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Abstract

The problem of scattering and diffraction by thin wires has been investi-
gated by many authors primarily because the wire is one of the very few
practical geometries amenable to an analytic solution. Similar analyses,
though, for the coated wire or related geometries such as the finite length
narrow groove have not been considered. In this paper, we employ the
travelling wave model in conjunction with a Galerkin’s solution of the exact
integral equation to solve for the scattering by a thin perfectly conducting
wire, a thin dielectrically coated wire and a finite length narrow groove in
a ground plane. As usual, the proposed current model consists of three
weighted travelling wave components; one is associated with the current on
the finite wire whereas the other two describe the reflected travelling waves
from the wire terminations. For the coated wire, their coefficients are eval-
uated analytically through a convenient variable transformation. In the
case of the finite length narrow groove, an approximate impedance bound-
ary condition is employed at the surface of the groove for constructing the
integral equation involving a surface magnetic current which is then repre-
sented by the weighted sum of the three travelling wave components. The
associated travelling wave coefficients are found in terms of single integrals
which are reduced from the original quadruple integrals by employing cer-
tain variable transformations. Several current distributions and scattering
patterns are presented which serve to validate the accuracy of the model
and the derived analytical formulae.



1 Introduction

The problem of scattering and diffraction by thin wires has been investigated
by many authors [1-19] primarily because the wire is one of the very few
practical geometries amenable to an analytic solution. The cited references
are a representative subset of the numerous works on the subject and based
on the approach of analysis, these can be generally cast into three categories.
In [1](method A), [2] and [3], the wire current is postulated within some
constants which are then determined by the application of conservation of
energy or a variational approach. The resulting solutions, although lengthy,
are in terms of the exponential integrals. However, due to the approximations
required in the process, the solution for long wires given by Van Vleck, etc.
fails for near grazing incidences whereas that of Tai [2] fails in the vicinity of
normal incidence.

The solutions presented in [4-11] and [1] (method B) are based on an
iterative or some approximate [9-11] solution of the associated integral equa-
tion for the wire current and have been quoted to be primarily restricted to
small wire lenghts. A third class of solutions [12-17] are based on a travel-
ling wave model [18] for the wire current in conjunction with the Wiener-
Hopf solution [19] for the semi-infinite wire. The resulting current expres-
sions are generally cumbersome but more accurate than those based on other
approaches. Chen [20] also employed the Wiener-Hopf technique to arrive
at an expression for the wire current with plane wave illumination (see also
Wu[21] for normal incidence) but due to the approximations included in his
derivation, the given results are only applicable for long wires. In contrast,
those based on the travelling wave model are suited for wire lengths from a
small fraction of a wavelength and up.

In this work, we employ the travelling wave model in conjunction with a
Galerkin’s solution of the exact integral equation to solve for the scattering
by a thin perfectly conducting wire, a thin dielectrically coated wire and a
finite length narrow groove in a ground plane. As usual, the proposed cur-
rent model consists of three weighted travelling wave components which will
be referred to as the physical basis of the expansion. One is associated with
the current on the finite wire whereas the other two describe the reflected
travelling waves from the wire terminations. Their coefficients are rigorously
determined by constructing a 3 x 3 matrix through a Galerkin’s discretization
of the pertinent integral equation. In the case of the perfectly conducting
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wire, the impedance matrix elements are evaluated analytically through a
variable transformation employed by Richmond [22] in connection with his
analysis of the dielectric strip. For the finite length narrow groove, an ap-
proximate impedance boundary condition [23] is employed at the surface of
the groove for constructing the integral equation involving a surface magnetic
current which is then represented by the weighted sum of the aforementioned
three travelling wave components. Galerkin’s technique is again employed for
the discretization of the integral equation. However, in this case, the same
variable transformation used for the evaluation of the impedance element in
connection with the wire allows only a reduction of the quadruple to single
integrals, which are then computed numerically.

