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Abstract-An asymptotic solution is presented for the diffraction of a resistive
strip which is useful in the simulation of thin dielectric layers. Up to third order
diffraction terms are derived which include the surface wave field effects in a
uniform manner.

The derivation of the higher order terms is based on the Extended Spectral

Ray Method. A new first order diffraction coefficient is also given.
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1 Introduction

A resistive strip,shown in figure 1, is an adequate model for studying the
scattering by thin dielectric slabs and coatings of finite length which are widely
used for radar cross section reduction. Because the strip is amenable to an
analytic solution, several authors [Bowman 1967, Senior 1979a, b, Tiberio et. al.
1982] have investigated its scattering behavior. In all of these investigations the
goal has been to obtain a high frequency solution for the multiply diffracted fields
which can be added to the first order contribution [Senior 1952, Maliuzhinets
1958, Tiberio 1982] for predicting the total scattered field by the strip. However,
a uniform asymptotic evaluation of the multiply diffracted field which is valid
everywhere has yet to appear. Therefore, the scope of this report is to present
such a solution.

The difficulty in obtaining a valid solution for the multiply diffracted fields is
primarily due to the non-ray optical behavior of the field which illuminates the
second edge after diffraction from the first. This occurs for incidence angles near
edge-on and can be quite dominant in the backscatter and forward directions.
Because of the non-ray optical behavior of the interacting fields in these situa-
tions, the concept of slope diffraction [Kouyoumjian 1975 and Buyukdura 1984]
is not applicable. Senior’s [1979a] approach to evaluate the higher order contri-
butions involved a heuristic modification of a known (Fialkovskiy [1966]) uniform
solution for the perfectly conducting strip. However, this was found inadequate
and was just used as a guideline in arriving at simpler integral expressions for the

edge-on backscattered field. Tiberio et. al.[1982] presented a valid high frequency



solution for the diffraction by an impedance strip which included the effect of the
surface wave pole but was restricted to the edge-on incidence. Their approach
in treating the non-ray optical fields involved the use of the Extended Spectral
Ray Method(ESRM) (Tiberio and Kouyoumjian 1982, and 1984) which has been
found quite successful, and its principles will also be employed in our analysis.
The ESRM can be considered as an extension of the Uniform Geometrical The-
ory of Diffraction (UTD)(Kouyoumjian and Pathak [1974]) and is related to the
spectral theory of diffraction introduced by Rahmat-Samii and Mittra [1977)].
In our high frequency analysis of the diffraction by a resistive strip, par-
ticular attention will be given on the uniform evaluation of the surface wave
fields and their effect on the diffraction pattern. With this in mind, section II
presents a uniform first order diffraction coefficient using a method introduced
by Clemmow(1966] (see also Senior 1981) and expounded upon by Volakis and
Herman([1986]. In section III, the ESRM is employed to find explicit simple ex-
pressions for the second order diffracted field in a parallel manner to that used
by Tiberio et. al. [1985] in their analysis of a perfectly conducting double wedge.
A similar evaluation is performed for the triply diffracted field (section IV).
The sum of the fields up to third order were then used for the computation of
scattering patterns by strips which may or may not support surface waves. We
found remarkable agreement with moment method data for strip widths even

down to an % of a wavelength for backscattering and .5\ for forward scattering.



2 A Uniform Diffraction Coefficient for an Impedance
and a Resistive Half Plane

Assuming an E-polarized plane wave normally incident ! on an impedance

half plane shown in figure 2,

E:, — ejk(z o8 po+y 8in ¢o) (1)

we find from Senior[1952] that an integral representation of the scattered field is
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where C is depicted in figure 3, ¢, is the incident angle, ¢ is the observation

angle, n is the normalized impedance and K (a) is the split function, defined by
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The above is a highly accurate approximation of the Maliuzhinets function[1958]
W, (z) given by Volakis and Senior[1985].
In order to perform a uniform asymptotic evaluation of (2) it is necessary to

consider the effect of the geometrical optics and surface wave poles as they ap-

lthroughout this report an e/“* time convention is assumed and suppressed



proach the saddle point at a = ¢. Clearly the geometrical optics (g.0.) poles are
located at @ = ® — @, and 7 + ¢,, while the surface wave pole at a = —8 corre-
sponds to the zero of the term 1++/2 cos{(¥—a—0) /2] appearing in the expression
for K, (a). The object of the uniform evaluation is to maintain total field continu-
ity for all pattern angles ¢. For the perfectly conducting case (all poles lie on the
real axis) a uniform evaluation referred to as UTD(Uniform Theory of Diffraction
(Kouyoumjian and Pathak [1974]) involved a modified Pauli-Clemmow (Pathak
and Kouyoumjian [1970]) evaluation of the integral by retaining the first non-
zero term of the pertinent Maclaurin series expansion of the integrand. Thus, it
is restricted to cases where the pole crosses the saddle point as ¢ is varied and
therefore not applicable to the present situation where a complex pole exists.
Our approach for evaluating (2) follows the one described in Volakis and Her-
man [1986](see Appendix A). It involves first the subtraction and addition (to
the integral) of certain auxiliary functions, each containing one of the singulari-
ties of the integrand. The auxiliary functions can be usually integrated exactly
and the residue of the pertinent singularity is equal to that obtained with the
original integrand. Thus, the new expression can be subdivided into singular
and non-singular parts. The non-singular parts are evaluated asymptotically in
a non-uniform manner while the singular ones correspond to the added auxiliary
functions which are integrated exactly and will therefore be uniform.
Appropriate auxiliary functions for the integral at hand are

Gpi(a, @) = sec (W)

5 . 1=1,2,3 (5)

which are clearly singular at & = ay;, where ap = 7 — ¢,, apz = 7+ @,, and



ap3 = —0 correspond to the poles of the integrand in (2). Proceeding as discussed

above, we can express the uniform diffracted field by an impedance half plane as

EX (¢, ¢0;n) = ENU(8,05n) + E29 (¢, do3n) + EXSW (¢, 603 1) (6)

