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ABSTRACT

For a plane wave incident on a cavity-backed gap in an impedance
plane, the coupled integral equations for the induced currents have been
solved numerically and the far field scattering computed. The results are
compared with a quasi-analytical solution previously derived and modified for
the impedance plane. For narrow gaps of widths less than 0.15A, the
agreement is within 12 percent for H-polarization and 14 percent for E-
polarization for the cavity geometries considered, limited to small surface
impedances of the plane. Excellent agreement is obtained when the material

filling of the gap is lossy.
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1. INTRODUCTION

A case of interest in radar cross section studies is the scattering from
gaps and cracks in planar surfaces. Results were recently derived [1,2] for the
narrow gap in a perfectly conducting ground plane. Of equal concern is the
scattering from a gap of similar geometry but in a ground plane coated with a
material having arbitrary dielectric properties.

The development of the solution in this paper is for planar surfaces large
in extent compared to the width of the gap. Asin [2], a set of coupled integral
equations for the electric and magnetic currents which exist on the walls of the
gap cavity and in aperture of the gap are developed by employing the
equivalence principle [3]. Since a thinly coated conducting surface can be
described by the impedance boundary condition [4], the half-space Green’s
function for an impedance plane has been developed and is applied. For plane
wave incidence the integral equations are derived for a cavity of arbitrary shape
filled with a homogeneous material. The equations are solved by the moment
method and data for several cavities are presented.

A quasi-analytical solution was derived in [5] for the far field scattering
from a uniform resistive or impedance insert in a perfectly conducting plane. In
[2], the solution was applied to a narrow gap in the conducting ground plane.
Accurate results were obtained by defining the surface impedance of the gap as
the input impedance of the gap modeled as a shorted transmission line.
Modifications are made to the quasi-analytical sdlution of [5] such that it can
predict the scattering from a gap in an impedance plane with a small surface
impedance.

The modified quasi-analytical solution is applied to the gap in the

impedance plane for gap widths which are electrically small, and the results are



compared with those obtained using the coupled integral equations. The
limitations are determined for which this quasi-analytical solution provides an

accurate design tool.

2. THEORETICAL DEVELOPMENT OF THE
INTEGRAL EQUATIONS

The gap geometry under consideration is the two-dimensional one
shown in Fig. 1. The plane y = 0 is an impedance plane of infinite extent for
x| > w/2 with a surface impedance 1. The plane y = 0 for |x| < w/2 contains the
aperture A of the gap cavity whose walls S are perfectly conducting. The cavity
is filled with a homogeneous dielectric material of permittivity €4 = €€ and
permeability 14 = p,1t, where the quantities without subscripts refer to free

space. The incident plane wave is

—i -ik(x cosd,, + Y sind,)

P A (1)
for H- and E-polarizations respectively, where k is the propagation constant in
the free space region above the surface. A time factor et is assumed and

suppressed.

2.1 H-Polarization

The equivalence principle is applied to the gap for the region y > 0 by
shorting the gap with a perfect electric conductor in A and placing a magnetic
current J* = - ¥ x E(x,0) over it. The plane y = 0 is then an impenetrable surface
with mixed boundary conditions: that of a perfectly conducting surface for |x| <
w/2 and that of an impedance surface for |x| > w/2. For the tangential magnetic

field, the impedance boundary condition is given by [4]
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Figure 1. Narrow gap of arbitrary shape in an infinite ground plane.
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Figure 2. Rectangular and triangular gap geometries and dimensions.
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where Z is the free space impedance. By applying Green’s theorem, an integral

equation for the total magnetic field can be written as

H,(x,y) = Hiz(x,y) + J[Jx(x') %G(x,y;x’,y') +ikYJ(x) G(x,y;x',O)] dx'

y
A y'—0
-w/2 oo a a
j J a—y—G x,y:x,y') - G(x,y;x',0) gy—,HZ(x Y )) dx
w2 y'—0

where G is the appropriate free space Green’s function. This is certainly not a
desirable integral equation to solve with the path of infinite extent over

|x| > w/2. However, this path of integration over the y = 0 plane can be
eliminated by applying the half space Green’s function for an impedance plane,
which also satisfies (2).

The half space Green’s function for the impedance plane is
. 1 N s
G =';T{H<(, )[k (X-X')2 . (y_y,)2] '%JFH(a) elk[(x x)cosa+[y+y|sma]da} (3)
C

where H‘J,) is the zeroth order Hankel function of the first kind and

nY - sina

"W =3+ sina

is the reflection coefficient for an H-polarized plane wave incident on an
impedance boundary at the angle a.. The path C is in the complex « plane,
defined in Fig. 3. Note that as i approaches zero, (3) becomes the Green’s

function for a perfectly conducting plane for the H-polarization case. For the



numerical solution of (3), a more quickly converging integral gives

"?lf{ ’[ijx yy)J+H )[k\/xx +(y+y)]

oo

.2_[1 e m[k\/xx y+y+|v)] } (4)

0

where

KN
’CH=7 .

Equation (4) was derived using a transform technique presented in [6].
For such a Green’s function to be applied, the continuity of the
impedance boundary condition over the entire y = 0 plane is necessary. This is

accomplished by impressing a magnetic current source equivalent to nH, over

i(xll
ao=0o +ia"

ml:l_

Figure 3. Path of integration in the complex o plane.



A. Applying then the half space Green'’s function of (4),
H,(xy) = Hy(x.y) - H, (x.y) + Y J'J;(x') G(x,y:x',0) dx
A

) %IﬁHz(X',O) G(x,y;x',0) dx’ (5)
A
where
NY -sing,  -k(x cosp,-y sing,)
Hy(xy) = W_O
ny + sing,

is the reflected plane wave, and Y = 1/Z. The second integral in (5) is the
correction term for the additional impressed current , ensuring the original
boundary condition for the total field at the shorted gap. That is, it removes the
contribution of the scattered field due to the surface 1 over A which was not part

of the original system. Observing the field in the aperture,

2 sing,,

HZ(X,O) = T—]—Y:SiT(])o e

oo L iky J[J;(x') -Tyx)] Gx0x,0) dx  (6)
A

where Jg(x) = [ x F(x’,0)]-§ from (5). As shown in Fig. 1, § is tangential to the

surface of the cavity wall, and in the aperture, § = %.

For the region y < 0 occupied by the cavity, a magnetic current -J " is
placed just below A to ensure the continuity of the tangential electric field in the
open gap. The expression for the magnetic field in the shorted cavity is the
same as that constructed in [2] since the region is independent of the
impedance boundary. The integral equation for the currents on the cavity walls
is [2,Eq. (7)),



il o)

1 J.Js(s') sinf' H:”[k 1\/ (x-x')2 + (y-y')z] ds' (7)

S+A

n

] 2 1
Jo-xF +(y-y)
valid at all points of S and A. To ensure the continuity of H, through the

aperture, the field expression for (7) [2,Eq. (9)] is matched to (6), resulting in

J(x) = 2 sing,,

TR0 iy [0y -1 (0) GxOx 0 dx (@
Wt G asw]exoxg e @

valid for x in A, and (7) and (9) constitute a pair of coupled integral equations for
J; and J.

In the far field, the large argument expression for the Green’s function of
(3) is found by saddle point integration, allowing C to become the path of

steepest descent about o = n/2. The scattered magnetic field is then given as

S 2 i(kp-m/4)
H, = o © P,(0.9,) (10)
where
kY -ikx' coso |, |
Pu®0o) =5 = v J e dx (11)

A
Thus the far field amplitude is given for the currents J; and J_ over A determined

from (7) and (9).



2.2 E-Polarization

The impedance boundary condition for the total tangential electric field is
: ( )
0 %J E =0 (12)

The half-space Green’s function for an impedance plane with an E-polarized

incident plane wave satisfying the same boundary condition is

T - 2 ik{(x-x')coso+ly+y s
G:z'{{Ho’[k\/ (X + (y-) }+%—J’I‘E(a) g dixicosaslys vishnel da} (13)
C

where
Y - csca
I'_(o

g = Y +csca
Note again that as M| approaches zero, (13) becomes the Green'’s function for a

perfectly conducting plane under E-polarized illumination. For a quickly

convergent integral, the same expression is used as that given in (4), with

replaced with

U

=15

Using the same approach as for the H-polarization case, the total field for
the regiony > 0 is

i r v, n 0 ot '
E,(xy) = E,(xy) + Efxy) - JJ"(X ) 3Glyy)| o

y'-0

where J; is the assumed equivalent magnetic current on A and



r ny - CSCQ,  -ik(x cosd, - y sind,)
EZ(X’Y) = ﬁY + Cscq) e
()

is the reflected plane wave. The second integral in (14) accounts for the

scattering due to the added impressed current equivalent to E,(x',0) for the

impedance plane. The dependence of this current on the surface impedance is

shown more explicitly using [4] the boundary condition E, = - jH,.

v oE
FromH, = %a—yz- , the tangential component of the magnetic field in the

apenure is

oY -ikx cosé,,

HX(X,O) =- m e

H_' _i * a0 — ' a IR ] 1
o, 3 [ 156 ens] Zewyy) a9
A

In the region y < 0 occupied by the cavity, the field source is the
equivalent magnetic current J; in the aperture and the contribution from the

electric current J; on the walls of the cavity. The integral equation constructed

for the currents is [2,Eq. (15)]

J,(s) = ERYE (o V) %JJ;(X') Hy )(kp/ (x-x)2 + yzj dx’
r A

ik
+|2—1 J‘JZ(S') sinp H:1)[k1\/(x-x')2 + (y-y')z} ds' (16)
S+A
where
sinp =44 L2 09) L x8 (17)

2
(x-X)" + (y-y')
valid at all points of S and A. When (15) is matched to the field expression for

(16) with the observation point in the aperture,



oY e-ikx cosd,

N csco,

+— Itm ;?y/! «(X) + 7, (x )]%G(x,y;x',y')ly'_)odx' (18)

for xin A. Equations (16) and (18) are a pair of coupled integral equations for
the currents J; and J,.

A third integral equation was developed in [2] for the electric field in the
cavity of the gap. When the boundary condition on the perfectly conducting

surface was applied, the expression for the currents on A and S came to be
. i o (1) 2 ,
5= ij(x') % H, [k1 (x-x) + yzj dx
A
kz ) (1) 1 2 1 2 '
e sz(s) Ho |k (x)° (yy)7 | s (19)

where J;(x) is non-zero only in A. Equations (18) and (19) are the pair of

integral equations used to compute J; and J,. The scattering in the far field for

E-polarization has a similar expression as that in (10), giving the far field

amplitude

(¢¢ % sing 1 X) eikx'cosq)dx,. (20)

3. APPLICATION OF THE QUASI-ANALYTICAL SOLUTION
Consider an impedance insert of width w and characterized by 1 in an
impedance plane 1. For the H-polarization case, as in Section 2.1, the

application of Green’s theorem for the region y > 0 gives

10



_ .ow2
Hy(xy) = Hyxy) - Hofxy) + 5 [ (n-7) H,x,0) Goyx0) a (21)
-w/i2

where the incident and reflected fields are those described in (5) and G is the
Green'’s function of (4), satisfying (2) in the plane y = 0. The integral of (21) is
the scattering due to the impedance insert, and this clearly vanishes forn =17.

