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L. _Introduction

The research conducted during this study has concentrated on the
following projects: a) Study of Broadband Vertical Interconnects
Using Aperture Coupled Shielded Microstrip Lines b) Full-Wave
Analysis of Microstrip Fed Slot Antennas c) Analysis of a Aperture
Type Loop Antenna d) Development of Novel Techniques for the
Treatment of Complex Geometries. In addition to Texas Instruments
support, all of the above projects have been partially supported by
NSF as part of the PYI matching funds program. The progress in

each one of these projects is summarized below.

II. Study of Broadband Vertical Int ts Usi
: coupled Shielded M trip  Li

A full-wave space-domain integral equation analysis of aperture
coupled shielded microstrip lines has been performed based on the
Equivalence Principle. The formulation has the capability to model
multi-layered substrates through the derivation of the associated
dyadic Green's function which represents the layers through
impedance boundary conditions (Appendix C). The method of Moments
is used to solve for the line currents and slot voltage with even
and odd mode excitations which are then intepreted through
transmission line analysis to determine the two-port scattering
parameters. A parametric study together with experimental data is
presented which demonstrates the behavior of the coupler and the

accuracy of the technique (see Appendices A,B).

Recently, complex systems have imposed new antenna requirements
with demands for compact conformability, reduced weight, and higher
order antenna functions such as electronic beam stearing,

polarization control and power generation. A suitable alternative



approach employing stripline-fed series slots isolated from higher
order modes by shorting pins has been widely applied in the past.
However, despite the advantages of such an arrangement wide use has
been hindered by the lack of accurate computational models. The
necessity for such models is intensified by the narrow-bandwidth
properties of these slot radiators.

During the reporting period, we have studied the properties of
these slot antennas and the effect of the pin curtains on the
resonant characteristics (see Appendix B) and we have investigated
ways to increase their bandwidth. Specifically, we extensively
analyzed, using the Full-Wave method described in Appendix B, the
performance of a narrow cavity-backed slot which was excited by a
T-shaped stripline. The analysis indicated the bandwidth of this
slot is rather insensitive to the shape of the feeding stripline in
contrary to what was anticipated. Results of these study are
provided in the interim reports Appendices E,G and I.

Since the submission of the last interim report we have

concentrated in the following two projects:
1V, Apalysis of a Aperture Tvpe Loop Antenna

We have initiated a study on aperture type antennas which could
provide potential for wider bandwidth and the flexibility to
integrate different planar technologies (microstrip with coplanar
and slotline geometries). As a first step towards this study, we
analyzed a microshield loop antenna excited by a microshield line
(a coplanar with a shielding microcavity as shown in figure 1 of
Appendix D). From the preliminary study performed so far, we have
found that this antenna exhibits some interesting properties. In
fact, as the results indicate, an appropriate monolithic matching
network placed in front of the antenna could provide much wider
bandwidths than the ones attained using simple longitudinal slots.
The results presented in Appendix D by no means provide an optimum



design. They just unveil the existing potential. Further and most

systematic work in this subject is planned for the next period.

Y. Development of Novel Techniques for the Treatment of
complex Geometries

During the past two months we have initiated an effort in
developing a hybrid technique for the analysis of complex circuit
or antenna geometries. This technique is a combination of the
integral equation and the finite element method. At the present
time, the graduate student working in this problem has already
formulated the part of the method which deals with the integral
equation. He is currently developing the finite element part of the
technique using edge elements. Due to the complexity of the problem
the first results from this effort are expected at the end of the

next reporting period.






APPENDIX A

Norman L. VandenBerg and Linda P.B. Katehi

Broadband Vertical 1Interconnects Using Slot-Coupled

Shielded Microstrip Lines






|[EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 40. NO I JANUARY 1992

Broadband Vertical Interconnects Using Slot-Coupled
Shielded Microstrip Lines

Norman L. VandenBerg Member, IEEE, and Linda P. B. Katehi. Senior Member, I[EEE

Abstract—A full-wave space-domain integral equation anal-
ysis of aperture coupled shielded microstrip lines is presented
based on the Equivalence Principle. The formulation includes
the capability to model multi-layered substrates through the
derivation of the associated dyadic Green’s functions which
represent the layers through impedance boundary conditions.
The method of moments is used to solve for the line currents
and slot voltage with even and odd mode excitations which are
then interpreted through transmission line analysis to deter-
mine the two-port scattering parameters. A parametric study
together with experimental data is presented which demon-
strates the behavior of the coupler and the accuracy of the tech-
nique.

[. INTRODUCTION

RANSITIONS from microstrip to slotline have long
been recognized as important circuit elements. Two
such transitions can be combined to form interconnects
between lines and by using lines on opposite sides of the
slot plane, a vertical transition is made. The basic struc-
ture, in a variety of forms, has a wide range of applica-
tions to both broadband and narrowband connections and
can be used as a building block for interconnects [1],
phase shifters and inverters [2], directional couplers [3],
filters (4], and many other microwave components [5].
The advent of monolithic techniques for microwave and
millimeter-wave circuits has amplified the need for ac-
curate analysis techniques to account for the effects of
shielding structures as well as the interaction between cir-
cuit elements which may be closely spaced. These effects
may not be accounted for by some methods such as simple
transmission line analysis, especially as frequency in-
creases. Additionally, high-frequency interconnect ap-
proaches are required which must be accurately modeled
for design and also must fit well in a monolithic fabrica-
tion scheme. In this regard, the presented approach has
significant appeal over via holes since it implements a
vertical interconnect while requiring only planar elements
which can be accurately modeled.
Numerous investigators have presented approximate
analytical techniques to characterize these structures with
applications to circuit elements [4]-[8]. A full-wave anal-
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the National Science Foundation under contract ECS:8657951, and by the
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ysis for microstrip-to-slotline has been reported in [9] with
applications to open structures. A quasi-static analysis has
been provided in [10], however, this may not be sufh-
cient, particularly for higher frequencies where end et-
fects and higher order mode coupling become more sig-
nificant. A more recent paper [11] presents a transmission
line analysis with excellent results, however. the method
does not account for radiation if the structure is open. in-
teractions with the shielding if it is closed as in our case.
or other electromagnetic effects which become more se-
vere as frequency is increased. Hybrid methods which
combine two-dimensional full-wave analysis with trans-
mission line theory, as in [12], should certainly extend
the validity of such models, however. may still not ac-
count for all discontinuity effects, especially since it is
usually desirable to minimize the overall size which will
tend to allow transitions to interact. Our approach uses a
three-dimensional full-wave space-domain integral equa-
tion method employing the method of moments with Gal-
erkin’s procedure to account for all possible interactions.

II. INTEGRAL EQUATION FORMULATION AND NETWORK
ANALYSIS

The basic structure of the coupler to be discussed is as
shown in Fig. 1. Variations on this geometry include cases
with microstrip lines on the same side of the slot: multi-
layered substrates/superstrates; reverse couplers where the
lines exit on the same wall; and with additional parallel
slots and lines, among others, but can all be analyzed us-
ing the same approach.

