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ABSTRACT

A rigorous solution is presented for the electromagnetic wave
diffraction by (a) A pair of parallel perfectly conducting half planes,
(b) A pair of parallel impedance half planes and (c¢) An impedance
half plane in the presence of a ground plane. The above solutions are
based on the angular spectrum method which is closely related to the
Weiner-Hopf technique. In addition, a GTD solution is given which is
valid when the separation distance between the half planes is large.
Further, the diffraction of an impedance half plane in the presence

of an impedance plane is considered in an approximate manner.
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I. INTRODUCTION

This report describes the solution to the high frequency plane
wave diffraction by the four structures illustrated in Fig. 1. These are

a) Two parallel perfectly conducting half planes.

o

) Two parallel impedance half planes.

9]

(
(
(c) An impedance half-plane over a perfectly conducting plane.
(d) An impedance half plane over an impedance plane.
The problem of diffraction by the geometry in Fig. 1(a) was first
considered by Heins [1,2] via the traditional Weiner Hopf technique
and later by Clemmow [3] via the angular spectrum method. It should be
emphasized that the two approaches of analysis are basically equivalent.
Usually a solution performed with one method can also be completed with
the other. Because of the relative conciseness of the angular spectrum
method, this will be employed in our diffraction analysis of the
subsequent geometries in Figs. 1(b) through 1(d). Since this analysis is
intended for use in the study of diffraction by a thick impedance half
plane, the boundary conditions in the inner face of the half planes is not
considered. A GTD (geometrical theory of diffraction) solution is also
given for all of the configurations in Fig. 1. The GTD solution is
generally applicable for & > \/4, where 2% is the separation distance of
the half plane and A is the wavelength.

The solution to the problem of diffraction by the two parallel
half planes requires a generalization of the angular spectrum method to
include the existence of electric and magnetic currents on the
impedance half planes. The generated integral equations in terms of

the spectral density functions of these currents are ultimately decoupled
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Figure 1. Geometry of the four structures under study
(n1 denotes the normalized surface impedance).



on the basis that the magnetic currents vanish when the surface
impedance is zero. A GTD solution to this configuration is rather
simple provided the diffraction coefficient for the impedance half plane
is incorporated in the corresponding GTD solution for the parallel
perfectly conducting half planes.

Once the diffracted fields by the geometry in Fig. 1(b) has
been obtained, one can then tackle the configurations in Figs. 1(c) and
1(d) by invoking image theory. Clearly, the diffracted field by the
geometry in Fig. 1(c) with the perfectly conducting half plane can be
obtained rigorously. However, the diffracted field by the geometry
in Fig. 1(d) which includes an impedance plane can only be
evaluated approximately at this time.

The report contains five chapters. Chapter II presents the
formal solution of the diffracted field via the angular spectrum method.
Although the Ez solution has already been given by Clemmow [3], this
chapter serves the purpose of introducing the method of analysis and
in addition presents the solution for the HZ incidence not completed
by Clemmow.

Chapter III considers the diffraction by two parallel impedance
half planes.

Chapter IV employs the results of Chapter III to formulate
solutions for the diffracted field by an impedance half plane parallel
to a ground plane or an impedance plane.

Finally, Chapter V discusses the approach to be used in
incorporating the above analysis for the diffraction by a step

discontinuity or protrusion on a ground or impedance plane.



II. DIFFRACTION BY A PAIR OF PARALLEL PERFECTLY CONDUCTING HALF PLANES

2.1 Introduction

As discussed in the introduction, the electromagnetic problem
of a pair of perfectly conducting, half planes has been considered by a
number of investigators. First Heins etc [1,2] obtained a Wiener-Hopf
solution to the problems of reflectionand coupling due to a plane wave
incidence. However, a study on the diffraction pattern was not
performed. Nevertheless, the difficult task of obtaining the
required split functions was accomplished. Clemmow [3] later used the
angular spectrum method [4] to obtain a solution for the diffraction by
a pair of parallel half planes. His solution again involves the split
functions obtained by Heins but is less involved because it avoids
the direct computation of the currents on the half planes. Clemmow
gives the scattering solution for the soft case (TM) only. However
his method is applicable to the hard case (TE) as well. This is indeed
accomplished in this chapter.

Lee and Mittra [5] generalized Heins hard case solution (see
also Noble [6]) to include the effects of a recessed stub between
the parallel half planes. They also appear to be the only authors
to date who have published computed results for the scattering by a
pair of perfectly conducting half planes and a thick edge (stub has zero
recession).

Thus the solution of the diffraction by a pair of perfectly

conducting half planes can be found in the literature. However,



these exist in various forms and are in some cases incomplete for our
use. It is therefore instructive to rederive the scattering solutions
from a pair of perfectly conducting half planes using a consistent
method and approach suitable to our needs. In doing this we need to
choose a method which can be extended to the scattering solution of
the same geometry when it is associated with impedance boundary
conditions representing a thin material coating. Clemmow's angular
spectrum method was found to give promising results in this direction
as it will be examined later.

The angular spectrum method involves the representation of the
scattered field by an integral of plane waves. The weighting coefficients
corresponding to these plane waves are referred to as the angular
(continuous) spectra of the scattered field and are proportional to
the surface currents via a Fourier integral transform. A solution to
the scattered field then involves the determination of this angular
spectrum after invoking the required boundary conditions and certain
continuity conditions. Subsequently, the scattered or diffracted
field is obtained via an asymptotic evaluation of the integral such
as the steepest descent path method.

For the perfectly conducting pair of half planes considered in
this section, only electric currents exist on the planar surfaces
and thus a single angular spectrum on each half plane is required.
However, in the next section, where the pair of impedance half planes
is considered, both electric and magnetic angular spectra on each

half plane must be included in the solution.



