389757-2-T

SCATTERING BY AN APERTURE FORMED BY
A RECTANGULAR CAVITY IN A GROUND PLANE

December 1989

Kasra Barkeshli and

John L. Volakis

Department of Electrical Engineering
and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

Northrop Corp.
Aircraft Division
One Hawthorne Ave.
Hawthorne, CA

389757-2-T = RL-2572



Technical Report 389757-qT

Scattering by an Aperture formed by a
Rectangular Cavity in a Ground Plane

Kasra Barkeshli and John L. Volakis
Department of Electrical Engineering
and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122

December 1989

Submitted to:
Northrop Corp.
Aircraft Division
One Hawthorne Ave.
Hawthome, CA



IT

III

v

Table Of Contents

Introduction
Traditional Solution

1. Problem Definition
2. Formulation

3. Numerical Solution via Galerkin's
Method

Solution via Generalized Impedance
Boundary Conditions

Results

page

(U8

11

18

29



Report Summary

This report describes two formulations for computing the scattered field by a
material filled depression/cavity in a ground plane. One of the formulations is based on
a traditional modal approach where the fields within the cavity are expressed in terms
of the cavity's Green's function and those in the open region are written in terms of
equivalent magnetic currents placed on the surface of the cavity. A system of
equations is then constructed via Galerkin's method to solve for the equivalent
currents by enforcing continuity of the fields accross the aperture. The other
formulation involves use of first, second and third order generalized impedance
boundary conditions(GIBCs) to construct a system of equations for a solution of the
equivalent currents. In this manner, by avoiding use of the cavity's Green's function the
resulting system of equations can be solved via the conjugate gradient FFT method
which has an O(N) memory requirement. In addition, the GIBC formulation is
applicable to non-rectangular cavities whereas the traditional modal formulation is
limited to rectangular cavities. The GIBC formulation was found to yield acceptable
results in the case of non-rectangular cavities and those rectangular cavities filled with
lossy material. In the case of rectangular cavities, though, they were found to require
supplementation with additional conditions to be imposed at the periphery of the
cavity.



I. Introduction

Traditionally, the standard impedance boundary condition (SIBC) [1] has been
employed to simulate dielectric coatings on perfectly conducting objects. As is well known,
however, the SIBC provides limited accuracy and is particularly applicable to lossy and/or high
contrast dielectrics. This is primarily because it cannot model the polarization current components
that are normal to the dielectric layer. The SIBC has been found to be best suited for near normal
incidences, unless the coating's material properties are such that limit penetration within the
material.

The SIBC is a first order condition in that its definition involves a single normal
derivative of the component of the field normal to the modeled surface. Recently [2], however, a
class of boundary conditions were proposed whose major characteristic is the inclusion of higher
order derivatives (along the direction of the surface normal) of the normal field components. These
were originally introduced by Karp and Karal [3] and Wienstein [4] to simulate surface wave
effects, but have been found to be rather general in nature. In fact, they can be employed to
simulate any material profile with a suitable choice of the (constant) derivative coefficients.
Appropriately, they are referred to as generalized impedance boundary conditions (GIBC) and can
be written either in terms of tangential or normal derivatives provided a duality condition is
satisfied [2]. Unlike the SIBC they offer several degrees of freedom and allow an accurate
prediction of the surface reflected fields at oblique incidences. This was demonstrated in [2] for
the infinite planar surface formed by a uniform dielectric layer on a ground plane. It was found
that the maximum coating thickness that can be simulated accurately with a given GIBC was
proportional to the highest order derivative included in the condition.

The GIBC:s offer several advantages in both asymptotic and numerical analyses
of electromagnetic problems. For example, in the case of asymptotic/high frequency
analysis, they allow an accurate replacement of a coating on a layer with a sheet boundary
condition amenable to a Wiener-Hopf analysis [5,6] or some other function theoretic

approach [7]. In numerical analysis, the profile of a coating can be replaced by a simple



boundary condition on the surface of the coating. This eliminates a need for introducing
unknown polarization currents within the coating or material layer and thus leading to a
more efficient solution.

In an earlier report [8] we presented an implementation of a third order GIBC
for scattering by a two-dimensional rectangular cavity in a ground plane. Here we present
a corresponding implementation for a three-dimensional material-filled rectangular cavity in
a ground plane. To examine the accuracy of the GIBC simulation, as before, it would be
necessary to compare the derived equivalent currents and scattered fields with those
obtained from a corresponding traditional formulation. Therefore, before proceeding with
the GIBC simulation, we first present a moment method solution in conjunction with the
modal Green's function representing the cavity fields. This procedure is standard and has
been extensively employed in corresponding two-dimensional simulations [9]. However,
its application to three dimensional apertures formed by cavities, although straightforward,
is voluminous, and has only been considered recently in [10] for computing the radiation
pattern of loaded rectangular waveguide arrays. Here, a similar pulse basis Galerkin's
formulation is employed for computing the scattering by a single rectangular cavity in a
ground plane with plane wave illumination.