In the above, ENU denotes the non-uniform diffracted field by the impedance

E3G9 represents the contribution of the g.o. poles to the diffracted

half plane,
field and ES% denotes a similar contribution caused by the existence of the

surface wave pole. They are given by
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where
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is the Clemmow [1966] transition function satisfying the identity

F.(-z) = Vze ite” — F,(z), (18)

essential for maintaining total field continuity. In (17), the minus sign is chosen
when I <arg(x)< £ , otherwise the positive sign is used. To illustrate how
continuity is maintained, figure 4 shows the position of the surface wave pole in
relation to the closed contour and the corresponding argument of F. Contour

C is detoured to close the path of integration in the steepest descents method of

integration. This path (steepest descent path) is described by the Gudermann



function and the location where it crosses the real o axis is determined by the
observation angle ¢. When the closed contour C and 1 (the SDP) captures the
surface wave pole, we find in (17) that arg(x)> § and therefore the negative
sign is chosen. Thus, (18) must be invoked to recover the residue contribution of
the surface wave pole. When the pole lies directly on the steepest descent path
(contour 2) the corresponding phase of the argument of F is exactly 7. Finally
when the surface wave pole is not captured by the closed contour (curve 3) the
phase of the argument of F, is less than § requiring the choice of the positive
sign in (17).

As mentioned above,when the + sign within the transition function changes,
we can apply the identity given by equation (18) to recover the residue contri-
butions of the poles. Such a result is, of course, easily checked by calculating
this residue contribution directly from the integral. Applying (18) to the transi-

tion functions appearing in (8), we find that the geometrical optics pole residue

contributions are

—4mjt,(ap;) Ky (apy) el P (19)
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In addition, from (9) we obtain the surface wave pole residue contribution to be
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Clearly (21) and (22) represent (attenuating) plane waves traveling on the upper
or lower face of the half plane, respectively.

It is important when considering the general class of surface waves to distin-
guish between the contributions due to the residue of the surface wave pole and
that due to surface wave diffraction. The first is generally referred to as the
surface wave field. However, even if the surface wave field is absent (the surface
wave pole is not captured by the closed contour), the diffracted field ( termed
surface ray field ) given by (9), must still be included for a complete uniform
representation of the total field.

Equations (6)-(9) give the uniform diffracted field from an impedance half
plane in terms of the Clemmow transition function. We can easily rewrite our re-
sult using the transition function introduced by Kouyoumjian and Pathak [1974]

in the context of UTD by employing the relation,
Fxp(z?) = £2jzFc(%z). (23)
The diffracted field can now be expressed as
E? = D(¢,¢0in)—— (24)
with
D(¢, 45 1) = D*NY(8,605n) + DO (¢, 605n) + D*¥ (6, 855n)  (25)

being the uniform diffraction coefficient. From (7)-(9) and (23) we find that
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The above diffraction coefficient for the impedance half plane includes the
contribution of both electric and magnetic currents. In order to obtain a corre-
sponding diffraction coefficient for a resistive half plane, one needs to only keep
those terms associated with the electric currents. This is easily done by keeping
the first term of t,(a) in (11)-(14).

Examples of bistatic patterns illustrating the effects of surface waves from
an impedance half plane are shown in figures 5 and 6. An E-polarized wave is
normally incident upon the half plane and observed at a distance of 1.6\ from
the edge. The impedance half plane in figure 5 is inductive; therefore, no surface

waves exist [Bucci and Franceschetti 1976] but surface ray fields are present,



although usually small. This is easily seen by observing that the total field tends
to zero as the observation angle approaches the shadowed side of the half plane.
For figure 6 the angle of incidence and observation distance are the same as those
in figure 5; however, the half plane consists of a capacitive material which may
(it does in this example) support surface waves. The total field on the shadowed
side of the half plane is now quite significant due to the surface wave field. It is
clear from the prior example that the most significant effects of the surface wave,
when it exists, occur near grazing observations. This is especially important
when accounting for the sources of higher order diffraction mechanisms as will

be encountered in the next section.
3 Second Order Diffraction

The second order diffracted field is that which is diffracted from edge Q2(Q1)
after diffraction from Q;(Q:). As shown in figure 7 there are four mechanisms
associated with this phenomenon. In evaluating their contribution we must also
consider the existance of possible surface waves in addition to the ray field compo-
nents. A traditional approach would have been to repeatedly employ the uniform
edge diffraction coefficient in (7)-(9) or in (25)-(28) with the incident field being
the one diffracted from the previous edge. However,such a procedure requires
that all incident fields be ray-optical , a condition which is obviously not satis-
fied when the argument of the transition function is small. For the second order
mechanisms this occurs for near grazing incidence (¢, near 180°). In that case

the second edge will be in the transition region of the first and thus one must
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resort to an alternative procedure for evaluating the second order fields.

As discussed earlier, our evaluation of the second order fields will be based
on the principles of the ESRM [Extended Spectral Ray Method|. The procedure
to be followed is similar to that employed by Tiberio et. al.[1985] for evaluat-
ing the second order diffraction by a perfectly conducting wedge. In short, the
incident field to the second edge (see equation 29) is interpreted as a sum (in-
tegral) of inhomogeneous plane waves. Each one of these plane waves can then
be treated individually. This implies that its far zone contribution to double
diffraction can be accounted for by simply multiplying its spectral strength with
the non-uniform diffraction coefficient using complex angles of incidence. The
total doubly diffracted field is subsequently found by summing (integrating) the
contributions of all inhomogeneous plane waves. However,in the case of the re-
sistive strip, when performing the integration it is necessary to also consider the
effect of the surface wave pole which adds substantially to the complexity of the
problem.