2.2 Hz-Incidence

Consider a plane wave (an ert factor is assumed and suppressed
throughout)
M. eJk(X cos ¢, +y sin ¢0) (1)

z

to be incident on the perfectly conducting geometry in Fig. 1(a).
Employing now the angular spectrum method, the scattered H-field can

be represented in terms of its angular spectrum as

O

B = 4+ c{’ [Pl(cos a) + Pz(cos a)e'JZkz sin 0‘]e'Jkr COS(d)“to‘)doc; y
C

in v

(2)

where C is the contour shown in Fig. 2, Pl(cos a) is associated with

the upper half plane and Pz(cos o) with the Tower one. If we define
A = COS o (3)

it is clear that in the x-plane the C contour traverses from -« to «

and it is indented at A = -1, Ay 1 as illustrated (note Ay = COS ¢O).
In the a-plane this path corresponds to that for which cos o remains real.
The following outlines a procedure for finding Pl(cos o) and Pz(cos a).

According to (2), the scattered field component Eia is given by

Eia = -ZO QI, sin a [Pl(cos a) + Pz(cos a)e+Jk2 sin %] e_Jkr cos(¢;u)da;
C
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Figure 2. Illustration of_the C contour in the a
and x complex planes.



where Z0 is the free space impedance. The boundary condition Eia + E; =
on the surfaces y = 0, x >0 and y = -22, x > 0 require the solution

of the following integral equations for x > 0,
1 23k e/ Ton 2, -7 Jkxa
f[p (1) + P (e KMINT Ikt gy g
1

and

) T | s _ Liopo Tz JKXA
f [P ZJkQ, (X)]e Jkxa dy = ﬂ‘_—)\ge j2kav1-x e . 0

2

(5b)
The above were obtained by noting that
Ei = sin % eJk(X COS g * Y sin ¢o) (6)
and
dx = sinada . (7)

In addition, field continuity over the planes y = 0, x < 0 and
y =-2%, x < 0, requires that Hia be continuous across these boundaries.

From (2) this condition gives

+
L‘/] - A7 /T =A%

dv = 0 (8a)

f PO R e | sk




for x < 0. After closing the integration paths by a semi-infinite path
in the upper half plane, it is clear that the above are satisfied only
if Pl(x)/¢7_1757'and PZ(A)//T—:_XT are free of singularities and zeros
(i.e., regular) in the upper X half plane. This is the region above

the contour on the real axis shown in Fig. 2. Denoting such functions
as U-functions and those having the same properties in the lower half

plane as L-functions, we conclude that

Pl(x) = /T + Ulh(x) (9a)
and
Pz(x) = /T + 2 Uzh(x) . (9b)

Ulh(x) and Uzh(x) are now regular in the upper half plane and such a
notation will be employed throughout this report. Note also that the
factor VT 1 is regular in the lower half plane and /T -x is regular

in the upper half plane. Thus, if we write /T =27 = VT = x /T + x and
use (9), it is clear that the terms P (A)/¥/T - A% in (8) are regular

192

in the upper half plane.

In order to find expressions for P1 2(x) according to (5) and in

view of (9), we first proceed to write (5) in a more convenient form.
By adding and subtracting (5a) and (5b) we obtain the equivalent

integral equations

oo

G/, JT+ 2 Ql(x) (1+ e'ﬁkm:v)e'ijA dx = S - xz

-0

(1 + g"d2ke I—xo)ejkxxo (10a)
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and

p . '——T . - .
:]: /T—i_X'QZ(A) (1 - e-Zsz/T-x )e—JkXX dy = vﬁ.t-ig'(l NALS i'ko)eJkMo
- (10b)

for x > 0, where
0 () = U () U0 . ()

By defining the branch of VT - A7 to always have a negative
imaginary part we then close the path of integration in (10) by a
semi-circular contour at infinity of the Tower X half plane. Subsequently,

employing -Cauchy's theorem, we find that

. T~ Z .
T+ A Ql(x)(] + e-JZkz/l-AZ) - . ‘E}j"g'(1 + e-32kz/i-x§)
L. (x)
. X l X (12a)
Llh(_xo) 0
and
-3 vl /T = 22 . -
VT + A QZ(X)(1 - e j2kav1-a ) =- - 0 (1. ¢ j2ka/1 xg)
LZh(A) : (12b)
2h* "o 0

As we mentioned earlier the Llh(x), Lzh(x) functions are regular in the
lower half plane. The ratio of L(x)/L(—AO)is clearly equal to unit
at the pole 1 = -1, SO that the residue of this pole gives the result

in the right hand side of (10).
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A solution to Ql’z(x) requires first the factorization of the
expressions (1 * e'jZKQVT:X25 in terms of U and L functions. This
has been accomplished by Heins [1,2] with the e’jwt time convention
and have been used by Clemmow [3] and Lee and Mittra [5] in certain
calculations. We simply quote here that

14 eIy gy () (13a)
and

1< 2K L oy (13b)

The split functions U (x) =L (-x) are regular in the upper half

1s2 1s2
plane and their holomorphic expressions are given in Appendix I
jut

according to the e time convention employed here. Simplified
expressions suitable for small ¢ are also given in Appendix I.

From (12) and (13), and since Q1 (1) are U-functions we find

92

that o)
L.(x.) YT + A
Q () = -me 20 0 (14a)
2m]
. U )+ 2r)
1 0
and
1 L,(A )/T +
Q(A) = -5 ° 0 (14b)
2m
2 J U () + 1)
2 0
In addition,
Llh(x) = VT + 2 Ll(x) , (15)

2h

and
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Llh(-xo) = /T - % Ll(-xo) = /T - A Ul(xo) . (16)

2h
Finally, from (9), (11), (14) and (3) we find that the angular
spectra associated with the upper and Tower perfectly conducting half

planes are given by

] 2cos ¢/2 cos ¢ /2 |L (cos ¢ ) L_(cos ¢ )
_ 0 1 0", 2 0
4rj cos ¢ + cos 9 U (cos ¢) ~ U (cos ¢)

(17)

P (cos ¢) =
1

Using (17) in (2) and evaluating the integral via the steepest descent

method it is obtained that the scattered field is

H;a = /?%? [P (cos ¢) + P (cos p)e 32K S o7-Jkr Ju/4,
(18)
or
o3 o |1 gmin/a 2608 M2 COS 8/ kg sin g
z Jonk cos ¢ + cos cbo
L, (cos ¢0) . . Lz(cos ¢0) . _ e-jkr
U (cos 3 cos(ke sin ¢) + j U (cos sin(ke sin ¢) = ;
1 2 r
(19)

Noting that the factor

e-jn/4 2 cos ¢/2 cos ¢0/2
Dy(¢s05) = - oS ¢ + cos o (20)
/2K °
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is the hard diffraction coefficient for the edge of a perfectly

conducting half plane we may express Hza more compactly as

-jkr
sa _ o\ € )
H™ = Dp(6s95)a(050,5) = (21)
where
L (cos ¢_) L (cos ¢0)

A(¢,¢0;2) = ik sing ULZEBE_E%_ cos(ke sin ¢) + J UET55§_$Y~
1

- sin(kg sin ¢ )| . (22)

It will be clear in the later sections that A(¢,¢O,z) is a geometry
dependent factor and corresponds to the interactions between the two
half planes. In addition, although not obvious from (22), it can be
proven with the use of (13) that (21) satisfies reciprocity as required.