Following a presentation of the traditional moment method formulation, the
corresponding integral equations based on the GIBC simulation are derived. These are
subsequently placed in a form suitable for a conjugate gradient-FFT (CGFFT) solution
having O(N) memory requirement. In contrast, the traditional integral equation must be
solved via a matrix inversion or LU decomposition approach having O(N2) memory
requirement.

As discussed in connection with the two dimensional implementation[8], the
GIBCs are inherently inaccurate near the termination of the cavity and must, thus, be
supplemented with additional conditions there[11], [12]. A hybrid procedure was then

developed to overcome this inaccuracy without appreciable increase in the low memory



requirement associated with GIBC formulation. This is again employed here for the three-
dimensional application of the GIBC formulation and the pertinent details are given in the

appropriate section.

11. Traditional Solution

1. Problem definition

Srrrrrrrrrrrrrrrrrs

<«—— ground plane

Fig. 1. Geometry of the cavity aperture in a ground plane.

Consider the cavity geometry in figure 1 illuminated by the plane wave

E' =Bk + Byod + Byl 67D (12)

H = Y, Ei xE = (on/’E + Hyog\' + Hzo’z\)eqk"(ki "D (1b)

where Y, = 1/Z, is the free space intrinsic admittance, ko =27/A is the free space wave

number,



£ = [sin 8, (cos ¢, & +sin ¢, 9) + cos 8, 2] 2)

1

T=xR+yy+22 3)

E,, = cos o cos 6, cos ¢, - sin o sin ¢, (4a)
E,, =cos o cos 6, sin ¢, + sin o cos ¢, (4b)
E,,=-cosa sin@, (4c)
H,, =Y, (sin & cos 8, cos ¢, + cose& sin §) (4d)
Hyo =Y, (sin o cos 8, sin ¢, - cos X cos §,,) (4e)

and
H,,=-Y,sina sin 6, (4f)

in which o represents an angle specifying the polarization of the incident field as illustrated
in figure 2. For example, when o=mn/2, EZi = (), corresponding to E-polarization incidence

and when 0=0, H,' = 0, corresponding to H-polarization incidence.

2. Formulation
The usual approach for computing the scattering by the cavity in fig. 1 is to
employ the equivalence principle and separate the structure into internal and external
regions. The internal region is the cavity region below z=0 and the external one represents
the open region above the cavity (z>0). From a knowledge of the Green's function
associated with each region, their corresponding fields can then be expressed in terms of
the equivalent currents at the aperture. A set of coupled integral equations for the

equivalent currents are thus derived by enforcing continuity of the tangential fields across



the cavity's aperture. In accordance with the equivalence principle, the aperture is closed

by a perfect conductor and the equivalent magnetic currents

M=Exfi=Ex2=+E,-§JE, (5)

are placed on the aperture at z=0*. Referring to fig. 3, by invoking continuity of the
tangential E field it is clear that the sources of the fields within the cavity (internal region)

are the magnetic currents

M =Exf'=Ex(2)=-M (6)
placed just below the aperture at z=0". It remains to also enforce continuity of the tangential
H field across the aperture. Denoting the fields in the external region (z > 0) as (E?, HY)
and those in the internal region as (I:Zb, ﬁb), we have

a i b

+2H, =H

X X X !

H z= (Ta)

and
H, +2H,=H ; 2=0 (7b)

where 2H,(1_y represent the fields present in the external region in the absence of the

magnetic currents. These conditions are seen to represent coupled integral equations for M
once H? and HP are written as integral expressions in terms of the aperture equivalent
currents.

The external fields can be expressed in terms of the free space dyadic Green's

function, I'y, as

H =-jk, Y, ” M) « T, T) ds' )
S,

where S, denotes the aperture surface,
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TG, ) = [I *gwj Go(G, ) ©)

1=88+99+22 (10)
e'jkoR

F) = 11

Gl 1) = S ay

R=F-7lodx-x)2 +y-y) (12)

and the factor of 2 accounts for the ground plane's presence. More explicitly,

[ 1
2
=3l [kZ+2 |
H 2JJ{M x', y)L _I+My(x V) 5= x a G,(, 1) dx' dy'
(13)
and
N 2 [, ]
Hya=~J——°2” M, (X, ¥) 5o +M(x )lko+ 511 GG F) dx' dy
ko J L J
) (14)
The internal fields can be written in terms of the TM, and TE, cavity modes.
We have
-b _TM _TE
E =E +E (15)
—b _TM _TE
H =H +H (16)
where