The Green's function of (4) can be written in the form, fory' =0,
, i, "2 ' A=
G(x,y:x',0) = -é— H, '[k\/ (x-x') "+ YQJ g(x,y;x',0m) (22)

where the normalized half space impedance Green’s function is

L, (x.y:x',0m)

g(x,y;x',0fm) =| 1-

for which the function Ly is the integral of (4). We note that as i approaches
zero, Ly approaches zero, and as i approaches infinity, Ly approaches H(J,).
Thus |g| varies from one to zero for these limits. To remove the coordinate
dependence, g is averaged over -w/2 < x < w/2, for x' and y set to zero. By
curve fitting the numerically generated magnitude and phase, this average is
found to be approximated analytically to within 5 percent as

<(w) /2 ei v(wii)

gy(win) =e (23)

where
c(w) = 0.245 + 1.267w/A

W(WT) = - e-(0.098+1.760w/l) n/z

for 0.02 <w/A < 0.15and /Z < 2.

11



Now taking the observation point to be on the insert, (21) can be

approximated by

2sing,  -ikx cosd,

HZ(X,O)=WG
w/2
K n-m gy wim [Hee0) H K exae (24)
o5 (- gy (i) [ Hx,0) H,
-w/2

where the averaging of g has enabled us to remove the 7 dependence from the
integral. The assumption that g is constant over w should hold for small w and
small . The integral equation (24) can be written in the form [5]

1 K

i (1) -|—w§cos¢°
5 [, [%Wm-cw]dcee SREVN(@ (25)
-1
where
i -1 MY +sin
2, = AR S0 g i Hy (0
and '
a=A Z 1 (26)

kw n-1 gy (whm)

Referring to (11) and the integral of (21), the far field amplitude written in terms

of Jy is
PO TS Gt 7 s ! CRE A
A simplification is made using [5]
50 =] 1+ 2 oy ) ﬁt;%”‘” PH<¢,¢°>} 50

where the integral equation that the modified current J, satisfies is [2,5]

12



1
7 [0 L at = 142l
-

for-1<{<1and

kw
= — iv-iL
A=ln +Y I2

where y = 0.5772157.... is Euler's constant. The far field amplitude (27)

becomes
, -1
1 1 Sing, 1
Pul000) =in =5 g (W) 7Y +sing, [A ¥ KH(a)} (28)
with
1 1
K@) =7 [0 dC .
-1
for which an approximate expression is [2]
1
K (a) =- (29)
H %a- +Lm 2 +40.1

with a given in (26). Thus with the modifications to a and Py the same quasi-
analytical expressions are used to solve for the scattering of the impedance
insert in an impedance plane.
Similarly, for E-polarization, the total field for the regiony > 0 is
i r
E,(xy) = E,(xy) + E,(x.y)

w/2

+ [ [E0com) - .0m]| 6texy)| o, (30)
-w/2

and the correlation of the field with the respective impedance surface is shown

explicitly. The corresponding expression for the tangential magnetic field over

the insert is

13



oy -ikx coso,

h0) = -2y esce, ©

w/2

im 2 [ H0) Gyl d
z m 3y [ o) ey e (@)
-w/2

where G is (13). When (13) is expressed in the form of (4), the partial

derivatives in (31) render the source and image Hankel functions zero for y' = 0,
and G is given by (22) with
L (xy:x',0[m)

HY {k\/ (x-x')2+y2]

g(x,y:x',0m) =

where L is the integral of (4) with 1, replaced with t . For this case we note
that as 1 approaches zero, Lg approaches H(J,), and as 1 approaches infinity, Lg
approaches zero. Thus |g| varies from one to zero for these limits. The
average over w of the normalized half space impedance Green’s function is

approximated analytically within 10 percent as

AW TZ i S(w)
g (wi) ="M ¢ M

where
d(w) = 1.558 - 4.226w/)A

B(W[T) = - (0.380 - 0.80W/A) [1 ; 9'2-586Jﬁ72]

for 0.025 < w/A < 0.15and W/Z < 2.

14



The tangential magnetic field on the insert is then approximated as

2Y -ikx cos¢,

0 = o5 cson, ©

(1)

- (n-7) g win) [k +—] [ Hx0 gk ext) ax . (39)
w/2

Given this approximation, (33) can be equated to [5]

kw
’  (k KW 1 po ) ape T2 5%
et

with o
10 =- 2L TS o ) Hyix0) (34)
and
b= AR o %)
Referring to (20) and using (32), the far field amplitude for the E-polarization
case is
Pe(000) = Tn( W)2 ﬁi(inj) 17y +1cscq>o gE(lvm) Ke(b) (36)
with Kg approximated by [2,5]
K_(0) - 0.62 (b +4.08)(b+7.26)(b + 10.37)(b + 13.43)(b + 16.46) -

b+1.15 (b +4.27)(b + 7.37)(b + 10.45)(b + 13.49)(b + 16.50)

As in [2], the analogy is drawn from the impedance insert to the narrow
gap by equating the surface impedance 1 to the input impedance of the gap

modeled as a transmission line. The expressions for various gap and cavity

15



configurations are contained in [2], and the far field amplitude Py and Pg can

then be calculated accordingly by (28) and (36), respectively.

4. NUMERICAL RESULTS

The integral equation pairs (7), (9) and (18), (19) for H- and E-
polarizations respectively were programmed for solution by the method of
moments, using pulse basis and point matching functions. The half space
impedance Green’s function of (4) and its derivatives were evaluated
analytically in handling the singularities of the integration and numerically
otherwise as described in Appendix A. The application of the method of
moments is described in Appendix B, which also contains the program listing
used for generating the results. The quasi-analytical expressions of Section 3
were programmed for solution, as listed in Appendix C. The upper limit of
W/A = 0.15 was determined for the applicability of the quasi-analytical solution
in [2], and this limit is maintained for the results listed here.

In Figs. 4 and 5 the magnitude and phase of the far field amplitude
Pn(n/2, n/2) are shown as a function of depth for a rectangular air-filled gap of
width w/A = 0.15, comparing the method of moments (MoM) and quasi-
analytical (QA) solutions. For each method it was verified that as 7 approaches
zero, the results approach that of the gap in a perfectly conducting plane in [2].
Forn/Z = 0.1 and 0.5 the difference between the peak amplitudes of each
method are within 12 percent, and the phase curves show excellent agreement.
As expected, |Py| is non-zero as d approaches zero, corresponding to the
scattering from a perfectly conducting strip in an impedance plane. Consistent
results were verified for /Z = 0.5 and w/A as small as 0.025. As observed in [2],
a cyclical behavior exists with increasing gap depth resulting from the

periodicity of the impedance looking into the gap.

16
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Figure 4. Modulus of the far field amplitude PH for a rectangular gap
of varying depth d1 =d with ¢ = ¢,=n/2 and w/A = 0.15:

n/Z=0.1 H MoM, QA
NZ=05 ® MoM, ---- QA
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Figure 5. Argument of the far field amplitude PH for a rectangular gap
of varying depth d1 =d with ¢ = ¢, = /2 and w/A = 0.15:

WZ=0.1 N MoMm, QA
WZ=05 ® MoM, ---- QA
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The far field amplitude backscatter response to the rectangular gap with
d/A = 0.15 is contained in Fig. 6, showing excellent agreement between the
MoM and QA solutions for all ¢. Figure 7(a) shows the far field amplitude of the
rectangular gap filled with a lossless dielectric having €, = 2.5 for 1/Z = 0.5 and
1.0. It was observed that as the relative permittivity of the gap filling was
increased from 1, the prediction by the QA method improved, bringing the
difference at the peaks within 14 percent for the 1/Z = 1.0 curve shown in the
figure. The agreement is improved when some loss is introduced in the
dielectric filling, as shown in Fig. 7(b) for & =3 +i0.5. For the V-shaped gap of
Fig. 2(b), the far field amplitude is presented in Fig. 8 for varying depth. Similar
results are expected for gaps of arbitrary geometries, given the appropriate
surface impedance n of the gap necessary for the QA solution.

For the E-polarization case, the magnitude and phase are plotted in Figs.
9 and 10 for the rectangular air-filled gap for 1/Z = 0.1 and 0.3. The curves
reveal the evanescent nature of the fields in the gap cavity, giving constant
values for d/A > 0.1. In Fig. 9, the greatest deviation occurs as d approaches
zero, for which the MoM predicts a decrease in magnitude. Forn/Z = 0.3, the
difference between the two methods is within 14 percent. The QA method
breaks down then for )/Z > 0.4 since the amplitude continues to increase for all
d. Figure 10 shows that the phase information is lost in using the QA method. A
plot of the backscatter from an air-filled rectangular gap with d{/A = 0.2 is
contained in Fig. 11, and Fig. 12 shows the far field amplitude of the scattering

from an air-filled V-shaped gap.
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Figure 6. Modulus of the far field amplitude PH for the backscatter from

a rectangular gap of depth d1/x =0.15 with ¢, = ¢, w/A = 0.15:

WZ=05 ® MoM, ---- QA
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Figure 7(a). Molulus of the far field amplitude PH for the material-filled
rectangular gap of varying depth d .= dwithe =25, =1,
¢ =0,=n/2, and w/A = 0.15:

WZ =05 B MoMm, QA
WZ=1.0 ® MoM ----QA
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Figure 7(b). Modulus of the far field amplitude PH for the material-filled
rectangular gap of varying depth d | = d withe =3 +10.5,
w=1,0=0¢,=n2 and w =0.15:

WZ=05 H MoM, QA
WZ=10 @ MoM ---- QA
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Gap depth d/A

Figure 8. Modulus of the far field amplitude PH for an air-filled V-shaped
gap of varying depth d1 =d with ¢ = ¢, = ©/2 and w/A = 0.15:

WZ =0.1 B MoMm, QA
WZ=0.5 ® MM, ---- QA
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Figure 9. Modulus of the far field amplitude PE for an air-filled rectangular
gap of varying depth d, = d with ¢ = ¢, = 7/2 and w/A =0.15:

WZ =0.1 B MoMm, QA
WZ=0.3 ® MoM ----QA
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Figure 10. Argument of the far field amplitude PE for an air-filled rectangular
gap of varying depth d1 = d with ¢ = ¢, = n/2 and w/A = 0.15:

n/Z=0.1 H MoM, QA
nZ=0.3 ® MM ----QA
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Figure 11. Modulus of the far field amplitude PE for the backscatter from
a rectangular gap of depth d1/k = 0.2 with ¢, = ¢, w/k = 0.15:

WZ = 0.1 B MoM, QA
WZ=03 @ MoM ----QA
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Figure 12. Modulus of the far field amplitude PE for an air-filled V-shaped
gap of varying depth d, =d with ¢ = ¢, = n/2 and w/A =0.15:

WZ =0.1 B MoM, QA
WZ=0.3 ® MoM ----QA
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5. CONCLUSIONS

The quasi-analytical solution of [2] was based on the low frequency
approximation of the integral equations for a constant impedance insert in a
perfectly conducting plane applied to a cavity-backed gap in the same such
plane. This same solution has been applied to a gap in an impedance plane by
modifying the expressions with coefficients dependent on the surface
impedance of the plane and the width of the gap. For comparison, a solution
was derived by the equivalence principle in conjunction with the half space
impedance Green’s function, and the exact integral equations were solved by
the method of moments. For an air-filled gap, the quasi-analytical solution for
the far-field amplitude is within 12 percent for an 7/Z < 0.5 for H-polarization and
within 14 percent for an /Z < 0.3 for E-polarization, assuming w/A. < 0.15. The
results are improved when the gap is material-filled with a relative permittivity
greater than 2.5, within 14 percent for W/Z < 1 for H-polarization. The quasi-
analytical solution gives excellent agreement with the method of moments
results when the gap is filled with a lossy dielectric material. Thus the quasi-
analytical solution is a simple and accurate method for determining the
scattering from a narrow gap in an impedance plane for surface impedances of

small but significant values.
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APPENDIX A Evaluation of the Half Space Green’s Function
of an Impedance Plane

The half space Green’s function for an impedance plane is given in (3)
and, considering the integral, in a more quickly convergent form in (4). For the

currents and observation in the gap, y' =y = 0, and (4) becomes

G(x,O;x’,O):%{HS)(k |x-x'|)-!;m JzHe )[k\/ (x-x") "+ (y+iv) Jdv} (A.1)

0

The Hankel function is well defined, but the integral must be analyzed carefully,
since its integrand contains a singularity at

V=V, = XX

in the limit as y approaches zero. Using the small argument approximation of

the Hankel function, the integral about this point is

Vot+Av
LH(x,O;x',Olﬁ)v =limo J' T, e [A‘ '2%\/ xx + (y+iv) }dv (A.2)
° = Vy-Av
where
A—1+——[y+9/n, ] (A.3)

Assuming Av is small such that the exponential term is nearly constant over

2Av, (A.2) is evaluated analytically in the limit as

o T Vo

(L, +L) (A.4)

where
L1 =2A' Av

and
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L. .=

) —;t—{(vomv)[!,n(Qvo AV + AV?) + in] - (Vg-Av) I (2v, AV - AV?)

2vy +AvV |
-4Av +v, | n >y AV -im|¢.
(o]

Over the other portions of the path of integration, Ly is evaluated numerically.

For the case x = x', we have v, = 0, and the evaluation of (A.1) can be

done as follows. In the application of the moment method, the path of the
integral in (9) is segmented such that the currents are assumed to be constant
over each segment Ax. The currents can then be removed from the integral,

and with the self-cell, the integration of Ly over Ax is

X +AX/2 Av
j im, J' 1, e-T”D{A'+%Q/n,\/ (xo-x')2+(y+iv)2}dv
0

Xo-AX/2

o0

- 1
+ J' e H )[k\/ (x,xX)’ + (y+iv)2]dv dx,

Av

where X, is the midpoint of the self-cell. Evaluating the first integral within the

brackets analytically, the self-cell expression of Ly becomes

Xy +AX/2 -
_ ox . v (1) w2 (2 .
S, (Axm) = L, +2 J )I/I-TOJ‘T”G H, (k\/(xo-x) + (y+iv) ]dv dx' (A.5)
Xo Av ‘
where
x A
()4 H 2
LH =1,€ (L3 + L4) (A.6)
with
. 02
L3 =[A - ?]AX Av
and
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, 2
_i Ay 21 oay L Xy, [AX + 24V
L4_nAx{Av0/n.[ 4 AVZ] 24V + 2 Q’n{Ax-ZAv]

( )
Ax AV AX + 2Av Av .. Ax
L4 AxJ["“[Ax-zA J*'“}‘L p *IY(
The double integral in (A.5) is evaluated numerically. The self-cell expression
of the Hankel function in (A.1) is well known and is given in Appendix B as
needed.
For the E-polarization case, the derivatives of the Green’s function must

be considered. From (18), and using the formin (4) for (13),

2

0 82 m v, (1
ymoayay G(x ,yx,y)=£— T [k +——]JTE {k\/ xx) + (y+iv) ]dv (A7)

2
y—0 ox 0

The order of the differential operator is reduced by applying the integral shown
in (18) over the segment Ax. Given the endpoints x1,x2 of the segment, the

integral Lg of (A.7) becomes

jZJ.‘oTE e_TEV Hf:{k\/(x-x')2 + (y+|V)2] dV dx'
X1 0
(X-X2 (1)[k\/(x X,) +(y+iv) ]

\/ (x-x ) (y+|v

v
0

(x-x ) :1)[k\/(x-x1)2+(y+iv)2 J dv, (A.8)
\/ (x- x y+|v)

in the limit as y approaches zero, where k2 has been factored out. For v, not

equal to zero, the singularity in the first integral expression of (A.8) is handled in

the same way as that for the H-polarization case, giving

32



4E VO
Le=1.e (L + L2) (A.9)
with Ly and L, given above. The integration is done numerically over the

remaining path, as well as with respect to x". Let L'E(x,Ax'lﬁ) denote the second

integral expression in (A.8). The contribution from the singularity is, using the

small argument approximation of the first order Hankel function,

1% ] vy i 2v -Av \(x-x2)
L= Bk [k(x X,) AV + R{Q,ﬂz"oz*m’ + mJlx_le

vy, ) i ’ 2v°1-Av _ (x-x1) A1O
-e (X-X1)Av+1tk ’n'2vo1+Av+m |X-X1| (A.10)

=X |, v, = XX .

where

Considering the integrations of (A.8) over the self-cell,
Xo+AX/2

r 1
S.(Axf) =L ™ +2 J 9T0J‘e e H )[k\/ (xo-x')2+(y+iv)2]dv dx
Av

1x

1 lim j:’l: e e
E kys0) E \/
Av

AX
(Ax12)2+(y+iv)°

+L

H:1 )[k\/ (Ax/2)2+(y+iv)2} dv (A.11)

where the analytical expressions are

Av
"'EE"—
L=t e 2 (L+L,) (A.12)
and
1 "A_vz A 2
L £2 2|, Ax i AX + 2Av
E=T® k{k A Av + Q/n, A DAy (A.13)
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APPENDIX B Moment Method Solution of the Coupled
Integral Equations

The integral equation pairs given by (7),(9) and (18),(19) are solved by
the moment method [2,Appendix A]. Using pulse basis functions in the moment
method, the aperture A and the cavity walls S shown in Fig. 1 are segmented
into N cells of size As. The magnetic and electric currents are assumed to be
constant over each of these segments. When the integrations of the coupled
equations are taken over each segment, the current expressions can be
removed as constants from the integrals. With the contour of integration
discretized, the (x',y') coordinates become (xi,yi), i =1,...,N, which describe
the location of each of the segments. The Green’s functions can then be
expressed in terms of rotated coordinates (s,n) for the observation position and
(si,n;) for each segment or source position since the integration is with respect to
the tangential vector g as shown in Fig. 1.

The expressions for the numerical solution of the coupled equations are
developed in the following sections for the H- and E-polarization cases.
Applying point matching, the magnetic and electric currents in the aperture and

on the cavity walls are determined, and the far field amplitude is calculated.

A.1 H-Polarization

For the discretized contour of integration, (7) and (9) become

Js(s,n)———e,iJz s) IH“)[ Jiss)+n ]dsl

i=1

% iJsS n) IS'”B H [ \/ | )2+(n-ni)2]dsi (B.1)
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2sing,  -iks coso,

i=1 Asi

where M are the number of segments across the aperture and

sin B, = ! . (B.3)

i=1 As
+L2\ie JH (k,R)ds, =0 (B.4)
i=N+1 As,
M
ZI{W AR .H (sOsO)}d}
. j=i 2
i=1 As,
N+M ks cosd
kY ™ . __2Sing,  kscose,
oo > |if [Ho (k Rj,i)-LH(sj,O,si,O)} 9, =3y s sing, ° (B.5)
i=N+1 As
where
R \/s -S) n n : (B.6)

The coordinate (s;,n;) is the observation position at the midpoint of the jth
segment. Hence, fori,j=1,..,M,N+1,...N+M, the segments are located in the
aperture, and for i,j = M+1,...,N, the segments are located on the cavity walls. |;
in (B.4) and (B.5) are the electric currents, fori = 1,...,N, and the magnetic

currents, i = N+1,...,N+M, to be determined.
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In matrix form, (B.4) and (B.5) become

[z, ][1]=[v]. (B.7)
The impedance matrix is given as
el mi
[z, ] i (B.8)
292 Zm2
where the sets of elements are as follows:
f .
Ky e ) -
—JsmB..H (k. R )ds. j#i
) 2 A I B N i
Ze1 = As, (B.9)
-1 j=i
\
fori=1,..Nandj=1,..N;
kY M .
Kl J' Hy (K, R ) ds, j#iN
As
Z =9 (B.10)
kY i2 ' =i
Ok 2(si-sj) [TM(R,'J) -1+ AJ j=i-N
fori=N+1,..,N+Mandj=1,..,N;
4
— (1 .
- k2—Yn j {Ho (k Rl.’i) - LH(sj,O;si,O)} dsi j#i+N
Asi
Z . =% (B.11)

fori=1,...,Nandj=N+1,.. ,N+M;
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(
kY M ) .
kY J [Ho kR)- LH(sj,O,si,O)] ds j#i

(B.12)

m2

2

kY [ 2(s, s)['2 (R -1 +A']-SH(Asi|ﬁ)} j=i
\

fori=N+1,..N+Mand j = N+1,...,N+M. In (B.10), the expression for A'1 is

: k
' i2 1
A =1 +—n—-(y+l’/n,?],

andin (B.11) and (B.12), Sy is given by (A.5). For the self-cells in (B.10) to
(B.12), s; is taken to be the endpoint of the ith segment. The self-cell
expressions were derived analytically, and a numerical integration is applied to
the other segments. In the case of the V-shaped gap, the adjacent cells needed
to be evaluated in the vicinity of y = -d, for R;,i less than one cell size, and these
expressions can be found in Appendix A of [2].