The analysis proceeds as follows: the slot is replaced
on both sides by an equivalent magnetic current backed
by a perfectly conducting wall, representing the tangential
electric field in the slot (all walls will be assumed to be
perfect conductors). The problem is thereby separated into
independent regions, coupled together by magnetic cur-
rents as shown in Fig. 2. This figure illustrates the treat-
ment of finite slot thickness by introducing an intervening
cavity. Eliminating the cavity and replacing K, and K- by
K reduces the slot to the infinitesimally thin case which
will be assumed here. Using the same current on either
side enforces the continuity of the electric field in the slot.
The fields in the cavities can now be written in term’s of
integrals as follows:

E = —jou Sgﬁej'de'— SS?eK‘RJS’ h

0018-9480/92303.00 © 1992 IEEE
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Fig. 1. Geometry of basic coupler.
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Fig. 2. Electric and equivalent magnetic currents for microstrip-to-mi-
crostrip coupler with a *‘thick'" slot.

H= Hﬁm,id.s” — jue HE,,K - KdS'" ()

The subscripts on the Green’s functions indicate whether
the function is of the electric (e) or magnetic (m) field type
for electric (J) or magnetic (K) currents.

By using the appropriate rectangular cavity Green’s
functions, the fields in the cavities satisfy the boundary
conditions on the walls. The remaining boundary condi-
tions, zero tangential electric fields on the strips and con-
tinuous tangential magnetic fields in the slot, allow us to
write the integral equations which are

—jou “ G, 71, dS' - H G KdS' =0 (3)

stripL slot

’Hﬁm,-LdS'

stripL

- jw SS [eLa,,K + EUE,,,K] - KdS'

slot

- Hﬁm,iuds':o @)

stnpy

“ G - KdS' — jup Sg G- JpdS' =05 35
slot stnpt

where 0* implies that the field is nonzero at gap generator
locations. Equations (3) and (35) are evaluated on the lower
and upper strips respectively. and (4) on the slot. The sub-
scripts U and L indicate whether the source is in the upper
or lower cavity.

The longitudinal current components are now expanded
in terms of piecewise sinusoidal functions with a Max-
wellian transverse distribution satisfying the edge condi-
tions for narrow strips and slots. In general, the currents
are written in terms of both longitudinal and transverse
components however, in this case. it will be assumed that
both the slot and the strips are narrow enough so that the
longitudinal components of current dominate their behav-
ior and the transverse components can be neglected. The
integral equations can now be written as a generalized
matrix equation in conventional method of moments fash-
ion. Using Galerkin's procedure, the matrix is nearly
symmetric, the exception being the negative signs in the
off-diagonal quadrants representing the coupling terms
between the slot and microstrip lines:

Z, Y = _ZIT(L 0
Zy=-Yx Yu+Yyu Zgy=-Yi
0 Yy = “’ZIT(U Zyy B
I 0*
Ve | =10 ‘ (6)
Iy 0*

where T indicates a transposed matrix and the ***'" indi-
cates the exceptions at the gap generators used for exci-
tation of the lines. In addition to the relations indicated,
for a symmetric structure only three of the submatrices
are unique and the matrix will then have ‘‘mirror’’ sym-
metry with respect to the cross diagonal when properly
loaded. The structures discussed here will be assumed
lossless and symmetric for simplicity, although the more
general case can be handled with the same approach.
The inverted matrix is then used with even and odd gap
generator excitations at the line ends to find the currents
on the microstrip lines. From the even and odd currents,
even and odd impedances are found by measuring d de-
fined as the relative distance from a standing wave max-
ima to the location of the slot. The expression for the re-
flection coefficient referenced to the slot then reduces to

T [ = —e/td/M ™
which produces an impedance according to
1+T
= . 8
Z=1T"7 ®)

The even and odd impedances are then combined to form
the Z-parameters which, because of the assumed sym-
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metry are given by the simple expressions:

Z + 2
Z, =~ =7y 9)

9

Zy = — - =12

(10)

[§S]

Finally. the even and odd impedances may be combined
to produce S-parameters through the transformations:
__Zi -7y -]
Z +22, - 725 + |
2Z,
Sz‘ = =3 = 3
Z-]'] + 22” - ZEI + l

S =35 (11)

= S|3 (12)

which are used to characterize the coupling behavior.

[II. DERIVATION OF THE DyvaDpic GREEN'S FUNCTIONS

In order to solve the integral equations, the Dyadic
Green's functions must be known. They are solutions to

the dyadic Helmholtz equations:
VXxVXxG, -kG, =I6R - R (13)

VXVXG,, -kG, =V x[I6R -R) (14)

V XV X Gug — k’Gpg = IBR — R"] (15)

VxISR-R) (16

VXV X rGeK—kzﬁeK

where the primed vectors throughout, in this case R', in-
dicate a function of the source coordinates. As can be
seen, these equations are highly symmetric and in fact,
once we have solved one set, the solution to the second
set is almost trivial. Note however, that while the second
pair of equations can be produced by application of the
Duality Principle, the solutions cannot because duality
does not apply to the boundary conditions [13]. The equa-
tions may be solved by a variety of techniques including
vector potential methods or, as we have done, through a
field expansion method which represents the solutions in
terms of vector wave functions (VWF’s). This latter ap-
proach has been developed to a straightforward procedure
employing dyadic analysis to produce all components of
the dyads in one exercise. For the sake of brevity, only
the final results with be given here. A more detailed de-
rivation is available in [14].

The Green's functions can be generalized to represent
any layered structure of the type illustrated in Fig. 3. The
use of impedance boundary conditions allow for the treat-
ment of multi-layered substrates and superstrates as may
be encountered in monolithic or other microwave circuits.
The procedure is to find the Green's function for the layer
containing the strip or slot by applying transmission line
theory to the other layers to obtain the impedance bound-
ary conditions (n) corresponding to each mode. Subse-
quently, the fields in the other layers can be found from
the homogeneous solutions to (13)-(16) and a pair of cou-

-

U

*K

N
=~

Fig. 3. Impedance boundary condition representation of a sample muiti-
layered structure.

pling coefficients for each layer. The solutions are ex-
panded in terms of LSE and LSM modes to facilitate
finding the fields in the remaining layers since these
modes are decoupled on the boundaries and can be indi-
vidually matched to identical modes in adjacent layers.
This also produces a one-to-one uniqueness in the imped-
ance condition for each mode. The coupling coefficients
are then readily found by matching the tangential field
components at successive layers.