E =tk z 9™ JZbV(V 29™) (am



g =vx(5™) (18)

B =gy, ¥ e v(y . 09 (19)

k,

and

E=vx(3yeE). (20)
In (17) - (20)
k,=ko /5, @D

_1 Hy
Zb—Y—b—Zo\/; (22)

in which €, and |1, denote the relative permittivity and permeability of the material filling
the cavity. Furthermore, the functions W™ and ¥™E are the electric and magnetic

potentials. They both satisfy the wave equation

82 82 82
+ +k _
[ %) ay a 2 ]‘I’ =( (23)

subject to the boundary condition

E=E,=0 @ z=< (242)
E,=E,=0 @ y=0andy=»> (24b)
Ey=EZ=O @ x=0andx=a (24c)

on the cavity walls.

Referring to fig. 1, a suitable set of functions satisfying (23) and (24) is



g™ ZZA”“’ sin BL x sin AT y COS Yy (Z +€)

m=1 n=1

=ii xcosb y sinY,, (z+c)

where A and By, are constants to be determined and

2
2 |mm) (DR
Yn%nzkb '[af'(b]

in accordance with the wave equation.

Substituting (25) and (26) into (15) - (20) yields

where

. .[m)ymA [H_W_JB
E;" =[5 a K m *{ b ) Bmn cos ML x sin A%

b

mn

F1m=ki[YmAnm kb)sm X smTy €OS Yy, (Z +¢)

y sin Y, (z+c¢)

m | [M]vmn (_)
E = JZ b KArrm a )Bmn sin—n-;ﬂx cos%—ny SIN Y, (z +€)

(25)

(26)

(27)

(28)

(29)

(30a)

(30b)

(30c)

H™ [[ ]Anm+JY( Jtnan }smn;nx cosb y €oSYp, Z+¢) (3la)



Lnl] . (ﬂ]vmn
Hym“= 172 JAm +IY,| b ?an cos—n;—nx sinﬂb’ly cos ¥, (z+¢)  (31b)
and
mn Y 2
H) =+j_.k_5{y,mem-kb)]cos%x cosnTny Sin Y, (Z+C) . (31c)

It remains to evaluate the mode coefficients Ay and By in terms of the equivalent

currents M(x, y). This is easily accomplished by enforcing the boundary conditions
E.=M,=-M ; z=0 (32)

E,=-M/=M, ; z=0 (33)

in conjunction with mode orthogonality. We have

-1

2']kb Yb mn 2 nmw 2 nmw |,mn mmn |,mn
Amn= -’Ymnabsinymnc{[ 2 ] +[—b-J l TJIX =€m[_a_)1y j! le,nZl

0 otherwise
(34)
and
( [ v 1
) ma* (oxfy | (m] m [(0m m}
B _% absinymnc<L[ a} J’[b“> [EI\ a )k Tem b Ly m20,n>0
LO m=n=0
in which

" =J' M, (x', ) sin {T X'} cos [7 Y'W dx' dy’ (36)



L" =J M, (X', y') cos {_n;_n x'} sin (IL_E y'] dx' dy’ (37)
and
1 m=0
_ 38
fm { 2 m21 o

The required components of the magnetic field A to be employed in (7) can then be

explicitly written as

o e [ 2l 1
2 | mm mn mn
' (x, y,z_O)_-E 22 tanymn ILE“<Lkb [ : “hx -gm%%“ly Jl
m=0 n=0
* sin n;nx cos nbny (39)

v cos I i O
cos ==X sin b Y (40)

As a check, for b—oo

2 00 0o 1 2 mn
= ———e kI

. b o 3% 1
lb‘l& Hy(xa y, Z_O)—-_kj@

Substituting for I’ynn and setting y, /=Y, = '\/ kb2 - (an)2 then yields
b _ _ kY ¥ €m mTc
Hy (x,y,z—O)Ib_)w =-— Ym any.c Sy cos T JMY(X) cos —— x' dx'’
(42)
where

10



Sy = % i sin ['Ilblt') y j:sin {IL_R y'} dy' . (43)
=0 o0

and Sy should equal unity for (42) to reduce to the known two-dimensional result. This
can be easily verified by invoking distribution theory. Specifically, interchanging the order

of summation and integration yields

ol & sin nb“ y' smﬂy

Sy =J ; (b/2) b dy' = jos(y -y)dy' =1.

3.  Numerical Solution via Galerkin's Method
Using the method of weighted residuals, from (7) the integral equations to be

solved for I\_/[(x, y) are

ab ab
J‘J(ﬁa-ﬁb}'w’(x, y) dx dy=-2‘[f y) dx dy (44)
00 00

where H*is given by (13) and (14), H? by (39) and (40), and W(x, y) is the weighting
function. In the case of Galerkin's method this is chosen to be the same as the expansion
function.

