1, trivial algebra then leads to

W, =GVE-GVE (16)

To derive expressions for Wy and W3, we can similarly introduce coordinates (ug,vq) and
(u3, v3) where vy 3 = £1 along the two edges shared by node 2,3, uz3 = 0 at node 2,3 and

uz3 = 1 at the edge opposite to node 2,3. The algebra is similar and we arrive at

uy = (34 (3 (17)
_G-G

" G+G (18)

W2 =GVEa -GV (19)
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uz = (1 + G2 (20)

G =G
"= G+ ¢ (21)
W3 =(VE-0GVa (22)

Appendix B

In this appendix, explicit expressions for the vector basis functions discussed in section 3 are

presented. The basis functions are not normalized.

The Whitney TVFE

The Whitney TVFE is characterized by the three vector basis functions

Wi =0V —6VG (23)
W) = (V- (VG (24)
W = GVEaG -GV (25)

Peterson’s mixed-order TVFE

Peterson’s mixed-order TVFE is characterized by the eight vector basis functions

Wi=aV(, (26)
W3 =(VG (27)
Wi =0V (28)
Wi=GVG (29)
Wi = V( (30)
We =GV (31)
W2 =GGYVE - 6VaQ) (32)
Wi = G(GVG - GVE) (33)
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The proposed mixed-order TVFE

The proposed mixed-order TVFE is characterized by the eight vector basis functions

Wi =0VE -GV (34)

W3 = (VG - (VG (35)

W3 =GVa -GV (36)

W3 = (G- )GV - GVG) (37)
W3 = (G~ G)GYVE - 6VE) (38)
Wi = (G = )GV -G Vi) (39)
W2 =G(GVE ~-6VG) (40)
Wi = GGV = GYE6) (41)

Transformation between mixed-order TVFEs

The traditional mixed-order TVFE presented by Peterson [13] and the proposed mixed-order
TVFE presented in this paper are related through a simple linear transformation. Let [Wf]
be a column vector containing Peterson’s eight vector basis functions W?, g =1,---,8,
and [W?] be a column vector containing the proposed eight vector basis functions W3,
¢t =1,---,8. The relationship between the two sets of vector basis functions is then given by

the matrix equation

(W7 = [Ay][W]] (42)

where [A;;] is the sparse 8 x 8 transformation matrix

(1 =10 000 0 0]
00 11020 0 0
00 00 1 -1 0 0
11000 0 1 2
Ad=10 0 11 0 0 —2 (43)
00 00 1 1 1 —1
000000 1 0
0000000 0 1|
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Figure 1. Geometry of a triangular element and illustration of the vectors 7 x (r —r,),
n=1,2,3, describing the directions of the vector basis functions at the point P.

Figure 2: Plot of the proposed vector basis function (; V(3 — (3V(, for a triangular element.
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Figure 3: Plot of the proposed vector basis function ({3 — (3)((2 V(3 — (3V(2) for a triangular
element.
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Figure 4: Plot of the traditional vector basis function (; V(3 for a triangular element.
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Figure 5: Plot of the traditional vector basis function (3V(, for a triangular element.

Figure 6: Plot of the vector basis function (3((;V {5 — (3V(2) for a triangular element.
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Figure 7: Coated square cylinder with crack and illuminated by TE polarized plane wave.
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Figure 11: Grating structure on top of a grounded dielectric and illuminated by TE polarized
plane wave.
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FEM Code Unknowns | Non-zero mat. entries | Mat. solution time | RMS error
1 TVFE - Coarse mesh 811 3955 9 seconds 3.8657 dB
1 TVFE - Denser mesh 3977 19664 111 seconds 2.1059 dB
2 TVFEs - Coarse mesh 1070 7292 21 seconds 1.5614 dB

Table 1: Comparison of relevant parameters for the three FEM results in Fig. 8.

FEM Code Unknowns | Non-zero mat. entries | Mat. solution time | RMS error
1 TVFE - Coarse mesh 900 4398 12 seconds 2.7353 dB
1 TVFE - Denser mesh 4469 22118 153 seconds 1.2883 dB
2 TVFEs - Coarse mesh 1280 9466 35 seconds 0.6290 dB

Table 2: Comparison of relevant parameters for the three FEM results in Fig. 10.