The impedance boundary conditions require the fields
to satisfy

)E-an,,

./\: : J .
- —— = jwen. (17
: y- Gm/

”’:

T} i

For simpler notation, n, will be the wave impedance as-
sociated with the LSE modes and »,, will be used for the
LSM modes. 7, and 7,, will denote normalization to the
wave impedances in each layer and are defined as

~ k:inei ~ _ WEN
Nei = Nmi = .
w k,

(18)

These impedance boundary conditions derive from the
recognition that the layered structures are simply sequen-
tial sections of homogeneously filled rectangular wave-
guide sections. We can then evaluate the impedance con-
ditions using transmission line analysis and the wave
impedances for the various layers as illustrated in Fig. 3.
The impedances on a given layer upper boundary are
found by the transmission line equation

k. Nei—1 tJtan k.- li-
. [ﬂ( nTJ 2= n} (19)

Nei = —
ko LU ey tan kool
ek, M1 + jtan k.l _
i = iKzi-1) [ NMm(i .-I) J 2i-hbi-1 } (20)
€i-nkyi |1 + jlimi-1) tan ko - nli-1

where the index i is iterated from the top wall (n,9 = 7,0
= 0) through successive lower layers to the layer of in-
terest (/; is the thickness of the ith layer). A similar pro-
cess is used for the lower layers in which case the iteration
proceeds from the lowest layer upwards and the wave
impedance is negative.
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The final results can be written as

( M limers kes kys ke(@ = ) Tiliime: kv kyo k(27 = d)] )
E, ;= i i 2/(2 _T 6mn )f‘ ' mrw[ﬁmL: krv k\-- k:(: - d)] mz/m[ﬁml,’; k\* k\' k:(:, - (')l
" w=0a=oabk (ki + k7)

(e = Time) €08 k(¢ = d) = j (i — 1) sin k.(c = d)

( mut’[ﬁe(;’: krq k\~ k;(: - C)] ﬁ;e[ﬁd; kvrv k_\-s k;(l' - d)]
mt’('[ﬁt‘[_: kr* k_\‘v k: (: - d)] ﬁe,'e'[ﬁe(,’; k.rv k\" k:(zl - C)]

(ﬁeb’ - ﬁeL) Cos k:(C - d) - j(ﬁeUﬁeL - l) sin k:((‘ - d)

and

X o

2](2 - 6mn)
m=0n=0 abk:(kz + k%)

(ﬁee[ﬁe(/; kr' k_\" k:(z - C)] ﬁ;e[ﬁeﬁ k.n k_vv k:(zl - d)])
E)Tlee[ﬁeL; k,rv k_w k: (z - d)] m;e[ﬁeU; kx! k)'ﬂ k:(Z’ - 0]

1) sin k.(c — d)

(ﬁeU - f’eL) cos k:(C - d) - j(ﬁeUﬁeL -

<ﬁoo[ﬁmU; k.ra k_\" k:(Z - C)] ﬁéo[f’mL; k.n k)w k:(Z’ - d)]>
ﬁoo[ﬁmL; kx' k‘\'v k: (z - d)] ﬁtlno["'.’mU; k,n ky’ k; @ - C)]

(Mmy = Mme) €08 k(€ = d) = jAmyfm — 1) sink.(c — d)

forz =z 7’ (22)

where ¢ and d are the upper and lower coordinates of the
source layer. The 4,,, terms is the Kronecker delta defined
as 6,,, = | form = 0 orn = 0 and zero otherwise. As
indicated, the top lines apply for z > 7' and the bottom
lines for z < ' where primes throughout indicate func-
tions of the source coordinates. The functions 91 and 9
are defined by

Mooln, @] = Mogole] + jMoge[a] (23)
ﬁeg[nv (1] = nMeee[a] - jﬁeeo[a] (24)
Nooln, @] = ANygola] + jNooela] 25)
ﬁee[n' a] = nNeee[a] - jNeea[a]' (26)
The vector wave functions M and N are defined by

A—/I--VX\II.r‘,-:}(VxN 27
— 1 1 —

N=EV><V><\I/x,-=—VxM (28)

k

where k2 = k} + k> + k?, ¥ is a scalar function and £
is a unit vector called the **piloting vector’” which deter-
mines the nature of the field expansion. In our case,
choosing £; = Z, the normal to the layer interfaces, results
in a correspondence between the leading M and N VWF’s
appearing in G,,; and the LSM and LSE modes, respec-
tively. (In contrast, it should be noted that leading M and
N functions correspond to the LSE and LSM modes, re-
spectively, when they appear in G,,). The forms of ¥ are

chosen to satisfy the boundary conditions on the walls of
the cavity and are given by

sin k,x sin k,y sin k.2
000 = ) (29)
eee cos k x cos k,y cos k.z:
sin k x sin k,y cos k.2
= ' (30)
eeo cos k,x cos k,y sin k.2

with k, = mn/a, k, = nw/b and k. = Vk; — k;, — k;.
The subscripts here and on the M and N functions indicate
whether the trigonometric dependencies are even or odd
(cosine or sine, respectively). _

The solutions for the equivalent magnetic current K are
virtually identical with the following notational replace-
ments:

MeN (31)
Ee.l = ﬁmK (32)
E—‘;ml = Eel(' (33)

Note that the M N replacements are what make these
substitutions different from those dictated by the Duality
Principle. It is these substitutions which compensate for
the change in boundary conditions from the Dinichlet to
Neumann conditions when the Duality Principle i ap-
plied. Expansion of these functions then yield all the com-
ponents of the various Green’s functions.
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[V. NuMEricAL AND EXPERIMENTAL RESULTS

A coupler with the geometry of Fig. 1 was analyzed
using the above techniques. The parameters which can be
varied in this design are numerous, consequently, only a
few vanations will be presented here. I[n all cases. al-
though not required in general. symmetric geometry is
maintained to simplify the even and odd mode analysis.
as discussed above. Also. in all cases the cross-section
for the cavity is 0.25 x 0.25 in.. the substrate is 0.025
in. thick with e, = 10.6: and the slot and line widths are
0.025 in. The cavity length is varied for the numerical
results and fixed at 2.0 in. for the measurements. This
dimension does not affect the results since for all frequen-
cies considered here, the cavity is below the cutoff fre-
quency of the higher order microstrip modes and the ref-
erence plane was taken to be at the slot.

To illustrate the behavior of the coupler, we first ex-
amine the influence of various parameters at fixed oper-
ating frequencies. The effect of the line stub length (/) is
shown in Fig. 4. It can be seen that the stub is initially
too long for an ideal match at this frequency. However,
as the stub is progressively shortened, a certain length
“*matches’’ the two port coupler and with further short-
ening the match gets progressively worse. We can inter-
pret this effect by examining the equivalent circuit shown
in Fig. 5. Variation of the stub length has the effect of
changing the position of the current maxima (virtual
shorts) and minima (virtual opens) on the lines relative to
the slot, thus varying the degree of coupling through the
slot represented by the coupling transformers. Conse-
quently, the peak coupling occurs when line stub length
places a current maximum below the slot or lengths in odd
multiples of ~\ /4. The opposite effect occurs when the
line stub is approximately in multiples of X\ /2 in length
so that there is a virtual open circuit beneath the slot, in
which case there would be very little coupling between
the line and slot.