Since for ¢ = 0 (see Appendix I or Eq. (13)),

Ll(cos ¢) = U (cos ¢) = V2
1
it follows that

8(65430) = 1

and thus (23) reduces to the diffracted field by a perfectly conducting
half plane as required. Further, because Dh(n,n) =0, Hza vanishes

when ¢ = ¢0 =, i.e., at grazing.
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2.3 EZ-Incidence

The analysis for finding the scattered field with a plane wave

E; _ e+Jk(x cos ¢, +y sin ¢0) (23)
incident onto the geometry of Fig. 1(a) is similar to that presented
for the HZ (TE) case.

In terms of its angular spectrum, the scattered E-field can be

represented as

. . . _ v
LI c[’ [Pl(COS Q) + Pz(cos a)e-JZkZ sin ay o-dkr cos(43a)da; y < -24

c
(24)

and the solution reduces to finding P (cos ¢) as before. The
1s2

boundary condition Ei + E; = 0 requires that

+ dx = —ejkxxo (25a)

-2 /T - ¢

P (3) PN ok ik
e e

_edkXAg e—j2k2/1-xé

c/’ Pl(A) e—j2kz/1-x2 . Pz(x) oIkxA 4

(25b)

for x > 0. In addition, continuity of the tangential H-field (HX) over

the region x < 0 requires that

o

I [P (1) + P (3) e 92T i gy 2 (262)

-0
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and

f [P (1)e -32ke1-2% Loy e gy - g (26b)

2

for x < 0. Alternatively, (26) could be formulated by noting that electric

currents scatter zero tangential H-field in the planes which contain them.
Equation (26) clearly implies that Pl 2(k) are U-functions, i.e.,
regular in the upper A-half plane shown in Fig. 2. Therefore,

P(x) = U _(n) . (27)

1 le
2 2e

Similarly to the HZ case,we also find by adding and subtracting (25)

and subsequently employing Cauchy's theorem, that

Q (x . Tz . o7 L. (x
_15_2___(] + @7d2Zkavi-) ) 5%3-(1 + gmd2kevi=) ) 1e( ) : 1 x
X 1e(-AO) o( |
28a
and
AN 1 R B oy ) e
-I Y ZTTJ L2e('>\o) A+ )\O
(28b)
where Q ()) = Pl()\) + PZ(K) = Ule(}\) + Uze(A) (29a)
and
QZ(X) = PI(X) - PZ(K) = Ule(K) - Uze(l) (29b)

In view of (13) and (29), equations (28) are satisfied by



- ] 1
L0 7 U, () M (302
and 0y
L (x - A/l -
1 0 0
Q () = - =2 . (30b)
2 21TJ U2(>\) A+ )\0

The split functions U1 2(k) = Ll 2(—k) are discussed in Appendix I.

From (29) we obtain that

2 sin ¢/2 sin ¢ /2 |L (cos ¢.) L (cos ¢.)

P (cos ¢) = ]. 0 1 0, 2 0

1 4rj cos ¢ + cos %, Ul(cos 6) Uz(cos $)

2

(31)

Substitution in (24) and subsequent evaluation of the integral via the
steepest descent method gives
-jkr

Sa e

B = D (0:4,)a(05632)

z /r (32)

As expected, DS(¢,¢O) is now the soft diffraction coefficient associated

with the diffraction by the edge of a perfectly conducting half plane.

Specifically
e-jw/4 2 sin ¢/2 sin ¢0/2
D (¢59,) = oS § ¥ cos ¢ (33)

The geometry function A(¢,¢0;2) is the same as in the HZ incidence

and is given in (22).
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2.4 A GTD Solution for Large %

When ¢ > A/4, a solution for the diffraction by the geometry

in Fig. 1(a) in the context of the geometrical theory of diffraction
(GTD) [7] may be applicable. This process requires the summation of
the contributions from all six ray mechanisms illustrated in Fig. 3.
Using the asymptotic expansion of Bowman [8] for large ki, we find

that to the 0(1/ke),

£
Z3 1 e-jkr
2 = u; = D.(¢0,) e (34a)
Z1 ) h
W2 = D (4,0 )e-j2kz(sin ¢ + sin ¢0) e"]kr
z S e ’
h r
(34b)
-jn/4 . X
u12 = e ] + ] D (d),cb )e-JZkQ/ Sin d)o
Z JATKL cosS ¢  coOS (1)0 S 0
5 —jem)2ke | -jkr
:E: € ) € (34¢)
=, (2m+ 1)¥/2 /r
-jn/4 . )
ut = ; col e col N Ds(¢’¢o)e_2Jk2 e
varke 0

h

(34d)

j;: gJ(2m)2ke | -jkr
(2m + 1)3/2 r

m=0
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Figure 3. GTD interaction terms associated with two
parallel half planes.
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R o-Jn/h . D (6.0) :g: o-d(2m2ke | -3kr
z Tkn | €08 ¢  COS ¢0 > “ (Zm)3/2 /i
' (34e)
and
-jn/4 i : .
w2 = -8 1, 1 D (6,0 e j2ke(sin ¢ + sin ¢0)
z Jiokg | €OS ¢ cos g | TsiTTo

