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ABSTRACT

A heuristic diffraction coefficient is presented for the
diffraction by a lossy material wedge on a ground plane. Its derivation
is such that it accounts for all reflection boundaries associated with
the reflected and refracted ray mechanisms. The final form of the

diffraction coefficient consists of GTD and physical optics terms.
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I. Introduction

The growing application of different materials on real-world
geometries prompts the investigation of the scattering properties from
these structures. One such geometry of interest is the junction of a
tapered lossy dielectric/magnetic material over a perfectly conducting
surface. However, if an analytical investigation is to be carried out,
one must choose a canonical geometry which models the above junction. A
mathematical model suitable for this application is an infinite lossy
material wedge over a ground plane as shown in Fig. 1.

The problem of diffraction by a dielectric/magnetic wedge over a
ground plane is essentially that of diffraction by a dielectric wedge
once image theory is invoked. Unfortunately, there is no existing
asymptotic (high frequency) solution for general wedge geometry and
arbitrary material parameters. For example, solutions by Rawlins [1]
and Berntsen [2] are only valid for a wedge with small dielectric
constants. A recent solution by Joo, Ra and Shin [3] which is valid
for large dielectric constant values involves the numerical evaluation
of expansion coefficients used for calculation of the diffracted field.
Their solution is confined to a right angle wedge and is not applicable
for any extensive use. In addition, we note that none of the above
solutions have seriously considered any magnetic (lossy) properties of
the wedge.

Our assumption that the material wedge is associated with some
Toss simplifies the analysis considerably and allows one to obtain a
simple solution in the context of the Uniform Geometrical Theory of
Diffraction UTD [4] and Physical Optics. One method for analysis could

follow the heuristic formulation of Burnside etc [5,6]. This requires
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that the original diffraction coefficient for the perfectly conducting
wedge be modified such thatthe uniformity and continuity of the diffraction
coefficient be maintained at the reflection boundaries when the faces
of the wedge are other than perfectly conducting. Burnside and
Burgener [5] obtained such heuristic solutions for a dielectric or
impedance edge, and their solution was later found [7,8] to be fairly
accurate.

A similar heuristic solution can be obtained for an impedance wedge
(non-penetrable) and since the same formulation is being applied, it
is expected that this solution would be of sufficient accuracy.
However, in the case of a penetrable material wedge or the configuration
in Fig. 1, the application of the above heuristic formulation becomes
more involved because of the greater number of reflection boundaries
caused by the internally transmitted/reflected ray mechanisms as shown
in Fig. 2. Also, for the case of a lossy wedge, the reflected rays
are no longer phase congruent. This fact prohibits at this time the
calculation of a compact reflection coefficient to be used in a pure
UTD heuristic solution. By considering each of the reflection boundaries
separately we can arrive at a physical optics solution for the diffraction
by the geometry in Fig. 1. The edge diffractioneffects associated with
multiply reflected rays will be modelled using a physical optics
approach. Meanwhile the diffraction associated with the reflection
boundaries from the ground plane and the principle reflected wave of
the wedge will be accounted for via a UTD equivalent wedge formulation.
Our final diffraction coefficent will then be a combination of UTD
and physical optics terms.

The varying thickness (being linear) of the material medium as

a function of x causes a complication for finding the required
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compact diffraction coefficient for each particular species of rays to
be included in the appropriate term of the diffraction coefficient. 1In
our analysis these compact diffraction coefficients are found in an
indirect manner via the use of equivalent surface currents at the boundary
of the material which then is integrated to find the total physical optics
field in the far zone. Subsequently, a compact physical optics diffraction
coefficient is easily extracted.