FEM Code Unknowns | Non-zero mat. entries | Mat. solution time | RMS error
1 TVFE - Coarse mesh 1230 19662 172 seconds 5.3980 dB
1 TVFE - Denser mesh 2421 43961 301 seconds 0.9807 dB
2 TVFEs - Coarse mesh 1716 25884 534 seconds 0.7705 dB

Table 3: Comparison of relevant parameters for the three FEM results in Fig. 12.
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Hierarchical Tangential Vector Finite

Elements for Tetrahedra
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Abstract

Tangential vector finite elements (TVFEs) overcome most of the shortcomings of
node based finite elements for electromagnetic simulations. Hierarchical TVFEs are of
considerable practical interest since they allow use of effective selective field expansions
where different order TVFEs are combined within a computational domain. For a
tetrahedral element, this paper proposes a set of hierarchical mixed-order TVFEs up to
and including order 2.5 that differ from previously presented TVFEs. The hierarchical
mixed-order TVFEs are constructed as the three-dimensional equivalent of hierarchical
mixed-order TVFEs for a triangular element. They can be formulated for higher orders

than 2.5 and the generalization to curved tetrahedral elements is straightforward.



1 Introduction

Tangential vector finite elements (TVFEs) based on expanding a vector field in terms of
values associated with element edges have been shown to be free of the shortcomings of node
based finite elements [I]. TVFEs are therefore of considerable practical interest. Nédélec
pointed out [2] [3] that it may not necessarily be advantageous to employ polynomial-
complete TVFEs when applying the finite element method (FEM). This lead to the in-
troduction of attractive mixed-order TVFEs. A set of TVFEs is referred to as hierarchical
if the vector basis functions forming the nth order TVFE are a subset of the vector basis
functions forming the (n + 1)th order TVFE and this desirable property allows for effective
selective field expansions combining different order TVFEs in different regions of the com-
putational domain. For a large class of electromagnetic problems, hierarchical mixed-order

TVFEs are therefore attractive for FEM discretization.

For a tetrahedral element, the lowest order TVFE was originally introduced by Whitney
[4]. It provides a constant tangential / linear normal (CT/LN) field along element edges and
a linear field at element faces and inside the element (complete to order 0.5). Mixed-order
TVFEs providing a linear tangential / quadratic normal (LT/QN) field along element edges
and a quadratic field at element faces and inside the element (complete to order 1.5) were
presented by Lee et al. [5], Webb and Forghani [6], Savage and Peterson [7] and Graglia et al.
[8]. Only the TVFE presented by Webb and Forghani compares to the Whitney TVFE in a
hierarchical fashion. Non-hierarchical mixed-order TVFEs providing a quadratic tangential
/ cubic normal (QT/CuN) field along element edges and a cubic field at element faces and
inside the element (complete to order 2.5) were presented by Savage and Peterson [7] (a

correction to this TVFE was recently given by Peterson [9]) and Graglia et al. [8].

Hierarchical mixed-order TVFEs for a tetrahedral element have only been proposed up to
and including order 1.5 [6] and these were written up by inspection. The purpose of this paper
is to propose a set of hierarchical mixed-order TVFEs for a tetrahedral element beyond order
1.5. Specifically, hierarchical mixed-order TVFEs are presented up to and including order
2.5 where the mixed-order TVFE of order 1.5 differs from the one presented by Webb and
Forghani [6]. We derive the hierarchical mixed-order TVFEs from existing non-hierarchical
mixed-order TVFEs for a tetrahedral element [7] [9] and existing hierarchical mixed-order
TVFEs for a triangular element [10] [11] in a systematic fashion that makes the proposed set

of hierarchical mixed-order TVFEs for a tetrahedral element the direct three-dimensional



equivalent of the set of hierarchical mixed-order TVFEs for a triangular element [10] [11].
Hierarchical mixed-order TVFEs for higher orders than 2.5 can be derived by modifying the
TVFEs proposed by Graglia et al. [8] and their extension to curved tetrahedral elements is

straightforward via a simple mapping, see for instance [8].