To discretize the integral equation (44) we first expand M(x, y) as

Z

N
LML

M(x, y) = M, P(x - x,) Py - y) (45)

where xp = pr+ ,yq qu+

11



[1 ixl < AX

P =9 2 (46)
LO otherwise,
(1 Iyl <é21

Py =1 @
L 0 otherwise,

and l\_/Ipq =X Mypq + ¥ Mypq represent the unknown coefficients of the pulse basis function.

In accordance with Galerkin's technique we also choose

W(x, y) =& P(x- ) Py - 7)) +§ P(x- x) P(y - ). (48)

where1=0, 1, ..., Nx-1,and j=0, 1, ..., Ny-L Substituting (48) into (44) we obtain

the set of integral equations

x+ 2% +ﬂ x+ 2% +_A_y_ ‘
A ) " N
; |
f J (1 1Y) ax dyz-J '[ 2H, dx dy (492)
S Ay
i2 i 2 Yy
A A
X |
J J' (1,1 dy:-J J’ 2H, " dx dy (49b)
& M Ay
i Y 2 Yy

When (45) is further introduced into the integral expressions for H* and I_{b, we obtain the

system

12



|fya -Y,Ex Yiy-YfJIBj _ t;} (50)

a a
Y2 ny and Yyy we refer to (13) and (14).

xx* Xy’

XX
[ %Y
To compute the admittance elements y2

Introducing the expansion for M(x, y) as given in (45) we obtain expressions in terms of

the integral
Ay
x+— Y xp+——-
Bipg = Yp Xp Y9 = J J J. J ——dx dy' dx dy
Y 2 2 y‘l 2
% i dy dxd 1)
'“”m e edy
Sij SPq
and its derivatives in which
2 2
R=y(x-x)2+(y-y)° . (52)

Clearly, when li - pl <1 and I - gl < 1, gjjpq requires analytical evaluation. To do this, we

rewrite gijpq as

1

[
qu:ZLJJ.[I {_-—J:;E~ -}dx dy' dxdy+—JJJJR dx' dy' dx dy .

ij 1] Spq (53)
The first integral has a non-singular integrand for all i, j, p and q and can therefore be

evaluated numerically using, for example, Gaussian integration. In contrast, the second

integral has a singular integrand when i=p and j=q but can be evaluated analytically as

13



-H‘JJ. W%Wﬁxﬂ In [(y-y) +R]

+(y-y)In[(x-x)+ R]} C(x-x)( - Y')[(: -X) +(y-y)]

Ax &y & Ay
-||"?2 P2 N P2
3| I | | |
-? | Ax | Ay | Ax | Ay (54)
] x== sy R
2 T2 12 i 2

Unfortunately, the derivatives of gjjpq cannot be evaluated analytically. A possible
alternative is to evaluate them discretely using the computed values of gjjpg, and a
convenient way to do this is to employ the discrete Fourier transform (DFT). Proceeding

in this manner, for a given (xj, yj), we first define the sample train

1 Nyl

Xi= D, D e O -X) 8- (55)
G0

ij

EM;:’

whose two-dimensional DFT will be denoted by )?ij. We also note that

582"}?_ E jonf, sinc (nf, Ax) =D, | (562)
% -AA?‘%ST j2nf, sinc (nf, Ay) = iD, (56b)
in which
f.=PAf =p/(N, Ax) ; p=0,1,2, .., N1
fy=0Af =q/(Ny Ay) ; q=0,1,2, .., N,-1
and

14



sinc (8) = Sigg . (57)

Consequently, the DFT of the sample train (with x; and y;j kept constant)

B j J j j 9 by dx dy
Xi;(x - Z z S. S aX2 4nR ) 8()( - xp) 6(y - Yq) (58)
p0 g0 2

j

can be approximated as

R, =DFT D6 = - an? £ 2 sinc? (o, ax) L (59)
Proceeding in this manner we may express the impedance matrix elements Yxe;, Yxay, etc. as
Y %Y, 1 |r 2 ”2]I
( “J..z' k, DFT Lko -D, Qij (60)
ij
(Ya} _ 2on DI;T'I {[-DXD ]} (61)
ik S
Ya 2on 1 ( D D 2 |
(Yo =-2Ye prr! D, Dy (62)
ij k, L J
. r 1]
v2) = Yo pertiik2 Bl 63
( yyjij k, U'ko Y] QUJ (63)

where DFT denotes the inverse discrete Fourier transform. The above, of course, apply
for a specific test point (x;, yj) and thus fill only one row of the admittance matrix.