The presented formulation and scattered field expressions for the coated
wire are, of course, new since all of the above references have dealt with the
perfectly conducting wire and the same holds for the finite length narrow
groove. However, our solution for the perfectly conducting wire should also
be found useful and less cumbersome than others in the literature. In the
next section, we first present the solution for the perfectly conducting wire
followed by the analysis of the coated wire and that of the finite length narrow
groove. Several computations are then included and discussed for the wires
and finite length groove. These serve to assess the validity of the model and
the accuracy of the derived analytical expressions.

2 Perfectly conducting wire

Consider the thin straight wire illustrated in figure 1 of radius a and length
2l. Assuming the wire is illuminated by the plane wave (an ¢! time depen-
dence is assumed and suppressed)

Ei — éE ejko{zco.900+xsin9°}
= oo

= (#cosb,cos¢, + fcosd,sing, — 2sinb,) E,eiFo(zsinfotzcosde) (1)

where k, = 27 /) is the free space propagation constant, a surface current
will be generated on the wire and we are interested in an analytic evaluation
of this current. Provided ¢ < X and 2l/a > 1, the wire surface current
may be replaced by a z-directed filamentary current at its center (see Fig. 1).
For an infinite wire, this current is expected to have the same z-dependence



as the incident field and can thus be expressed as

I(z2) = Ih(z) = Ceikozcosbo

where C' is an attachment constant. By terminating the infinite wire, addi-
tional current components are generated due to the reflection of Iy(z) at the
wire terminations and on the assumption that the reflected currents propa-
gate with the free space velocity, an appropriate representation for the total
current on the finite wire is

I(z) = Clejk"z + Cze-.?koz + Csejkozcoaoo

Y CuBa2) @

n=1

In this, C, are constants to be determined by enforcing the required boundary
conditions and By(z) can be referred to as the physical expansion basis. The

Fourier transform of the current to be denoted as I(k,) is readily found to
be

—

I(k) = F{l(2)}
= 20{Cisinc|(k, — k,)l] + Casinc[(k, + k,)I] + Czsinc[(k, — k, cos8,)!]}

where sinc(z) = sin(z)/z and the current spectrum is seen to be a sum
of three sinc functions shifted from zero by an amount proportional to the
propagation constant of the associated current components. Thus one can
readily test the validity of the model by comparing I(k,) with the wire current
spectra obtained from a direct moment method solution of Pocklington’s
integral equation. For example, figure 2 displays the current spectrum of a
4\ wire illuminated at 6, = 60° and 90° and these are seen to agree with the
proposed model. Comparisons with current spectra for shorter and longer
wires also resulted in similar conclusions.

To determine the constants C,, we now refer to Pocklington’s integral
equation,

. . l , 1 d2 e—jkoR ,
Elz=a,z) = JkoZo/_II(z) [1+_IEEE:3} 7l (3)

where



R=/(z—2")2+a?

and Z, is the free space intrinsic impedance. Substituting ( 2) into ( 3) yields

; . 13 , 1 %] eikR
E(z =a,2) = jkoZo/—IX_:lCan(z) [ +-k—2-c-l;] ™z dz',  (4)

and upon employing Galerkin’s procedure, we obtain the 3x3 matrix system
[Zmnl[Cn] = [Vin] (5)
for a solution of the three constants C,. In the above ,
Ve = /_ll E™(z= a,2)B’(z)dz
sin[ko(cosd, — pp)l]

= =2F, lsin, ko (cosh, —Pm) (6)
Lmn = Z k2—pn/ / —;:o dzdz'
j%ﬁ_‘& / / Ie-jko(pmz—w')e :’R dzdz'
= Jf s ;rp"zm (7)
in which p; = k,, p, = —k, and p; = k,cos6 denote the propagation

constants of the three travelling waves. Given the constants C,,, the scattered
far-field is readily found to be

e_jkor

By = —jkoZ, sind=

l
N /
/ I(Z/)e;koz cosedzl
wr -1

—jkor 3

)" Crsinc|(k,cos8 + p,,)]] (8)

n=1

= —2jk,Z, 1 sinfS

wr

To evaluate the double integral ZT;,,, we resort to the variable transfor-
mation [22]

z = (u—v)/\/§
7 = (u+v)/V2 (9)



which allows us to express R in terms of a single variable. In particular, by
making use of ( 9) in ( 7), we have