2 Formulation

We consider a tetrahedral element with nodes 1, 2, 3 and 4 as shown in Fig. 1. The volume
of the tetrahedron is denoted by V. Simplex (or volume) coordinates (;, (3, (3 and (4 at
a point P are defined in the usual manner, viz. (, = V,/V where V, denotes the volume
of the tetrahedron formed by P and the nodes of the triangular face opposite to node n.
Below, vector basis functions will be formulated in terms of these coordinates. Vector basis
functions associated with an edge or a face of the tetrahedron will be referred to as edge-
based or face-based vector basis functions, respectively. All other vector basis functions will

be referred to as cell-based vector basis functions.

A mixed-order TVFE of order 0.5 providing CT/LN variation along element edges and
linear variation at element faces and inside the element is characterized by 6 linearly inde-
pendent vector basis functions. Whitney initially presented 6 such vector basis functions
[4]. The three-dimensional equivalent of the two-dimensional CT /LN vector basis functions
presented in [10] [11] is identical to the vector basis functions presented by Whitney [4]. The

6 edge-based vector basis functions are !

GVG—GVEG 1<y (1)

A mixed-order TVFE of order 1.5 providing LT/QN variation along element edges and
quadratic variation at element faces and inside the element is characterized by 20 linearly
independent vector basis functions. Savage and Peterson [7] proposed the 12 edge-based

vector basis functions

Civ@' ) Z# ja (2)

The vector basis functions presented in this paper are not normalized. Furthermore, the indices i, j and
k in (1)-(12) are implicitly assumed to belong to the set {1,2,3,4}.



and the 8 face-based vector basis functions

GGV = GVG) } 1< j<k. (3)

GG VG = GV ()

The 20 linearly independent vector basis functions (2)-(3) do not compare to the Whitney
vector basis functions (1) in a hierarchical fashion. We propose to replace the 12 edge-based

basis functions (2) by

GV (G — GV } i< 0

(G = GIGVEG = GVG)
The 20 linearly independent vector basis functions (3)-(4) form a mixed-order TVFE of order
1.5 that compares hierarchically to the proposed mixed-order TVFE of order 0.5.

A mixed-order TVFE of order 2.5 providing QT/CuN variation along element edges
and cubic variation at element faces and inside the element is characterized by 45 linearly
independent vector basis functions. Savage and Peterson ? [7] [9] proposed the 18 edge-based

vector basis functions

G(2G —1)VG 17, (5)
CiCj(VCi - VCJ) ) 1 < j? (6)

the 24 face-based vector basis functions

Ce(2¢ = )GV = GVG) } <<k
GG = 1(GVEG-GVG) | ’

V(GGG) S 1<i<k, (8)
G(GVG=GVG) L i#T#k#d (9)

and the 3 cell-based vector basis functions

(2G(G V= GVG)
G(GVEG = GVQ) (10)
GGGV G = GVGQ).

The 45 linearly independent vector basis functions (5)-(10) do not compare to the Whitney

vector basis functions (1) in a hierarchical fashion. We propose to replace the 18 edge-based

?A correction of the QT/CuN vector basis functions initially proposed by Savage and Peterson [7] was
given by Peterson [9]. This corrected set is the one presented here.
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basis functions (5)-(6) by

GV =GV
(G = GGV = GVG) , 1< J. (11)
(G = GGG = ¢GVG)

Further, we propose to replace the 8 face-based vector basis functions (7) by

GGVEG = GVG) } i<j<k (12)

GG VG =GV )

The 45 linearly independent vector basis functions (8)-(12) form a mixed-order TVFE of
order 2.5 that compares hierarchically to the proposed mixed-order TVFEs of order 0.5 and
L.5.

The vector basis functions (1), (3)-(4) and (8)-(12) form a set of hierarchical mixed-order
TVFEs of orders 0.5, 1.5 and 2.5, respectively. Such a set offers several advantages over non-
hierarchical mixed-order TVFEs, especially for FEM solution of electromagnetic problems
where the field varies non-uniformly over the computational domain. In such cases, a lower
order TVFE can be employed in regions where the field varies smoothly whereas a higher
order TVFE can be employed in regions where the field varies rapidly thus leading to an

effective discretization of the unknown electromagnetic field.