-J zm)2ke e—jkr
:E: 3/2 . (34f)
0 q

Sa
Z

corresponding to the sofe (DS) or hard (Dh) diffraction coefficients,

In the above, u, denotes components of either Eia or H

respectively. Furthermore, the infinite sums in 34(c) through (f)
are associated with the multiple interactions between the upper and
Tower half plane edges as illustrated in Fig. 3(c) through (f). Each
term in the m-series is divided by the factors (2m + 1)3/2 or (2m)3/2
and as seen from Table I, the first two to three terms are in most
cases sufficient depending on the value of &. More precisely, the
number of terms needed for good accuracy is less for a larger

separation distance between the half planes. In general,

Sa
E
Z
Z yA Z Z Z z
Hsa
z

For relatively large 2, say 1.5 X, the scattered field may even be
approximated with only the singly diffracted fields from the upper

and lower edges, viz for 2 > 1.5 A
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~ DS(¢,¢0) cos[k&(sin ¢ + sin %
h

-jkr

)]e-jkl(sin o + sin ¢0) e

r

(36)
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Table 2.1
Values of (2m)3/2 and (2m+1)3/2

(2m)?/2 | (2m+1)?/2
- |
2.83 5.2
8 11.18
14.7 18.5
22.63 27.0
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III. DIFFRACTION BY A PAIR OF PARALLEL IMPEDANCE HALF PLANES

3.1 Introduction
The geometry relating to a pair of imperfectly conducting or
impedance half planes is depicted in Fig. 1(b). An impedance (opaque)

half plane is characterized by the boundary conditions
E-(n«<En = nZnxH (37)

on its upper and lower surfaces. E and f in (37) refer to the total
fields and n, = ZS/Z0 is the normalized impedance on each face of

the half plane. n may also correspond to an equivalent surface
impedance. For example, in case of a perfectly conducting half plane
with a thin material coating on each of its faces, the problem is

equivalent to an impedance half plane with

n = Jj tan I%t , (38)
1

where t is the small thickness of the coating and kd is the propagation
constant associated with the material coating. In terms of the

constitutive parameters
= o oaon
ng = o' - dwl) (39a)
eg = eolep - Jef) (39b)

we have that

kg = kolky - 1) (40a)
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where
k; = Kmr cos(¢d/2) (40b)
k; = Kmr sin(¢d/2) (40c)
- Pob oo ny2 "1 |||21/1+
Kop [Qupep - epup)® + (ule, + epitp) ?] (40d)
and
uIIEI + €Ilul
bq = tan ! [_!Lll__‘llli} . (40e)
Hpfp 7 Eplpd

Equation (38) may be even further approximated to give (for very small

t) [9]

L )
> jktl—-—1] , 1
n, Ik, (”o Ed) (41)

€ and M, are the free space permittivity and permeability.
The asymptotic solution to the diffraction by a single impedance

half plane is given by Senior [10]. In addition, explicit (non-integral)

uniform diffraction coefficients for the impedance half plane can be

found in [11]. These will be used Tater in this section. However,

the problem of diffraction by a pair of half planes shown in Fig. 1(b)

has not been considered previoulsy. In the following we will

develop such a solution. The approach of analysis will be based on

the angular spectrum method and as such it will be a continuation or

generalization of the procedure given in Section II. Once the scattering

solutions to the problem in Fig. 1(b) has been developed it will serve

as the basis for the diffraction by an impedance half-plane over a

ground plane via image theory or, in an approximate manner, over an
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impedance plane. Further the angular spectrum method can be used for
obtaining the coupling into the parallel plate waveguide composed of
a pair of impedance half planes. Subsequently, based on the above

results the problem of diffraction or scattering by a coated

protrusion can be considered.

3.2  Formulation of the Required Integral Equations

Because of the non-zero impedance on the half planes of Fig. 1(b),
both electric and magnetic currents will exist on their surfaces.

Therefore, the total scattered field will be given by

S ges . gms
z z z
= (42)
i HES 4 4TS
z z z

depending on the polarization of incidence under consideration. In
(42), the components with the superscript es refer to the scattered
field associated with the electric currents and those with the super-
script ms refer to the scattered field associated with the magnetic
currents.

According to the angular spectrum method, the scattered field
components due to the configuration depicted in Fig. 1(b) may be
respesented as follows (see also Chapter II):

In case of EZ incidence,

In v

8S - \jﬂ [P (cos a) + P_(cos a)e J2ke sin 0L]e"]kr cos (¢7a) da 5 y
C

(43a)

and

=24
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("S- s f[p (cos o) + P_(cos a)e 2IKE STn agg-dkr cos(eraly,
z m 2Mm
C

WY

-2%
(43b)

where C is the contour for which cos o remains real and is shown in

Fig. 2. The corresponding H-fields are

=
1]

es +Y cf‘ sin o[P._(cos o) + P__(cos a)e 2IKE STN aggJkr cos(9¥a)y,
Y 1€ 2@
C

(44a)

A |V
o

-29
and

HTS =Y, U(, sin [P _(cos a) + sz(cos a)e J2ke sin 0‘]e"]kr cos(¢3a)y, :
C

0 (44b)
-2¢

A v

In the above, Ple(cos o) and le(cos a) are the angular spectra
associated with the top impedance half plane and similarly P e(cos a) with
2

P m(cos o) correspond to the bottom half plane. Using the parameter
2

A = coS o, we further find that Ple(x) correspond to the spectra
2e

of the electric currents, JZ, on the respective planes due to the

discontinuity of His. Similarly, le(a)//i -x%  correspond to the

2m
spectra of the magnetic currents, Mx’ due to the discontinuity of

E™ over the y=0,x>0and y = -22, x < 0 planes.
In the case of HZ incidence, the scattered fields can be

represented as
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>

s i(Jn [P (cos a) + P, (cos a)e‘JZkl sin a]e-Jkr cos(o3a)y, .y~ 0

<

C - =22

(45a)
and

. o . - >
s = f [P, (cos o) + P, (cos ae J26* ST ageikr cos(efalgy ;=0
C hl ~24
(45b)
The corresponding E-fields are

. j2kse si -jkr ¥
Eis = -1, ‘Jn sin o[P (cos a) + P, (cos a)e J2ks sin ay,-Jk cos(o+a) g, ;
C
y >0 (46a)
and < =24

ms _ - . j2ke sin aq_-jkr cos(¢+a)
EX = '*Zo Uf‘ sin a[le(COS a) + sz(cos a)e e do
C
>0
y < _22 . (46b)

The determination of the above spectra Ple(x) and le(x) requires

20 2m
the simultaneous solution of an equal number of integral equations.