A similar effect is observed for variations in slot length
(Ly) as illustrated in Fig. 6. Again using the transmission
line analogy, one can interpret this effect by transforming
the impedances at the ends of the slot to the center. These
end impedances are nearly short circuits, the difference
being due to fringing fields which extend beyond the ends
of the slot line. fully accounted for by the full-wave anal-
ysis. At the matching length, the resulting transformed
reactances at the center cancel the reactance associated
with the junction, thereby matching the two ports. As the
slot becomes very short, the field in the slot is effectively
“*short circuited,”’ thus coupling is reduced. S, then tends
to zero while S|, approaches unity (since the structure is
closed and assumed lossless). All of these effects would
be expected to repeat as the slot length increases in mul-
tiples of A, however, for the case studied here, the max-
imum slot length is limited by the dimensions of the
shielding package which have been chosen to allow only
the dominant microstrip mode to propagate.

To generate a frequency response, the programs are run
at each frequency of interest and the slot and line lengths

\\\?
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Fig. 4. Effect of the line stub length (/) on §,, and §,, magnitudes (s = 0.
L, = 0.25 inches and f = 12.0 GHz).
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Fig. 5. Equivalent circuit for a 2-port coupler.
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Fig. 6. Effect of the slot length on S,, and §;, magnitudes (s = 0./ =
0.049 inches and f = 18.0 GHz).

are varied to form a parametric database. (The most sig-
nificant computation time is in the generation of the ma-
trix. This takes approximately 30-45 min per frequency
on an ~ 25 MIPS machine such as the IBM RS6000/320.
One matrix is sufficient for all variations of slot and line
stub lengths). The database is then scanned to assemble
frequency response plots as a function of the geometnic
parameters. To verify the results, we have designed and
constructed the fixture shown in Fig. 7. This hvwure al-
lows sample substrates with various line and slot Jimen-
sions to be installed in various combinations to allow ‘re-
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Fig. 7. Photograph of coupler fixture assembly.

quency response measurements. A number of circuit
boards were made in two sets: One set of boards was dou-
ble-sided with a microstrip line etched to certain lengths
relative to a slot etched in the ground plane on the oppo-
site side. The second set was one-sided boards with mi-
crostrip lines of corresponding lengths designed to be held
against the boards of the first set by the fixture.

Measurement of one of the assemblies is shown in Fig.
8 in comparison to corresponding numerical results. The
position of the high frequency corner of the response was
found to be very sensitive to the length of the line stub.
As discussed above, this corner is controlled by the length
at which the stub is approximately A /2. Since the effec-
tive dielectric constant for the microstrip is approximately
€eis = 7.8 at 17.0 GHz, a null is predicted in the response
in that neighborhood so there is good agreement with the
results shown. A theoretical curve for / = 0.115 inches
is also shown which gives an indication of the sensitivity
to the stub length. The error bar on the high end indicates
the sensitivity of the high frequency corner to a +5 mil
error in line stub length which is well within the expected
tolerance errors for positioning the stubs relative to the
slot, so we conclude that the results are in excellent agree-
ment. In fact, we were able to move the upper board
slightly toward the slot to expand the stub length some-
what which did shift the high corner to a lower frequency
as expected. However, this also created problems with the
match at the Eisenhart microstrip launchers so these re-
sults are not shown.

The ‘‘sidelobe’” which can be seen at the high fre-
quency end, is also attributed to tolerance errors for the
line stub lengths. A difference in lengths would produce
multiple nulls in the response at the high end which would
be expected to have a sidelobe inbetween. Because of the
high sensitivity to line length, owing in part to the high
dielectric constant, the amplitude and span of the sidelobe
is a strong function of the relative line stub lengths, which
can also be observed when the boards are slightly shifted
as described above. The sidelobes does not appear in the
theoretical result since a difference in stub lengths be-
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Fig. 8. Comparison of theory and experiment for S,; magnitudes with s =
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the high frequency corner by a +0.005 inch change in stub length

tween the upper and lower lines introduces an asymmetry
which has not been included in the current numerical
model and contradicts some of the assumptions stated for
the network analysis. A more general model is planned to
include this capability as well.

The ripple in all the measurements can be shown to
result from mismatch at the microstrip launchers. The
measurements are particularly sensitive to this connection
because of the high dielectric constant of the substrate.
They occurred in varying degrees throughout our mea-
surements and are also influenced by small air gaps be-
tween the connector assembly, fixture and substrates. The
ripple could probably be removed by more sophisticated
deembedding techniques however this requires additional
fixtures. Nevertheless, the ripple shown in the results pre-
sented here in not substantial and does not significantly
interfere with the fundamental behavior of the devices.
Also, the broadening of the low frequency response is
typical in the measurements. We were not able to identify
a direct cause for this effect, however, we suspect that it
may also be related to the fixture/connector interface since
we have not de-embedded these transitions. We also pos-
tulated that some of the anomalies might be caused by the
side-wall grooves in the fixture which hold the double-
sided board in place. This possibility was eliminated how-
ever by installing movable side-wall shorts which are vis-
ible in Fig. 7.

The remaining discrepancy is perhaps a slight addi-
tional loss found in some of the measured results. To
deembed the losses for the structure, a through line was
measured and the remaining measurements were post-pro-
cessed to compensate for conductor and dielectric losses
on the microstrip lines. This process however does not
correct for losses associated with the slot including both
conductor and dielectric losses and additional losses on
the cavity walls, plus losses due to the added line lengths.
The remaining differences are thus attributed to these fac-
tors together with measurement errors and are judged to
be within acceptable limits.

Measurements on a different line stub length are shown
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Fig. 9. Comparison of experiment and theory for S», magnitudes with s =
0.7 =10.080 in.. L, = 0.250 in. illustrating the control of the high tre-
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Fig. 10. Experimental and theory for §,, magnitudes withs =0,/ = 0.110
in., L, = 0.153 in. showing the effect of shortening the slot length.

in Fig. 9 again showing good agreement with the theo-
retical results. In this case, the shortening of the stub
length has moved the high frequency comer out of the
range of the measurements. What is interesting to note
about this case is that the low frequency comer of the
response is quite insensitive to this change in stub length.
Also of particular interest is the wide bandwidth of this
transition.

Fig. 10 illustrates the effect of shortening the slot
length. One consequence is reduced coupling in the pass-
band which was also demonstrated in Fig. 6. We also see
in this result. some movement of the high frequency null
due to a shortening of the line stub length.