This report is divided into four sections. The first is the
ray analysis of the wedge geometry (Section II). In this Section (II) the
generalized formulas for the refraction/reflection angles of the ray
mechanisms within the dielectric wedge are found. In addition, the
associated relative path lengths are computed. With this information,
reflection boundaries can be defined which are important in the field
calculation and formulation of the diffraction coefficients. The third
section of this report uses an equivalent current formulation to solve
for the far zone physical optics field. The initial portion of this
section (III) derives the complex propagation constant of the Tossy
material wedge. With the characteristics of the ray paths within the
wedge known, we assume that a parallel (hard) polarized plane wave is
incident upon the Tossy material wedge over a ground plane. Using ray
tracing techniques the field of the multiply reflected waves within
the wedge are found at the material wedge surface. Knowing the surface
fields, the equivalent magnetic and electric surface currents are
calculated. Appropriate magnetic and electric potential functions are
then defined whose linear combination will yield the far zone field.
The end result of this analysis is the derivation of the physical optics

field corresponding to the multiply reflected/refracted ray mechanisms.
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The analysis up to this point will yield all of the multiply
refracted/reflected fields associated with the material wedge geometry.
However, our interest is the total evaluation of the diffracted field
from the junction (tip) the material forms with the perfectly conducting
plane. In Section IV of this report we construct a heuristic diffraction
coefficient for the diffracted field which when applied in its uniform
form maintains total field continuity at the primary reflection boundaries.
The approach here employs the use of the uniform diffraction coefficient
derived by Kouyoumjian and Pathak for a perfectly conducting wedge to
evaluate the diffraction effects corresponding to the prime reflection
boundaries. In addition, physical optics (PO) diffraction coefficients
will be derived for modeling the diffraction effects associated with the
higher order mechanisms.

The Tast section of this report is a summary.

Before beginning the ray analysis of the wedge, it is important
to state the basic assumptions and required specifications made
throughout this report.

In this report we are concerned only with plane waves at normal
incidence. An ej“t time dependence is always assumed and suppressed.

Two types of electric field polarizations may be considered. The
normal (or soft) polarization case in which the E field is parallel
to the wedge edge (2 axis), and parallel (or hard) polarization case
in which the E field lies in the plane defined by the incident ray and
the vector normal to the surface.

Further, our interest is mainly in backscattering and for ¢ angles
in the range of 2n/3 < ¢ < m. In view of this we note that the

backscattered field for the perpendicular (soft) polarization of
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incidence (E;) will be of nominal value and thus our analysis will be
confined to the hard case only. In addition, no surface or lateral
waves will be considered in this analysis. These are highly attenuated

because of the lossy material assumed here.

II. Ray Analysis of the Wedge Geometry

In this section we develop the required ray analysis which will
be used later for the evaluation of the equivalent surface currents on
the material face of the wedge.

Figures 1 and 2 show the internal reflections within the lossy
material wedge placed upon a perfectly conducting plane. The wedge angle
is o (measured with respect to the positive x axis). In Fig. 1, ..,

1]

erj’ etj represent incident, reflected and transmitted angles respectively.

RS is the primary reflection coefficient of the wave reflected from the
material wedge (;1)' Rm is the reflection coefficient of the reflected
wave from the perfectly conducting plane. The incident wave is multiply
reflected within the wedge and portions are reflected back into the
incident medium via equivalent reflected rays ;2, ;3 etc.

Using Fig. 1 as a guide, the general equations for the reflected
and incident angles at various stages of the bouncing rays are easily
derived and the results are given below. The incident angle (eil) with

respect to the normal of the wedge is a known value. The transmitted

angle 6, and all others subsequent transmitted angles are calculated

ty
using Snell's law and the propagation factor kd.

o = wedge angle

eil : known incident angle



k
sin 6y = Re (EQ) sin 6. , air to material (1a)
1 d 11
kd .
sin etj = Re (F;) sin eij j > 1, material to air (1b)
O, = O to (2)
0, = 20, -0 (3)
8pj = Zeij-er(j_” i>2 (4)
0,. = 26 ,. - 6.,. j
i o gy 08 O

The distance traveled by the multiply reflected rays is depicted
in Fig. 2. It is convenient to use x = 0, y = 0 as our reference point.
Also we define another coordinate system rotated about the 2 axis
and which has its new x' axis coinciding with the surface of the wedge.
From geometrical considerations

X €OS (et + a)