These can be obtained by imposing the necessary continuity and boundary
conditions. For brevity purposes, below we discuss the construction
of the required integral equations for the Ez incidence only. The
corresponding equations for the Hz—incidence can be obtained in a
similar manner on the basis of Eqs (45) and (46).

For the Ez-incidence a set of integral equations can be obtained
if we note that His vanishes in the plane of the electric current
sheets and via duality Egs also vanishes in the plane of the magnetic

current sheet. These conditions require that
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P (a) ek gy = 0for x<0 , (47a)

f P (eI 4y = 0 for x<0 (47b)

m -jkxx
e d» = 0 for x <0 , 47c
= (47c)

and .
P (1) )

2m -jkxx
¢ dr = 0 for x <0 . 47d
\Jﬂ VT = A2 (474)

Equations (47) are similar to Eqs. (8) and (26) in Chapter II and imply

that
Ple(x) = Ule(x) (48a)
2e 2@
and
le(x) = /T + 21 Ulm(x) . (48b)
2m 2m

As before, the U-functions refer to regular functions in the upper
A-half plane.
Additional integral equations can be obtained by imposing the
impedance boundary condition (see Eq. (37)),
S iy _ S i
(E) + E)) = -n Zo(K + H) (49)
on the outer faces of the top and bottom half planes. The boundary conditions

on the inner faces of the half planes are not considered at this time since

the ultimate use of this analysis is the study of a thick impedance half plane.
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Substitution of Egs. (42) through (44) into (49) requires on both outer

faces of the impedance half planes that

oo

— ok TS o IkxAy,
o[\ (VT_?_XY'+ nl) iFPle(k) + le(x)] + [Pze(x) L (1)]e"32K2 }

= (1= TE) eJkx2g (50a)

and

©

1 . -j2ka/iTRZ _ik
L (ﬂ — nl),{[Ple(x) P p(0)]e™ [P () - sz(x)]}e T4

= _('l - T]l/i - }\OZ)eijAO e'jZkQ’Vi-}\

for x > 0. Provided the boundary conditions in the inner faces of the half
planes are of no interest, equations (50) along with (48) are sufficient
for determining P e(A) and le(x). Their solution is presented in the

1

. om
next section.

3.3 EZ Incidence

In this section the solution of equations (50) in view of (48)
is outlined. Similarly to the development in Chapter II, once the
angular spectra are determined, it is then a trivial task for obtaining
the scattered field. We proceed now to solve Eqs. (50) by first

putting them in a more suitable form.

Addition and subtraction of Eqs. (50a) and (50b) gives

and



f ( LI ”1) [Qze(” (1 - g 2dke/T%) Q, (M1 + e-2jkz/TTAT)]

-4 )\ X ‘?—2' § _23 .
Cendkxd [(] _ om2dka1 ) - /]——_—TO[ (1 +e ZJkM-xo)] IS

(51b)

where x > 0,

Q) = P )P (1) = U (A)+U (), (52a)

QL) = P ()P () = TR )+ ()], (52b)

Q) = P () -P () = U ()-U (), (52c)
and

Q) = PO =P () = THEAL0)-u (0] . (52d)

Clearly, according to (52), Q1 (1) and Qze(k) are U-functions. It is

e
also important to note that Qie(x) are associated with the electric

e
current spectra while le(x) are associated with the magnetic current

2m
spectra. Thus, le(x) and sz(x) must vanish when n = 0 (perfectly

conducting half planes). Based on this observation and reciprocity
considerations, it is concluded that Egs. (51) are equivalent to the

following four equations:
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; 7 . —_—
f ( L nl) Qle(x)(] +e-23kM-x Y = (1 + e-JZkM-xo)ekaxo ’

f ( L4y )sz(X)“ S TP T2 - e J2kbs i_>‘o)ejkxko

1
(53)
for x > 0.
We may now close the integration path of (53) by a semi-circle

in the lower X half plane. Subsequently, Cauchy's theorem may be

employed to find that (see Chapter II)

;L0 U ()
Ple(X) + Pze()\) = 213 Ul(X) F )\0 (54&)
L(x) UMU(r)
_ 1

P =P () = o5 uz(f)’ EEa (54b)

1 Ll(xo) nlﬂTxo ﬂﬂ'u3(x)u3(xo)
le(x) + sz(x) = 7 Ul(” N (54c)

1 L (xo) n /1T + xo/ﬂT Us(x)Us(AO)
le(k) B sz“) T T Uj(x) * NN (54d)
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The split function U1 2(A) and Ll 2(A) are the same as those in Egs.

(13) and are given in Appendix I. 1In addition, U (1) is another split
3

function which also occurs in the solution of the diffraction by a

single impedance half plane. It is found according to

( 1, nl) = U (A;nl)La(K;nl) , (55)

Vi

where La(-k;nl) = Us(x;nl). Explicit non-integral expressions of UB(A)
for the ej“t time convention are given in Appendix II. These were
originally obtained by Senior [10] and approximate non-integral
expressions can be found in [11].

From (54) we finally obtain that

U (cos ¢3n JU (cos ¢ sn ) [ L (cos ¢ ) L (cos ¢)
P (cos ¢) ]. 3 1 3 0" 1 1 0", 2 0
22 4rj cos ¢ + cos ¢, Ul(cos ) Uz(cos o)
(56a)
and
1 2n1 cos ¢/2 cos ¢0/2
Palsine) = T3 —Cos s ¥ cos S U (cos ¢5m1)U (cos g3 )
2m
L (cos ¢_.) L (cos ¢_)
AT | (56b)
Ul(cos 6) Uz(cos b)

Substituting (56) into (43) and (42), it is found that an asymptotic

expression for the scattered field is

sb e'jkr

Z

I . :
B, = Dg(9sg3n )a(0:054)

/r
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A(¢,¢0,2) is again given by (22) and D§(¢’¢o;”1) is the diffraction

coefficients for the edge of an impedance half plane given by

I e-jn/4 1 -2n cos ¢/2 cos ¢0/2
D (450,50 ) = L U (cos ¢3n JU (cos ¢ 3n )
! V/2nk COS ¢ + COS ¢ 3 1os 1
(58)

When n - 0 we find from the expressions in Appendix II that
1

3

U (cos ¢;n1)|n+0 = /2 sin ¢/2 (59)

and thus Egs. (57) and (58) reduces to Egs. (32) and (33), respectively.