—_ 14 u . - , —JjkoR
Zmn = / (/ ’ e—]ko(ﬂﬂzﬁn)udu> ejkozn??gnv ¢ R dv (10)
= —up

where I' = v/2l, uy=1'—|v|, and R =202+ a% Integrating now with

respect to u yields

J— I _ r_ —jkoR

D = —————4\/§ / stn [ko(pm P! U)} cos [kO(pm +pn)v] c dv
ko(pm - pn) 0 \/i \/§ R

= /ol’ K(v)dv

where we have assumed that m # n. To permit an analytical evaluation of
Zmn, we break up the above integral as

o

Zmn = Z-:lr:n + Z?;z
v !
- / ' K(v)dv + / K(v)dv (11)
0 u

where v; is chosen to be a small positive number ( for example,
2k, =3 ) so that the approximation

emikR 1

R
can be introduced in the integrand of ZA};n Doing so yields

—_— 2\/§ 7 1
A = T [k oPfn ) - o/m ['—' -J o}
L. PP /0 {szn[ 1+ V2k,pav] + sin[ky — V2k,p v]} 7 gko| dv

_ 12 /vl sinfky + \/ikopnv] o+ /vl sinfky — ﬂkopmv] i
ko(Pm — pn) |Jo R 0 R

—jk, {/Ovl sinfky + V2k,puv]dv + /0v1 sin[ky — \/ikopmv]de

and by carrying out the integrations and simplifying, we find

_ 1/2 — —
Lo =TT | Zmn T i+ 235+ 234 o m # 13
ko(pm - pn) [ ] :}é ( )



where

by = o Bzl
— sin A t2 8 81
T = 7 [&1+ Do () 5 f*”}

1
2. . /s s
+{(1+f)smh 1(%)—12 3§+t%}
81=V2kppu1
72 COSA{,/ t2[1—l 2 2t2]}1
g, \/5 st + 18( 1) 5120

“'C(\);; {\/—+— [1 _ 11_8 (sg ~ 2t§)]} 82=V2kpmu

81=V2kpnv1

81=0

52 =\/§kpmv1]

8$2=0

s2=0

—_ j 1

Zle — <4 __— {cos A+ \/—kpnvl — cos8 A}
mn \/—p

ZEI = _QJW;I— {cos(A - \/ikpmvl) — Cos A}

in which A = k(p,, — p,)l, t; = kppa and t, = kp,,a.

To evaluate Z2_ 2., we set
=202+ a2 &~ v

in the integrand since v 3> a. Substituting this into ( 11) yields

— 1 I' giV2ko(pn—1)v I g=iVZko(pm+1)v
2, = ————— €/ / —dv+ | ——————dv
]ko(pm - pn) v v v v

U 3V2ko(pm—1)v I o=iV2ko(pn+1)v
—G—f {/ e—————dv-{- f———-——dv}]

v v v v

1 —_— —
—————e/(22, + ZB ) — e/ (Z1e + 714)| m#n (14
T ¢ Gt Z8) ~ TR+ T i # . (14)

where



7% = E,(V2h(p,—1))
7%, = E_(V2ko(pm+1))
7%, = E,(V2k(pm—1))
7%, = E_(VZk(pn+1))
and
Ei(z) = Ci(l's)] si(l'z) - Ci(viz)4j si(viz)
in which

si(z) =—[° %dt, Ci(z) = — [ «dy

denote the sine and the cosine integrals, respectively.