I, 1
S, - (6

This relationship allows one to easily relate the position on the x axis
to the position on the wedge surface. The separation distance between
the incident wavefront on the face of the wedge and at x = 0 is dil’
This distance, along with the travel distances of the multiple

reflections dij and dtj shown in Fig. 2 are given by



d. = x' cos(¢' + a) (7)
11
_ sin o
dtl = X Cos 6, (8)
1
cos 6,
= b
dig dtl cos 61.2 (9)
COS 6..,.
dyy = 4y —— g0 2 (10)
oS erj
coS 0.,.
- i(3 -1) . .
dij dt(j - ]) cos eij ’ J > 2 (]])
by substituting (11) into (10) we obtain
d,,. coS 0.,. CoS 6
d = t(J - ]) 1(3 = ]) r(J - ]);j > 2 (]2)

tj
COS 8,5 COS 0.5

Conversely, by reversing the prior substitution we have:

4. = 4. cos Gr(j _ Z)COS ei(j _ ])
iJ i(j -1) cos er(j _ ])cos eij

j>2 (13)

Using the generalized ray geometry and Snell's law along with the
knowledge of the wedge angle, the angle of incidence, and the
material parameters of the wedge we can immediately calculate the
reflection boundary angles associated with the multiply reflected

rays transversed within the material wedge.
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III. Equivalent Current Formulation of the Far Zone Field

Let us set up the problem from the beginning. We have a perfectly

1

conducting ground plane lying on the y = 0 plane. At x = 0 we place
the edge of a lossy material wedge which goes to infinity on the ; axis
(see Fig. 1). The material wedge has complex constitutive parameters
e, and W, and has an angular opening of « degrees. A plane wave with
parallel (hard) polarization is normally incident upon the defined
surface at an angle ¢', where 0 < ¢' < /2 - a. ¢"' is defined with
respect to the negative X axis.

Qualitatively, the plane wave incident upon the perfectly conducting
surface will be reflected in accordance with the Taw of reflection.
However, the tracing of the multiple reflected rays within the material
wedge requires a detailed analysis. The initial incident wave on the
material face of the wedge is first reflected according to the law of
reflection and partially transmitted into the wedge. The transmitted
wave then travels a path length dtl (see Fig. 2) before it reflects off
the ground plane. Subsequently, it propagates back to the material-free
space interface through a path length of diz' At this boundary, part
of the wave energy is again transmitted to the receiver and the rest
reflects back into the wedge. The angle at which the transmitted wave
emerges is governed by Snell's law and the corresponding ray is referred
to as gz. The reflected wave continues on a similar path as the initial
transmitted wave, propagating through a distance dtz’ d1.3 (see Fig. 2)
at which point it is back at another material-free space boundary.

Using Snell's law and Fresnel transmission coefficients again, we
can again find the direction of the emerging reflected ray (in free

space), ; . The procedure may be repeated an infinite number of times.
3
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However, since the path lengths are increasing, the multiply reflected
waves will eventually attenuate to negligible values due to the

material Toss in the wedge. Therefore, we can obtain reasonable results
by accounting for a Timited number of multiply reflected rays (of which
s R ;3’ etc are examples). We note again that the surface or totally

2
reflected rays are not included. This condition is reached when

kg
sin etj = 1 = Re (——) sin 6. . (14)
The path Tengths within the material and the associated angles
of incidence and reflection are given in Section II of this report.
The constitutive parameters of the lossy material wedge are

given by

where W, is the complex permeability and ey is the complex permittivity.

Using the basic definition of the propagation constant k, and the

d
complex parameters My, and €n.s We Can express the complex propagation

constant as:

=~
o
]
=~
]
[
~
—
—
oo
N

where
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and
kf = kok; . (20)
In order to define k; and k;, let
= ll_llll2 it Illzl/u
Kmr [(“r‘er erur) + (ur‘er + EY‘,UY‘) ] (21)
and T "o
o1 [ HeE. T
by = tan [Tl (22)
e T Eplp
Using Kmr and 94 we define k; and kr as:
. %
k! = Kmr cos > (23)
"o . %4
kp = K. sino=. (24)

In order to ensure that the wave decays, k; must be positive.
The propagation factor can now be written as

-jk s -k ks -jk k's
e 0 = OV o OF (25)

-k ks -3k ks

ro
where e ° is the decay factor, e or

is the phase factor, and
s is the path length traveled within the wedge itself.