The exact integral representation of the field incident to edge Q, after diffrac-
tion from @, is given by

= :l ————f-i-r-l—gi-—- —~jkpcos(a)
b 27 Js(0) cos o + cos ¢, Kyo(a) Ky (¢o)e da (29)

At the second edge we may invoke reciprocity and have a plane wave incident
at an angle ¢, (see figure 8) and diffracted at a complex angle —a. A nega-
tive instead of a positive a was chosen here to prevent the false occurence of

a double surface wave pole later in the integrand. Equation (29) is evaluated
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non-uniformily to yield

E, = 27r\/z7 ’"e"k"M—Kﬂ(—a)K.,.(@). (30)

COS & + COS ¢
The integrand of (29) can now be multiplied by (30) to give the doubly diffracted
field from edge @, to @2 and then to the observer. We obtain

V2T eim/4emike —sin®(2) Kye(a) Kie(—0)
4rt  Jkp Js(e) [cos o + cos @,][cos a + cos )
K (¢o) K (p2)e k0= g, (31)

E3,(42, $0)

where the integral can be evaluated asymptotically via the steepest descents
method (SDP). Before proceeding to do so, it is convenient to subdivide the

integrand to a sum of simpler components. Straightforward use of trigonometric

identities gives
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Each one of the four terms composing the integrand in (32) is clearly associated

with three poles located at o, = 7 ¢,, ap; = T+ ¢,, and a3 = —0 (surface wave
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pole). Furthermore, we recognize that the first non-vanishing term associated
with the SDP evaluation of (32) is the same for all integrand terms. Thus one
needs only to evaluate the integral for one of the integrand terms and then

multiply by 4. Using the results given in Appendix B we obtain that

Ky (o) K
Ef\(¢2,40) =~ +J +(¢8)7r%+(¢2)K42—c(a:0)‘13"—‘\/7 o

. [A{l - FKp(kwal)} + B{l - F;{p(kwaz)} + C{l - Fxp(kwas)}]

e-]kwe-Jkp ™ é-‘xw‘:‘:"" %\

(33)
where

a; = 2cos’ % (34)
a; = 2cos’ %2- | (35)
as = 2sin’ g (36)

-1
4 (az - a’l)(a3 - ‘11) (37)

-1
B (al - az) (as - az) (38)
C = ! (39)

Equation (33) is the second term and first non-zero one of the Maclaurin series
expansion. The final solution for the doubly diffracted field in (33) contains a
factor of one-half to account for the grazing incidence at the second edge.

As a check of this bistatic solution for the double diffraction from a strip, we

evaluate the case corresponding to a perfectly conducting strip (n — 0). As 7
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goes to zero we find that

ag — ool (40)
Ki(a=0) - 2, (41)

and
Ki(a) — +v2sin(a/2). (42)

Substituting these values in (33) gives
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_m{l — Fxp(kway)} — o—i;{l - FKP(kwas)}} (43)

e e (bwen) - Frp(kway)) (44)
Jz(a2 _ al)wm ko KP 1 KP 2

At edge-on incidence we have ¢, — T,(a; — 0) and ¢ — 7 — é (i.e. only two

mechanisms exist), implying,

Ed ¢ ) —J.COSQ —Jkw e-‘jka (2k s 2 ¢) (45)
21pe(T — @, ~27rsin’§? ,__kwe T kp(2kw sin 2

This is the same second order result as derived by Tiberio et. al. [1979] for the

perfectly conducting strip.

4 Third Order Diffraction

As shown in figure 9 there are eight third order diffraction mechanisms to be

considered. Four emanate from edge Q; and each gives an equal contribution
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to the diffracted field. The other four emanate from edge @, and likewise are
of equal strength. Each mechanism involves first a diffraction from Q;(Q;) to
Q:2(Q1) and then a subsequent diffraction from Qz(@:) to @1(Q:) and back to
the observer( not necessarily backscattering). In accordance with the ESRM, an

integral representaion for the triply diffracted field from @ is

d _ :l —sin 22 E¢ K, (—a)\K —jkpcon(a)d 6
Efn o1 Js(0) cos & + cos & 21(a, 8o) +e(—@) +(¢)e a (4)

Equation (46) can again be considered as a sum of inhomogeneous plane waves
incident to edge Q; at a complex angle -a. In the case of third order diffrac-
tion each one of these must first diffract from @, to Q; before returning to the
observer (because of reciprocity the observation angle is now ¢,). Clearly, this
scenario corresponds to that of a second order diffraction with plane wave inci-
dence and far zone diffraction computed in the previous section. Using the result

in (33),equation (46) becomes,
Biued) = L[
1 5(0)

2

{ si:g [Sec(a; ¢0) +sec(a"¢°)] K..(—a)K.(¢)

[
4 cos 2 CcOos 2 2
e~ 12kw—jkp cos(a)

4rkw Vkp
{1 - Fgp(kway)} +

- = 1K (o) K+ (@) K3, (a = 0)ag
1

(a1 — a5)(as — as)

' [(az - ax)l(as - ay) {1 = Fip(kway)}

N {1- FKp(kwa3)}] } do

' (ay —as)(az —a

(47)

This integral is evaluated via the modified Pauli-Clemmow steepest descents
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method to yield

V2

E}(8,60) = Jmejs'/4e'j2kwffic(a = 0)a;K+(40) K+ (9)
i al)z.a.‘i " {1 - Fxp(kwa))}+ (6= 2)(as = 2){1 — Fxp(kw2)}
s aS;(2 - FKp(kwag)}D
'U?i—aﬁ {Fkp(kwas) — Fxp(kway)} C:/J; (48)
where
_ 2 @
a, = 2cos 2 (49)

The details of the evaluation are given in Appendix C.
Equation 48 includes the multiplicative factor of 4 (for the four diffraction
mechanism per edge) and one fourth to account for the double grazing effect.
As a check of this bistatic third order diffraction term we evaluate it for the

perfectly conducting case as was done for the double diffraction term.Letting

n — 0 gives
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If we further let a; = 0,4, = 7 (edge-on incidence)

J J6131/4e 72kw sin Q 2 ¢ e-Jkp

Eln,.(6,7) W 2(1 - Fxp(2kwcos 2 \/F (52)
_Je 17/46 72kw 51n .i‘i 9 ¢ ‘Jkp

1 — Fgp(2kw cos , (53

which is the same third order term derived by Tiberio [1979] for the perfectly

conducting strip.

