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Abstract

The introduction of fast integral techniques into the finite element-
boundary integral method is investigated in the report. The resulting finite
element— fast integral (FE-FI) method permits a reduction of the overall
computational requirements of the boundary integral down to O(N?) or
even down to O(Nlog(N)). Coupled with usual O(N) requirements of the
finite element technique, the FE-FI can permit an overall O(Nlog(N)) CPU
and memory requirement without degradation accuracy or convergence as
is the case with truncations based on the absorbing boundary conditions or
artificial absorbers.

Here, we consider the application of FE-FI methods for the planar and
doubly curved periodic arrays. Both, the fast multiple method (FMM) and

adaptive integral method (AIM) are considered.



1 Introduction

Fast integral equation methods were introduced in computational electromagnetics in the
early 1990s and have been shown effective in accelerating the computation of matrix-vector
products in iterative solvers. The Adaptive Integral Method (AIM) 1] and the Fast Multipole
Method (FMM) [2] belong to this class of fast integral solution techniques. Both AIM and
FMM reduce the solution time and memory requirement of the moment method solutions.

The application of hybrid finite element (FE) - fast integral (FI) methods to single anten-
nas and infinite periodic antennas (or frequency selective surfaces) is very attractive because
it provides full 3D modeling flexibility and exactness in mesh termination. Basically, the
finite element method is used to model the dielectric section of the unit cell (or antenna),
whereas the boundary integral provides a rigorous mesh truncation. This successful combina-
tion is unfortunately limited by the size of the problem, i.e. by the number of the unknowns
casted from its discretization (dominant influence comes from the boundary integral part).
To alleviate the CPU and memory botllnecks, acceleration and compression techniques, like
AIM and FMM can be used.

FMM achieves its CPU reduction by grouping the far-zone unknowns and interacting
their weighted contributions. In the case of AIM, the CPU reduction is achieved by map-
ping the original moment method (MM) discretization onto a rectangular grid and exploiting
the Toeplitz property of the Green’s function on this grid. That is, the Fast Fourier Trans-
form (FFT) is invoked to compute the matrix-vector products in the iterative solver. For
an arbitrary three dimensional body, a three dimensional FF'T is required. For planar radia-
tors, the dimensionality of the FFT is reduced by one, thereby significantly accelerating the

computation of the FFT.



In this report, we consider the implementation of AIM and FMM in connection with a
finite element-boundary integral solutions for single and periodic antennas and structures.
Although our formulation and discussion is on an antenna radiation, it can be easily ex-
tended to scattering. Chosen examples and geometries are both, flat and curved, and and
thus allow us to obtain some general conclusions. The report is organized as follows: In
section 2, we review some basic theoretical concepts for array modeling. In chapter 3, we
present results based on the AIM implementation. Annular slot cavity backed antennas and
infinite periodic array of strip dipoles are used as examples. The FMM theoretical concepts
and implementations are examined in chapter 4. Examples computations for cavity backed

antennas and arrays mounted on curved surfaces are given showing speed-up using the FMM.



2 Theory

2.1 FE-BI Formulation

The FE-BI formulation for cavity backed antennas recessed in a ground plane is well known
and is given in [3, 4, 5]. Bellow we present the corresponding formulation for periodic arrays.
The differences are in Green’s function, and in the necessity to apply periodic boundary
conditions at the volume and surface boundaries to simulate array.

The considered periodic array structure is illustrated in Fig. 1. For time harmonic electro-

magnetic fields (e’ time convention) the pertinent finite element functional is

1 .
F(E, Ead) = /// [M— (V X Ead) . (V X E) - kgE - Eog+ jkoZy Eoq - J™ duy
v T

+ikoZo //Ead (H x 7) ds, (1)
S

where E,4 is the solution of the adjoint field problem, J™ denotes an excitation current
within the FE domain, S represents the planar surfaces on the top (and/or bottom) of the
FE domain, and 7 is the unit surface normal directed out of the FE domain. Also, ky and

Zy are the free space wave number and wave impedance, respectively. Invoking the surface

Figure 1: Infinite periodic structure



equivalence theorem, the magnetic field in the surface S of (1) can be expressed as

k
H= —2]7‘(’)