3 Conclusions

For a tetrahedral element, we proposed a set of hierarchical mixed-order TVFEs up to and
including order 2.5. These differ from previously presented TVFEs and were constructed
as the three-dimensional equivalent of hierarchical mixed-order TVFEs for a triangular el-
ement. TVFEs for higher orders than 2.5 can be formulated in a similar manner and the

generalization to curved tetrahedral elements is straightforward.
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Abstract

Hierarchical mixed-order tangential vector finite elements (TVFEs) for tetrahedral
elements are attractive for accurate and efficient finite element method simulation
of complicated electromagnetic problems. They provide versatility in the geometric
modeling of physical structures, guarantee solutions free of spurious modes and allow
local increase of resolution by selective expansion of the unknown electromagnetic field,
i.e. by combination of mixed-order TVFEs of different orders within a computational
domain. For a realistic antenna radiation problem, this paper demonstrates that field
expansion using lowest and higher order hierarchical mixed-order TVFEs selectively is
vastly superior (in terms of accuracy, memory as well as CPU-time) to field expansion

using a lowest order mixed-order TVFE only.



1 Introduction

The finite element method (FEM) has proven attractive for simulation of complicated electro-
magnetic problems. Use of tetrahedral meshes provides versatility in the geometric modeling
of physical structures and field expansions based on mixed-order tangential vector finite ele-
ments (TVFEs) guarantee solutions free of spurious modes and provide for easy enforcement
of boundary conditions. Hierarchical mixed-order TVFEs (where the vector basis functions
forming a mixed-order TVFE of a given order are a subset of the vector basis functions
forming mixed-order TVFEs of higher orders) have the additional advantage of permit-
ting selective field expansion. That is, they allow for combination of mixed-order TVFEs
of different orders within a computational domain for efficient expansion of the unknown
electromagnetic field. This is relevant for simulating a large class of realistic electromag-
netic problems characterized by disjoint regions with high and low field variation. Thus,
FEM analysis with fields expanded using hierarchical mixed-order TVFEs for tetrahedral
elements is attractive for accurate and efficient solution of certain classes of electromagnetic
problems.

Hierarchical mixed-order TVFEs for tetrahedral elements have been proposed up to and
including order 1.5 by Webb and Forghani [1] and up to and including order 2.5 by Andersen
and Volakis [2, 3]. However, no test has yet been carried out that numerically demonstrates
the potential of selective field expansion for realistic electromagnetic problems. The purpose
of this paper is to do so using the hierarchical mixed-order TVFEs of order 0.5 and 1.5 for
tetrahedral elements proposed in (2, 3]. For eigenvalue computation, the convergence rate of
the hierarchical mixed-order TVFE of order 1.5 is shown to be comparable to that of a non-

hierarchical mixed-order TVFE of order 1.5 [4]. For a realistic antenna radiation problem,



field expansion using the hierarchical mixed-order TVFEs of order 0.5 and 1.5 selectively is
shown to be vastly superior (in terms of accuracy, memory as well as CPU-time) to field
expansion using the mixed-order TVFE of order 0.5 only.

This paper is organized as follows. Section 2 presents the hierarchical mixed-order TVFEs
of order 0.5 and 1.5 for tetrahedral elements that will be used for field expansion. Section 3

presents the numerical results. Section 4 concludes the paper.

2 Presentation of TVFEs

We consider a tetrahedral element with nodes 1, 2, 3 and 4. The volume of the tetrahedron
is denoted by V. Simplex (or volume) coordinates (;, (3, (3 and (s at a point P are deﬁned.
in the usual manner, viz. (, = V;,/V where V,, denotes the volume of the tetrahedron formed
by P and the nodes of the triangular face opposite to node n.

A mixed-order TVFE of order 0.5 providing constant tangential / linear normal variation
along element edges and linear variation at element faces and inside the element is charac-

terized by 6 linearly independent vector basis functions. Whitney [5] initially presented such

a TVFE. It is characterized by the 6 edge-based vector basis functions !

GVG-GVG i<y (1)

A mixed-order TVFE of order 1.5 providing linear tangential / quadratic normal variation
along element edges and quadratic variation at element faces and inside the element is

characterized by 20 linearly independent vector basis functions. Andersen and Volakis [2, 3]

' The vector basis functions presented in this paper are not normalized. Furthermore, the indices ¢, j and

k in (1)-(3) are implicitly assumed to belong to the set {1,2,3,4]}.



presented a mixed-order TVFE of order 1.5 that compares hierarchically to the mixed-order
TVFE of order 0.5 presented by Whitney [5]. In addition to the 6 edge-based vector basis

functions (1), it is characterized by the 6 edge-based vector basis functions

(G=GUGVG=GVG) i< (2)

and the 8 face-based vector basis functions
GGV = GVE)
GGG = GV &)