Having an expression for the complex propagation constant (kd)
we can derive Snell's law. The equations using Snell's Taw
for incidence from free space into material and vice versa

are given by equations (la) and (1b). Finally, for reference
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purposes we state below the Fresnel reflection and transmission
coefficients at the wedge free space interface. For parallel polarization

at normal incidence the reflection (r') and transmission (T) coefficients

are
n C0S 6 -n CoOS 6
T = 1 1 2 2 (26)
n cos 6 +n Cos 6
1 1 2 2
and
2n cos 6
T - 2 , (27)
n COS 6 +n CcoS 6
1 1 2 2
where
u_ .
n_ = Ll . (28
J Srj )

The subscripts with 1 denote the medijum of the incident wave and
2 denotes the transmitted medium.

Using x =y = 0 as our reference point, the transmitted wave
(parallel polarization) within the material of the wedge after the
first interaction of the incident plane wave with the material face is
given by

(x.) = Ef(x=0)T e 1 . (29)

E, (x
¢tl rl
In the above expression T is the complex Fresnel transmission coefficient

1
(see Eq. 27) from free space into the lossy material, di and dt are

1 1

given in Egs. (7) and (8). Since kd is complex, we are already
accounting for the attenuation factor of the plane wave within the

material wedge.
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The wave in (29) is then incident upon the perfect conductor and

is reflected to give a reflected wave

propagating toward the material-free space interface.

The field transmitted into free space as a result of E¢ is

12
given by

E =E Te ° (31)

where T2 is the transmission coefficient from the material to free space
and s is the distance from the wedge to the point of observation.
Substituting (29) and (30) into (31) we can write the expression

for the first multiply reflected field as

. ik d, -jk,(d.+d. )
E = E?(x =0)TT e 9Mleg it . , (32)
¢S o 12
2
where
d_il = X fil (33)
dtl = X ftl (34)
d1.2 = X|f12 (35)

In general, additional multiply reflected waves (st with j > 2)

can be found according to



¢S

where

and

and the Tj's with Rj's are transmission and reflection coefficients

-i =
E(x = O)T e

-J
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jk d

, W
oM exp [:Jkd :E: (dt(n - 1) + dim)] Ty

=2

d.. = x'f..
1] 1]
dtj = X ftj

which are defined in Egs. (27) and (26), respectively.

For the case of reflection directly off the material wedge, the

reflection coefficient called RS (for ray ;1) is given simply by

Eq. (26).

It will be useful to generalize fij and f

tj

for future

calculations in an attempt to formulate a general diffraction

coefficient. Since dij and dtj general forms are known, we find

from Egs. (7) through (13) that

]
O
o
w

—
-©
+
Q
S
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and

fo. « j>1 . (43)

To solve for the reflected magnetic field we define ;j as the
unit vector in the direction of propagation of the transmitted wave
and $sj as the unit vector in the direction of the parallel polarized

reflected electric field (see Fig. 1).

or
1

H. = —E

z] 24 ¢sj

Presently, we have the reflected field components at the surface
of the wedge. To obtain the physical optics far field quantities

we will define equivalent magnetic and electric currents (JS and Ms ) and
2 2

vector potentials components A and Fz' With the vector potentials

¢52

known it will be easy to obtain the physical optics field quantities.

In the next section we will extract from these results a diffraction

~ A

coefficient for each of the multiply reflected rays (s , s3 etc.).
2
Once the surface fields of the wedge are known for a multiply
reflected wave we can define (using ; as an example) a set of
2

equivalent electric and magnetic currents as

.l
1]
>

So d S»

=i
]
m
x
=]

So S, d
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At this time it is convenient to rotate the ; and § axis around the

2 axis such that the X' axis is parallel to the wedge as shown in Fig. 3.

A

From Fig. 3 we see that ﬁd is parallel to &' and $52' x' = -cos(etz).
These relations are utilized in subsequent calculations.
Evaluating Eq. (47) in the prime coordinate system and solving

for the $52 component results in

E E
J = $ o= x sy . $ = - coS 6 s,
¢52 So So z0 So ts z0
(48)

Also, for the magnetic current in Eq. (47) we have

MSz = -z' cos et2 E¢s2 . (49)

The far zone electric field can now be calculated by [9]

E = -JuwhA - JkF_ ., (50)
o, s, z

where A¢ and FZ are the electric and magnetic vector potentials. The
S2
vector potentials are calculated using a two-dimensional approach and

a large argument approximation for the Hankel function H(z).