Because of symmetry, however, it is not necessary to repeat the computations for the
remaining rows of the admittance matrix. A simple rearrangement/shifting of the row given

by (60)-(63) is performed to obtain the others.

15



To evaluate the admittance matrix elements fo ny etc. we refer to (36)-(40).

Substituting the expansion (45) into (36), we obtain

L —AXAYSIHC[% = sin [%%]ZZMXP‘J sm{%xp cos{%t }

I," = Ax Ay sinc {an ZX} sinc [Tn _}] Z Z M, Os ['H;_n Xp} sin (r;)_n yq) :
P q

(65)

Substituting the above I, and I, into (39) and (40) and integrating as called in (49)
yields

hinq \ )
(68)
and
1
70 B el o 0 )
(69)
In these

16



sinc? [%l?n AX} sinc? [% Ay]

Yo 1N Y€

MNmn =

2Y, (Ax Ay)’
C=-
ki, @b

and € have been defined in (38).

(70)

(71)

It remains to compute the excitation elements Iy’ and 1. These are given by

x+A—x y+ﬂ
. 7 i
=2 I J' H,(x, y, z=0) dx dy
A A
Xi-_zi yj"_y
x+ 2% y+A—y
. i 2 i2 ‘
Iymc =2 J J’ Hy1 (x,y, z=) dx dy
Ax by
2 %y

Integrating we obtain

inc . ) Jko 5in 6 (x. cos ¢, + Y. sin )
I, " =2Y(sin ct cos 6, cos ¢, + cos o sin ) € T

) ) ) A
¢ sinc kko sin 6, cos ¢, %} sinc [ko sin 0, sin ¢, ‘%}

inc Jko sin 8 (x; cos ¢, + y; sin ¢,)

I, =2, (sin o cos B, sin ¢, - cos a.cos ¢,) €

17
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. . . A
* sinc [ko sin 8, cos 0, ‘AEX‘J sinc [ko sin 6, sin ¢, ‘Ey'] (75)

This completes the derivation of all elements appearing in the system (50).
Upon a solution of M=% My + 9 My via matrix inversion or LU decomposition, the far

zone scattered fields can then be obtained by integrating M over the groove's aperture.

III.  Formulation with Generalized Impedance Boundary Conditions

It is desirable to work with a formulation (or an integral equation) that is
amenable to a conjugate gradient FFT (CGFFT) implementation. The CGFFT has an O(N)
memory requirement and is thus suitable for treating large size grooves or cavities,
particularly when applied to three-dimensional geometries. Unfortunately, the exact
formulation, in addition to being restricted to rectangular grooves and cracks, is not suitable
for a CGFFT implementation. On the other hand, the integral equation resulting from an
application of the SIBC, a first order condition, although amenable to a CGFFT solution, is
not of acceptable accuracy. Recently, however, higher order impedance boundary
conditions involving field derivatives beyond the first have been found to provide a
substantially better simulation for fairly thick dielectric coatings. These are referred to as

generalized impedance boundary conditions (GIBCs) and take the form

M

Z W 9B (76a)
5 Gk 92"

M , m
Y I B (76b)

where apy and a'y, are constants specific to the surface, layer or coating being modeled.

Alternatively, these can be written as

18



IMI [(—;)_Z - jkor’m} H,=0

m=1
where I'y and Iy, are constants that can be expressed in terms of ap and a'p,
respectively.

For M=1, the above conditions reduce to the SIBC provided we set

ZN a0 al
sznbz():_]% tan(kbt)=z a_1=Z a_

(77a)

(77b)

(78)

where N ="\ |, &, . A third order GIBC corresponds to M=3. In that case, an accurate

simulation of the reflection coefficient for a metal-backed uniform dielectric layer can be

obtained by choosing

a, ={N - %ﬁ}{tan (ktN) - tan [zk_;l}]

a = -jeb{l + tan (ktN) tan [?kl%ﬂ

(
a, = —L_3tan (kiN) - tan f%} +kt rN - ﬁ\ { 1 + tan (ktN) tan ('2%

N | (NPT N k

4= %N& [ tan (ktN) - tan [E%H

and

19



= (2N*-1) {1 + cot (kiN) cotr_kq]
\2N)

a', =-J2Nu, [cot (ktN) - cot [%}
(80)

a =1 + cot (ktN) cot[ ZN} + kt{ Elﬁ [cot (ktN) - cot [%ﬂ

o [ (_kt_]]
a3=3k’cub 1 + cot (ktN) cothN) .