The source matrix is given by

[0 j=1,.N

V.= J 2 sing, |ksj cosd, (B.13)

‘ i —
nY + qu)o ]= N+1 ,...,N+M ,

\

and the currents |; are determined by solving (B.7), given that [Zis

nonsingular. From (11), the far field amplitude at the angle ¢ is now

M -IKX. CO
000 = 5 77 Xl nljj e @)

37



B.2 E-Polarization
The integral equation pair given by (18) and (19) was solved in the same
manner as described for the H-polarization case. The elements of the

impedance matrix defined in (B.8) for the E-polarization case are as follows:

(1) .
2, J Hy (kR ) ds, j#i
As.
Z, =< (B.15)
kZ i2 : .
L o W 2(si-sj) [?%(Rm) -1+ A1 j=i
fori=1,..,.Nandj=1,..N;
f
4 3 j R si j#i-N
— s ’
Z = (B.16)
-1 j=i-N
\.
fori=N+1,..,.N+Mandj=1,..N;
(
-—-nl:IL sOsOln)ds +L( Asln):' j#i+N
Z, =4 (B.17)
KY - — .
L -1 "o SE(Asiln) j=i+N
fori=1,..,Nandj=N+1,. N+M;
( KY
-_2_[ J Le(s,055,0) ds, + L'E(sj,Asilﬁ)} j#i
As.
Z =Y (B.18)
kY — .
| "5 Sglasm) j=i

fori=N+1,...,N+Mand j= N+1,..,N+M. In the self-cell expression of (B.15), sjis
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evaluated at the endpont of the ith segment. In (B.17) and (B.18), Sgis given by
(A.11).

The source matrix is

r

0 j=1,..N

<
I
A

| o B.19)

i 2Y lksJ wsq)o . (
_——ﬁY + 500, e j=N+1,...N+M .

\

Given that [Z;] is nonsingular, the currents |; can be determined, and the far field

amplitude is calculated from the expression

Pe(00g) =- % ﬁ$"f1 EM:(LH W) Je’ikx‘ o (B.20)
i=1 Ax;

B.3 Program Llsting

The expressions for the impedance and source matrices and the far field
amplitude were programmed for solution, as contained in the program listing of
IMP.FTN below. The subroutines called by the program in addition to those
listed are contained in the file GAPSUB.FTN of Appendix A of [2].

The numerical integration is done for the appropriate segments using
Simpson’s three-point composite integration over each segment. A segment
size of Asi/A = 0.01 was used for the results of Figs. 4 to 12. The numerical
integration implemented for Ly and Lg is the Gauss-quadrature technique, and
convergence was verified for 7/Z< 2. As listed, the program calculates the far
field amplitude as a function of the gap depth using (B.14) for H-polarization

and (B.20) for E-polarization.
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[eleNeXeleNeXeXeNeleXeXele e ke koo ke ie keI Nekeiele e ool o ke Ko ke ke ke ke ke XeKe)

o WN -

IMP.FTN

This FORTRAN program computes the far field scattering due
to a narrow gap of arbitrary shape in an infinite impedance
plane. The moment method is applied to solve the currents
of two coupled equations.

INPUT The user 1s prompted from the subroutine
GAPROM for the polarization and angle of the
incident field, angle of far field observation,
relative permittivity of gap filling, shape and
dimensions of gap, segment size, number of
iterations with respect to gap depth, and
normalized surface impedance.

OUTPUT FILES
GAPDAT Contains input data.
AMPDAT Contains the magnitude of the far field.
PHADAT Contains the phase of the far field.

SUBROUTINES

HANKZ1 Computes the Hankel functions of the first
kind of orders zero and one.

CHANK  Computes the Hankel functions of the first
kind of orders zero and one given a
complex argument.

IMPGF Calculates the value of the impedance
plane Green’s function.

SIMPGF Calculates the value of the self-cell
for the impedance plane Green’s function.

CGECO Factors a complex matrix and estimates the
condition of the matrix.

CGESL Solves the complex set of linear
equations [A] [X] = [b].

integer pn
parameter (pn=500)
integer EorH,N,noS,gN,szN(50)

real pi,k,phi,phio,w,d, maxC,etab,q(50,2)

real dstp(50),wStp(50),p(pn,2),m(pn,2),sz5d(50),psi (50)
real posiX,posiY,spaceX, spaceY, stepX

real ni,si,nj,sj,xj,yj,DelS,R,Rm,tanf

complex czero,ci,er,ur,Ao,A,kl,cselfO,cselfl,ctempo,ctempl
complex Z (pn,pn}, LHO, LH1, LHOo, LH10, aLHO, Ii (pn),VJ (pn)
complex eta(pn),Hi (pn),Hs(pn),E(pn),Lsca,Psca

complex GFOa(pn),GFOb(pn),GFla(pn),GFlb(pn),GFO(pn),GFl(pn)

integer ipvt (pn),iretrn

real rc,krho

complex wk(pn),HO,Hl,HOo,Hlo, ckrho, 1H0o, iHlo
logical Epol,Lossy,side, neg(50)

common /prompt/ EorH,phio, phi,er,ur, igap, wStp, dStp, w,d, noS,
&

g, maxC,nolter,etab

format (i1)
format (15)
format (gl6.8)
format (a4}
format (2g16.8)

open(l, file=’gapdat’)
open (3, file=’ampdat’)
open (4, file=’phadat’)

c...Declaring constant values

czero=cmplx (0.0,0.0)
ci=cmplx(0.0,1.)
pi=4.0*atan(1.0)

k=2%pi

2o=sqrt (4.e-07*pi/8.854e-12)
Yo=1./Zo

gam=0.5772157

Ao=2* (log (k/2) +gam-ci*pi/2)
iprg=1

Cc...Setting default values

EorH=1
phio=90.0
phi=90.0
er=cmplx(1.,0.0)
ur=cmplx(l.,0.0)
w=0.15

d=0.2

noS=3

maxC=0.01
nolter=30
etab=1.
adj=0.00001
Epol=.false.
Lossy=.false.
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c...Prompting user for input data
call gaprom(iprg)

if

(EorH .eq. 1) Epol=.true.

phio=phio*pi/180.0
phi=phi*pi/180.0
drat=dStp(1l)/d
kl=k*csqrt (er*ur)

A=
if

dm
if
dm;
if

en
DO

2* (clog (k1/2) +gam-ci*pi/2)

(aImag(er) .ne. 0.0) Lossy=.true.
in=.025

(Epol) dmin=0.02

ax=d

(noIter .ne. l)then

dstep= (dmax-dmin) / (noIter-1)
d=dmin

dif

700 iter=1,nolter

c...Determining coordinates of corner points given gap type

c RECT,

if(igap .eq. 1l)then

ANGULAR
noS=3
q(3,1)=w/2
q(3,2)=-d
q(4,1)=-w/2
q(4,2)=-d

else if(igap .eq. 2)then

c L-SHAPED

nos=7
dStp (1) =d*drat
dstp (2)=d* (1-drat)

q(3,1)=w/2
q(3,2)=-dstp (1}
q(8,1)=-w/2

q(8,2)=-dstp (1)
q(4,1)=w/2+wStp(2)
q(4,2)=-dstp (1)
q(7,1)=-w/2-wStp(3)
ql(7,2)=q(4,2)
q(5,1)=q(4,1)
q(5,2)=q(4,2)-dstp(2)
q(6,1)=q(7,1)
q(6,2)=q(5,2)

else if(igap .eq. 3)then

c V-SHAPED

noS=2
q(3,1)=0.0
q(3,2)=-d
adj=0,75*maxC
else if(igap .eq. 4)then

c T-SHAPED

c...Corn

nosS=5
dStp (1) =d*drat
dStp (2)=d* (1-drat)
q(3,1)=w/2
q(3,2)=-dstp(l)
q(4,1)=w/2+wStp (2)
q(4,2)=-dstp(1)
q(5,1)=q(4,1)
q(5,2)=q(4,2)-dstp(2)
q(6,1)=-w/2
q(6,2)=q(5,2)

endif

er points of gap at y=0

q(l,1)y=-w/2

q(1,2)=0.0

q(2,1)=w/2

q(2,2)=0.0

q(nosS+2,1)=-w/2

q(noS+2,2)=0.0

QR Kk ke ke ke ek e ko e ke ok Ak R R K KA KA KA kA kk ko dek ke kk A kA kk ok kkkkk ok ko kdkk k&

Fhkok ok Current segment locations (xi,yi)

e g ek ke ke ke k ok ke

© %k ek Ak Kk ke ke de ok ek ok ok ke ke g kg gk ok ok ek Ak e ke Ak e Tk e Ak ok ke ok ok ke ok ke K ke ke e ke

C*******
N=
do

c...Size

&
c..Angle

0
175 1=1,noS+1
{length) of 1lth side of gap
szSd (1) =sqrt ((g(l+1,1)-qg(l,1))**2
+(q(1+1,2)-q(1,2))**2)

of rotation for each side with respect to x axis

if(g(1+1,1) .1t. q(l,1))then
psi(l)=asin((q(1l,2)-q(1+1,2))/szsSd (1))
neg (l)=.true.

else
psi(l)=asin((q(1+1,2)-q(1,2))/szsd(l))
neg(l)=.false.

endif

szN(1l)=int (szSd (1) /maxC) +1
N=N+szN (1)
spaceX=(q(1+1,1)-q(1,1))/szN(1)
spaceY=(q(l+1,2)-q(l,2))/szN(1)
posiX=qg(l,1)

posiY=q(1,2)
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c...ENDPOINTS of each segment are p, MIDPOINTS are m in (x,y)

c coordinates
do 170 i=N-szN(1l)+1,N
p(i,1)=posiX
p(i, 2)=posiy
m(i,1)=posiX+spaceX/2.0
m(i,2)=posiY+spaceY/2.0
posiX=posiX+spaceX
posiY=posiY+spaceY
170 continue
175 continue
p(N+1,1)=-w/2
p(N+1,2)=0.0
c...Number of segments in the aperture
gN=szN (1)
c...Number of current coefficients to be calculated
NgN=N+gN
print *, ' d="',d," N="',N,’ gN = ’,gN
c...Initializing matrices to zero
do 190 j=1,NgN
do 180 i=1,NgN
Z(j,1)=czero
180 continue
V3j(j)=czero
190 continue

C*********‘k****ﬁ***********‘k***********ﬁ****i**t****ﬁ**************
Rk R kk ok ok ok ok ok ok kK Impedance, Source, ok ok ok ok ek ek Rk ok ok ok ok Kk ok
Rk ek ok e Kk K K ek K and Current Matrices ok kK ok kK K K Kk kK
SRR R Rk ok ko Kk Rk ok ok ok ek K Rk ko kR ok Rk ok ok Rk Rk ko Kk Rk ek K

VARIABLES:

HOo,HO Hankel function of zero order in free
space and in material er, respectively.