5 Numerical Results

The sum of the fields due to the first, second and third order diffraction was
found to yield a good approximation of the total (bistatic) diffracted field by
the strip. In a series of patterns to be presented, the far zone field will be
compared with corresponding data via the moment method. Our goal in these

comparisons is not only to validate the accuracy of our high frequency solution,
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but to also examine its inherent limitations as the strip width becomes small.
Also of interest is the verification of our original claim that the resistive strip is
capable of simulating thin dielectric layers.

Figures 11 to 22 present a variety of backscattering patterns for strip widths
ranging from 2) down to A/8, with four figures corresponding to each strip width.
Two of these four figures refer to the case where || = 2 and the other two to
the case of |6] = .25 (see figure 10). Clearly, for the last choice of 6,the surface
wave pole is near the saddle point and may also be near one of the geometrical
optics poles. Therefore, this situation corresponds to a more severe testing of our
solution. Finally, we recognize that of the two figures associated with a specific
|9| and strip width, one contains curves with capacitive impedances and the other
with inductive impedances. For the last case, no surface waves exist and thus all
higher order fields are simply due to surface ray diffraction. However, when the
impedance is capacitive, Im(§) > 0, the surface wave pole (-8) may be captured
during the detouring of the C contour to the steepest descent path. When this
occurs the higher order diffracted fields become dominant as can be verified by
examining the corresponding patterns in the 0° to 20° region. We further verified
the continuity of our solution when the surface wave pole is just crossing the SDP
contour. In any case, it is clear that all backscatter patterns obtained via our
high frequency solution are in complete agreement with the moment method
results for all values of 6, and for strip widths down to A/8.

Next we examine the capability of a resistive strip to accurately model a thin

18



dielectric slab. For such a model, the resistivity of the strip is chosen to be

—jZa

R= ———
(€, — 1)kt

(54)

where 7 is the thickness of the slab and k7 must be maintained very small. We
selected, ¢, = 4(1 — jtané),tané = .1(loss tangent), r = Z% and a strip width of
5 to correspond to the strip used in Richmond[1985] (moment method solution).
It is shown in figure 23 that our high frequency solution compared exactly with
that given by Richmond. As expected, the resisitve strip corresponding to the
dielectric slab will always support a surface wave field which is seen to be quite
dominant for backscatter angles less than 45° .

To further examine the validity of our solution for the smaller strip widths,
figure 24 presents the edge-on backscattering echo width as a function of the
width of the strip(w). The comparison with the moment method data (Richmond
[1985]) is excellent.

We now turn our attention to the bistatic case. Again a series of patterns are
presented in figures 25 to 40 with ¢, (incidence angle) = 150° or 175° and strip
widths ranging from 2\ down to A/4. Furthermore, the curves on each figure
correspond to various impedance (or ) values which follows the same format
discussed for the backscatter patterns (see figures 11 to 22). The high frequency
solution again compares very well with the moment method data except near
forward scattering when the strip width is below A/4. This is probably due to
the need for additional higher order terms in our solution and also to errors
associated with single precision arithmetic when performing the subtraction of

infinities.
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6 Self-Consistent Formulation

R.C. Rudduck(1975] and Naﬁ Wang [1976] introduced the self-consistent ap-
proach to account for the infinite number of multiple interactions for geometrical
optics diffraction from polygonal cylinders. This concept is used here to account
for the multiple interactions of the surface waves. The main assumptions to be
made are that the surface waves do exist and dominate higher order diffraction.
This approach will, of course, be more valid for wider strips.

We define four equivalent surface wave/ray fields impinging upon the edges of
the strip (figure 42). The backscatter field is then defined as the superposition
of the primary diffraction from the edges (figure 41) and that contributed by the
surface waves/ray(s) evaluated via the self-consistent formulation. The equiva-
lent surface waves are formed by using the reflection and transmission coefficients
defined by Maliuzhinets [1958] and are incident at the edges of the strip at the

Brewster’s angle (). By a simple matrix solution the equivalent surface waves

are defined.
1 0o -ct -cC- C, D(0,7 — ¢,,p = a)e~7*=
0 1 -C- -Cc* C, D(2m, 7 — ¢,y p = a)e”ik®
= (55)
-Ct -C- 1 0 Cs D(0,¢,,p = a)
| —C~ -C* 0 1 || C4] L D(27,¢,,p = a)

4
S.W. Contribution = Z CiD(¢,do,p = oo)ejkz;

i=1
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where z; is the phase factor referred to edge Q1,D(¢, 9., p) is the edge diffraction
coefficient, and C* and C~ are the reflection and transmission coefficients using
the Brewster’s angle, respectively.

This solution is used to analyze the same 5 resistive strip used in the previous
section figure 23 and as senn in figure 43 it matches the moment method results
except near edge-on incidence. This is not surprising since this is a non-ray

optical situation.
7 Conclusion

Explicit high frequency expressions were given for the diffraction by a resistive
strip. These included up to third order terms (primary,secondary and tertiary
mechanisms) and compared very well with numerical data. Particularly, our
solution was found remarkably accurate in the backscatter case down to strip
widths of A/8 and down to A/2 near the forward scatter region.