The final plots, Figs. 11 and 12, show the influence of
the line separation parameter (s) on the frequency re-
sponse. The figures correspond to Figs. 8 and 9, respec-
tively, which have s = 0, showing in general, a narrow-
ing of the frequency passband as s is increased. This is to
be expected since we have now introduced an additional
length parameter which can influence the response through
its relationship to wavelength. Here again, the numerical
model is judged to have correctly predicted the coupler
behavior after the experimental artifacts are considered.
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Fig. 12. The effect of line separation with shorter line stub length: / =
0.080in., L, = 0.250 in. and s = 0.125 in

V. CONCLUSION

A set of integral equations for aperture coupled shielded
microstrip lines has been introduced based on Green's
function integrals and the Equivalence Principle. The as-
sociated dyadic Green’s functions in the form of wave-
guide LSE and LSM modes have been derived which al-
low for a full-wave analysis, accounting for all
electromagnetic interactions of the microstrip—slot cou-
pler, including the capability for multi-layered substrates
and superstrates. By expanding the unknown line currents
and slot voltage in terms of subsectional basis functions
and applying the method of moments together with even
and odd mode transmission line analysis. the two-port
scattering coefficients can be determined to characterize
the coupling behavior.

The frequency response plots shown demonstrate the
utility of the structure as an interconnect. With proper se-
lection of the geometric parameters such as line and slot
widths, lengths, line separation, substrate heights and ma-
terials, the frequency response can be tailored to give the
required center frequency, bandwidth, shape. etc. As has
been shown, very wide bandwidths can be achicved which
makes the structure very versatile. Avoidance ot v1a-holes
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for RF transitions and their inherent limitations by the use
of planar structures to form vertical interconnects. to-
gether with the ability of the model to accurately predict
the coupler behavior as demonstrated by experimental re-
sults, are especially important considerations for design
of monolithic circuits. In addition. although the approach
discussed here uses certain simplifying assumptions about
the symmetry of the structures, the technique can be read-
ily adapted to the general case.
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PREFACE

This dissertation expounds on the thesis that numerical methods and models can be de-
veloped which are sufficiently accurate to enable a microwave engineer to design microstrip-
fed slot devices, without resorting to the empirical or semi-empirical techniques character-
istic of more traditional methods. This possibility is of importance since the traditional
approaches are typically time-consuming and therefore expensive. The advantages of nu-
merical models are widely recognized, not only in the microwave industry, but in many
other fields as well. With the rapid development of personal computers and workstations
in terms of availability and processing power, computer-aided design (CAD) capability is
becoming even more important for the development of technology.

Slots have been used in microwave designs for many years, particularly in waveguide-fed
antenna arrays. Stripline, and more recently, microstrip line has also been used frequently,
especially when there are active microwave components involved. It is now recognized that
combinations of these types of structures and devices offer many significant advantages
and will be needed to meet the requirements for advanced, state-of-the-art systems which
have recently been proposed. Additional changes in technology have created the need
for the ability to analyze structures with multi-layered substrates and superstrates and,

increasingly, there has been a push toward higher and higher operating {requencies. For
these reasons, we have developed the analytical and numerical methods to be presented
here. It will be shown that many of these issues can be addressed in terms of computer-

aided design and a considerable advancement and improvement over previous work in th -



area has been achieved.

In Chapter [, we begin by introducing various historical aspects of the use of slots in
microwave antennas. Through an examination of these devices in the context of present
thinking, we will define the types of problems to be analyzed in this work; specifically,
microstrip-fed slot antenna elements and couplers. The basis for the numerical models will
be formulated in terms of integral equations. Full-wave analysis by means of exact Green’s
functions is used with a view toward application of these methods at high frequencies where
other methods generally fail.

Chapter I will present the derivations of the necessary dyadic Green’s functions which
will be used throughout the remainder of the work. The approach will use a ‘field expansion
method’ in terms of vector wave functions which will be explained and defined. The method
of scattering superposition will be used and a method, not previously presented for this
approach, employing impedance boundary conditions and field matching proceedures will
be developed. The entire approach is in contrast to ;he more widely used, and perhaps
more familiar, ‘vector potential method’. Some comparisons to and deficiencies with past
usages of the latter approach will be pointed out. To further illustrate the differences, the
method of scattering superposition with impedance boundary conditions as applied to the
vector potential method will be illustrated by example in the appendix, since even for this
method, there are significant advantages that have not previously been presented.

The application of the method of moments to the integral equations is detailed in
Chapter III. The treatment will be generalized to include variations on the main thrust of
the work, to show how slots and lines can be modelled with arbitrary orientations relative
to each other and the shielding structure. Although the applications discussed in later
chapters impose some simplifying assumptions on the geometry, the material here lays the

groundwork for further extensions to the work which may be implemented at a later date.
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Also included in Chapter III is some discussion of mathematical relations and programming
techniques which have been used to greatly reduce the computation time for generating
the required matrix elements.

Several applications are introduced in Chapter IV. This chapter is devoted to the
discussion of problems which can be reduced to two dimensions. The first part demon-
strates the procedures for treatment of layered structures through analytical field matching
throughout the layers. Applications discussed include the evaluation of transmission line
parameters for microstrip lines and the visualization of field behavior for both shielded
strip and slot lines. The accuracy of the technique is verified for microstrip by comparing
to data available in the literature and a commercial computer-aided design package. The
second part deals with the development of a model for scattering from vertical wires in
waveguides. For small diameter wireé, the model can be greatly simplified compared to
approaches used in the literature. The validity of the model is verified by comparison to
experimental measurements. The motivation for the work in this chapter is to support the
modelling of applications discussed in Chapter VI.

Chapter V presents the analysis of microstrip-fed slot couplers. Expressions for the
S-parameters which characterize their behavior are derived based on network analysis of
even- and odd-mode excitations of the structure. The procedure is referred to as the
‘Standing Wave Method’ and involves an interpretation of the method of moments solution
for currents on the microstrip lines. This has become a sort of ‘standard’ #pproach to a
variety of similar problems but has some drawbacks as will be pointed out. Also presented
in this chapter is a discussion of the fixture design and experimental results which verify
the accuracy and validity of the method.

Chapter VI introduces the radiating slot or antenna element problem by deriving an al-

ternative approach for finding network parameters. The method is based on an application
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of the Reciprocity Theorem and is here referred to as the ‘Reaction Theorem Method or
‘Reaction Method’. The requirement for a new approach is a consequence of the limitations
of the Standing Wave Method discussed in Chapter V. Historically, the Reaction Method
was introduced many years ago for application to simple waveguide-fed slots; however, for
our use, the structures are more complex and as a result, the application of the method
is also. The details of how the technique is applied are discussed in this chapter, together
with experimental results which demonstrate the capability of the numerical methods.

In Chapter VII, a variation of the radiating slot is explored. In this case, a slot of
finite thickness is introduced. Instead of simply making the slot thicker. which can also be
modelled by this approach and has been treated through more approximate methods in the
pa.st,‘the case where the strip-fed slot couples to the radiating slot through an intervening
section of rectangular waveguide is presented. In this case, we find the important result
that the slots can be detuned to extend the bandwidth of the element.