Hlo,H1 Hankel function of first order in free
space and in material er, respectively.

iHOo, Evaluation of the integral expression of

iHlo the half space Green’s function.
Green’s Function integrals:
LHO Integral of HO.

E-pol.

iHOo for E-pol.
LHlo Integral of iHlo for E-pol.

[eXeXeXe ke ke ke ke e ke NeXoKkeXe ke ke ke e ke Ko Xe!

istart=1
istop=szN (1)

LH1 Integral of Hl for H-pol, of dHl/dy for

LHOo Integral of HOo and iHOo for H-pol and

aLHO Analytical integral of HOo for evaluation
of adjacent cells for LH2, E-pol case.

The integration is done one side at a time, for j=1,...,N,
in the clockwise direction, starting at (x,y)=(-w/2,0).

c...Source point is i of the 1lth side, observation point is j

do 230 1=1,noS+1
do 220 i=istart,istop
do 210 j=1,N
c Coordinate rotation for observation point
si=m(Jj, 1) *cos(psi(l))+m(J,2)*sin(psi(l))
nj=m(j,1) *sin(psi(1))-m(3,2)*cos(psi(l))
if(neg(l))then
si=-sj
nj=-nj
endif
c...Integration over ith segment
LHO=czero
LHl=czero
LHOo=czero
LHlo=czero
c Magnitude between midpoints Rm=|r-r’|
Rm=sqrt ((m(Jj,1)-m(i,1))**2+ (m(3,2)-m(1,2))**2)
if(j .eq. i .or. Rm .le. adj)then
SMALL ARGUMENT APPROXIMATION integral for self-cell
and adjacent cells
do 200 ip=i+1,i,-1
c Coordinate rotation for source segment points
si=p(ip,1)*cos(psi(l))+p(ip,2)*sin(psi(l))
ni=p(ip,1)*sin(psi(1))-p(ip, 2} *cos (psi (1))
if(neg(l))then

aa

i=-si
ni=-ni
endif

R=sqrt ( (sj-si) **2+ (nj-ni) **2)

if(j .eq. i .or. abs(nj-ni) .eq. 0.0)then
tanf=pi/2
absf=1.0

else
tanf=atan((si-sj)/abs (nj-ni))
absf=abs(nj-ni)

endif
LH1=-k1%*2/2% (nj-ni) *si

& +ci*2./pi* (nj-ni) /absf*tanf-LH1
LHO=ci/pi*(2* (si=sj) *log (R)

& ~(2-A)*si+2.0*abs(nj-ni) *tanf)-LHO
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LHOo=ci/pi* (2* (si-sj) *log(R)

& - (2-RAo) *si+2.0*abs (nj-ni) *tanf) -LHOo
if(j .eq. i) GOTO 202
200 continue
202 if(J .eq. i)then

LHO=2* (LHO+ci/pi* (2-A) *s])
if(i .le. gN .and. j .le. gN)then
if(i .eq. 1 .and. iter .eq. 1l)then
iHlo=abs(sj-si)
call simpGF (0.,etab,Epol,iH0o0,iHl0)
cself0=1iHOo
cselfl=iHlo
endif
if(Epol)then
LHlo=cselfO+cselfl
else
LHOo=2* (LHOo+ci/pi* (2-A0) *sj)-cself0
endif
endif
endif
else
c SIMPSON’ S THREE POINT COMPOSITE INTEGRATION
do 204 ip=i+1,i,-1
c Coordinate rotation for source segment endpoints
si=p(ip,1)*cos(psi(l))+p(ip,2)*sin(psi (1))
ni=p(ip,1)*sin(psi(1))-p(ip,2)*cos(psi (1))
if(neg(l))then
si=-si
ni=-ni
endif
stepS=si
c HANKEL FUNCTION evaluation at endpoints of segment
R=sqrt ((sj-si) **2+ (nj-ni) **2)
if(Lossy)then
ckrho=k1*R
call cHank (ckrho, 2,H0,H1}
else
krho=Real (k1) *R
call Hankzl (krho, 2,H0,H1)
endif
if(i .le. gN .and. j .le. gN)then
krho=k*R
call Hankzl (krho, 2,H00,Hlo)
1f(i .eq. 1 .and. iter .eq. l)then
call impGF (krho,etab, Epol, ctempO,ctempl)
if(i .eq. ip)}then
GFOa (j) =ctemp0
1HOo=GF0a (Jj)
GFla (]j)=ctempl
iHlo=GF1la (Jj)
else
GFOb (j) =ctemp0
1H00=GFODb (j)
GFlb (j)=ctempl
1H1o0=GF1b (J)
endif
else
if(i .eq. ip)then
1HO00=GFO0a (abs (j-1) +1)
i1Hlo=GF1la (abs (j-1) +1)
else
1HO0=GFOb (abs (j-1) +1)
iHlo=GF1b (abs (j-1)+1)
endif
endif
endif

LHO=HO+LHO
if(Epol)then
LHl1=k1l*m(j, 2) /R*H1+LH1
if(i .le. gN .and. j .le. gN)then
LHlo=-LHlo-iHlo
LHOo=1HOo+LHOo0
endif
else
LH1=k1l* (nj-ni)/R*H1+LH1
LHOo= (HOo-1H0o0) +LHOO

endif
204 continue
c Coordinate rotation for source segment midpoints

si=m(i,1) *cos(psi(l))+m(i,2)*sin(psi(l))
ni=m(i,1)*sin(psi(1l))-m(i,2)*cos(psi(l))
if(neg(lz)then

si=-si
ni=-ni
endif

stepS=abs (stepS-si)
DelS=2*stepS
c HANKEL FUNCTION evaluation at midpoint of segment
R=sqrt ((sj-si) **2+ (nj-ni) **2)
if(Lossy)then
ckrho=k1*R
call cHank (ckrho, 2,H0,H1)
else
krho=Real (k1) *R
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call Hankzl (krho, 2,HO0,H1)
endif
if(i .le. gN .and. j .le. gN)then
krho=k*R
call Hankzl (krho, 2,H0o, Hlo)
if(i .eq. 1 .and. iter .eq. 1l)then
call impGF(krho,etab,Epol,ctempO,ctempl)
GFO0 (j) =ctemp0
1H00=GF0 (J)
GF1 (j) =ctempl
iHlo=GF1 (j)
else
1H00=GFO0 (abs (j-1) +1)
iHlo=GF1 (abs (j-1i) +1)
endif
endif
c GREEN’ S FUNCTION INTEGRALS
LHO=stepS/3* (4*HO+LHO)
if(Epol)then
LHl=stepS/3* (4*k1*m (], 2) /R*H1+LH1)
if(i .le. gN .and. j .le. gN)then
LHOo=stepS/3* (4*iH00+LHO00)
LHlo=LHOo+LHlo
endif
else
LHl=stepS/3* (4*k1* (nj-ni) /R*H1+LH1)
1f(i .le. gN .and. j .le. gN)then
LHOo=stepS/3* (4* (H0Oo-1H0o0) +LHO0)
endif
endif
endif
if(i .ne. j .and. Rm .le. adj)then
LHO=-LHO
endif

if(Epol)then
c E-POL IMPEDANCE MATRIX

Z(j,1)=k*Zo*ur/2*LHO

if(i .le. gN .and. j .ne. i)then
2 (3, N+i)=-ci/2*LH1

else if(i .le. gN .and. j .eq. i)then
Z(3,N+ti)=-1.

endif

if(j .le. gN)then
if(j .ne. i)then
if(i .le. gN)then
Z(N+3,1)=-k/2*etab*LHlo
else
Z(Nt+3,1)=czero
endif
else
Z(N+3j,1)=-1.-k/2*etab*LHlo
endif
if(i .le. gN)then
Z (N+3,N+1)=-k*Yo/2*LHlo
endif
endif
else
C H-POL IMPEDANCE MATRIX
if(j .ne. i)then
Z(j,i)=ci/2*LH1
else

2(3, 1) =-1.
endif

if(i .le. gN)then
Z (j,N+i)=k*Yo*er/2*LHO
endif

1f(j .le. gN)then
if(j .ne. i)then
if(i .le. gN)then
Z(N+3, i) =-k*etab/2*LHOo
else
Z (N+j,1i)=czero
endif
else
Z(N+J,i)=1.-k*etab/2*LHOo
endif
if(i .le. gN)then
Z (N+J,N+1) =k*Yo/2*LHOo
endif
endif
endif
210 continue

c...Incldent Field (Source) matrix elements
xJ=m(i, 1)
VJj(i)=czero
if(i .le. gN)then

if (Epol)then

c E-POL INCIDENT FIELD Hx
Vj(N+i)=2*sin(phio)/(etab*sin(phio)+1)
& *Yo*cexp (-ci*k*x3j*cos (phio))

else

c H-POL INCIDENT FIELD Hz
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V3 (N+1i)=2*sin(phio)/ (etab+sin(phio))
& *cexp (~ci*k*x3j*cos (phio))
endif
endif
220 continue
istart=istop+l
istop=1istop+szN(1+1)
230 continue

c...Calling subroutines to calculate the current matrix
call CGECO(Z,pn,NgN, ipvt,rc,wk)
call CGESL(Z,pn,NgN,ipvt,V3,0)

print *,’ The condition number is ’,rc
do 310 i=1,NgN
c CURRENT MATRIX
Ii(1)=vi(l)
310 continue

C*******k*****************t**t**t**ﬁ*******ﬁ****i**********t*******
c***************t** Far Field AmPlitude % d d de kK vk K vk ke k ko ok ko
c************t***t*******ﬁ****t********k*********************t*****
Psca=czero
DelX=w/gN/2
do 600 i=1,gN
c...Simpson’s three point composite integration over each
c segment in the aperture
Lsca=DelX/3* (cexp (-ci*k*p(i,1)*cos (phi))

& +4*cexp(~ci*k*m(i,1) *cos(phi))
+cexp (-ci*k*p(i+1,1) *cos(phi)))
if(Epol)then
Psca=(Ii(N+i)+etab*Zo*Ii(i))*Lsca+Psca
else
Psca=(Yo*Ii (N+1i)-etab*Ii(i))*Lsca+Psca
endif
600 continue
if(Epol)then