The derivation of the second and third order diffracted fields was based on the
principles of the Extended Spectral Ray Method (ESRM) and included the sur-
face wave field effects in a uniform manner. A new uniform first order diffraction
coefficient was also derived which remained valid at the surface wave boundary.
This coefficient was initially: employed in a self-consistent manner (along with
reciprocity) for the diffraction analysis of the strip. The (expected) failure of
this approach then prompted us to consider a rigorous derivation of the higher

order terms via the ERSM, again in conjunction with reciprocity.
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A~ UNIFORM ASYMPTOTIC EVALUATION OF INTEGRALS
by
John L. Volakis and Martin I. Herman
Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109
Abstract
Previous uniform asymptotic evaluations of integrals have been
restricted to cases where the integrand singularities are close to the
saddle point(s). A method is presented here which allows such uniform

evaluations with integrand singularities anywhere near the steepest

descent path.
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[. Introduction
Often in electromagnetic scattering or diffraction problems the

integral of the form

1(¢) - fg(a,we‘f(“"") do = f%e'(f(“’(b) da 1)
C

C

is encountered at the final steps of the analysis. The evaluation of this
integral via the steepest descent method for large real « involves the
deformation of C to a steepest descent path (SDP) through the saddle
point(s) defined by f’(as,¢) = 0. In so doing, the evaluation of (1)

is decomposed to contributions obtained from the SDP integral(s) and

those associated with the residues of all poles (real or complex) that
were captured during the contour deformation process (assuming no

branch cuts exist).

When evaluating the SDP integral(s); one must carefully consider
the presence of any poles near the SDP such that I(¢) remains bounded
and continuous when the pole crosses the SDP as ¢ is varied (the
variable ¢ here represents the pattern angle). Such evaluations are
usually referred to as uniform and have been the subject of several
investigations [1,2,3]. However, none of the previous formulations
are applicable to situations involving several complex integrand poles
which may cross the SDP anywhere in the complex plane. Therefore, the
purpose of this letter is to introduce a technique which can be used
for obtaining uniform evaluations of integrals involving integrands
which may contain several distinct siﬁgu]arities in the complex plane.

The procedure involves the regularization of the integrand over

the SDP by the subtraction and addition of certain auxiliary integrals
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(one for each singularity) whose integrands satisfy a condition so that the
desired uniformity is achieved. The resulting integrals with or without
singularities can then be evaluated asymptotically. This procedure is

a generalization of a method applied by Clemmow [4] and Senior [5] to

integrals with specific f(a,$) when considering a single pole.

II. Formulation

In proceeding with the uniform evaluation of (1) we assume that
the integral exists as k » ». For the sake of simplicity, this section will
also be restricted to the case that q(a,¢) is associated with a single
zero at o = o and the SDP crosses a single first order saddle point at

o= o Generalizations to several integrand poles and saddle points

are given in the next section.

On the basis of the above assumptions (1) can be written as

I(s) = 2niR (9] + Ap(¢)cf° 6 (a,9)e<T(@50) da-+;f (a,0)eT (@) g

p
Cpp Cspp
(2)
with
K(a3¢) = 9((1,(1) ) = Ap((p)Gp(a,‘b) s (3)
where P(o_»9)
———EL———-er(ap’¢) pole enclosed by C-C
_ \ SDP
R (¢) =< q'(a 59)
p p
0 otherwise
(4)

is the residue of the enclosed pole and Ap(¢)Gp(a,¢) is an unknown
product of functions which has been added and subtracted to g(a,¢).

Note also that 4'(a,.¢) = (d/da)a(as0)| o, -

P
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If we, however, require

_ ]
Gp(a,¢) = a;ra:gy (5)

to have a pole at a = ap (there is no restriction for additional poles

provided they are not close to the SDP) and choose

~ . o, _ qi:)((1 Yy
Aye) = a]lma [Gp m} - p(“p"”)qTaJ;ET ; (6)
P

then K(a,¢) becomes free of singularities and thus the asymptotic evaluation
of the pertinent (second) integral in (2) is known to be continuous and
can be found in [6] up to 0(1/«*). Our task has then reduced to finding
an appropriate Gp(a,¢) which accounts for the discontinuity of Rp(¢).
Since Gp(a,¢) has a single pole near the SDP, we have that for

large « [1,2]
g T fa0) . b7 4 KoL
. 2 JRP(¢) +ij”(ass¢) ) ; [AP(¢)GP( S’¢)FKP(_'bP) * K s )]

+0(1/«) (7)

with the upper sign for -3n/4 < arg(bp) < n/4 and lower sign for

1/4 < arg(bp) < 51/4, where

by = viltleg,0) - f(ap,¢)] . (8)

The function FKP(rzz) is given by

.2 _ip2
otz = iz 7 [ g (9)
12
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and thus satisfies the identity
iy -
Frol-22) = -2izr eI 12 4 F ) (10)

Furthermore, the transition points associated with bp correspond to the
crossing of CSDP by the pole (the particular order of correspondence
may vary).

By employing (4) and (10) in (7), it is found that I(¢) as given

in (7) is continuous (uniform) only if

lop-¢) = e'j(¢s'“/4)‘ M’L ()
(ags¢) ¢
qp [0 s¢ p

)

where o is the angle formed by the real axis of the a-plane and the

direction of the C at the saddle point [6]. For example, if f(a,¢) =

SDP
-j cos(¢ - o) then a = ¢ ¢ = /4, bp = V2 cos[(¢ - ay - 7)/2] and an
appropriate choice for Gp(a,¢) is Gp(q,¢) = Gp(a) = sec[(a - &y - m)/2].
Therefore, for this example the integration of the singular integrand as
given in (7) is exact and the accuracy of I(¢) is only limited
by the asymptotic expansion of the integral associated with K(a,¢).

When o is far from the SDP, then Fp(z)=1 with -37/4 < arg(z) <
n/4, and (7) reduces to the usual non-uniform asymptotic form. To avoid
any complication with any other poles of Gp(a,¢), one should always

return to this non-uniform form especially when dealing with multiple

saddle points as discussed in the next section.