The above conditions are applied on the surface of the coating and predict the proper
surface wave modes. However, they were derived for an infinite layer without the
presence of any terminations. Therefore, when applied to the case of a groove having
abrupt material terminations, they are not expected to be as accurate. As aresult, the GIBC
must be supplemented by additional conditions at the terminations of the coating or in this
case the groove. At this point, no standard methodology has been devised for imposing
these supplementary conditions, but in any case such conditions will be specific to the
geometrical and material properties of the termination. Below, we first pursue a direct
implementation of the GIBC without imposing supplementary conditions at the abrupt
terminations of the groove.

The application of the conditions (76) or (77) over the aperture of the groove
requires the introduction of a magnetic current M(x, y) as defined in (5). A surface integral
equation for M(x, y) can then be derived by expressing the field quantities in terms of the
magnetic currents. Before doing so, however, it is instructive to rewrite the boundary
conditions in terms of tangential derivatives. This is expected to directly yiela a symmetric
set of equations with respect to Mx and My. From [2], we find that (76) or (77) are

equivalent to the conditions

20



) 1,9 1Q,0H . JE
Bx=PLoHy ik, 8x+'k0 'Z°8y koRaxaz

_ QE,, OH, 1 ,9E 1
Ey=-PZ H,- ik, 9y koP'Z" ox ko ayaz

provided the duality condition

[Yul o) [ Tl T
Km:(),Z,... )km=0,?,... ) km=l,3,... )k

is also satisfied. In these

a, _ I +I,+T 3+ LI

+
a +1 I‘II‘2+I“21“3+I‘3I‘1+1

a +a F+F+F
a +1 FF +I,I +FF +1

R= 1 - 1
a +1 1“11"2+I‘2I‘3+FII‘3+1

Q _ a, _ '+, +T0

P +a, I‘1+I“2+I‘3+1“II‘21“3
and

R' _ 1 _ 1

P a,+a, F +F +I +I"1I"2F'3

where 8, =a,/a;, &, = ay/a, with a,, and a; as given by (79) and (80).

21
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(83)

(84)

(85)

(86)

(&7)

(88)



As can be expected, an implementation of (81) and (82) will be rather involved
and for illustrative purposes it is instructuve to first develop the formulation using a lower
order condition. From (77) we observe that letting I'; = I"; — oo allows a reduction of the
third order GIBC to a second order one. The corresponding set of conditions in terms of

tangential derivatives is

S TN T )
1 ~9%, 1 Q. dH,
-E,.=-PZ H,-—Q—+—=7 —= 0
Yy 07X jkoQay-*-jko IZO ax (9)
In these,
1+I'.T a +1
p=——12_--0 91)
I“1+I“2 a
1 1
Q= == (92)
I‘1+I“2 a
and
Q' 1 1
_|= ] [ =~v ’ (93)
P 1+I‘11“2 a0+1

where a,, = a,/a, and a = aAy/a,.

The SIBC (a first order GIBC) is obtained by further letting I'y =%, — oo yielding the

conditions

22



E,=-PZ,H, 94)

E, =-PZ,H, 95)
with
P=F1=;—a?=“b (96)

in which 1, is defined in (78) and denotes the normalized surface impedance seen by a
plane wave at normal incidence.

It is a simple task to derive an integral equation based on the SIBC conditions
for solution via the CGFFT. By invoking (5), (13) and (14) in conjunction with (94)-(95)

we obtain

( ) .
”[M(x y)lkk + + My(x', y) G(r r') dx' dy' = +2PZ H,

)

(97a)

J‘J.[ M, (', y)a 5 + My(x, y)[ko a;ﬂ Go(E- ) dx dy' = +2PZ.H,

(97b)

To discretize these we employ the expansion (45) to yield

Nel Nyl ( 2} .
M, (x, y)+%22{ ke +— Mypqaaa] £oq(X, ) = +2PZ H,

p0 0 }
(98a)
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- 2 29 |

M)+ ngZ 2 ILM’“"‘ sy o Lk" " e, ¥) = +2PZ 1
p0 o0

)]
(98b)

in which

ot XV +-y)

£p(X, Y) =j £ = - dx' dy' . (99)
Spq 47t\/(x-x') +(y-y)
When (98) are tested at (% yj) where1=0,1,2,..,Nx-1andj=0,1,2, .., Ny -1, we

obtain a system of equations to be solved for Mqu and Mypq. The solution of this system,

however, can be facilitated by noting that

B %) =8 (100)

and invoking the discrete convolution theorem

N1 Ny

DFT| ) Y Mg . |= 2. (101)
P g0

As before, DFT denotes the forward discrete Fourier transform and

DFT (M,) = M (102)
DFT (g,) =8 . (103)
From (99)
2 12 Ko X2 4y
g = J I dx' dy'
2. 2
Ax Ay 4mx"+y
2 X 2
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Po
ko k
(%O—C 2 sinc( °2p°J xp:yq:()

> { (104)
e'lkox/ X3 +Yg .
- Ax Ay otherwise
L 4r xp2 + yq2

in which p, =Y Ax Ay/r .