Li<j<k. (3)

3 Numerical results

The objective of this section is to numerically demonstrate the potential of the hierarchical
mixed-order TVFEs of order 0.5 and 1.5 proposed in (2, 3] and summarized above. The
eigenvalues of a homogeneous and isotropic rectangular cavity are determined numerically
for different uniform tetrahedral meshes to show that the convergence rate of the hierarchical
mixed-order TVFE of order 1.5 is comparable to that of a non-hierarchical mixed-order
TVFE of order 1.5 [4]. The input impedance (and hereby the resonant frequency) of a
probe-fed square metallic patch antenna backed by a dielectric-filled cavity recessed in an
infinite metallic ground plane is determined numerically for different uniform tetrahedral
meshes to show that field expansion using the hierarchical mixed-order TVFEs of order 0.5
and 1.5 selectively is vastly superior (in terms of accuracy, memory as well as CPU-time) to
field expansion using the mixed-order TVFE of order 0.5 only.

Consider a homogeneous, isotropic rectangular cavity of normalized dimensions 1 x0.75 x
0.5. The exact eigenvalues for this geometry are well-known [6]. A FEM solution for the
eigenvalues of the cavity is carried out for various uniform tetrahedral meshes of different
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average edge length with the hierarchical mixed-order TVFEs of order 0.5 and 1.5 used for
field expansion (for the formulation, see for instance [7]).

The convergence rate for the two cases is illustrated in Fig. 1 where the average error of
the first eight eigenvalues is plotted in percent as a function of the average edge length in
the mesh (log-log plot). The approximate distribution around a straight line suggests that
the average error decreases as z? for a decreasing average edge length. For the mixed-order
TVFE of order 0.5, the exponent is p = 2.37 which is slightly larger than the expected value
of 2 [4]. This is due to the very low average error 0.56% for the average edge length 0.175.
Similarly, for the hierarchical mixed-order TVFE of order 1.5, the exponent is p = 4.66 which
is again larger than the expected value of 4 [4] and the exponent p =v3.86 found in [4] for a
different and non-hierarchical mixed-order TVFE of order 1.5. This demonstrates that the
hierarchical mixed-order TVFE of order 1.5 in [2, 3] has slightly better convergence properties
than the non-hierarchical one in [4] for this particular geometry and for the employed meshes.
However, a relatively large uncertainty range can be expected for such numerically obtained
exponents and thus no general statement can be made regarding the rigor of results based
on the two different mixed-order TVFEs of order 1.5.

Consider a square metallic patch antenna backed by a rectangular cavity recessed in an
infinite metallic ground plane, as illustrated in Fig. 2 (side view) and Fig. 3 (top view). The
cavity-backed patch antenna is situated in free space characterized by the permittivity eo
and the permeability 9. The cavity is of dimensions 1.85 cm x 1.85 cm x 0.15 cm and filled
with a dielectric material of permittivity 10 &o and conductivity 0.0003 S/cm. The patch is
of side length 0.925 cm and centered in the cavity aperture. It is fed by a vertical coaxial

line whose outer conductor is attached to the ground plane and whose inner conductor is



attached to the patch at the mid point of an edge, as illustrated in Fig. 2 and Fig. 3. The
coaxial feed will be modeled as a vertical probe of constant current.

An almost identical antenna was considered by Schuster and Luebbers [8]. In [8], the
cavity walls and the ground plane was removed and a similar patch on a similar but finite
grounded dielectric substrate was analyzed using the finite difference time domain method.
In spite of these geometrical differences, the two antennas are expected to have nearly the
same input impedance and, consequently, nearly the same resonant frequency since the
dominant fields are confined to a volume under and in the near vicinity of the patch. The
resonant frequency was estimated in [8] to be 4.43 GHz. The resistance at resonance was
found to be 400 Q while the reactance was in the range of 230 2 to -170 Q close to resonance,