To obtain the corresponding analytical expressions for the diagonal
impedance elements Z,,,,, we return to ( 10). By integrating with respect to
u, we obtain

o 14 —]k\/2v2+a
Lmm = 4/ —v) cos(\/_kpmv

—=—dv
V2v?+a
e— k2T +a? eIk +a?

uo v ,
= 4 [/0 (1 —1))cos(\/§lcpmv)—J/_lﬁ:?dv+/u1 (i —v)cos(\/ikpmv)——\/g—v——?——ra—;dv
(15)

and as before this can be written as

—

Fm = 4(ZL 477 )

Following a procedure similar to that employed above, we find

—— s
7l = 1{[(1+ 1) sinh ™! (tl) 41\/ 1+t]
81=V/2kpm v,
1
\/_k\/sl + t3 [1 -5 (sf - 2tf)]}

—jlsin(V2kpnvy) + %2_- [v sin(V2kp,v) +

81=0
v=v;

cos(ﬁkpmv)]
V2k
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where t; = kpna . In addition, Z2,, is given by ( 14) upon setting m = n.

This completes the derivation of all impedance matrix elements. The
coefficients of the travelling wave components can now be readily evaluated
from ( 5) by inverting the 3 x 3 impedance matrix.

3 Coated Wire

Let us now consider the scattering by a thin dielectrically coated wire. As
illustrated in figure 3, a uniform coating of thickness (b — a) is placed over a
perfectly conducting wire of radius a. We shall assume that ka < 1, kb <K'1
with a and b also much smaller than the wire length.

When the coated wire is subjected to a field excitation E!, there will be
polarization currents due to the presence of the coating, in addition to the
filamentary current I(z) through the perfect conductor. By invoking the
equivalence principle, the polarization currents can be expressed as

J = pjkY,(e, — 1)E, (17)

for a < p < b, where (p, ) denote the usual cylindrical coordinates
and Y, = 1/Z, is the free space admittance. In addition, e, is the relative
permittivity of the coating and we have assumed E, ~ 0 since k,(b—a) < 1.
From Maxwell’s equations [24], the radiated field due to the electric current
density ( 17) is identical to that generated by the magnetic current
74y (4 0E, e —1\ 0%°H,

My=-— (¢.VXJ) = (& —1)—=—= z_(jkoY;ér) £

k, 0z (18)

Based on symmetry, H, is not a function of ¢, and thus from Ampere’s law

we obtain
&—1\ 1 0%(2)
My =- <jkoYoer) 2rp 022 (19)

which is a relation between the filamentary current through the conductor
and the polarization current in the dielectric.

The magnetic current density defined in ( 19) is uniformly distributed
over a < p < banditis convenient to replace it by a current sheet at
p = (a+ b)/2 supporting the surface current (see Figure 3)



b
Mo = [ Mylp)dp

- _ €& —1 1 29_2_]
- Jk.Yo€r . a/ 022

Subsequently by invoking the sheet boundary condition, M = E x p, we have
& — 1 b\ %I

E,=—-|— In{-]=— 20

(]koYoer) n(a) 022 (20)

which is an approximate relation to be enforced at p = (a + b)/2 instead of

E, = 0 applicable to the uncoated wire. One may also consider ( 20) as an

approximation of the scattered field attributed to the polarization currents
in the coating.

As in the previous section, in order to derive an integral equation for

I(z), we adopt the physical basis representation (3) and proceed with the

enforcement of ( 20). In this case, however, p; and p, are not equal to k, and

must be computed by an iterative solution of the transcendental equation
given in the Appendix. Following Galerkin’s method, we obtain

" g d " BB+ S Co(Zemn) [ Bo(2) B (2)d
1 * - — 8 * S *
[ FloB == [ BB ()i + 3 (2) f,, Br(2)Br(2)dz

where E? is the z-component of the scattered field and is equal to the negative

of the right-hand side of (5). Also,
zZl = _Popm{er = 1) 1)aln (é)

Smn JkoY,€, a

which resulted after integrating by parts the last integral in ( 21) . It should
be noted, though, that were we to consider the solution for a thin wire having
a surface impedance Z; [25], the resulting integral equation is again ( 21)
with Z; . replaced by Z,. Interestingly, since Z; is not zero for n # m,
we cannot identify a constant equivalent impedance to replace the coating.
From ( 21), the resulting matrix equations for a solution of the travelling

wave coeflicients can be written as

[Z3nl[Ca] = [V (22)

(21)



In this case, V,, is again given by (6) and

Z, n — Pm
Z' = Zpwt Zmasine (LL[)
27a 2

where Z,,, are given by ( 7) as one can readily conclude from a comparison
of ( 21) and ( 7).