0
For the electric potential we have that
: -k _|e-p'
A = ! f J e © dx' (51)
b, JBikst < s,

with
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<>

>

- >

S2

12

aterial
Wedge

N >
]
N >

!

Fig. 3: Rotation of the §-§ axis about the 2 axis such that X'

coincides with the wedge surface.
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lo-otl = Is-s'l ~s-5s" cos (6 - ') . (52)

According to Fig. 4 it is also found that

s -s'cos(o¢-¢') = s -x'sin etz . (53)
Thus .
e'JkoS p Jkgx' sin B,
A= fa e 2 dx' (54)
%, Bk ST o s,
Likewise,
e-‘]kos p jkox' sin 0,
F,o- [ ome XU (55)
V8ﬂjk05 o

Substituting Eqs. (48) and (49) into (54) and (55) respectively,
and finally inserting (54) and (55) into (50) we have

S2 2
(56)
Using the representation for E¢ (Eq.(32))1into (56) and evaluating
S2
the integrals results in
TT cos ® Ei -jk s
s [Xo i 12 b e O
¢, 2m kofil + kd(ftl + fiz) - k0 sin etz e
(57)

One can now extrapolate the general physical optics fields for
any higher order multiply reflected ray. In doing this it should be
noted that we are assuming that the ray is not totally reflected (trapped)

in the material wedge. Subject to this condition, it is found that
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Fig. 4: From the wedge surface to a far field point of observation

for a multiply reflected wave.



n=1 n=2
-jk s
i e ! 0
Es ; (58)
/s

where E¢ is the physical optics field for the ray, along the ;m
sm

direction. Further, the coefficients Tj and Rj are defined by Egs.

(27) and (26) respectively, and s is defined from the point of transmission

on the wedge to the point of observation.

IV. Construction of Diffraction Coefficients

Figure 5 shows the reflection boundaries for the multiply
reflected waves.

For a constant direction of incidence, as the observation angle
varies, pure geometrical optics would predict abrupt transitions in the
total field due to the discontinuities in the multiply reflected fields.
In the case of a perfectly conducting wedge such discontinuities are
eliminated by the existence of the diffracted field. When the
diffracted field is calculated in a uniform sense the transition regions
of the two reflection boundaries are continuous. According to GTD
[4,10] the total field is given by

Etota] _ Eiui + Erur + Ed ’ (59)
where Ei is the incident field, E" is the reflected field and Ed is
the diffracted field by the edge of the wedge. In addition ui and u"

are unit step functions which are zero in the region beyond the shadow

and reflection boundaries.
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inc.

Fig. 5: Single and multiple reflection boundaries.
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The diffracted field for an impedance wedge (non-penetrable) can

be expressed in a heuristic manner as

. -jks
e = gl p @ (60)
¢ ¢ "h e
with . .
-jn/4 |2 sin = F(ZkL cosz—E)
D (0:0') = - & : -
2nvemk [ o5 I . cos £-
n n
+ B+ 2mn B+
™ 2 -
+ R2 cot ( 5 ) F |2kL cos (———E————J
m B+ B+
T- b 2 b
+ R1 cot( 5 ) F |2kL cos 5 (61)
where R , are the reflection coefficients on ¢ = 0 and ¢ = nn faces
1l
of the wedge given by
sin ¢' - n
R = sin ¢t + n1 s (62)
! sin(nm - ¢") - n
2 2
sin(nm + ¢') + n
Bi = ¢i¢l s (63)
L = S (64)

assuming a plane wave incidence. Note that ¢ (scattering angle) and
¢' (incident angle) are measured with respect to one of the wedge faces.
For our case this is the negative x axis (the position on which the

ground plane is located). The transition function F(x) is defined in [4]
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and o, are the normalized surface impedances on the appropriate faces
of the’wedge. The above heuristic diffraction coefficient in (61) was
derived on the basis that continuity of the total field maintained at
the reflection boundaries. For the case of the impedance half-plane
where the exact solution is known it has been found [7,8] to give

excellent results. Note that when nl > 0 then R1 = 1, and the above

52
diffraction coefficient reduces to the rigorous oné for the perfectly
conducting case.