! ~ 1 ! ! ~ inc
{/g(r,r)(Exn) ds+k—gV{/g(r,r)V (Exn)ds| + H™, (2)

where g(r,r') is the appropriate periodic Green’s function and H'™ is the incident wave.
Assuming an array periodic in the zy-plane, with Dxp and Dy p as the periods in the z— and

y—directions, respectively, the periodicity condition for E in a rectangular lattice is given by

E(x + mDXP1 'y + nDYP) = E(:L', y) e—jﬂ:mDXP e'jﬁvﬂDYP , (3)

where

B = kosindgcos g, B, = kosindy sin gy (4)

and (d, o) are the chosen scan directions of the array. Using the periodicity condition
and the boundary integral representation (2), the computational domain can be reduced to
a single unit cell of the array. In the implementation of the hybrid FE-BI method, this
requires the imposition of appropriate phase boundary conditions in the FE and in the BI
portions of the method. Moreover, in (2) g(r, ') must be replaced by the Green’s function
for an infinite array of d—sources. In our implementation, the infinite series representation of
periodic Green’s function is calculated using Ewald’s transform which subdivides series into
spatial and spectral domain components in a manner that optimal convergence is achieved.
To construct a linear set of equations from (1) and (2), we must first tessellate the volume
and introduce expansions for each of the tessellation elements. For this application, the
chosen tessellation elements can be of constant depth but must be more adaptable for surface

modeling. The edge-based prismatic elements presented in [4, 5| allow for this type of

flexibility.
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Figure 2: Right angled prism

Using the same type of tessellation elements (see Figure 2), the field is expanded within

the cavity volume as

E¢ = zlEewe [W]T{E*} (5)

where [W], = [{W,}, {W,},{W.}] and {E°} = {E%, E%,..., E{}T are specified explicitly in
[5]. On the aperture, since the top and bottom faces of the prism are triangles, these are

reduced to

Z E;S;(r) = [SJ; {E"} (6)
where [S]; = [S;, Sy and
S; = 2262 X (r—r;) (7)

To generate a linear system for E¥, (5) and (6) are substituted into (1) and (2) and



Galerkin’s method (setting T = W) is employed to yield the assembled system

A {EV} L] 0O B (_) 0 B

{E°} 0] (B8] ]| {E} {6°}
In this system, {EV} denotes the field unknowns within the volume enclosed by S,, whereas
{E®} represents the corresponding unknowns on the boundary S,. The excitation column

{6V} are due to internal antenna sources and {b5} is associated with the incident field

excitations (for scattering).



2.2 Fast Integral Methods

The FE-BI system (8) is partly sparse and partly dense. More specifically [A] is sparse,
whereas [B] is dense. Thus, although [B] is much smaller in rank than [A], it is usually
responsible for most of the CPU and memory when an iterative algorithm is used for the
solution of (8). To alleviate the CPU and memory requirements, fast integral methods
have recently been introduced [1, 2, 9, 10] to perform the matrix-vector product [B|{E"}
much faster and with much less memory. Two of these approaches are the adaptive integral
method (AIM) [1], and the fast multipole method (FMM) [2, 10]. Both FMM and AIM
reduce the CPU time and memory requirement from O(N?) down to O(N®) where a < 1.5.

The main feature of AIM and FMM is the decomposition of the matrix as
[B] = [B]"" + [B)*" (9)

based on some threshold distance referred to as the near-zone radius. The matrix [B]"**" con-
tains the interactions between elements separated less than the threshold distance, whereas
[B}o" contains the remaining interactions. The elements of [B]"**" are evaluated without ap-
proximation. However, the product [B]/*" ES is evaluated in an approximate manner leading
to a much faster execution.

Next, we describe how the evaluation of [B])/*"{E5} is performed for each of the fast algo-

rithms.