4 Finite length narrow rectangular groove

In this section, we consider an empty three dimensional rectangular cavity
of width 2w <« A and length 2! > X (see Figure 4). The opening of the
cavity lies in an infinite ground plane and we are interested in its scattering
characteristics when illuminated by a plane wave . The incident electric field
may be expressed as

E' = (0.Ej + §.E},) e 75" (23)

and in the absence of a cavity, the incident plane wave ( 23) will only cause
a reflected field ET.

An approximate simulation of the cavity is to replace its aperture by an
impedance surface on the ground plane satisfying the boundary conditions

E, = —ZnH,
Ey = ZoneH.r (24)

where 17, are the normalized impedance parameters given by [23]
Qa
n = j—htan(ahkod)
67‘

Ne = j%tanh(aekod)

[

in which

Qp = AfErflr

)\ 2
Qe = (%) — Crlhr

10




and d denotes the cavity depth. As can be readily concluded, ( 24) were
derived on the assumption that only the lowest order TE and TM modes
exist in the groove.

By invoking the equivalence principle, the electric field in ( 24) can be
replaced by the equivalent surface magnetic current

M = Ex3: (25)
and from ( 25), we obtain

M, = Zn.H,

M, = ZomH, (26)

in which H,, denote the x and y components of the total magnetic field.
This can be represented as

H=H+H +H (27)

where H! is the incident field, H” is the reflected field in the absence of the
cavity and H® denotes the scattered field radiated by M, and M,. Since
only long and narrow geometries are considered, the transverse component
of the magnetic current can be neglected and the longitudinal component of
the current may be assumed to be constant across the width of the groove.
Consequently, we can express the y component of the scattered field as

s Y, v ' 0 ' R,
iy = =232 [ [ M0+ 550Gy )iy’ (29)

where

ezp(—jkor/ (—2' 2 +(y—¥')?)
4#\/(1:—13’)2-}—(1/—1/')2

Go(m, x,y’ y’) =
is the free-space Green’s function. Combining ( 26),( 27) and ( 28), we obtain

1 1 ] vl l 2 82 ! I 1 g1
P — 2 - 9
217hMy I, i /_w /_lMy(y (kS + ayz)Go(x,w ,y,y')dz'dy (29)

to be solved for M,, where
I, = Z,(H,+H)) »

= 9 [_COS¢OE30 + Cosaosin(ﬁoE;o] 8jko(xcos¢os£n90+ysin¢osin00) (30)
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As in the case with the wire, M,(y) can be represented by three travelling
wave components for depths greater than A/4. For troughs of depth less than
A/4, though, the reflected travelling wave currents diminish leaving a single
dominant travelling wave component. This is evident from the spectral plots
of M,(y) in figure 5 obtained from the finite-element code described in [26].
Included in figure 5 are the spectra for a 5\ long groove of width .05\ and
it is clear that the surface current for the cavity of depth .1\ is associated
only with the forced travelling wave component. In contrast, for the .4\
deep cavity, the forced component is nearly suppressed whereas the reflected
travelling waves are dominant. Accordingly, an appropriate representation
for the surface magnetic current is

My(y) = Cle"y + 025"'79 + Csejkoyaineainqs

- Y00,0) &)

where v = —a + jf can be calculated from Walter’s formula [27] and the
procedure outlined in [28]. Substituting ( 31) into ( 29) and using Galerkin’s
technique results in the 3 x 3 matrix system