The dissertation concludes with Chapter VIII which summarizes the techniques devel-
oped. The points where the effort is judged to have succeeded are outlined as well as where
the numerical models fail. In the latter cases, the suspected causes for deficiencies in the
approach are discussed along with recommendations for remedies. These issues form the
basis of suggestions for the extension of this work and exploration of related areas. Specif-
ically, the treatment of a ‘T-bar’ fed slot is discussed. This is a slot fed by a microstrip
line terminated in a T-junction, whose branch arms are short-circuited to t‘hve cavity side
walls. A similar device has been previously shown to provide extended bandwidth for
cavity-backed aperture antennas.

A few final comments about the mechanics of this work: A number of programs were
developed for the numerical modelling and analysis of the structures discussed as well as for

post-processing the data. These programs were written almost exclusively in FORTRAN
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and run on a variety of machines, including the University of Michigan IBM 3090/600E
mainframe and IBM RSG000 workstations for the numerically intensive operations. A
majority of the remaining processing was performed on HP/Apollo workstations, primar-
ily a DN2500. The manuscript was typeset using [ATEX text processing software with
macros developed at the University of Michigan for dissertation formats. Rectangular two-
dimensional plots used throughout were produced in PostScript by a menu-driven plotting
program developed jointly by the author and Dr. Leland Pierce. Smith Chart plots were
produced by similar programs developed by the author. Most of the drawings were gener-

ated using either XFig or directly with PostScript and incorporated in PostScript form.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The use of slots in microwave circuits can be traced back at least as far as the 1940’s
to the rescarch efforts associated with World War II. This is particularly true in antenna
designs where slots have been used extensively as the primary radiating elements, but also
in feed networks as couplers. With the advent of monolithic microwave circuit technology
and also for more traditional construction methods, transitions from microstrip to slotline
are also becoming increasingly important in the design of microwave and millimeter-wave
circuit elements. Two such transitions can be combined to form interconnects between
lines and by using lines on opposite sides of the slot plane, a vertical transition can be
made without the use of via-holes. The basic structure, in a variety of forms, has a wide
range of applications to both broadband and narrowband connections and can be used
as a building block for interconnects [35], phase shifters and inverters [30], directional
couplers (80], filters [50], and many other microwave components [2]. Whether used as a
coupling element between guided wave structures or to free space, both applications require
accurate analysis and design tools in order to minimize costly, time-consuming empirical

techniques and rework.

Many papers have been published on the design of slotted waveguide antennas over

the past forty-five years including “classics” by Stevenson [71] and Oliner [57], among



others [51, 4, 5]. Elliot and his associates have contributed many important works on the
analysis and design of slotted rectangular waveguides and arrays (22, 23, 58, 70, 40]. More
recently, slots which are fed by microstrip or stripline have received attention (59, 62, 67
due to advantages in cost, size, weight and conformability, among others. The development
of variations and new analytical techniques is ongoing (16, 8, 17, 87].

Numerous investigators have also presented approximate analytical techniques to char-
acterize these types of structures with applications to circuit elements (12, 49, 50, 41, 2J.
For example, a quasi-static analysis has been provided in [89], however, this may not
be sufficient, particularly for higher frequencies where end effects and higher order mode
coupling become more significant. A more recent paper [66] presents a transmission line
analysis with excellent results, however, similar shortcomings would be expected. Hybrid
methods which combine two-dimensional full-wave analysis with transmission line theory
as in [56], should certainly extend the validity of such models, but still may not account
for all discontinuity effects. Exact methods for microstrip-to-slotline transitions have only
recently begun to appear, such as the case reported in [91] which has applications to open
structures.

For couplers, practical considerations suggest that a shielding structure will almost
always be present. In fact, in many cases, a shielding structure must be introduced in
order to reduce crosstalk and to control undesirable coupling to other structures in the
package (for example, DC control li‘nes in phése shifters have been known to“unexpectedly
become part of the microwave circuit). For antennas, cavity-backed slots have been used
for similar reasons; for example, to reduce internal mutual coupling on the feed network
side of an array. This often both simplifies the design process and improves the achievable
performance. For instance, it has been shown that the internal isolation of the slots in

phase steerable antennas can significantly improve scanning performance {47].



For these reasons, the slots studied here will be enclosed by a cavity at least on one
side. The dimensions of the cavity can have a strong influence on the electrical behavior
of the slot. In some cases, these dimensions are used to control the slot characteristics and
in others they are used to suppress undesirable effects. In practice, slot antennas are often
covered by a protective dielectric sheet. The capability to handle these cases will also be
included in the analysis discussed here by employing the exact Green's function for an infi-
nite covered ground plane. This function will be evaluated by a combination of numerical
and analytical techniques as described in [36], however, the details will not be reiterated
here. Also included is the capability to model multi-layered substrates and superstrates
which is becoming increasingly important for monolithic circuits and for systems which
may combine many circuit functions through three dimensional integration over multiple
layers.

An example of a hypothetical structure which employs numerous transitions of the type
to be analyzed is illustrated in Figure 1.1. Shown is a slot antenna array loosely based
on a conventional waveguide fed slot array. Conventional arrays typically use waveguide-
to-waveguide slot coupling to feed slotted waveguide branch lines. Here we assume the
individual slots are fed by microstrip-to-microstrip slot couplers as illustrated by the lowest
three layers of Figure 1.1. Each radiating slot is internally isolated by a cavity which may
contain active devices for power generation for example. The feed network may contain
additional active sources coupled By combinations of microstrip and slotlines and may
be built on multilayered substrates for integration of additional antenna functions, such
as phase control, frequency conversion, detection, etc. This example illustrates just one
application with features drawn from topics being considered in the current literature which

also verifies the need for more accurate and advanced analysis and design tools for the types

of structures to be considered.
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Figure 1.1: A hypothetical integrated antenna employing numerous slot coupling struc-
tures.



1.2 General Description of Analysis Approach

For coupling through slots, the distribution (shape, amplitude and phase) of the ficld
in the slot is vital to the determination of the slot coupling behavior. For radiating slots,
this distribution has been investigated by Elliott (23] and others [59, 67, 70] by treating the
case of an isolated slot in an infinite ground plane. With the Green's function for a half
space and the fields in rectangular waveguide, they were able to write an integral equation.
The’equation was solved by the Method of Moments to determine the field distribution.
Subsequently, the scattering parameters of the slot were found by an application of the
Reciprocity Theorem.

The same approach will be used here for radiating slots, referred to here as the *Reaction
Theorem Method’ or ‘Reaction Method’; although the presence of the strip and. especially
for microstrip, the inhomogeneous filling of the rectangular cross section precludes the use
of simple rectangular waveguide field solutions. In previous works [67], the presence of
the strip has been neglected by assuming a similarity between the strip modes and empty
waveguide modes. This not only places certain restrictions on the position of the strip
between the ground planes but also does not take into account the influence of the strip on
the fields near the slot. Here, the formulation will be generalized to include not only the
case of stripline where the cross section is homogeneously filled, but also the possibility of
multiple layer substrates and superstrates, allowing microstrip or more vcomplex structures
to be analyzed. This will require the solution to the two-dimensional ‘waveguide’ problem
in addition to the three-dimensional ‘cavity’ solution which is the primary focus of this
work. The relative position of the strip within the shield will also be unrestricted which
has not been the case in some of the previous works.