Based on (100) - (104), the discrete system (98) can now be compactly

rewritten as

DFT'1< |
Lo PR
- - (105)

in which Dy and Dy have been defined in (56). The system (105) is now directly amenable

to solution via the CGFFT.
To derive a corresponding system based on the second order GIBC we return to

(89) and (90) and proceed with the usual substitutions. As before,

EX=-My, E),=Mx (106)
and

— —1 _—r _—a __8 __a

H=H +H +H =H +H (107)
with H? given by (8) and
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A" = (Hio& + Hyo § - Hyp ) Foker

_ (on R+H,,§ - H, ’z‘) o (x5in 0, cos -+ sinBysin ¢ -z cos ) (108)

being the reflected magnetic field when the aperture covered by a perfect conductor (note

that the z component of the reflected field is the negative of the incident). From (8),

. [ ) o 1
Hxaz_zgg DFr—l{{-(koz-Dx)Mx - DnylQIle g} (109a)
a 2on | {-~ = M 2 =2 M-{/\
Hy:- C DFT L-Dny x+(ko-Dy) ng (109b)
and
[ 1
a__ Yo nerl|D KL +D, M|
_-E FT X ylolyJ (109¢)

where we have employed the identity

(Agpq] [ e‘Jko\l 2yt 2 | ]

A 'V gen
DFT {—2% = DFT{ - dedy'| bo.L (110)
| Az LAZ qu4ﬂ:\/x2+y2+z2 |p0J 2
As a result of (109), we may also write
oH, _AH, _ jY, 1 4[* Irf) M, +T ]l]k
e = e g DI DD e D A e
and similarly
oH, AH, _ jY, -1<[~ IL M, +D ]I]F |

In addition,
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I A1)
B2 DFr”l'LDxp‘y - DnyJl ot (112)
aEa AEa -1 [~ |[-~ p[ I Mx]l /\]
axz = sz = 2DFT <lDX|_ X y - Dy _]ng (1133)
aEa AEZa 1[~ |_~ . 1 ]
5 = & = 2DFT iDyILDlely - D, B 3 (113b)

and by making use of (110) or Maxwell's divergence equation V « E* =0 , we also have

E' AE® 1l S o
% 2B _ppr!IB, S, - DRl (114)
0z Az L ]

The last is, of course, to be employed in conjunction with the third order GIBC condition.
Introducing (106) - (113) into the second order boundary condition (89) and
(90) yields the system

l(02 J D, Dy ﬁ/l)} =-2PZ H,, - 2P sin 6, sin ¢, E,
(115)

g-|~ ) [ % a2
70,0y 011 L0

7P y} My} = -2PZH,, +2Q sin 8, cos ¢, E,, (116)

which is directly applicable for solution via the CGFFT.
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Proceeding in a similar manner, we may also derive the system corresponding

to the third order GIBC given in (81) and (82). To do so, in addition to (106) - (114) we

further note that
32[3 -5 DFT'{(kf -By-Dy) (B, ¥+ DD, My @} (1172)
3;‘;; -»—J§{— DFl*‘[(ko2 D, -D, )(DXDYMX+DYZ f1, g} (117b)
g;i - DFT [Df f1,-D,D, 101,(] 150
gjgzz‘DFT-l[D*DYMY'DYZMX} (118b)

+AR G2 Y phal
D DD, M,[ = -2PZ H,,-2Q sin 6, sin ¢, E,,
-2 g—:Zo cos 6, sin 6, cos ¢, H,, (119)
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-2 —P}}—,‘ Z, cos 6, sin 0, sin o, H,, . (120)
This is the system corresponding to the third order GIBC with the constant coefficients as
defined in (84) - (88). As stated earlier it can be solved in a straightforward manner via the
CGFFT method to obtain the current components My and My. In this implementation it
should, of course, be noted that the size of the DFT must be at least four times that of
cavity aperture as demanded by the convolution theorem. In addition, the usual sampling
requirements must be satisfied to ensure accuracy and avoid aliasing. Clearly the system
(119) - (120) is associated with a higher spectrum and this often results in a slower

convergence in comparison with the system (115) - (116). In the next section we examine

results based on the traditional and GIBC implementations that have been presented so far.

IV. Results

In this section we present data generated via the traditional (to be referred to
hereon as the moment method or MM solution) and the GIBC formulations. The
implementation of these formulations is indeed cumbersome as is usually the case with all
three dimensional solutions. Also, a lack of available reference data coupled with the

excessive CPU time required for the execution of the codes complicated the testing of the
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corresponding numerical algorithms. The presented data are for a few cases representative

of the results generated by the codes.