This was to be expected.

3.4 HZ Incidence

The scattered field associated with the Hz incidence on the pair
of impedance half planes in Fig. 1(b) requires the use of Eqs. (45) and
(46) and to follow the procedure outlined for the EZ incidence. As seen,
this is a rather tedious process. However, this is not necessary since

we may invoke the principle of duality and obtain that

-jkr

P ~Dﬁ(¢,¢o;n1)A(¢,¢o;z)—e—;— (60)
where
D,I](¢,¢o;n1) = Di(¢,¢0;1/nl) : (61)

Again, when n > 0, the diffraction coefficient Dé should reduce to

that in (20). Indeed, we note that

U (cos ¢>;1/nl)|nl+o > (62)
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and from (58) and (61) it is clear that the solution in (60) reduces
o (19) or (21).

3.5 A GTD Solution for Large &

Similarly to the perfectly conducting geometry in Fig. 1(a) we
may also obtain a GTD solution to the geometry in Fig. 1(b). Equation
(35) is still valid, however,all of the diffraction components in (34)

must be modified to include the dependence on the surface impedance, n .

Assuming that the inner walls of the half planes are perfectly conducting,

it is relatively easy to see that these take the form,
-jkr

I e
ul = D_(¢5¢ 35n ) , (63a)
Z S 0" 1
" /r
iy . . -jkr
uZ = DL(4,4,m Je Jke(sin ¢ + sin go) & (63b)

h ! r

S LN R ) 0] (4550 Je -32ke sin ¢
z TR cosS ¢  €OS ¢ 9>03m

(o]

:E: (- e—j(2m+1)2kz} o-dkr (630)
: T R R B

m=0

'j‘lT/4 i .
21 . € ( 1, 1 ) DI(¢,¢ 1 )e jkg sin ¢
Z /m COS ¢ CcoS q)o 1

; (63d)

2m+1)2kz] o-3kr

I:zo (2m+'|)3/2 ‘/‘;’
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11 e-j“/q' .l 'I I
- Varky (COS 3 ¥ cos ¢o) D%(¢,¢o,n1)
Z”(I’ )m e'j(2m)2k2 e-jky‘
| o (2m)*/2 7 (63e)
m=1
and
-jn/4 . | |
_ € 1 1 I i -j2ka(sin ¢ + sin ¢_)
2 /arky, <C°5 3 ¥ cos % ) Dz(¢’¢°’n1)e o
% edmake ] ke
me o
‘ [Z<T0) (Zm)a/z ] /Y—‘- (63f)
m=1
where

Clearly, this factor stems from the multiple reflections between the
half planes. As mentioned in Chapter II, only two to three interactions
need to be considered for sufficiently accurate results. Again, for

% > 1.5 1 the scattered field can be safely approximated by

Eib . ) _ o~Jkr
- DM(6,6 30 ) cos[ke(sin 6 + sin ¢.)] o-Jka(sin ¢ + sin ¢ ) =

sb ; 0" 1 0 r

H

z

(65)
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IV. DIFFRACTION BY AN IMPEDANCE HALF PLANE IN THE PRESENCE OF A GROUND
OR IMPEDANCE PLANE

4.1 Diffraction by an Impedance Half Plane in the Presence of a Ground Plane

The solution of the diffracted field by the geometry in Fig. 1(c)
can be obtained from the respective solution by the geometry in Fig. 1(b)
via image theory. In particular, as shown in Fig. 4, the problem of
diffraction by the geometry in Fig. 1(c) is equivalent to the sum of
two diffracted fieldsfrom a pair of parallel impedance half planes. One
of the diffracted fields is due to the direct wave and the other is due

to an image wave. If the incident wave is given by

E-i
i z +jk(x cos ¢ +y sin ¢ )
u, = . = e 0 o/ , (66)
]
z

the image wave satisfying the necessary boundary conditions on the

ground plane is

I
E
z : . P .
ui - - - eJk(X cos ¢y ty sin ¢I) o j2ke sin 9,
4
(67)

where

o = 21 - by (68)

The diffracted field due to a plane wave incident on the geometry of

Fig. 1(c) is now expressed by
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Figure 4. Illustration of the application of image
theory to the problem of diffraction by the
geometry in Fig. 1(c).
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sb(

Dlg,2m - g )eTR SN 4 (69a)

sc _ Sb
E(0s0,) = E,(0:4,) - E 0

for the Ez-incidence and by

sC _ ysb sb ) -2jke sin ¢
H (0500) = H7(450) + H"(052m - o))e 0 (69b)

sb

in case of the Hz-incidence. Ezb(¢,¢o) and HZ (¢,¢0) are the scattered

fields associated with the geometry in Fig. 1(b) and are given by

Eqs. (57) and (60), respectively. In addition, Ezb(¢, 27 - ¢0) and

Hib(¢,2n - ¢0) are given by the same expressions provided the
incidence angle is set to 2r - ¢0 instead of the usual ¢o‘ We

b sb

further note that the GTD expression for Ei and HZ is Section 5

of Chapter III may be used in (69) whenever applicable.

4.2 Diffraction by an Impedance Half Plane in the Presence of an

Impedance Plane

The geometry corresponding to this problem is shown in Fig. 1(d).
This is already the same geometry as that in Fig. 1(c) when n = 0.
The diffracted field by the structure in Fig. 1(c) was obtained in the
previous section after invoking image theory and in connection with the
solution for the diffraction by the geometry in Fig. 1(b). A similar
formulation can then be used for obtaining the diffracted field by the
structure in Fig. 1(d). However, in this case a more detailed analysis
is required in order to determine the extent of the application of image
theory when the ground plane is replaced by an impedance plane.