The patch antenna is analyzed using the finite element - boundary integral (FE-BI)
method (for the formulation, see for instance [7]). We discretize the cavity into tetrahedral
elements and consequently discretize the surface forming the boundary between the cavity
and free space into triangular faces. Two different TVFE options are applied. The first
TVFE option is to use the mixed-order TVFE of order 0.5 throughout the mesh. For a mesh
of average edge length 0.260 cm (Case 1), the input impedance is determined as a function of
frequency and the resonant frequency of the patch is predicted. The coarse discretization of
Case 1 means that this resonant frequency is most likely not accurate. For meshes of average
edge lengths of 0.188 cm (Case 2), 0.153 cm (Case 3) and 0.133 cm (Case 4), more accurate
resonant frequencies but also higher computational costs can be expected. The second TVFE
option is to use the mixed-order TVFE of order 1.5 close to the radiating edges (where we
expect high field variation) and the mixed-order TVFE of order 0.5 elsewhere (where we

expect little field variation). For the meshes of average edge length 0.260 cm (Case 5) and



0.188 cm (Case 6), the input impedance is again determined and the resonant frequency is
again predicted. The effectiveness of this approach (Case 5-6) in terms of accuracy / CPU-
time / memory requirements is compared to the previous one (Case 1-4). The six cases are
summarized in Tab. 1.

Real and imaginary parts of the input impedance as a function frequency are given in
Fig. 4 - 5 for Case 1-6 and corresponding resonant frequencies are provided in Tab. 1. For
Case 1-4, a larger and larger resonant frequency is observed as the mesh becomes denser and
denser. However, even for Case 4, the error as compared to the result obtained by Schuster
and Luebbers is quite large (2.98 %) for resonant frequency computation. Use of selective
field expansion (Case 5-6) leads to a significant accuracy improvement. Case 5 (error 2.42
%) gives a more accurate result than Case 1-4 and Case 6 (error 0.16 %) matches the result
by Schuster and Luebbers almost exactly. The computational cost (number of unknowns,
number of BI unknowns, number of non-zero matrix entries (memory usage) and CPU-time
per frequency point) to obtain these results are also given in Tab. 1. It is evident that the
second TVFE option corresponding to Case 5-6 is significantly more attractive than the first
TVFE option corresponding to Case 1-4. Case 5 gives a more accurate result than Case 4
but uses only 4.22 % of the memory and 2.15 % of the CPU-time that Case 4 does. The
accuracy of Case 6 is vastly superior to that of Case 4 and yet Case 6 uses only 14.88 % of

the memory and 10.02 % of the CPU-time that Case 4 does.



4 Conclusions

The potential of the hierarchical mixed-order TVFEs of order 0.5 and 1.5 for tetrahedral
elements proposed by Andersen and Volakis [2, 3] was demonstrated. For eigenvalue compu-
tation, the convergence rate of the hierarchical mixed-order TVFE of order 1.5 was shown to
be comparable to that of a non-hierarchical mixed-order TVFE of order 1.5 [4]. For a realis-
tic antenna radiation problem, field expansion using the hierarchical mixed-order TVFEs of
order 0.5 and 1.5 selectively was shown to be vastly superior (in terms of accuracy, memory

as well as CPU-time) to field expansion using the mixed-order TVFE of order 0.5 only.
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Average Time per
edge | Resonant # of | frequency
TVFE | length | frequency # of # of Bl | matrix point
Case | order(s) | [cm] [GHz] | unknowns | unknowns | entries [sec]
1 0.5 0.260 3.974 345 120 17119 7.52
2 0.5 0.188 4.147 817 288 89695 44.78
3 0.5 0.153 4.258 1489 528 291359 | 222.92
4 0.5 0.133 4.302 2361 840 725791 | 771.59
5 | 0.5/1.5 | 0.260 4.323 827 120 30675 17.33
6 | 0.5/1.5 | 0.188 4.437 1467 288 107963 | 77.28

Table 1: Computational effort for Case 1-6 for antenna in Fig. 2 and Fig. 3.
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Abstract

A study is presented that examines thoroughly the inter-relationships between condition
numbers of finite element method matrices based on various interpolatory and hierarchical
mixed-order tangential vector finite elements (TVFEs). The validity of the generally accepted
premise that interpolatory higher order TVFEs lead to better conditioned matrices than hier-
archical higher TVFEs is found to be questionable.