Psca=-k/2*sin(phi)/ (etab+1) *Psca
else
Psca=-k/2/ (etab+l) *Psca
endif

write(3,*) d,cabs(Psca)

write(4,*) d,180/pi* (atan2 (almag(Psca),Real (Psca)))

print *,’ Exact: |Psca| = ’,cabs(Psca),’ arg Psca ="',
& 180/pi*(atan2(aImag(Psca),Real (Psca)))

d=d+dstep
700 continue

800 call exit
END

Coe ok ek ok e de ok S ok ok ok ok e ok sk ok ok g ok etk ok ke A e de gk ok ks A ok e ok ok ok ok ke ok e sk e ok ok ok ok e ok K A ok ok ok ok ok e ok

SUBROUTINE IMPGF (KRHO,ETAB, EPOL, LRE, LRM)
C*************t**ﬁ*******************t***kﬁ******************ﬁ******

real pi,krho,k,nu,nuo,numax

real*8 rts(64,64),coef(64,64)

complex ci,carg,croot,Ao

complex re,rm,eint,mint,Lre,Lrm, HO, Hl

logical Epol,self, second

common /data/ rts,coef

call gausg

pi=3.141593

ci=cmplx(0.,1.)

k=2*pi

gam=0.5772157

Ao=1+ci*2/pi* (gam+alog(k/2))
self=, false.

second=, false.

iroot=64

ih=0

alf=k/etab

bet=k*etab

nuo=krho/k

c...Determining size of del nu and max nu value necessary

if(Epol)then
dnu=alog(0.95)/ (-alf)
9gm3x=alog(0.00001)/(-alf)
ih=

else

dnu=alog(0.95) / (-bet)

numax=alog (0.00001)/ (~bet)
endif
dnumax=sqrt ( (0.1/k) **2+nuo**2)-nuo
if(dnu .gt. dnumax) dnu=dnumax
rnumax=sqrt ((12./k)**2+nuo**2)

if(nuo .eq. 0.0)then
self=.true.
second=.true.
endif
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if(dnu .ge. nuo .and. .not. (self))then
dnu=nuo
second=.,true.
endif
if(numax .le. nuo+dnu) numax=2* (nuo+dnu)
if({rnumax .lt. numax) numax=rnumax

c...Gauss-Quadrature

70

20

Lre=0.0
Lrm=0.0
do 20 m=1,2
if(.not.(m .eq. 1 .and. second))then
if(m .eq. 1)then
a=0.0
b=nuo-dnu
else if(m .eq. 2)then
a=nuo+dnu
b=numax
else
a=b
b=numax
endif

mint=0.0
eint=0.0
do 70 i=1,iroot
srts=rts(iroot,1i)
scoef=coef (iroot, i)
nu=( (b-a) *srts+b+a)/2
croot=nuo**2-nu**2
carg=k*csqrt (croot)
if(m .eq. 1l)then
rarg=Real (carg)
call Hankzl (rarg,ih, HO,6H1)
else
call cHank(carg,ih,HO,H1)
endif
if(Epol)then
rm=alf*exp(-alf*nu)*nuo*Hl/carg
re=alf*exp(-alf*nu)*HO
else
re=bet *exp (-bet *nu) *HO
endif
eint=scoef*re+eint
mint=scoef*rm+mint
continue

Lre=(b-a) /2*eint+Lre
Lrm=(b-a) /2*mint+Lrm
endif
continue

c...Singularity evaluation, nuo = |xJj-xi|

2l o)

AR

MR

if(.not. (self))then
if (Epol)then
mint=alf*exp (-alf*nuo)
* (nuo*dnu+ci/pi/k**2
* (alog ( (2*nuo-dnu) / (2*nuo+dnu) } +ci*pi))
eint=alf*exp (-alf*nuo)
*(2*Ao*dnu
+ci/pi* ((nuo+dnu) * (alog (2*dnu*nuo+dnu**2)
+ci*pi) - (nuo-dnu) *alog (2*dnu*nuo-dnu**2)
~4*dnu+nuo* (alog ( (2*nuo+dnu) / (2*nuo-dnu) )
-ci*pi)))
else
eint=bet*exp (-bet *nuo)
*(2*Ao*dnu
+ci/pi* ((nuo+dnu) * (alog (2*dnu*nuo+dnu**2)
+ci*pi) - (nuo-dnu) *alog (2*dnu*nuo~-dnu**2)
-4*dnu+nuo* (alog ( (2*nuo+dnu) / (2*nuo-dnu) )
-ci*pi)))
endif
endif
Lre=Lre+eint
Lrm=Lrm+mint
return
end

(C % ek ok e e ke e e e e ke ok e ok ok ok ok ke ke ke e Ak ok ok ko ek Ak ok ke ok Ak Rk k ke ek ok kok ok

SUBROUTINE SIMPGF (KRHO, ETAB,EPOL, LRE, LRM)

Coe % o % ok ok ok s e ok ke ek ok o ke ek ek ke ke ke ek sk kA ke ko ok Rk ke kA ok ok ke ko ke ok K ek kK

real pi,k,nu,nuo,numax,numin, krho

real*8 rts(64,64),coef(64,64)

complex ci,carg,croot,Ro,H0,H1,H(64)
complex re,rm,eint,mint,Lre,Lrm,ssLre,ssLrm
logical Epol,self, second

common /data/ rts,coef

call gausq

pi=3.141593

ci=cmplx(0.,1.)

k=2*pi

gam=0,5772157
Ao=1+ci*2/pi*(gam+alog(k/2))
self=.false.

second=.false.

iroot=64
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numm=21
ih=0

alf=k/etab
bet=k*etab
nuo=krho/k
c...Determining size of del nu and max nu value necessary
if(Epol)then
dnu=alog (0.95)/ (-alf)
Eumax=alog(0.00001)/(—alf)
h=2

else
dnu=alog(0.95)/ (-bet)
numax=alog(0.00001)/ (-bet)
endif
dnumax=sqrt ((0.1/k)**2+nuo**2)-nuo
if(dnu .gt. dnumax) dnu=dnumax
rnumax=sqrt ((12./k) **2+nuo**2)

if(nuo .eq. 0.0)then
self=.true.
second=.true.
dx=real (Lrm)
if(dnu .ge. dx) dnu=1.05*dx/2
numin=dnu
endif
if(dnu .ge. nuo .and. .not. (self))then
dnu=nuo
second=.,true.
endif
if(numax .le. nuo+dnu) numax=2* (nuo+dnu)
if(rnumax .lt. numax) numax=rnumax

c...Self-cell evaluation
if(self)then
if (Epol)then
mint=alf*exp (~alf*dnu/2) *2* (-dx/2*dnu+cl/pi/k**2
*alog ( (dx+dnu) / (dx-dnu) ) )
eint=alf*exp (~alf*dnu/2) *2* ((Ao-ci/pi*2) *dx*dnu

~n

& +ci/pi*dx* (dnu*alog (dx**2-dnu**2)-2*dnu
& +dx*alog ( (dx+dnu)/ (dx-dnu)))
& +ci/pi/2* ((dx**2- dnu**2)*(alog((dx dnu) / (dx+dnu) )
& -ci*pi)+dx*dnu+ci*dx**2*pi))
else
eint=bet*exp (-bet*dnu/2) *2* ( (Ao-ci/pi*2) *dx*dnu
& +ci/pi*dx* (dnu*alog (dx**2-dnu**2}-2*dnu
& +dx*alog ( (dx+dnu) / (dx-dnu)))
& +ci/pi/2* ((dx**2-dnu**2) * (alog( (dx~dnu) / (dx+dnu) )
& -ci*pi)+dx*dnu+ci*dx**2*pi))
endif
ssLre=eint
ssLrm=mint
endif
rt=0.0
13 if(rt .eq. 1.3) numm=numm+2

.Integration over self-cell
do 30 mm=1, numm
if(mm .gt. 1l)then

nuo=nuo+dx/ (numm-1)

if (abs (numin-nuo) .le. 0.000001)then
rt=1.3
nuo=0
print *,’ACK!!!!!! Changing numm.’

if(Epol)then
dnu=alog(0.95) / (-alf)
else
dnu=alog(0.95)/ (-bet)
endif
dnumax=sqrt ( (0.1/k)**2+nuo**2)-nuo
if(dnu .gt. dnumax) dnu=dnumax
if(nuo .1lt. numin)then
second=.true.
self=.true.
else
if(dnu .ge. (nuo-numin))then
dnu=nuo-numin
second=.true.
endif
endif
if (numax .le. nuo+dnu) numax=2* (nuo+dnu}
if(rnumax .lt. numax) numax=rnumax
endif

c Gauss-Quadrature
Lre=0.0
Lrm=0.0
do 20 m=1,2
if(.not.(m .eq. 1 .and. second))then
if(m .eq. 1)then
a=numin
b=nuo-dnu
else if(m .eq. 2)then
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a=nuo+dnu
if(nuo .lt. numin) a=numin
b=numax
else
a=numax
b=2*numax
endif

mint=0.0
eint=0.0
do 70 i=1,iroot
srts=rts(iroot, i)
scoef=coef (iroot, i)
nu=( (b-a) *srts+b+a)/2
croot=( (nuo) **2-nu**2)
carg=k*csqrt (croot}
if(m .eq. 1l)then
rarg=real {carg)
call Hankzl (rarg,ih, HO, H1)
else
call cHank(carg,ih,HO,H1)
endif
if(Epol)then
rm=alf*exp(-alf*nu)*2*nuo*Hl/carg
re=alf*exp(-alf*nu)*HO
else
re=bet *exp (-bet *nu) *HO
endif
eint=scoef*re+eint
mint=scoef*rm+mint
70 continue
Lre=(b-a)/2*eint+Lre
Lrm= (b-a) /2*mint+Lrm

endif
20 continue
c...Sinqularity evaluation, nuo = |x-xi|
if(.not. (self))then
if (Epecl)then

mint=alf*exp(-alf*nuo)
*2%* (nuo*dnu+ci/pi/k**2
* (alog ( (2*nuo-dnu) / (2*nuo+dnu) ) +ci*pi))
eint=alf*exp (-alf*nuo)
* (2*Ao*dnu
+ci/pi* ((nuo+dnu) * (alog (2*dnu*nuo+dnu**2)
+ci*pi) - (nuo-dnu) *alog (2*dnu*nuo-dnu**2}
-4*dnu+nuo* (alog ( (2*nuo+dnu) / (2*nuo~dnu) )
-ci*pi)))

R

R R R

else
elint=bet*exp (-bet *nuo)
* (2*Ao*dnu
+ci/pi* ((nuo+dnu) * (alog (2*dnu*nuo+dnu**2)
+ci*pi) - (nuo-dnu) *alog {2*dnu*nuo-dnu**2)
—4*dnu+nuo* (alog ( (2*nuo+dnu) / (2*nuo-dnu) )
-ci*pi)))