III. Generalization to Multiple Poles and Saddle Points

When the integrand of (1) contains N distinct poles, ap, which may
cross or be near the SDP, the formulation given above can be generalized
to give
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N
_ . -2n kf(o_59)
() = 215 » Ry(e) + i [KAms,w
p=1 s

N

2 1
+ . Ap(¢)Gp(as,¢)FKP(r Kbpﬁ + 0(:) (12)
where N P
(e = aland) = > A (816 (ard) (13)
p=1

“and Rp(¢) with Ap(¢) are defined in (4) and (6), respectively. In addition,
each of the functions Gp(a,¢) must have a pole at o = o and be chosen
to satisfy (11).
The above uniform evaluation of integrals can be also generalized
to cases where CSDP may be associated with more than one saddle point.
This is accomplished by simply treating each saddle point individually
and only in conjunction with those poles which may cross or be near the SDP.
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The integral representation of the diffracted field from the first to the second
edge of the resistive strip is given by

= :_]_ __s_if.l%—_K K —ikﬂcos(a)d 1
Y7 27 Js(0) cos & + cos ¢, +e(@) K (6o)e a (1)

where

w width of the strip(/A)

K, (ta) split fuction
_ Ki(xo)
Kelre) = Gm)
Kle) = {1+ VEeosl(5 - a=0)/2)} Ky (e
b incident angle at edge 1

o2 launching angle at edge 2

Equation (1) can be considered as an integral sum of inhomogeneous plane waves
incident upon the second edge at an angle of -a. The negative sign prevents the
occurrence of a double surface wave pole in the later calculations. The far zone

diffracted field from the second edge due a plane wave incidence at —a is

Uy = ——j ?Eej%e_jkp.__s_i_r_l_(——a/i)_

2m V kp coS & + oS ¢y Kie(-a) Ky (42) (2)

where ¢, is the angle of incidence and —« is the angle of diffraction. By invoking
reciprocity along with the above interpretation of (1), we can express the doubly

diffracted field as

34



W= V2 eliem ”‘”/ —sin’(2) Ky.(0) Kyo(—a)
n s 5(9) [cos a + cos @, [cos a + cos ¢

Ko ($0) Ko (gr)etweor=9) gy (3)

or,

o = V21 Ko (¢0) K1 (9) e5e73%
a 6472 cos%ﬂcos“—; Vkp

50 5] i)

a K+c( )K+c(—a)e—jkwcos(a—¢)da (4)

)
2 cos? g

-sin?(=

where the poles of (4) are

go.iay = TEg, (5)
apy = Tty (6)
SW.:opy = —0 (7)

Expanding the trigonometeric terms in (4), u3, becomes
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d V21 K. (o) K1 (9) €373 1
6472 cosfcos®2  Vkp Js(o)cos?§
2 2

a+ ¢0) sec(a ;¢2)K+c(a)K+c(—a) Sinz‘g—

= _2¢o) Sec(a ; ¢2)K+c(°‘)K+c(—a) sin’ g

22 n) e 22 Ko 0) Kol o) sin 5

_e—jkw cos(a)da (8)

- |sec( )K+o(0)Kye(—0) sin’-g-

+ sec(

+ sec(

+ sec(

consisting of four terms each producing the same result when evaluated via the
modified Pauli-Clemmow steepest descents approach. Therefore, it is only nec-
essary to perform this evaluation for one of them and multiply the result by
four. The details of the modified Pauli-Clemmow approach used to evaluate the
integral asymptotically are given below.

The steepest descent path is mapped to the real axis via the transformation
f(@) = f(a,) —u?, where q, is the saddle point. From this relationship we obtain

the relations

fle) = —jcos(a) (9)

.« J
sin 5 \/;u (10)

da V2
PN

e~Tkocos(a) _  p=ike,—kpu
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Mapping one of the integral terms in (8) unto the real axis we have

Ikw) = ) [ plo) e dy
where
Q. 2
sin® 2 K. (o) Ky o(—a) a+ ¢, a+¢
Fla) = (P 2 cos? 2 L sec( 5 ) sec( 5 2)
and

D= V21 K, (—kcos ¢,) Ky (—k cos ¢y) €75 eike
6472 cos % cos %2 Vkp

Noting that a,; are the poles of F(a)

f(a) - f(apl) = f(aa) —pt - f(apl)

= —j(1 + cos¢,) — u?

=—(u?+ja) a; = 2cos’ %
fle) = flaps) = flaw) = u® ~ f(ap)
= —j(1 + cos @) — p?

= —(u? + ja,) az = 2 cos’ %3

fla) = fleps) = flaw) = p® = f(ops)
= —7(1 = cos ) — pu?

) . o0
= —(u? + jasg) a3=251n2§
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I(kw) can be written as

?(u)e—kwu’
p? +ja,)(u? + ja,)(p? + Jag)

Itkw) = e [ Z ( du (19)

where

da

Flu) = -F (a)Eﬁ(ﬂz + ja1) (u + jaz) (u* + jas) (20)

is a regular function. Thus it can be represented by a Maclaurin series expansion

F) = 3 Ani™ 1)
substituting in (19) yields

I(kw) = e ikv i Am/

m=0 —o0 (ll’z + jal)(iuz +ja2)(y'2 + ja'S)

_ 2
00 ume kwp

dp (22

Clearly the integral in (22) vanishes for odd m and we further note the A,=0.
Thus, the first non-vanishing term of the Maclaurin series expansion corresponds
to m=2. To evaluate the integral in (22) for m=2, we first employ the partial

fraction expansion

1 A B C
; - - = - + - + -
(1? + jay)(u? + jas) (k? + jas) (Wi +7a)) (WP +7as)  (u?+ jas)
(23)
where
1 -1

A= - - - - = 24
(—ja1 + Jaz)(—Jal + jas) (a2 — al)(as - 01) ( )
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1 -1

b= CatiaCintin) - @-am-a D
Cz L 1 (26)
(=jas + ja1)(—Jas + jas) (a1 — as)(az — as)