[Ymn] [Cn] = [Im] (32)

for the solution of the coefficients C,. In this

I, = // I’D* (y)dz dy

= 8wl [—cosqSoEo + cosOosinqﬁoE;o] sinc (kow cosg,sinb,)sinc ((kosing,sind, — pL)l)

Yy = o / / (y)de dy
kz_p" / // / (¥)Go(z,2',y, y")dzdz' dydy’

2wl K2 —p?)
= sine((pn - p5))) +]——( pn)y
Nh ko

where p; = —a+jB, p, = a — jB and p; = jk,sinb,sin ¢, denote the
propagation constants for the travelling wave components and

//// J(Phmy— ”"y)G(xa:,y, )d:cd:c'dydy’
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As before, on carrying out the variable transformation [22] corresponding
to a 45° coordinate rotation, the above quadruple integral for Y,,, reduces
to a double integral Specifically, we have

- — /’/ sn[pm—pn)(l —v)] 03[(p;:;§pn)v] [(w,_t)#dt} 0
(39

where I' = V2I, w' = v2w and R = 2(t% 4+ v?). Further rearrangement
then yields

Yo = p;‘nl—(-ipn [/0 (/0 K(tvdt) dv+/l’ (/ IKtvdt)L( )d]
16 o o

where
—jkoR

L) = sin | Bz =0)] (Ph + po)
Voo, 1.4[ v ] [ v ]

The integral fé”l K(t,v)dt can be evaluated analytically by expanding
e %R /R in a Taylor series. We have,

w' b a
K(w',v)=/0 (w/_t)Za:O( ]\/ikoR) dt

where b denotes the number of terms in the expansion and determines the
maximum width of the groove for which the echo-area can be evaluated
reliably. On substituting ( 35) into ( 34), Y}, reduces to the single integral

Vi /0 * K(w', v)sin [(p’*n - Zi;)g(l’ - ”)] cos [(—p—:"—%’")—”] dv  (36)

which can be computed numerically. The corresponding integral for 172; can
be simplified using the approximation

R= 22+ 1)~ 2v forv>t

13
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since v; 3> w, consistent with our assumption of a narrow groove. Conse-
quently,

o' e-jﬁkou w' e-j\/ikou
K(w'v) = / (w' —1) dt = —
0

v 2 v

and

— 2 I jﬁ(?n_ko)v 14 —j\/i(p,'n-i-ko)v
v2 = 2 |eF /e————dv+/ E T T
8.7 v v v

1 v
I odV2(pl—ko)v I o =iV2(pntko)v
—e F {/ E—-—-—-dv-i—/ e——-———-dv}J (37)
(U1 v vy v

in which F = j{& 721’ Clearly, the integrands in the above expression

—~—

for Y2 are non-singular and therefore the integrals can be readily evaluated
numerically.

Given the admittance matrix elements, the 3 x 3 system ( 32) can then
be solved via a QR decomposition for the constants C,. Results based on
this solution are discussed in the next section along with results for the wire
solution.

5 Results

The physical basis model for the wire was studied extensively owing to the
wealth of available data. The model was tested for short as well as long wires
and was found to predict accurate results in both cases. In all cases, the ref-
erence numerical results for the wire are based on a conjugate gradient-FFT
(CGFFT) or a moment method solution of Pocklington’s integral equation,
using a piecewise sinusoidal representation for the current.

Figure 6 shows a comparison of the current distribution for a 4\ wire at
normal and oblique (6, = 60°) incidence. As seen the numerical result and
that based on the proposed physical basis model are in good agreement. A
plot of the physical basis coefficients is given in Figure 7 and it reveals that the
magnitude of the travelling wave lobe is governed solely by the corresponding
coefficient. The other two coefficients at this angle are equal and opposite
in sign, cancelling each other’s contribution. At normal incidence, however,
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all three coeflicients are comparable in value and interfere constructively to
produce a peak.