R R

endif

Lre=Lre+eint

Lrm=Lrm+mint
endif

H(mm)=Lre
self=,false.
second=.false.
30 continue
Lre=0.0
do 40 i=1,numm-2,2
Lre=H(i)+4*H (i+1)+H(1+2)+Lre
40 continue
Lre=ssLre+2* (dx/ (numm-1) /3*Lre)
Lrm=ssLrm-Lrm
return
end
C******k****t*ﬁ*******************t*****t****t*ﬁ********************
C SUBPROGRAM DATAINT CONTAINS INTEGRATION DATA
C*********************************t***************t***************
Cc
SUBROUTINE GAUSQ
REAL*8 RTS(64,64),COEF (64, 64)

c
COMMON /DATA/ RTS, COEF
c
C
C+ +
C FIXED POINTS FOR GAUSSIAN QUADRATURE
c+ -- - +
c
C---N=64
C
RTS (64,1)= .999305041735772D0
RTS (64,2} = .996340116771955D0
RTS (64,3)= .991013371476744D0

RTS(64,4)= .983336253884625D0
RTS (64,5)= .973326827789910D0
RTS (64,6)= .961008799652053D0
RTS(64,7)= .946411374858402D0
RTS (64,8)= .929569172131939D0
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[eXeXe]

RTS(64,9)= .910522137078502D0
RTS(64,10)= .889315445995114D0
RTS(64,11)= .865999398154092D0
RTS (64,12)= ,840629296252580D0
RTS (64,13)= .813265315122797D0

RTS (64,14)= .783972358943341D0
RTS (64,15)= .752819907260531D0
RTS (64,16)= .719881850171610D0
RTS(64,17)= .685236313054233D0
RTS(64,18)= .648965471254657D0
RTS (64,19)= .611155355172393D0
RTS (64,20)= ,571895646202634D0
RTS (64,21)= .531279464019894D0
RTS (64,22)= .489403145707052D0
RTS (64,23)= .446366017253464D0
RTS (64,24)= .402270157963991D0
RTS (64,25)= .357220158337668D0
RTS (64,26)= .311322871990210D0
RTS (64,27)= .264687162208767D0
RTS (64,28)= ,217423643740007D0
RTS (64,29)= ,169644420423992D0
RTS (64,30)= .121462819296120D0
RTS (64,31)= ,072993121787799D0

RTS (64,32)= .024350292663424D0
RTS (64, 64)=-.999305041735772D0
RTS (64, 63)=-.996340116771955D0
RTS (64, 62)=-.,991013371476744D0
RTS (64, 61)=-.983336253884625D0

RTS (64,59)=-.961008799652053D0
RTS (64,58)=-.946411374858402D0
RTS (64,57)=-.929569172131939D0
RTS (64,56)=-.910522137078502D0
RTS (64, 55)=-.889315445995114D0
RTS (64,54)=-.865999398154092D0
RTS (64, 53)=-.840629296252580D0
RTS (64,52)=-.813265315122797D0
RTS (64,51)=-.783972358943341D0
RTS (64,50)=-.752819907260531D0
RTS (64,49)=-.,719881850171610D0
RTS (64, 48)=-.685236313054233D0
RTS (64,47)=-.648965471254657D0
RTS (64,46)=-.611155355172393D0
RTS (64,45)=-.571895646202634D0
RTS (64,44)=-.531279464019894D0
RTS (64,43)=-.489403145707052D0
RTS (64,42)=-,446366017253464D0
RTS (64,41)=~,402270157963991D0
RTS (64,40)=-.357220158337668D0
RTS (64,39)=-,311322871990210D0
RTS (64, 38)=-.264687162208767D0
RTS (64,37)=-.217423643740007D0
RTS (64,36)=-.169644420423992D0
RTS (64, 35)=-.121462819296120D0
RTS (64,34)=-.072993121787799D0
RTS (64,33)=-.024350292663424D0

COEF (64,1)= .001783280721696D0
COEF (64,2)= .004147033260562D0
COEF (64,3)= .006504457968978D0
COEF (64,4)= .008846759826363D0
COEF (64,5)= .011168139460131D0
COEF (64,6)= .013463047896718D0
COEF (64,7)= .,015726030476024D0
COEF (64,8)= .017951715775697D0
COEF (64,9)= .020134823153530D0
COEF (64,10)= .022270173808383D0
COEF (64,11)= .024352702568710D0
COEF (64,12)= .026377469715054D0
COEF (64,13)= ,028339672614259D0
COEF (64,14) = ,030234657072402D0
COEF (64,15)= .032057928354851D0
COEF (64,16)= .033805161837141D0
COEF (64,17)= .035472213256882D0
COEF (64,18)= .037055128540240D0
COEF (64,19)= .038550153178615D0
COEF (64,20)= .039953741132720D0
COEF (64,21)= ,041262563242623D0
COEF (64,22)= .042473515123653D0
COEF (64,23)= ,043583724529323D0
COEF (64,24)= .044590558163756D0
COEF (64,25)= .045491627927418D0
COEF (64,26)= .046284796581314D0
COEF (64,27)= .046968182816210D0
COEF (64,28)= ,047540165714830D0
COEF (64,29)= .047999388596458D0
COEF (64,30)= .048344762234802D0
COEF (64,31)= .048575467441503D0
COEF (64,32)= .048690957009139D0
COEF (64,64)= ,001783280721696D0
COEF (64,63)= .004147033260562D0
COEF (64,62)= .006504457968978D0
COEF (64,61)= ,008846759826363D0
COEF (64,60)= .011168139460131D0
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COEF (64,59)= .013463047896718D0
COEF (64,58)= .015726030476024D0
COEF (64,57)= .017951715775697D0
COEF (64,56)= ,020134823153530D0
COEF (64,55)= .,022270173808383D0
COEF (64,54)= .024352702568710D0
COEF (64,53)= .026377469715054D0
COEF (64,52)= .028339672614259D0
COEF (64,51)= .030234657072402D0
COEF (64,50) = .032057928354851D0
COEF (64,49)= .033805161837141D0
COEF (64,48)= ,035472213256882D0
COEF (64,47)= .037055128540240D0
COEF (64,46)= .038550153178615D0
COEF (64,45)= .039953741132720D0
COEF (64,44)= ,041262563242623D0
COEF (64,43)= .042473515123653D0
COEF (64,42)= .043583724529323D0
COEF (64,41)= .044590558163756D0
COEF (64,40)= .045491627927418D0
COEF (64,39)= ,046284796581314D0
COEF (64,38)= .046968182816210D0
COEF (64,37)= .047540165714830D0
COEF (64,36) = .047999388596458D0
COEF (64,35)= .048344762234802D0
COEF (64,34) = .048575467441503D0
COEF (64,33)= .048690957009139D0

c
C---N=64
c

[e¥e}

RTS(64,1)= .999305041735772D0
RTS (64,2)= ,996340116771955D0
RTS(64,3)= .991013371476744D0
RTS(64,4)= .983336253884625D0
RTS (64,5)= .973326827789910D0
RTS (64,6)= .961008799652053D0
RTS (64,7)= .946411374858402D0
RTS (64,8)= .929569172131939D0
RTS (64,9)= .910522137078502D0
RTS(64,10)= .889315445995114D0
RTS(64,11)= .865999398154092D0

RTS(64,12)= .840629296252580D0
RTS (64,13)= .813265315122797D0
RTS (64,14)= .783972358943341D0
RTS (64,15)= .752819907260531D0
RTS (64,16)= .719881850171610D0
RTS (64,17)= .685236313054233D0
RTS (64,18)= .648965471254657D0
RTS(64,19)= .611155355172393D0
RTS (64,20)= .571895646202634D0
RTS(64,21)= ,531279464019894D0
RTS (64,22)= .489403145707052D0
RIS (64,23)= ,446366017253464D0
RTS (64,24)= ,402270157963991D0
RTS (64,25)= .357220158337668D0
RTS (64,26)= .311322871990210D0
RTS (64,27)= .264687162208767D0

RTS (64,28)= .217423643740007D0
RTS(64,29)= .169644420423992D0
RTS(64,30)= .121462819296120D0
RTS (64,31)= .072993121787799D0
RTS (64,32)= .024350292663424D0
RTS (64, 64)=~-.999305041735772D0
RTS (64, 63)=-.996340116771955D0
RTS (64,62)=-.991013371476744D0
RTS (64, 61)=-.983336253884625D0
RTS (64, 60)=-.973326827789910D0
RTS (64,59)=-.961008799652053D0
RTS (64,58) =-.946411374858402D0
RTS (64,57)=-.929569172131939D0
RTS (64, 56)=-.910522137078502D0
RTS (64, 55) =-.889315445995114D0
RTS (64,54)=-.865999398154092D0
RTS (64,53)=-.840629296252580D0
RTS (64,52)=-.813265315122797D0
RTS(64,51) .783972358943341D0
RTS (64,50)=-.752819907260531D0
RTS (64,49)=-.719881850171610D0
RTS (64, 48)=-.685236313054233D0
RTS (64,47)=~.648965471254657D0
RTS (64,46)=-.611155355172393D0
RTS (64, 45)=-.571895646202634D0
RTS (64,44)=-,531279464019894D0
RTS (64, 43)=-.489403145707052D0
RTS (64,42)=-.446366017253464D0
RTS (64,41)=-.402270157963991D0
RTS (64,40)=~,357220158337668D0
RTS (64,39)=-.311322871990210D0
RTS (64, 38)=-.264687162208767D0
RTS (64,37)=-.217423643740007D0
RTS (64,36)=-.169644420423992D0
RTS(64,35)=-,121462819296120D0
RTS (64,34)=-.072993121787799D0
RTS (64, 33)=-.024350292663424D0
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COEF (64,1)= .001783280721696D0
COEF (64,2)= .004147033260562D0
COEF (64,3)= .006504457968978D0