10



3 Adaptive Integral Method

3.1 Theory and Implementation
The basic idea of AIM is to split [Z] (equivalent to [B] in (9) as
2] = (2] + (2", (10)

where [Z™"] contains the elements of [Z] that are near the selfcell and correspondingly
[Z7°"] contains the remaining ”far-zone” elements of [Z]. AIM reduces the CPU time and
memory of the iterative solver by exploiting convolutional properties of the Green’s function
for the evaluation of the matrix-vector products associated with the mostly full matrix
[Z7o7] [1]. That is, the far-zone matrices are not explicitly generated and the matrix—vector
products are performed in the discrete Fourier domain (DFT) utilizing appropriate 2D FFT
algorithms [18]. However, the convolutional properties can only be exploited on a regular
grid and therefore, the basis functions on the original and possibly irregular triangular mesh
must first be mapped onto a regular grid. To do so, we introduce auxiliary basis functions
on a regular rectangular grid which is coincident with the original triangular grid [19]. The

auxiliary expansion for the magnetic surface currents is given by

M = 3 3 (Mt + Md]Sle - 20— mA2) Sy vo-ndy), (1)

m=1n=1

where (zo, yo) is the lower left corner of the regular grid and Az, Ay are the sample distances
in the z and y directions, respectively. Since we work with a mixed potential integral equation
(MPIE) formulation for the BI implementation, we must introduce an additional expansion

for the divergence of the magnetic surface currents,

Mauz — Z z qmn x ZO -_— mA.’L‘) 5(1/ - Yo — nAy) (12)

m=1n=1

11



In mapping the original basis functions onto the regular grid we relate each basis function
to the auxiliary d-basis functions on the nine closest grid points of the regular grid. This is
done by equating a sufficiently large number of the corresponding moments of basis functions
from the two coincident grids. All moments can be evaluated analytically or numerically,
and for each basis function of the original mesh, three linear algebraic systems of order 9
must be evaluated. This leads to the construction of the sparse mapping matrices [A], [Aly,
and [A], with n, rows and nine columns. The Z matrices for the rectangular grid can be

expressed as

[Z)515% = [A[GIAL; + [Al,[G[ATy + [AL[G)[AT7 - (13)

Here, [G] is a Toeplitz matrix whose elements stem from the periodic Green’s function
evaluated on the grid points of the regular grid. For the implementation of AIM it is assumed
that [Z]%tl is sufficiently accurate for the far zone elements. For the near zone interactions

we keep original matrix elements. Therefore, we decompose the AIM matrices as
(21585 = 12055 + (24T (14)
and when this is combined with (10), we can rewrite the original Z matrices as
[Z]e7res = (21" ~ [ 2)55%) + (2315 - (15)

With this representation of [Z], the near zone interactions are evaluated without compromise
in accuracy. However, since the majority of [Z]*P™** consists of the Toeplitz kernel [G],
the associated matrix-vector products can be performed using only O(ns) memory and
O(nglogng) CPU time. In the final numerical implementation, a near-zone threshold is
defined so that [Z]*P"* is sufficiently accurate representation of [Z]. The threshold distance

is controlled by the quasi—static singularities of the Green’s function. In the case of the

12



infinite periodic Green’s function, we must also account for singularities associated with
those elements which neighbor the boundaries of the unit cell since the latter are adjacent
to the next periodic cell.

For calculation of matrix-vector products in an iterative solver, [Z]{%, is not computed
explicitly. After mapping the actual source distributions onto the regular grid through A
matrices, the pertinent matrix-vector products are performed in DFT domain using FFT
algorithm for the corresponding transformation. After transformation of the results back to
the spatial domain, the fields on the original mesh are obtained by reverse mapping between
the auxiliary unknowns and the original grid unknowns. However, for a computation of
[Z]nee | it is advantageous to collect contributions of the regular grid in the spatial domain

before the Toeplitz Green’s function is transformed into the DFT domain.

13



3.2 Results: Single Antenna Problem

We analiyzed the planar cavity backed annular slot antenna with one, two, four and twelve
elements. To increase the BI unknowns, we considered bistatic scattering from the comple-

mentary structures (annular strips) obtained by inverting metalic and dielectric part of the

antenna aperture.