For couplers, the same shielded strip substrate/superstrate capability will be included.

However, in this case, an alternative method will be used to extract the coupling parame-



ters. This will be referred to as the ‘Standing Wave Method’ and is based on a more detailed
modelling of the strip current. The scattering parameters are extracted from the positions
of peaks in the strip current standing wave pattern, evaluated for even and odd excitations
of the structure. Although the Reciprocity Method is more general, the Standing Wave
Method is somewhat simpler and therefore may be more convenient.

In many cases the thickness of the ground plane is very small and the slot can be
considered infinitesimally thin. However, for both types elements it may be necessary to
make a ‘thick’ slot for structural purposes or heat dissipation, for example. In fact, we
have found that this feature may be used to another advantage which is to broaden the
operating bandwidth of the element. These cases can be treated by the same techniques
and will be included in the formulation.

Highly accurate models are needed to reliably design these types of elements. There-
fore, a full-wave space-domain integral equation approach solved by the Method of Moments
will be used as opposed to quasi-static, modified quasi-static dispersion analysis, or other
similarly limited techniques. This approach is preferred since we can find exact Green's
functions for the structures described which account for all possible electromagnetic inter-
actions. It also allows application of these techniques to problems without restriction as

to the size of dimensions relative to wavelength.
1.3 Integral Equations and Notation
In this section, appropriate integral equations will be derived. One of the primary

purposes of this section is to introduce the notation and conventions used throughout the

text and some of the fundamental equations and relationships which will be needed.



1.3.1 Dyadic Green’s Functions for Physical Quantities

It is well known that time harmonic electromagnetic fields must satisfy Maxwell's Equa-

tions ( e’*! time convention assumed and suppressed throughout):

Vx E=-juuH (1.1)

Vx H=17+ jwe

™l

(1.2)

where the constitutive relations D = ¢E and B = uH have been assumed. Also, J is

defined in terms of the movement of electric charge with time by the Continuity relation:
V.-J=—jwp (1.3)

Understanding these to be the governing independent equations, by taking the divergence

of Equations (1.1) and (1.2), it is found that the fields also obey

p
€

V-E

(1.4)

=
I

V-H=0 (1.5)

That the fields must satisfy the Helmholtz wave equation is readily derived by taking the

curl of Equation (1.1) and substituting (1.2) into the result, yielding
VxVxE-kE=—juul (1.6)
where k% = w?pe. Similarly, it can be shown that H must satisfy
VUxVx H-K¥H=VxJ (1.7)

Dyadic Green’s functions can be introduced to represent the solutions to these equations
for infinitesimal current sources. For instance, Gej will be used to represent the solution

to Equation (1.6) in the form

(]
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Here, E®) is the field resulting from an 7 directed current source

e _ _S(R-R).

and so forth for the § and Z components so that
VXV xGey-k2Gey = 16(R - R (1.10)

where

I

6(R- R) = —jupll®s + ¥ 4 J1¥3) (1.11)

Likewise, for the magnetic fields, the dyadic Green’s function must satisfy
VX VxGmy-k*Cmy =V x[I6(R- R (1.12)

where émj represents
én” = —-jw;t[ﬁ(z)i + 7Y ﬁmé]

j+ (1.13)

From Equation (1.10) and (1.12) it is seen that (:;ej is related to (:}mJ by
VXéeJ=GmJ (1.14)
VxGmy= I6(R- R)+kGey (1.15)

The terminology and notation which we use to refer to these functions is that ée] is
the dyadic Green’s function of the electric field type (subscript ‘e’) for an electric current
(subscript ‘J’). Similarly, émj represents the dyadic Green'’s function of the magnetic field

type (subscript ‘m’) for an electric current.
1.3.2 Dyadic Green’s Functions for “Dual” Quantities

The Duality Principle entails the proposal of a system of equations where

Vx E=-jupH-K (1.16)

V x H=jweE o (117)



K representing a fictitious magnetic current. This current in introduced as a matter of
convenience by which we can represent tangential electric fields in terms of equivalent
magnetic currents according to the Equivalence Principle. We then can take advantage of
the duality between these and the “physical” quantity equations to generate solutions to

the equations (32, pp.98-116]. The Helmholtz wave equations for this system are

UxVx H-kH=-jweK (1.18)
VxVxE-KE=-Vx K (1.19)
Using the representation
Gmk = [A®z + AY§ + A3 (1.20)
(:3m|< satisfies
VXV xXGmk - k*Gmk = 6(R - R') (1.21)

where the inhomogeneous term represents

6(R - B') = —jwd K7z + KWy + K3 (1.22)
with
§(R- R
g - NE-R), (1.23)
Jwe

and so forth for the § and z components. Similarly, éeK satisfies

VxVxégK—k%:}eK:Vx I§(R- R (1.24)

where éeK represents
Gek = jweE®z + E¥j + E3) (1.25)

Here it is evident that
V x Gmk = Gek (1.26)

Vx Gexk = I6(R - R') + k*G m T (1.21)
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The notation and terminology are the same as before with the magnetic current represented

by the subscript ‘K’

1.3.3 Integral Solutions to Helmholtz Equations using Dyadic Green’s Func-

tions

Once Gey, Gmy, Gek and Gmk are known for a particular geometry and set of bound-
ary conditions, it is possible to find the corresponding field quantity for any distribution of
electric or magnetic current. The relationship to be used can be derived from the vector-

dyadic Green’s second identity:

[//[F-VxVxé (VxVx P)-QJdv
—/L{[fszx?]-(3+(fzxﬁ)-Vij}dS (1.28)

To find the integral solution to
VxVxE-kKE=-juul (1.29)

we use the electric dyadic Green'’s function with an electric current source, Ges. By letting

P= 6 = éeJ in Equation (1.28), we find that

E(R) = —]wp///.] (=§ R)dV’
—/ [Ax V' x E(R)]-Ges(R', R)

"+ x B(R))- V' x Ges(R', R)} dS’ (1.30)

Note that in the process of deriving this result, the notation of R and R’ has been inter-
changed in keeping with our conventional usage of R’ as the source position vector and
R as the observation position vector. (Primes throughout will be used to indicate source

coordinates.) Using the vector-dyadic identity of triple products:

Yy=-b-(@x¥ =(axb)-c T (1.31)

Q|
—_
O"l
ﬁll
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Equation (1.30) can be re-written as

F(R) = —]up///J (R) R’ R)dV’

+//5 [V’ x E(R')]- (4 x Ges( R, R)]

~[ax E(R)]- [V x Ges(R’ )]}dS’ (1.32)