Introduction

Tangential vector finite elements (TVFEs) whose degrees of freedom are associated with element
edges, faces and cells have been shown to be free of the shortcomings of node based expansions [1].
A TVFE is referred to as polynomial-complete to a given order, say n, if all possible polynomial
variations up to and including order n are captured within the element and on the element boundary.
Nédélec pointed out [2] that for representation of electromagnetic fields it suffices to employ TVFEs
that are complete only in the range space of the curl operator, i.e. the space of fields having non-
zero curl. Since such a TVFE captures polynomial variations of order n interior to the element
and polynomial variations of order n — 1 for the tangential component along element edges, we
call it complete to order n — 0.5 and refer to it as a mixed-order TVFE. A TVFE is referred to
as interpolatory if the vector basis functions forming the TVFE interpolate to (tangential) field
values at discrete points within or on the boundary of the element. A class of TVFEs is referred
to as hierarchical if the vector basis functions forming the TVFE of a given order are a subset of
the vector basis functions forming the TVFEs of higher orders. This desirable property allows for
selective field expansion, i.e. combination of different order TVFEs within a computational domain
for effective discretization of the unknown field.

Linear equation systems resulting from application of the finite element method (FEM) are often
solved using one of several available iterative solvers which all perform relatively poorly (require
many iterations) when the FEM matrices are badly conditioned. This drawback makes it desirable
to construct FEM matrices having small condition numbers. It is generally accepted that higher
order TVFEs lead to larger condition numbers than the lowest order TVFE and that hierarchical
higher order TVFEs lead to larger condition numbers than interpolatory higher order TVFEs [3].
These are two premises that make selective field expansion using hierarchical higher order TVFEs
significantly less attractive.



TE formulation TM formulation
TVFE | Unnormalized | Normalized | Unnormalized | Normalized
Wh 3 3 5 6
Pe 428 90 479 149
Gr 144 37 144 61
An 402 43 451 72
We 827 71 926 101

Table 2: Condition numbers for global FEM matrices for rectangular waveguide.

E formulation H formulation
TVFE | Unnormalized | Normalized | Unnormalized | Normalized
Wh 8 12 23 31
Pe 2173 287 5939 958
Gr 684 99 1387 239
An 1834 195 5341 656
We 4238 472 11564 1414

Table 3: Condition numbers for global FEM matrices for rectangular cavity.
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The condition numbers of clement matrices based on the mixed-order TVFEs of order 1.5
developed by Graglia et al. [4] (interpolatory) and Webb and Forghani [5] (hierarchical) have been
studied before [3]. However, no study has been presented that examines more thoroughly the inter-
relationships between condition numbers of global FEM matrices based on various interpolatory
and hierarchical mixed-order TVFEs. [t is the aim of this paper to do so for the interpolatory
mixed-order TVFEs of order 1.5 developed by Peterson [6] (two-dimensional problems), Savage
and Peterson (7] (three-dimensional problems) and Graglia et al. [4] and the hierarchical mixed-
order TVFEs of order 1.5 developed by Andersen and Volakis (8, 9] and Webb and Forghani [5].
The study includes results for two- as well as three-dimensional problems, transverse electric (TE)
as well as transverse magnetic (TM) field formulation (two-dimensional problems), electric (E) as
well as magnetic (H) field formulation (three-dimensional problems) and unnormalized as well as
normalized vector basis functions.

This paper is organized as follows. First, vector basis functions for mixed-order TVFEs of order
0.5 and 1.5 for triangular and tetrahedral elements are reviewed. Subsequently, condition numbers
for FEM matrices based on various TVFE options are presented. Finally, conclusions are given.

Presentation of TVFEs

We consider a triangular element of area A with nodes 1, 2 and 3. Simplex coordinates (;, (; and
(3 at a point P are defined in the usual manner, viz. {, = A,/A where A, denotes the area of
the triangle formed by P and the nodes of the edge opposite to node n. Similarly, we consider a
tetrahedral element of volume V with nodes 1, 2, 3 and 4. Simplex coordinates (;, (2, (3 and (4 at
a point P are again defined in the usual manner, viz. (, = V,,/V where V;, denotes the volume of
the tetrahedron formed by P and the nodes of the triangular face opposite to node n.