Inner radius of each slot = 7.325 cm
Cavity diameter = 49.4 cm
Cavity depth = 1.5 cm

Total Edges: 5529 Non-PEC: 983 Cavity filling ¢.= 2
Surface Edges: 2110 (PEC) Slot width = 1.5 cm
496 (Slot) 248 (Non-Pec)  prequency = 1 GHz (Lambda = 30cm%
Co-pol (FE-BI)
0 LEMAE BN EMEMD B M EMMS BASMS EMEA EMSMAD B St ISR X-pol (FE-BI)

& Co-pol (FE-AIM)
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¥

40 -
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Observation angle (deg.) :

Figure 3: Geometry, parameters and radiation pattern (¢ = 90°) for cavity backed 4-elements

annular ring slot antenna
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These scatterers may not have practical importance, but are nevertheless quite appro-
priate for the case studies of interest. The aperture surface was discretized in a nonuniform
triangle mesh using SDRC I-DEAS. The radiation pattern, aperture discretization and pa-
rameters for a 4 element annular slot array are given in Fig. 3, with corresponding memory
requirements and CPU time (per iteration) given in Fig. 4. Clearly, large memory savings
are attained by AIM. We should also point out that the problem 12 annular strips with 5695
surface unknowns, required 360MBytes and could not be therefore executed on a typical

workstation. AIM required only 95MBytes in addition to the CPU reduction.

x10* MEMORY REQUIREMENTS FOR BI AND AIM SOLUTION TIME PER ITERATION FOR BI AND AIM
10 T T T T Y s T T T T T
il : : L : ! ! !
P—— +---s BI
L [ S b —— hecccana J S Mpup— b A b ——————— bmm————— [
® — Bl | | 1 v, 45— AIM 1 T 1 |
| i i 1/ i | I 1
| 1 | i r I i [} [} ! »
] P —— [ R Ao § - 4 R — '] S — B T 3 SRR § S | SO, P SRR A
1 1 ] 1 el 1 ] 1 1 ) 7’
| | ! ' , ' I ! ' 1 [
_Jl JI JI_ 'L ’ _j' 1 I ) 1 |':
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| ' o 1 1 i 1 '
| s : | | :
a+ : 1 - Fom--- r - 1.5-—---—-—/4 ------- *—--——--]»’r ————— N
| 1 e ) | | / 1 | S0
1 t ’ 1 | i / 1 ] /’ )
P [ AR R P Fm————— —Am—mmmm o 1 B e e [ ——
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/ i i i i v t !
»
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Figure 4: (a) Comparison of the memory requirements, (b) Comparison of the CPU time

consumed per one iteration.
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3.3 Results: Periodic Array Antennas

To show the speed improvements and storage reduction due to AIM, we consider a relatively
simple strip dipole frequency selective surface (F'SS) as shown in Fig. 5 (see also [17]). We
calculated the reflection coefficient for three different FE meshes as described in Table 1
using triangular surface meshes for discretizing the planar surface of the unit cell Iright—
angled prisms were used in the volume). The BI was applied on the top and bottom of the
cell for mesh truncation, resulting in two fully populated BI submatrices.

1.0

[]-0-O- FE/BI 20x20
0.8 || FEBI32x32
’ 00 FE/BI 44x44

| 4% MOM 9x18

=

(3]

S

=

(5]

8 0.6 ||**® MOM 3x8

s

8

804

=

o

o~

5 0.2

3

&

0.0 . . : .
12 14 16 18 20 22 24

Frequency (GHz)
Figure 5: Resonance curves for strip dipole F'SS

Since BI matrices were identical, only one matrix was computed. Table 1 shows model
parameters and the size of the system matrices with and without AIM for BI matrix compu-
tations. The number of matrix elements, (columns 5 and 6 of this table), comprise both, the
top and bottom BI matrices. As noted earlier, the AIM implementation require that only
near—elements of the BI matrices be calculated explicitly. This results in memory savings of
up to a factor of 15 for model 3 and these savings will increase further for surface meshes

with a larger number of unknowns. The CPU times for different models are summarized

16



in Table 2. The FE matrix fill time is, of course, the same for AIM and the conventional

implementation of the hybrid method.

Model | Surf. mesh | Surf. unk. | Vol. unk. Matrix elements
AIM Conv.
1 20%20 2%1240 7435 | 588 079 | 3 000 000
2 32x32 2*3136 35432 | 2 183 120 | 20 000 000
3 44x44 2*¥5896 67000 | 4 672 610 | 71 000 000

Table 1: Unknowns and storage for different discretization models

Mod. | FE fill BI fill Solver Iterations Total

AIM | Conv. | AIM | Conv. | AIM | Conv. | AIM | Conv.