COEF (64,4)= .008846759826363D0
COEF (64,5)= .011168139460131D0
COEF (64,6)= .013463047896718D0
COEF (64,7)= .015726030476024D0
COEF (64,8)= .017951715775697D0
COEF (64,9)= .020134823153530D0
COEF (64,10)= .022270173808383D0
COEF (64,11)= .024352702568710D0
COEF (64,12)= .026377469715054D0
COEF (64,13)= .028339672614259D0
COEF (64,14)= .030234657072402D0
COEF (64,15)= .032057928354851D0
COEF (64,16)= .033805161837141D0
COEF (64,17)= .035472213256882D0
COEF (64,18)= .037055128540240D0
COEF (64,19)= .038550153178615D0
COEF (64,20)= .039953741132720D0
COEF (64,21)= .041262563242623D0
COEF (64,22)= .042473515123653D0
COEF (64,23)= .043583724529323D0
COEF (64,24)= .044590558163756D0
COEF (64,25)= .045491627927418D0
COEF (64,26)= .046284796581314D0
COEF (64,27)= .046968182816210D0
COEF (64,28)= .047540165714830D0
COEF (64,29)= .047999388596458D0
COEF (64,30)= .048344762234802D0
COEF (64,31)= .048575467441503D0
COEF (64,32)= .048690957009139D0
COEF (64,64)= .001783280721696D0
COEF (64,63)= .004147033260562D0
COEF (64,62)= .006504457968978D0
COEF (64,61)= .008846759826363D0
COEF (64,60)= .011168139460131D0
COEF (64,59)= .013463047896718D0
COEF (64,58)= ,015726030476024D0
COEF (64,57)= .017951715775697D0
COEF (64,56)= .020134823153530D0
COEF (64,55)= .022270173808383D0
COEF (64,54)= .024352702568710D0
COEF (64,53)= .026377469715054D0
COEF (64,52)= .028339672614259D0
COEF (64,51)= ,030234657072402D0
COEF (64,50) = .032057928354851D0
COEF (64,49)= .033805161837141D0
COEF (64,48)= .035472213256882D0
COEF (64,47)= ,037055128540240D0
COEF (64,46)= .038550153178615D0
COEF (64,45)= .039953741132720D0
COEF (64,44)= .041262563242623D0
COEF (64,43)= ,042473515123653D0
COEF (64,42)= .043583724529323D0
COEF (64,41)= .044590558163756D0
COEF (64,40)= .045491627927418D0
COEF (64,39)= .046284796581314D0
COEF (64,38)= .046968182816210D0
COEF (64,37)= .047540165714830D0
COEF (64,36)= .047999388596458D0
COEF (64,35)= .048344762234802D0
COEF (64,34)= .048575467441503D0
COEF (64,33)= .048690957009139D0
RETURN

END
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APPENDIX C. Program Listing for the Quasi-Analytical Solution

The quasi-analytical solution presented in Section 3 was programmed
for solution, as listed in the program IMPQA.FTN below. The subroutines used
by this program are listed in GAPSUB.FTN in Appendix A of [2].

For H-polarization, the far field amplitude Py is calculated from (28), and
for E-polarization, Pg is calculated from (34). The parameters a and b in (26)
and (33), respectively, are dependent on the effective surface impedance n of
the gap, which is calculated from the formulas in [2] according to the specified

shape of the cavity and the field polarization.
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IMPQA.FTN

This FORTRAN program computes the far field scattering due
to a narrow gap of specified shape in an infinite impedance

plane.

The far field amplitude is calculated given the

input impedance of the gap, calculated from it’s equivalent

transmission line model.

INPUT The user is prompted from the subroutine
GAPROM for the polarization and angle of the

incident field, angle of far field observation,
relative permittivity of gap filling, shape and

dimensions of gap, segment size, number of
iterations with respect to gap depth, and
normalized input impedance.

OUTPUT FILES
GAPDAT Contains input data.

IMPDAT Effective surface impedance of the gap.
AMPDAT Contains the magnitude of the far field.

PHADAT Contains the phase of the far field.
SUBROUTINES

HANKZ1 Computes the Hankel functions of the first

kind of orders zero and one.

CHANK Computes the Hankel functions of the first

kind of orders zero and one given a
complex argument.

MODBES Computes the modified Bessel functions of
the first kind of orders zero and one.

FUNCTION
CTAN Calculates the tangent of a complex
argument.

integer EorH,N,noS,gN,szN(50)

real pi,k,phi,phio,w,d, maxC,q(50,2)

real dStp(50),wStp(50),1I0,I1,krho,psi

complex czero,ci,ctemp,er,ur,kl,kc,carg, ctan,eta

complex 21,721, 2c,2L,X,B1,B2,H0,H1,a,b,Ke,Kh, Ao, Psca, ge, gh

logical Epol,Lossy

common /prompt/ EorH,phio,phi,er,ur,igap,wStp,dStp,w,d, noS,

q,maxC,nolter,etab

format (11)
format (1i5)
format (gl6.8)
format (al)
format (13)
format (2g16.8)

open (1, file='gapdat’)
open(2, file=’'impdat’)
open (3, file=’ampdat’)
open (4, file='phadat’)

c...Declaring constant values

czero=cmplx (0.0,0.0}
ci=cmplx (0.0,1.)
pi=4.0*atan(1.0)

k=2*pi

Eo=1.0

Ho=1.0

Zo=sqrt (4.e-07*pi/8.854e-12)
Yo=1./Zo0

gam=0,5772157

iprg=2

c...Setting default values

10

EorH=1
phio=90.0
phi=90.0
er=cmplx(1l.,0.0)
ur=cmplx(1.,0.0)
w=0.15

d=0.5

noS=3

maxC=0.01
nolter=30
etab=1.
adj=0.00001
Epol=.false.
Lossy=.false.
side=.true.

c...Prompting user for input data

15

call gaprom(iprg)

if(igap .eq. 5) GOTO 15
if(EorH .eqg. 1) Epol=.true.
phio=phio*pi/180.0
phi=phi*pi/180.0
drat=dStp(l)/d
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if(aImag(er) .ne. 0.0) Lossy=.true.

dmin=0.025

if(Epol) dmin=0.02

dmax=d

if(nolter .ne. l)then
dstep=(dmax-dmin) / (noIter-1)
d=dmin

endif

DO 700 iter=1,nolter
c*******************‘k***********'k****t***ﬁ*************************

QR Kk Kk Kok ok Kk ok ko ok ok ok R ok ok k ok Gap Impedance % % de de K Kk ek kK ok ok ok ok ok ok Kk sk ok ok
© k% ek e ok ek ek ok ok ok ko ok e ok ok ok sk ok ok e ok ok ke e ok ok ok ko ok ke ok ke ke ok ok ok ok ke ke ok sk ok ok ok ok kb

c...Complex propagation constant k1 and characteristic impedance
21 of the T-line model
i1f(Epol)then
kl=ci*k*csqrt{(1./2/w)**2-er*ur)
21=-ci*Zo*ur/csqrt ({1./2/w) **2-er*ur)
else
Z1=Zo*csqrt (ur/er)
kl=k*csqrt (ur*er)
endif
if(igap .eqg. 1l)then
c RECTANGULAR
ETA=-ci*21*ctan(k1l*d)
else if(igap .eq. 2 .or. igap .eq. 4)then
w=wStp (1)
w2=wStp(2)
w3=wStp (3)
dl=d*drat
d2=d* (1-drat)
Propagation constant and characteristic impedance of
the arms of the T- or L-shaped gaps
if (Epol)then
kc=ci*k*csqrt ((1./2/d2) **2-er*ur)
2c=-ci*Zo*d2*ur/csqrt ((1./2/d2) **2-er*ur)
else
Zc=Zo*d2*csqrt (ur/er)
kc=k*csqrt (ur*er)
endif
if(igap .eq. 4)then
c L~-SHAPED
Zi=-ci*Zc*ctan (kc*w2)
X=k1*Zc*wl
Bl=k1l/zZc*d2* (d2/(d2+wl))*(1.~2./pi*log(2.})
B2=k1/Zc*d2* (wl/ (d2+wl)) *(1.-2./pi*log(2.))
2L=(2i-ci*X* (1-ci*B2*2i))
& /({1-B1*X) * (1-ci*B2*Z1)-ci*B1*z1)
else
c T-SHAPED
Z2i=-ci*2c* (ctan (kc*w2)+ctan (kc*w3) )
X=k1l*Zc*wl
Bl=k1l/Zc*d2* (d2/ (d2+wl)) *0.7822
2L=(21-ci*X) / (1-ci*Bl* (Zi-ci*X))
endif
ETA=21* (ZL-ci*Z1*wl*ctan(k1*dl))
& /(Z1*wl-ci*ZL*ctan(k1*dl))
else if(igap .eq. 3)then
c TRIANGULAR
if(Lossy)then
carg=kl*d
call cHank (carg, 3, HO,H1)
ETA=-ci*21*H1/HO
else
if(Epol)then
rarg=Real (k1/ci)*d
call ModBes (rarg, I0,1I1)
HO=I0
H1=I1
carg=ci
else
rarg=Real (k1) *d
call Hankzl (rarg, 2,H0,H1)
carg=l.
endif
ETA=-ci*Z1*Real (H1)/Real (HO) *carg
endif
endif
c write(2,*) d,cabs(ETA)

Q

0a

C************************k******i*t*************t******************
Cﬁ*t*************** Far Field Arnplitude g K Kk ok ok ek ok ke kb ke ok ok ok ke ke ok ok
%K Kk kK ke ok e e e g o e sk ok ok ok ko sk ek ek A o ok ok ok Skt vk ok kb A e sk sk ok ke ok ok ok ok T ke A ok ek Y e ke ok ok
Rsdp=1./ (etab+1)
if(Epol)then
theta=(-.380-0.8*w) * (1-exp (-2.586*sqrt (etab)))
dw=1.558-4.266*w
ge=exp (-dw*etab) *cexp (ci*theta)
b=-ci*k*w/2*Zo/ (ETA-etab*Zo) /ge
Ke=0,62/(b+1.15)* (b+4.08) * (b+7.26) * (b+10,37)

& *(b+13.43) * (b+16.46)
& /((b+4.27)* (b+7.37) * (b+10.45) * (b+13.49)
& *(b+16.5))
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Ri=sin(phio)/ (sin(phio) *etab+1)
Psca=-ci*pi/4* (k*w)**2*sin (phi) *Rsdp/ge*Ri*Ke
else
psi=l-exp(-1*(0.098+1.76*w) *etab)
cw=0.245+1.267*w
gh=exp (~cw*etab) *cexp (ci*psi)
a=ci*2/k/w*Zo/ (ETA-etab*Zo) /gh
Kh=-1./(pi/2*a+0.1+log(2.))
Ao=log (k*w/4) +gam-ci*pi/2
Ri=sin(phio)/ (etab+sin(phio))
fgca=ci*pi*dep/qh*Ri*Kh/(1+Ao*Kh)
end

c...Outputting the far field magnitude and phase
print *,” d =’,d
print *,’ Analytical: |Pscal = ’,cabs(Psca),
& ' arg Psca = ’,180/pi*(atan2(almag(Psca),Real (Psca)))
write(3,*) d,cabs(Psca)
write(4,*) d,180/pi* (atan2(almag(Psca),Real (Psca}))

d=d+dstep
700 continue

print *,’ Again (l=yes) 2 ’
read(*, 1) ians
if(ians .eq. 1) GOTO 10

800 call exit
END
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