In addition, noting that

o g-kuwu’ [T Fgp(kwa)
./.—oo u +jadp' " Vv  ja 27)
00 yle=kum’ 4 \/’T Pk
= —{1 -
o 170 P o {1 = Frp(kwa)} (28)

it is found that

: 7l’
d —-jkw
A V kw

-[A{1 - Fgp(kwa,)} + B{1 — Fxp(kwas)} + C{1 — Fxp(kwas)}|
(29)

where

A= 7"y = 2220 (3;‘;’) - (30)

Since

Fla) = F(a)(f(@) = fop))(f(a) = fap))(f(@) — faps)) (31)
2 & _¢0)Sec(a—¢2)K+0(a)K+c(—a)

. o
= —Dsin® — sec(——— o
2 2 cos* 3

(7 cos g, + 7 cos a)(j cos ¢; + 3 cos a)(—j cos 8 + § cos a) (32)

we find that (note that y=0 maps to a = @, = 0)
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T TR 2 o 2 $2 0
Fley) = JDTsec 5 5€¢ 5 K2 (a = 0)(2cos® 2)(2cos 2)(2sm 2)
(33)
= jD2a’ cos %o cos fzKfrc( = 0) sin’ 4 (34)
2 2 2
)
Fllaw) = J4Dacos%cos%—2Kic(a=O)sin2§ (35)
2 0
BJ;I(a,) = ]4DCOS%COS?ZK3_°( )sm2§ (36)
a’
2
Q%C—E-:—!Q = ]2Dcos%-cos?2Kfrc( = 0)as (37)
da :
E;lu-o = \/2_1 (38)
da\® 3 jox
E; lp,:O = 23¢l4¢ (39)
Using (31) to (39) gives
Ay = D%[J’Zcos%cos ¢2Kf_c( 0)a3]2%ej§41 (40)

Substituting this in (29) and multiplying by 4 yields the doubly diffracted field

Ky (90) K1 (92) o2 (o _ El
87r§ K+c(a - 0)a3 \/k_p kw

. [A{l - Fxp(kwm)} + B{l - Fxp(kwaz)} + C{l - F}(p(kwa:;)}]

] . g-ikwg-ike 7
Uy = 1)

(41)

A factor of one-half has been included to account for the grazing incidence of the

singly diffracted wave upon the second edge.
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The approach for deriving the third order diffracted field uses the Extended
Spectral Ray Method which was utilized in the derivation of the double diffraction

coefficient. The double diffraction coefficient (see Appendix B) is

Ko (¢0) Ky (62) e ikwe=ike
d _ + +
u21(¢2a <lso) = +) 47['% \/E/; w

. [A{l - Fxp(kwal)} + B{l - F}'(p(kwaz)} + C{l - Fxp(kwas)}]

(1)

Kic(a = 0)0'3

where
w width of the strip(/A)
Ki(ta) split fuction
_ Ky(xo)
Kyo(xea) = sin(%£2)
3
Kfa) = {1 +Vacos|(T —a- o)/z]} K. (a)
do incident angle at edge 1
o2 launching angle at edge 2
-1
A —_—
(a2 — a1)(as — a1)
-1
B —
(a1 — a2)(as — as)
-1
C _—
(a1 — as)(az — as)
and
a; = 2cos? % (2)
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a; = 2cos? 22 (3)

The triply diffracted field may then be represented

d —J —-sing —jkpcos(a)

= — — —us (a,¢,) Kie(—a)Ki(—kcosd)e da. (5
Y1 = o 5(0) CO8 @ + cos @ 21(0 @o) Ko (—a) Ky ( ¢) (5)
This integral can be interpreted as a sum of inhomogeneous plane waves diffract-
ing from the second edge and incident upon the first at a complex angle of —a.

The negative sign is used to prevent the occurrence of a double surface wave pole

later in the calculations. Using the identity

cosa+cosd, 4cos g‘- cos %ﬁ

1 1 [Sec(a to sec(9‘_'2;¢_o)] (6)

5
in (46), we obtain

i = 2 [ A e S e S5 Kl (9

4 cos § cos % 2
e—j2kw—jkpcos(a)

4rkw V=P
{1 - FKp(kwal)} +

- = 5K (o) K+ () K (a = 0)as

1
. [(‘12 — a1)(as — a1) {1 - Fxp(kwas)}

- {1- Fxp(kwas)}] } da.

. (a1 — as)(az — as)

(a1 — a2)(as — as)

(7)

which can be evaluated via the modified Pauli-Clemmow steepest descents method.
The steepest descent path is mapped to the real axis via the transformation

f(a) = f(e,) —u?, where o, is the saddle point. From this relationship we obtain
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relations similar to those given in appendix B (9)-(12). The triply diffracted term

in (7) can then be written as

00 d
v = I [ F@) g ®

Noting that oy are the poles of F(«a)

f(a) - f(ap3) = f(as) —ut - f(QPS)

= —7(1 — cos8) — u?
= —(u? + jas) az = 2sin2-g- (10)
fla) = flaps) = flow) = 4? = f(opd)
= —7(1 + cos ) — u?
= —(pu? + jay) ay = 2cos2§ (11)
ud,, can be expressed as
s 00 }'(“)e—kwu’
d — Jkw d
uly e /_oo (5 + Jag) (@ + a) p (12)
where
da 2 . 2 .
Flu) = Fla)2(u" +jas)(u’ + jad) (13)

44



is a regular function. Thus it can be represented by a Maclaurin series expansion

=2 Amp™ (14)
which when substituted in (11) yields
m ,~kwu?
d o g-ikw ume
u = Am / du 15
" E; (12 + jas) (W? + jau) (15)