1 3| 736 | 1400| 228 166 | 227 234 | 967 | 1569
2 3811930 7330|1081 | 1446 | 415 364 | 3049 | 8 814
3 70 | 3 821 5073 676 8 964

Table 2: CPU times (in sec) for the different discretization models

For the investigated problem the largest CPU savings were obtained due to the reduced
BI matrix fill time. For small BI subsystems (as is the case with modell),AIM did not
result in CPU speed—ups. However, for larger Bl subsystems, the lower complexity of AIM
resulted in considerable CPU reduction (see model 2). For model 3, we performed only
calculations based on AIM since the storage requirements were 850 MByte using traditional

implementation. AIM reduced storage down to 70 MBytes.

17



4 Fast Multiple Method

4.1 Theory and Implementation

The FMM [2, 9, 10] is based on two elementary identities. One of them is the expansion 8]

of the scalar Green’s function appearing in moment matrix elements as

1k|r+d1

~

(2 + 1)ji(kd)h{" (kr)P(d - 7). (16)

Ms

Ir + d| ,=

Here j; is the spherical Bessel function, hfl) is the spherical Hankel function of the first
kind, P, is the Legendre polynomial, and d < r is the condition for the valid of the expansion.
In the FMM formulations, where the source point is denoted by x’ and the observation point
by x, r will be chosen to be close to x — x’ so that d will be small as depicted in Fig. 6.

The second identity is the expansion of the product j P, appearing in Eq. (16) as a sum of

propagating plane waves (spectral integral):
srity(kd)P(d - 7) = / Pke*dPy(k - 7). (17)

Using this identity, the expansion (16) can be rewritten as

eik|r+d|

ik a2 -
= — [ ke S (20 + )R (kr)Py(k - 7), (18)
r+d| 4rm / g :

where the orders of summation and integration are interchanged. The speed-up of FMM is

derived from the observation that the sum
L ~
w(kr k- 7) =Y (2l+1) h, (kr)Py(k - 7) (19)
1=0

is independent of kd and can thus be computed for various values of kr which can be reused in
the computation of the Green’s function. The number of terms, L+1, kept for approximating

the sum depends on the maximum value of kd, and the desired accuracy.

18
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Figure 6: The geometry constructions used in FMM formulations, illustrating the relation

between source point, field point and the group centers.

Noting that the direct path from the source to the field point can be decomposed into

three parts (see Fig. 6) where
Tji = T'jm + I'mm’ — Tim/,

the Green’s function can be rewritten as

47{@(1" I") _ [’]':_ lvvl] eikrii
It - k2 ’I"j,'
~ /dQE [T — %VV’] eik-(rjm—ri"")TL(k'rmm’, I; : fmm’)

— / 0k [T — k) € Em =T Ty (Kt K - Pt ).

The matrix entries can then be approximated as

- - - ikR
By = 2 / dsSi(r) - /s'ds’ [Sj(r')+£2—V'-Sj(r')V e—é-

ik » 2 1. & * I,
% ./ d2kvfmj(k) ) TL(krmm’, k- 'rmm')vsm’i(k)7

Q

with

Vsm’i(k) = /Sdsleik'r""" [T— iﬁk] . gi(rim/),
)

Vimi(k) = /Sdse“”i"‘ [T——IACA :

19
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in which S; and §j denote the expansion and testing functions for the unknown magnetic
surface current density. For out computations, we used the well known RWG [6] basis
functions. Note also that * denotes complex conjugation.

To realize the FMM speed-up the computational domain is divided into M groups. The
total memory storage needed is O(N?/M) + O(KN) + O(K LM?) where K is the number of
wave vector directions used in the numerical evaluation of the outermost integral in Eq. (22).
Using the proportionalities K oc L2, D? « N/M, and L « D, this expression can be simpli-
fied to Cy(N?/M) + Co(NM/N/M), where C; and C; are machine (and implementation)
dependent constants. The coefficient C, is actually quite small compared to C; and thus the
memory is dominated by the O(N?/M) term.

The CPU requirement of this FMM implementation is O(NM) + O(N?/M)[9, 10]. This
can be minimized by choosing M = v/N and the result is an O(N'®) algorithm. The memory
required for the FMM also becomes O(N'%). In practice, both the operation cost and the
memory requirement of FMM is less than those of standard MoM formulation for problem

sizes larger than 1000, making the FMM more suitable for the solution of large problems.