Figures 4 to 6 present backscatter patterns for a rectanfular cavity 2.5) long,
0.25) wide and 0.25A deep. The data in figures 4 and 5 correspond to the case where the
cavity is filled with material having €,=7-j1.5 and w,=1.8-j0.1 whereas those in figure 6
correspond to an air filled cavity . All patterns are in the principal planes (¢=0 and ¢=90
degrees) and were generated using a sampling interval of 15 to 20 cells per wavelength.
Also, in the case of the MM solution the mode sums were computed using the scheme
discussed in [13]. Up to 100 to 150 modes were used for the self-cell and those adjacent to
it and one third of this number for the admittance elements far from the self-cell.
Unfortunately, though, there were no available data to fully validity the results at this time.
However, since the cavity is long, one would expect some agreement with the two
dimensioanl solutions for the $=90 degrees cut. This is demonstrated in figure 4a for the
filled cavity and in figure 6a in the case of the empty cavity. A comparison of the curves in
these figures also reveals that the radar cross section of the filled cavity is generally lower
(by several dB) than that associated with the empty cavity.

The curves in figure 5 correspond to data based on the GIBC formulation for
the filled cavity. Because of the lossy filling, the first order(SIBC), second order (GIBC-2)
and third order(GIBC-3) simulations generated results that are almost identical in the o=0
and ¢=90 degree cuts. They are also in agreement with the MM data and in that respect
these curves provide a limited verification of the pertinent codes. It should be noted,
though, that for the empty cavity the GIBC simulations did not yield satisfactory results(not
shown). This was, of course, expected in the case of the SIBC simulation, but was also
found to hold for the higher order GIBC simulations. The higher order GIBC can indeed
be shown to provide an improved simulation of the cavity's depth, however, they require

correction or supplementation at the termination/periphery of the cavity if they are to yield
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accurate results. This is particularly true for the empty cavity where the currents at some of
the cavity edges can be large or more precisely when the the normal electric field componets
are rapidly varying near the periphery of the cavity. When the cavity is filled with lossy
material, the normal electric field components are not as dominant and this is attributed to
the agreement between the MM and GIBC solutions as observed in figure 5. Similar
observations also hold for the curves in figure 7 which correspond to a diagonal cut ( ¢=45
degrees) and for a cavity 1.Ax1.A in size and 0.2A deep. For the same reason, the higher
order GIBC are also expected to yield accurate results for non-rectangular cavities that form
smooth junctions with the ground plane and this has already been demonstrated for two
dimensional simulations.

At present we are pursuing several tasks intended to correct the GIBC
simulations and to improve the efficiency of the codes based on the traditional and GIBC

formulations. Some the tasks in progress are:

1. Development and generation of termination conditions to correct and improve
the GIBC simulations.

2. Development and implementation of GIBC applicable to multilayered fillings
and coatings.

3. Validation of the solution by comparison with measured data.

4. Development and implementation of a finite element-boundary element

(FE-BE) formulation as applied to the computation of the cavity scattering.

The last of the above tasks involves a non-traditional formulation which is attractive from
several points of view. It will permit the treatment of cavities having inhomogeneous
fillings and cross-sections other than rectangular. (Of course, the GIBC simulations when
properly implemented will also be effective for non-rectangular cavities.) Furthermore, the

FE-BE formulation is expected to yield a system amenable to a solution via the conjugate
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gradient FFT method. As a result, it will have an O(N) memory demand which is of major
importance for three-dimensional simulations. At the moment, the development of the FE-

BE formulation has already been completed and is being implemented.
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5. Comparison of results based on the MM and GIBC formulations for a filled cavity
corresponding to the data in Figure 4. (a) $=0,=90°, H-pol (b) ¢=0,=0°, H-pol



Radar Cross Section g/A%, dB

N
o

Scattering from an Empty Cavity
a=2.5\ , b=0.25A , c=0.25\ , Cut ¢=90°

0 _:i—"m__‘
b----0O--
0 - © Ik CN
] e
: "o,
=10 5 o,
] "o
=20 .
: H=Pol E=Pol .
_30 -] ® H-Pol(2D)  © E—Pol(2D) o
-40 "E " ¢/ ‘1
~50 - 1 ':
_60 | T T ] T T
0 30 60 90

Angle of Incidence 6, deg.

Figure 6(a)



Scattering from an Empty Cavity
a=25\ , b=0.25\ , c=0.25A , Cut ¢=0°

a/A\% dB

Angle of Incidence 6, deg.

Figure 6(b)

6. Backscatter elevation patterns for an air filled cavity computed via the traditional
modal formulation (MM); a=2.5A, b=0.251, ¢=0.25\. (a) 0=0,=90° (b) p=0,=0°.
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