Clearly the integral in (14) vanishes for odd m and we further note the A,=0.
Thus, the first non-vanishing term of the Maclaurin series expansion corresponds
to m=2. To evaluate the integral in (14) for m=2, we first employ a partial

fraction expansion. In addition, noting that

o g—kwn? T FKp(kwa)
gy = [ Zxpiiwa)
/—oo ur+ja # kw  ja (16)
0o “2e—kwp’ T
du = ”E{l — Fgp(kwa)} (17)

-0 p+ja

it is found that

0o 2 "kﬂ"d
wd, = ebwfla g / pe W 18
12 2 )0 (2 + Jag) (42 + jas) (18)
1 ple~ ¥ dy o yle ’k“zdu]
= ¢ikvy, ._______[ S a——" —_— 19
J(as—a4) —0o (U2 + Jay) /- (4 + jas) (19)
= vy, — J(as vy [1/ {1 - Fgp(kway)} - \/ {1 — Fgp kwas)}]
(20)

= eJ’mA — a4 \/ {FKP kwas FKp(kwa4)} (21)

45



where

Ay = %7 " (1) |u=o = ga’;;(,a) (j—z) : (22)
Since
—a’K* (o =0)2cos? 242 ~
Rt v = LU
1
(et - Frtoond) gy - Bt
* (a - a3;(2 — ag) {1 = Fep (kwas)} )
R~ S OLU
. [(2 — al)?as — al) {1 - FKp(Icwal)}
1
+(a1 ~2)(as = 2) {1 - Fxp(kw2)}
Tz a3;(2 = o) (1~ Fiee(kuas)) J ' (24
Also
da ;
@'I;mo = \/2—-7 (25)
(:—Z‘) limo = 236i% (26)

Using (21) to (25) to solve for A, and substituting the result into (20) gives
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- - —-K‘c a =0)a? —ikw
uly = ‘/5813”/46—1’“"( 1:5752/0\/?5) > Ky (do) Ky (p)e

. [(2 - al)zas - ay) {1 = Frp (kway)}
1 1
+ (a1 —2)(as = 2) {1 - Fxp(kway)} + (@ = as)(2 ~ ) {1- FKp(kwaa)}])
1 T =jke
las — ag) Vg (Frrliwey — Fip(buay) eﬁ (27)

Rewriting (26)

) . V2 Sr/d i
“fzx = J_—;z_er le Jm’Kic(a = 0)0§K+(¢o)K+(¢)

16(kw) 3w
T eyt Perwa+ oA Frrlku2)
(a1 - a3;(2 — ag) f1- Fxp(kwas)}})
e~Ike
ﬁ {FKp(kwag) - FKp (Icwa4)} \/5 (28)

Equation (27) is the complete triply diffracted field.It contains the factors of 4 for
four mechanisms per edge times one-fourth to account for two cases of grazing
incidence upon the edges (note that (1)of this appendix was multiplied by a

factor of two to prevent any double counting of grazing incidence effects).
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Fig. 3. Topology of the integral representation of the edge diffracted field.
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Fig. 4. Continuity of the surface wave field and the corresponding argument

in the Clemmow transition function.
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Fig. 7. Illustration of double diffraction ray mechanisms of a strip.
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Fig. 8. Plane wave field incidence and diffraction at a complex angle —«

on edge Q,.
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Fig. 10. Path of constant surface wave pole magnitudes (.25 and 2)
in relation to the steepest descent path

(a Gudermann function).
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Fig. 11. Comparison of the solution for backscattering with
moment method data from a 2\ wide resistive strip
with n = .1 — 5.27,.35 — 7.14,.7 — 5.1, and 1.1(constant

surface wave pole magnitude ~ 2), E-polarization.
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surface wave pole magnitude ~ 2), E-polarization.
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Fig. 13. Comparison of the solution for backscattering with
moment method data from a 2X wide resistive strip
with n = —74,1.25 — 53.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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surface wave pole magnitude ~ .25), E-polarization.

60



ECHO WIDTH/WAVELENGTH (dB)

0.00

-5.00

é strip width .OA
~N 4
|
} —— n=.1-3521 (6=.34+;195)
$ ! —4— =.7-451 (0=178 -7.9)
—®— =11 (§=2)
1 [ moment method
[e=)
e
wn
T1
1?
S
S v + + —t y * 00
"0.00 40.00 60.00 80.00

20.00
ANGLE (DEGREES)
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with 7 = .1 + 5.27,.35 + 7.14,.7 + 5.1, and 1.1(constant

surface wave pole magnitude ~ 2), E-polarization.
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Fig. 17. Comparison of the solution for backscattering with
moment method data from a .5\ wide resistive strip
with n = —j4,1.25 — 53.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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Fig. 18. Comparison of the solution for backscattering with
moment method data from a .5\ wide resistive strip
with 7 = 74,1.25 + 53.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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Fig. 19. Comparison of the solution for backscattering with
moment method data from a .25) wide resistive strip
with n = —j4,1.25 — 73.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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Fig. 20. Comparison of the solution for backscattering with
moment method data from a .25\ wide resistive strip
with n = 74,1.25 + 53.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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with n = —74,1.25 — 53.75, and 4(constant

surface wave pole magnitude ~ .25), E-polarization.
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Fig. 23. Comparison of backscatter pattern with moment method for a
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E-polarization.
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Fig. 25. Comparison of bistatic solution with moment method data for a
2) wide resistive strip with n = —74,1.25 — 53.75, and 4
(constant surface wave magnitude ~ .25), angle of
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Fig. 36. Comparison of bistatic solution with moment method data for a
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(constant surface wave magnitude ~ .25), angle of
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Fig. 38. Comparison of bistatic solution with moment method data for a
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Fig. 41. Primary backscatter edge diffraction from a strip
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Fig. 42. Equivalent surface fields on a strip.
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