The form of the Tast two terms in (61) suggests a method for
constructing a diffraction coefficient to model the diffraction terms
associated with the ground plane and the principle reflected ray

~

s for the geometry under consideration.
1

Such a UTD diffraction coefficient (which does not account for

the scattering associated with multiply reflected rays) has the form

-jr/4 - -
(60 = - S feot (1) + ot ()
2n Zﬂko

2 g T - B 2 g*
- F 2koL cos > + cot ( 7 ) F 2k0 S cos 5
+
+ 2t - B
T+ B 0
g oot (23] F[2kos (__2...._)] L )

where

n = 1- %~ (o = wedge angle) (66)

-©
n

angle of incidence W.R.T. negative x axis

angle of observation W.R.T. negative x axis

-
i

R. is defined in Eq. (26).
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We note that the first term of the above diffraction coefficient is
associated with the shadow boundaries and is therefore very small for
our geometry. Assuming also that s » «, a simpler form for the

diffraction coefficient is given by

-jn/4 + + ot
D (¢,0') = -2 cot (“'5)+R cot (TT 3) . (67)
h ZH/Z_T_T—I(—O_ 2n S 2n

We note that the above diffraction coefficient is no Tonger

uniform. However, in the region of interest, where

0<¢, ¢'<1/2-u0

equation (67) is still valid.
To account for the diffraction due to the boundaries of mulitply
reflected waves, we turn to the physical optics far field expressions

derived in Eq. (58). Equation (58) 1is written as

jkos
S P.0. i e
E =D (9,0') E : (68)
sm hem 5
P.0.

It is now recognized that Dh is the physical optics diffraction coefficient
sm .

for the multiply reflected ray S

P.0. _ /1 -jn/4
D = [—— e
hsm 21rk0

1
sin(¢ + )T 1m .' R

-1

3

f + cos(¢ + a)

—h
—
.
+
=~
~
+
uMS
N

>
1
—

(69)
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Clearly, (69) is valid only for the ﬂvisib]e" (transmitted into free
space from the wedge) ray mechanisms. One may also question the accuracy
of the physical optics diffraction coefficient. However, preliminary
calculations indicate that for small ¢', there are no visible higher
order terms provided € is relatively large. Therefore for this case,
the total diffracted field would be dominated by the GTD terms in Eq. (67).
The "visible" higher order mechanisms will more 1ikely appear
when ¢' is closer toward the normal of the wedge face. In that region
and provided backscattering is of interest, the physical optics
calculations are expected to give good results.
We can now write a total diffraction coefficient for a lossy

wedge on a ground plane by combining (67) and (69) to yield

-jn/4 1 + . ot
D, (¢,0') = - % = |cot (" ~_B ) + R_ cot (“ B )
h /Z'IT—I(O 2n 2n S 2n
-1
0 F
MT sin(¢ + a)T TM Rn
n=2
Mol N (70)
M2 ¢ 4k f +2f + cos($ + a)
i1 r tn in
n=1 n=2
MT > 2 is the number of multiply reflected rays (minus 1)
V. Summary

The plane wave diffraction by a Tossy material wedge on

a perfectly conducting plane was studied. A ray analysis of the wedge
geometry was performed to find the location of the reflected and multiply
reflected boundaries. With this information combined with ray tracing
techniques, the multiply reflected field at the wedge surface were

found. Equivalent surface currents were then derived. Finally, the
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far zone physical optics field was formulated using potential functions
which were derived from the equivalent surface currents. The major
result of this procedure yielded a physical optics diffraction coefficient
associated with the higher order terms.

A uniform diffraction coefficient was subsequently derived on
the basis of UTD, by imposing continuity of the total field at the
reflection boundaries associated with the ground plane and principle
reflected ray from the wedge. Finally, the UTD and physical optics
diffraction coefficients were combined and conditions of validity were

discussed.
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