Figure 5 depicts the 12 actual diffraction mechanisms that

exist in relation to the geometry in Fig. 1(d) and their equivalent when
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the geometry is replaced with that in Fig. 1(b) which consists of

two parallel impedance half planes. Figure 5(a) illustrates the
scattering mechanisms associated with the direct field or equivalent
along the direction of incidence and Fig. 5(b) those simulated by an
equivalent image field. The factor appearing by the equivalent incident
rays must multiply the scattered field produced by that mechanism in
order to fully simulate the actual one. These factors are basically

the plane wave reflection coefficients for an impedance plane as a

function of the angle of incidence. More precisely,

n sin ¢ -1
S T
r(s) = 1 (70)
n - sin ¢
Fh(¢) = ;ifqr;;ﬂ;jg

which reduces to Ty in Eq. (64) when ¢ = 1/2. Note that Fs(¢) refers
to the EZ incidence while Fh(¢) refers to the Hz—incidence.

Based on our previous GTD analyses (see Fig. 3) given in
Section 2.4 and 3.5, it is now a relatively simple task to develop a
similar GTD solution for the diffracted fields associated with the
mechanisms in Fig. 5. As before (see Eq. (35)), the total diffracted

field for large & is given by

d
Es
sd z
u - ~U1+U2+U12+U21+U11+u22
d Z z z z Z z

sd

H

z

+ (ul, 4 u2, + ul2 + g2l o+ gl o4 uzz)e—ijR sin fbo
zI zI zI zI zl zI

(71)
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(twice) t (5)
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Figure 5. Actual mechanisms for the structure in
Figure 1(d) and their equivalent.
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where the components with the subscript I refer to the image
mechanisms.

From Fig. 5(a) we observe that u; is the same as in (63a). In

addition
2 _ 2b
uy = T, (¢o)r S(¢) u" o (72a)
h h
12 _ 12b
u® o= r e ryu (72b)
h
u?l = 1 (¢)r u21b
z s 0 ’ (72c)
h
utt = (r.)? y1b (72d)
z 0 z
and
w? = 1 () (e)(r)? u? (72¢)
h h

where the superscript b indicates components corresponding to the
structure in Fig. 1(b) and are given in (63).
The components associated with the image mechanisms in Fig. 5(b)

can be expressed in a similar manner as follows:

1 - b
up = Tlegdu"(6s07) (73a)
h
b
o= o)y (450)) (73b)
h
uiz = 1 u;Zb(¢,¢I) , (73¢)
21 - 21b
uft = T (e)r (e )Ty u(es00) (73d)

h h
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b
11 - 2 11
up = Tglog)(T)® u " (es0p) (73e)
h
b
22 - 2,22
up = rle)(ry)® u®(6,6) (73f)
h

and uib(¢,¢1) are again found from Eqs. (63) provided 9 is replaced

by ¢I =21 - ¢O.
The above GTD solution is only valid for large &. However,

when £ is small the field associated with the multiple interactions cannot

be considered optical and we must then develop a solution in terms of

the expressions given in Eqs. (57) and (60) as done in the previous

section. Unfortunately, an exact solution is not possible since the

ray mechanisms in Figs. 5(a) and 5(b) (see also Eqs. (72) and (73)) are not

all multiplied by the same factor. Thus, an approximate solution will

suffice at this point. It is important, though, that the contribution

of the first order terms, u;, u;, u;I and U§I be calculated correctly since

these dominate the total diffracted field. Fortunately, this can be

accomplished by rewriting the diffracted field corresponding to the

structure in Fig. 1(b) in a more convenient form.

In particular, Eqs. (57) and (60) can be written as follows:

Esb Esb + Esb
z 1z 2Z
= (74)
sb sb sb
Hz le * sz

The components with subscript 1 correspond to the total diffracted

field by the top impedance half plane and those with subscript 2 to the

diffracted field by the bottom impedance half plane. Note that the
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total diffracted field, for example, by the top half plane includes
the components u;, u;Z, and uél. From Eqs. (56) and (43), this

diffracted field is given by

Esb
z
I -jkr
= D_(¢5¢ 50 )A (6,6 39)
S 0’ ' T+ 909y
Hsg h r

I I o-3kr
DS(¢a¢O;n1) + DS(¢,¢0;nl) [A+(¢,¢0;z) - 1] - (75)
h h

and thus the contribution of u; is now explicit. Similarly, for the

diffracted field by the bottom half plane we have

Esb
2Z
= 40 (650g5n ) € IEKE SN 80 4 Dl g i Yo (608,30)
Sb 1 1
He2 h h
s . -jkr
| mi2ke sin g JhenIekE sine 9;;;—- . (76)
r

The functions A+(¢,¢0;2) are defined by

b,(0:052) = 5 |7 : (77)

1 [L (cos o) L (cos 4)
Ul(cos ) * Uz(cos )

and DX (4,4 3n ) is given in (58).
S 0"

h
We may now construct an approximate solution for the diffracted

field by the structure in Fig. 1(d). Looking at Fig. 5, we have that

for small 2 (less than one wavelength)

gSd
sd ? - ,top . bot f top . bot o232 sinq)0
u,” = ; - Yz Yz Uz1 z1
S
H (78)
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top _ )l . I . o) -jkr
u =t = {P (¢5045n )+ T(o,)Ty Delgs05m Lo (0,0052) 1?} e

Z S ’
h h /r
(79a)
-jkr
top = I . I . co) L e
ug ifs(¢o)05(¢,¢1,nl) + 7o D(esopin Ja,(6,0750) 1{} =
h h h
(79b)
bot ~ I . -j2kg sin ¢ I .
u, = {rs(¢)rs(¢o)Ds(¢,¢o,nl)e 0+ FS(¢ )P0 Ds(¢,¢0,n1)
' h h h h h
. . . . -jkr
[A (8,039) - o~32k sin ¢0] o~J2kt sin ¢ e (79¢)
- 0 /YT
and

b ~ j2 i

21 s(49)Tg Dg (65073 )
h h h h h
. . . . -jkr
[_(6:0p32) - eI2H ST d’o]} g2k sin ¢ E;;;—- . (79d)
r

The above take into consideration that backscattering is of primary
interest here. We further note that they are rather conservative

approximations and thus they would most likely give a higher result
than the correct one. This is true provided |r0| <1 as usual. In

fact, the smaller the value of |T | or |T |, the better the

h
approximation in (79) become. For this case only the dominant terms

of (79) need to be considered. These are the first terms from each of the

expressions (79a) through (79d).
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V. CONCLUSIONS AND FUTURE STUDIES

In this study we presented rigorous solutions to the problems of
diffraction for the first three configurations in Fig. 5. The
diffraction by the last geometry in Fig. 5 was considered only in an
approximate manner. Further, the configurationsin Fig. 1(c) and 1(d) were
based on the rigorous solution to the diffraction by two parallel
impedance half planes. The last was obtained via a generalization of
the angular spectrum method to account for the concurrent existence
of both electric and magnetic currents.