20



4.2 Results: Single Antenna Problem

One concern with the approximations introduced by FMM is accuracy for antenna simula-
tions. Thus for validation we first apply FMM for the analysis of a 3.5cm.x3.5cm. cavity-
backed patch mounted on a cylindrical surface of radius 14.95cm. The patch is placed on
the aperture of a cavity 0.3175cm. deep filled with a dielectric layer having €,=2.32. Fig. 7
shows the layout of the curved antenna obtained by wrapping the flat antenna on the cylin-
drical surface and corresponds to the one considered in [7]. As explained in [7], two different
radiation modes (axial and circumferential) exist depending on the feed location. The ra-
diation patterns for the axial and circumferential excitation modes are shown in Fig. 8(a).
As expected, the FMM calculations are in agreement with measurements in the broadside
region. Toward the shadow directions (around §=—90° and 6=90°), the agreement deterio-
rates since we used the half-space Green’s function where in [7] the exact cylindrical Green’s
function was employed. In the region 60 < # < —60 the measured and calculated patterns
agree to within 1 dB. The input impedance dependence on antennas curvature is plotted in
Fig. 8(b) for the circumferentially polarized patch. The results are again in good agreement
with those presented in 7] and the resonant frequency can be accurately predicted since it
is a more local phenomenon. Figures 9(a) and (b) show the comparison of the timings for
the conventional FE-BI method with and without FMM. The speed up of FMM is observed
for all problem sizes of practical interest. Fig. 9(a) depicts the trend for the total solution
time and Fig. 9(b) shows the time consumed per iteration in the iterative solver. In essence,
Fig. 9(a) includes the matrix fill time, where Fig. 9(b) does not. Clearly, for small number
of BI unknowns (less then 2000), the CPU time speed-up is primarily due to the faster ma-

trix fill. We can conclude that the FMM implementation is both robust and requires much
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Figure 7: Microstrip patch antenna on a curved platform.

less resources for large scale implementations. We are currently investigating more accurate

methods applicable to arbitrarily curved antenna geometries.
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Figure 8: (a) The radiation pattern of the curved antenna, (b) The input impedance for the

circumferentially polarized antenna.
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of the CPU time consumed per iteration.
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4.3 Results: Finite Periodic Arrays

The greatest advantage of the FMM implementation is its capability for an efficient com-
putation of 3D problems. The necessity of using 3D-FFT’s in AIM implementations may
not render AIM as attractive without suitable optimizations on the implementation of the
FFT. Thus, for doubly curved arrays we consider implementation of the FE-FI methods
with FMM rather then AIM. Below, we show some results for the analysis of printed dipole
array on a curved surface. The radiation pattern for such an array is shown in Fig. 10.

These are the preliminary results.
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Figure 10: (a) Curved array geometry, (b) Radiation patterns for flat and curved arrays.

At this point, we simply present a comparison between the calculations for the flat and
curved arrays. As expected, the two patterns agree near broadside and deviate only near
endfire grazing. The curved array does not has a null at 6=90° and —90° since the array

continues to radiate in the shadow region of the cylindrical surface.
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5 Conclusion and Future Work

Hybrid FE-BI method is indeed a powerful and flexible approach for EM analysis. Use of
fast integral methods such as AIM and/or FMM can considerably decrease CPU time and
reduce memory. Both, AIM and FMM accelerate and compress the solution requirements
thus overcoming the usual bottlenecks in considering large scale problems. The most attrac-
tive feature of FI methods is that speed—up and memory reduction are obtained irrespective
of the machine or computational platform. Efficient programming and parallelization will
only provide further speed—ups and more efficient use of resources.

For planar geometries AIM is certainly preferred since it naturally provides an O(Nlog(N))
CPU requirements as is the case with CG-FFT. Implementations of the FMM is however

easier to implement for curved arrays.

To better address the speed—up and efficiency of the FMM and AIM in the future we
will:
1. Examine more optimal implementation of the AIM algorithm (for planar antenna geome-
tries);
2. Complete FMM formulation and validation for arbitrary 3D geometries;
3. Investigate applicability of AIM (and FMM) in domain decomposition for more general

applications.
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