Table 1 presents the vector basis functions characterizing the mixed-order TVFE of order 0.5
developed by Whitney [10], the interpolatory mixed-order TVFEs of order 1.5 developed by Pe-
terson [6] (two-dimensional problems), Savage and Peterson (7] (three-dimensional problems) and
Graglia et al. [4] and the hierarchical mixed-order TVFEs of order 1.5 developed by Andersen and
Volakis [8, 9] and Webb and Forghani [5]. The four mixed-order TVFEs of order 1.5 span the same
space, their difference is the form of the vector basis functions. The indices ¢, 7 and k in Table 1
are implicitly assumed to fulfil ¢ < j < k and belong to the set {1,2,3} for triangular elements
and the set {1,2,3,4} for tetrahedral elements. We note that the vector basis functions are not
normalized. To normalize them, each edge-based vector basis function must be multiplied by the
length of the edge it is associated with.

TVFE Vector basis functions
Order | Label Edge-based Face-based
05 | Wh GV - GG
1.5 Pe GV C(GVEG = GVG)

¢GVG GGV = GV ()
1.5 Gr | (3¢ = 1)(GVG = GVG) | Gl(GVE = (GVEG)
(3¢; = D(GVE = GVEG) | GGV G = GV )

1.5 An GVE = ¢V C(GVE = ¢GVEG)
(G = UGN = GVE) | GIGVEG =GV

1.5 We YT A%E G(GNCG - GVE)
GVE+ (VG GGV = GV ()

Table L: Definition of vector basis functions for five different TVFEs.



Condition numbers for various FEM matrices

Linear equation systems resulting from applicat'\ibn" of the FEM are often solved using one of several
available iterative solvers which all perform relatively poorly (require many iterations) when the
FEM matrices are badly conditioned. This is the case for (generalized) eigenvalue problems as
well as excitation problems. The drawback makes it desirable to use TVFEs that lead to global
FEM matrices having small condition numbers. However, given a TVFE, different applications
lead to structurally different global matrix systems and hence it is impossible to uniquely define a
global matrix whose condition number characterizes the TVFE for all applications. If we consider
a waveguide or a cavity with metallic walls, FEM analysis based on a given TVFE leads to element
matrix equations of the form

[A°){z°} = A*[B°}{z*} (1)

where each entry of [A°] is the integration of the dot product of the curl of two basis functions over
the element and each entry of [B¢] is the integration of the dot product of two basis functions over
the element. Assembly of element equations leads to a global matrix equation of the form

[Al{z} = X(B){z} (2)

The matrices [A°] and [A] are singular while [B°] and [B] are regular. In this work, we will perform
FEM analysis of waveguides and cavities with metallic walls based on different TVFEs and use
the condition number of [B] as an indicator of the matrix contitioning that the different TVFEs
lead to. We note that the condition number used in this work is the ratio of the maximum to the

minimum eigenvalue.

Consider a rectangular waveguide of normalized dimensions 1 x 0.5 discretized into 64 trian-
gular elements and a rectangular cavity of normalized dimensions 1 x 0.75 x 0.5 discretized into
130 tetrahedral elements. For TE as well as TM formulation (waveguide) and E as well as H
formulation (cavity), Table 2 and Table 3 give the condition number of the global FEM matrix
[B] for unnormalized as well as normalized vector basis functions. The higher order TVFEs are
seen to lead to much larger condition numbers than the lowest order TVFE. For interpolatory
TVFEs, the one by Graglia et al. leads to better conditioned matrices than the one by Peterson
(waveguide) / Savage and Peterson (cavity). For hierarchical TVFEs, the one by Andersen and
Volakis leads to better conditioned matrices than the one by Webb and Forghani. The hierarchical
TVFE by Andersen and Volakis leads to better conditioned matrices than the interpolatory TVFE
by Peterson (waveguide) / Savage and Peterson (cavity), especially when the vector basis functions
are normalized. The interpolatory TVFE by Graglia et al. leads to better conditioned matrices
than the hierarchical TVFE by Andersen and Volakis. We note that all conclusions for the global
matrix [B] in (2) also hold for the individual element matrices [B¢] in (1).

Conclusions

A study was presented that examined thoroughly the inter-relationships between condition numbers
of FEM matrices based on various interpolatory and hierarchical mixed-order TVFEs. The validity
of the generally accepted premise that interpolatory higher order TVFEs lead to better conditioned
matrices than hierarchical higher order TVFEs was found to be questionable. This is of importance
when performing selective field expansion using hierarchical higher order TVFEs.