The above results can be readily used and extended to the analysis
of a small step discontinuity or a protrusion associated with impedance
boundary conditions as shown in Fig. 6(a). This will involve the
study of the scattering by a parallel plate waveguide with a recessed
stub as shown in Fig. 6(b). For d - 0, the configuration in Fig. 6(b)
reduces to that in 6(a). In case of EZ incidence and & < A/4,the
dominant diffraction emanates from the edges only and thus the effect
of the stub can be totally neglected. Consequently, the analysis in
this report is sufficient for the step discontinuities provided & < A/4.

For the HZ incidence, the diffraction by the waveguide edge is
negligible when ¢ and ¢, are near 180 degrees, but there exists a
strong coupling into waveguide modes. Thus, the scattering due to the
presence of the stub will be dominant in that region. Again, assuming
that 2 < A, only the TEM mode will be non-decaying. Subsequently,

once the coupling coefficient, CO(¢), the reflection coefficient, RO



AL (¢)

Figure 6.
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(a) Geometry of a protrusion

(b) Geometry to be analyzed

(c) - (f) ITlustration of coupling
reflection and launching mechanisms
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and the launching coefficient, L0(¢), are found (see Fig. 6), the

scattered field can be expressed as [5]

-jn/4 _-jkr
1y = Ploasy) S <=
Verk r

where

0 0''o

1 - ROTO

L (0)C. (o) 5
P(6:8,) = S(8565) + °.

In the above S(¢,¢o) is the diffraction pattern of the waveguide
edges and can be extracted from Egs. (21) or (60). Further To is the

plane wave reflection coefficient given in (64).
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APPENDIX I. DEFINITION OF THE SPLIT FUNCTIONS U (1) AND U (2)
1 2

-7 2
We wish to factorize the functions (1 * e j2key1-3%) such that

(see also Egs. (13))

]+ g 2k TNESTICY (A.1)
and
1 - 2k I-AT b I () (A.2)

The U-functions are regular in the upper A-half plane shown in Fig. A.2

and the L-functions have similar properties in the lower A-half plane.

Assuming an ert time dependence and following the procedure

in [6] we find that Ul(x) is given by

U (A) = L(-2) = YZexp[-X(2) - T()] 7y (_ Z%%) (k2+ jyn)ejZkzx/nn

1 1 1

N=1,53,5
(A.3)
where
jkxg T ko

Xl(A) - [; -C+1n (?Eij] -5 (A.4)

T - ¢cos (1) A>0
Th) = AL (A.5)

cos (-1) A <0

kA7 -1, or

- (A.6)
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. nmw
and

C

I
(@)
($a}
~
~
no

(A.8)

Note that X (1) was chosen such that Ul(x) is asymptotic to a constant
1
as Al «.

Similarly we find that

Uo) = L () = 7 T expl-X (1) - TV T
’ ’ n=2,4,6
(8 e gyl )
where
- Jkaa 2 k2
Xz(” = - [1 -C+1n (k—'{;)J -5 (A.10)

and all other functions and parameters were defined in (A.5) through (A.8).
The above expressions for Ul,z(k) appear cumbersome because they
consist of infinite homomorphic products. However, for our intended
calculations where 2 < A/4, we find that the achieved amplitude
accuracy is within five percent by retaining only the first three
terms of the product series. Further, the accuracy is improved for
smaller 2. Note that 2% is the separation distance between the two

half planes shown in Fig. 1(a).
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APPENDIX II. DEFINITION OF THE SPLIT FUNCTION U (x)
3

The function

Fan) = (=2 +n) (6.1)

occurs in the solution of the problem of diffraction by an impedance
half plane or by a set of parallel half planes as discussed in

Chapter III. To obtain the final form of the solution to the above
problems, it is first required that the function in (B.1) be factorized

in the form (see also Eg. (55))

3

( 1, n) = U (sn)t (sn) (B.2)

As usual U3(A;n) is regular in the upper A-half plane shown in Fig. A.2
and L3(x;n) has the same property in the lTower r-half plane.
Expressions for Us(x;n) = L3(-x;n) are given by Senior [10] in
an integral form and approximate explicit ones were later found by
Volakis and Senior [12]. We simply state below the results in [10] and
Jjut

[11]. Assuming an e~ time dependence we have that

2[2 cos x(1 - cos <;>)]1/2

(/?'sin QL%—X + 1)</§'sin 9—%—Z + 1)

= m=¢= 2
.{wﬂ( o) (T-9-%) } ’ (5.3)
v (r/2) v (n/2)

U (x =cos ¢3n) =
3

where
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cos x = 1/n (B.4)

and wﬂ(a) is the Maliuzhinets [12] function given by

o
v (a) = exp {f %}. wf’ m_sin gO; ﬁ/?'n sin u/2 + 2u du}

0

1-0.01393, 0<o<n/2 , 1<4.6

1.05302 [cos 1/4(a - jyo)]l/2 exp %ﬁ SE s O<o<n/2 , ©>4.6
(B.5)

with a = o + jt and Yo © 0.69315. For other values of o, the identity

o m
cos ('4—_ - g)

v (- m)

wﬂ(a) = 0.93242

may be employed as many times as required before the approximation in
(B.5) can be used. It is shown in[12] that this approximation gives
a maximum amplitude error of 0.27 percent and a corresponding phase

error of 2.4 percent.
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