Figure 8 presents backscatter patterns for A/4 and 1) long wires. As
seen, the physical basis solution of Pocklington’s integral equation is in good
agreement with the reference data for both wires and for all angles of inci-
dence. Backscatter patterns for longer wires are given in figures 9 and 10.
These correspond to wires of length 3\ and 11.05), respectively, and it is
again seen that the physical basis solution is in good agreement with the
reference data. In the case of the coated wire, two bistatic patterns are given
in figure 11. Again, the physical basis solution is in good agreement with
the moment method data. It should be noted though that the propagation
constant of the reflected travelling wave may now be greater than k, and as
a result, their corresponding peaks are not necessarily in the visible range.

Finally in figure 14, we present the backscatter patterns for a 5\ long
cavity. Two patterns are given, one corresponding to a cavity of depth 0.1\
and width 0.05\ and another for a cavity of depth 0.3\ having the same
width. The existence of the travelling wave lobe is quite evident for the
deeper cavity whereas the scattering pattern for the shallow cavity resembles
that of a physical optics approximation. For both patterns, the agreement
with the reference data is reasonable and any discrepancy is likely due to the
employed impedance boundary condition.

6 Summary

In this work, the physical basis model was employed in conjunction with a
Galerkin’s solution of the exact integral equation to determine the scattering
by a thin perfectly conducting wire, a thin dielectrically coated wire and a
finite length narrow groove in a ground plane. The proposed current model
consisted of three weighted travelling wave components. One was associated
with the current on the finite wire whereas the other two described the re-
flected travelling waves from the wire terminations. Their coefficients were
rigorously determined by constructing a 3 X 3 matrix through a Galerkin’s
discretization of the pertinent integral equation. The resulting impedance
elements for the perfectly conducting and the coated wire were analytically
derived in terms of exponential integrals. In the case of the coated wire, the
formulation remained the same as the perfectly conducting case except that
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the dielectric coating was replaced by a current sheet supporting an equiva-
lent surface magnetic current. By comparison with measured and numerical
data, it was observed that the derived expressions were highly accurate for
short as well as long thin wires.

The finite length narrow groove was treated in a similar manner; in this
case, an approximate boundary condition was enforced at the surface of the
groove yielding an integral equation for the surface magnetic current which
was then represented by the weighted sum of three travelling wave com-
ponents. The agreement with reference data was reasonable and the small
discrepancies were attributed to the approximate impedance boundary con-
dition. To avoid use of the impedance boundary condition, one must resort
to an exact eigenfunction representation of the fields within the cavity. Field
continuity can then be applied at the aperture to obtain an integral equa-
tion for the surface magnetic current. To date, though, our attempts to
obtain the 3 x 3 admittance matrix associated with this integral equation
has yielded non-convergent mode sums, indicating that a non-conventional
approach may be required to obtain convergent sums. One option may be to
expand the physical basis in terms of subsectional roof-top basis functions to
yield convergent mode sums for the fields inside the cavity.

7 Appendix

For a coated conducting wire in free space, Collin [30] gives the exact tran-
scendental equation for the TM mode as

Ki(gh) ¢ Jo(ha)Yi(hb) — Jy(hb)Y,(ha)
PEo(qb) ~ h J(kb)Y,(ha) — J,(ha)Y,(kb)

(38)

where €, is the complex permittivity of the coating, J, is the Bessel function
of the first kind of order n, Y,, is the Bessel function of the second kind of
order n, K, is the modified Bessel function of the second kind of order n and

q2 — ﬂ2—]€2
h? = ek?—p?

in which 3 denotes the propagation constant of the reflected travelling waves.
For small t, the Bessel functions in ( 38) can be replaced by their small
argument expansions [31] to obtain
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€,q°b1n(.89¢b) = — (¢, — 1)k2(b — a) (39)

which can be readily solved via an iterative approach such as the Newton-
Raphson method.
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Figure 4: Geometry of finite length narrow rectangular groove.
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