In our application, ée] is used in a cavity with impedance walls representing the source
layer. It is assumed that the region outside this layer is bounded by the impedance walls
and a surface which requires either the radiation condition or the Dirichlet condition for
the E and (z}e functions so that the [ax | terms in Equation (1.32) evaluate to zero on
the boundary. We also assume that this region contains no sources. If such is the case, the

surface integrals of Equation (1.32) disappear and we are left with
E(R) = -qu// Ges(R, R (f{)dV’ (1.33)

Here, the symmetry property of the dyadic Green's function:

ol

e)(R,R) = {éeJ( R, R)}T (1.34)

has been applied ( ‘T indicating ‘the transpose’), which can be shown using dyadic-dyadic
Green's second identity as outlined in [76] under the assumptions stated above.
We can find the integral solution to
UxVx H-KH=Vx]J (1.35)

by returning to Equation (1.28) which with P = H and 6 = GmyJ, reduces to

// &mi( R, R)- J(R) V" (1.36)

using assumptions similar to those for the E fields with the appropriate radiation or Neu-

mann boundary conditions enclosing the impedance walls. Alternatively, Equation (1.36)
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can be obtained directly from Equation (1.33) by using

H(R) = —J—Vx E(R) (1.37)
Jwi
and
V xGej=Gmy (1.38)

The procedure for the magnetic currents is exactly the same resulting in
H(R) = -jwe // Gmk(R,R')- K(R)dV’ (1.39)
and

R) = _// Gek(R,R)- K(R)dV’ (1.40)

1.4 Formulation by Application of Boundary Conditions

We now derive a set of integral equations by enforcing the boundary conditions for the
problem. To begin, we replace the slot openings in each region by a tangential, conductor-
backed equivalent magnetic current in accordance with the Equivalence Principle as illus-
trated in Figure 1.2 (all conducting walls will be assumed to have perfect conductivity).
The problem is thereby separated into independent regions, coupled together by the mag-
netic currents as shown in the figure which also illustrates the treatment of finite slot
thickness. Since K = - x E, using the same current on either side of the slot openings
enforces the continuity of the electric field in the slot.

In addition to the boundary conditions at the cavity walls, slot walls, ground plane
surface and dielectric interfaces which will be satisfied by finding the appropriate Green's

functions, we must also satisfy the following boundary conditions:

=int
E

=£ (1.41)
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Figure 1.2: Cavity layout and equivalent magnetic currents for a radiating slot.

on the microstrip;
Ax A —ax B = H (1.42)

at the slot opening to the cavity; and

- ﬁslotu

.-
i X 30

=H (1.43)

-0 X

at the slot opening in the dielectric covered plane. The £ function is a vector describing
the source and is normally set to zero except when a gap generator is used to excite the
line!. The H function is used in Equation (1.42) when the slot is excited internally?,
or in Equation (1.43) when the source is external®>. When £ is set identically to zero,
Equation (1.41) enforces the boundary condition that the tangential electric field is to be

zero on the strip. Equations (1.42) and (1.43) enforce continuity of the tangential magnetic

fields over the slot openings when H is set to zero. The ‘v’ and ‘L’ subscripts will be used

'The gap generator is used only for the coupler problem as a mechanism for even and odd excitation of
the lines.

*The right hand side will be set to the incident H field of the dominant strip mode for the Reaction
Method formulation.

3The right hand side can be set to an incident plane wave field for the analysis of the slot as a scatterer
or receiving antenna, however, this problem will not be discussed further in this work.
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throughout to indicate the upper and lower slot openings for the general case of a ‘thick’

slot.
The electric field, Emt, in the interior of the cavity can be written as an integral in
terms of the electric and magnetic currents in the cavity using the relationships outlined

in Section 1.3.3:

E™ = -jw#c//t Getine s dS'—//I ‘ Gekine - Ko dS' (1.44)
strip sloty,

Similarly, ™ anywhere in the cavity is given by
ﬁint

=/ Gmiine I d5'—jw€c/ Gmk,n - K dS’ (1.45)
strip sloty

For a thick slot as shown, the H field in the slot can be written as

B = Jwe, // émK.slot - K dS' - jwe,/ éml\'.slot' Ky dS’ (1.46)
sloty, sloty

The external H field is given by

ﬁ“‘ = jwfd/ émK,ext. : I_(-U ds’ (1.47)
sloty

Using these expressions in the boundary conditions given by Equations (1.41-1.43), we

arrive at the integral equations for the problem:

_jwpc// i x Gy -3, dS' - // A x G- K dS'= £ (148)
strip

sloty,

. s=slety <" . . =sloty —_—
// i x Gogine - 3o dS' = ]wec// i x Grofeine - Ki dS'
strip sloty

. . msloty ’ . . z=sloty ) -
—jwe, // X GmKaor” KL 45’ + jwe, // i X GmKaeio - Ku dS' = H
slot sloty
(1.49)
. - =sloty - . . =sloty
Jwe, // t X GKaiot - KL 45" - jwe, // i X GmKaior* Ku dS’
sloty sloty

=sloty

- ]wq// X GKex Ku d5'=H
sloty

== (1.50)
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where the superscripts on the dyads imply evaluation of the dyad at the indicated location.
Throughout this work, Equation (1.48) and similar types will be referred to as an electric
field integral equation (EFIE) since it is derived from a boundary condition on the electric
field. Similarly, both Equations (1.49) and (1.50) are magnetic field integral equations
(MFIEs).

Since each of Equations (1.48-1.50) involve the (ax | term, from here on it will be
dropped with the understanding that only the tangential components of the various dyads

are used. Equations (1.48-1.50) can then be written:

._.stnp - _strlp — -
_JU/J'C// eJml Js ds' - // eKmt' KL ds' = € (151)
strip loty
_:lotl_ - _Jlotl_ =slot =
// Grmyin'Js 45" - J“’// [‘c mK.int T €sGmi slot} K dS’
strip slotp
lot -
+  jwe, // "’,:,,f,lm Ky dS'= H (1.52)
sloty
lot _Jlol =slot —
Jw(’ // —’X‘:lgslot I\L ds' - ]w // [63 mlgslot+€dcml(\jcﬂ] Ko ds' =
sloty sloty

(1.53)

where all the terms involving Z are excluded*. The unknown currents J,, K; and Ky can
have only tangential components on each of their respective structures, we therefore have
six scalar unknowns. Since only the tangential components of G are used, Equations (1.51-
1.53) represent six scalar integral equations which are sufficient to solve for the unknown

currents.

For convenience of notation, we redefine Equations (1.51-1.53) as

/ &“”.J‘, dS’+// E;( K, dS' = £ (1.54)

strip sloty

// g 5, d5'+// é‘ e dS'+// G Ry ds'= R (155)
strip loty sloty

/ —(53) dS’+// v dS'= H (1.56)
alotL sloty

*Throughout most of this work we will consistently use # =  where # will be orthogonal to the currents

involved. Therefore, no integral equation or Green’s function evaluation will involve the # components
which will subsequently be ignored.
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=(11)
G(

=(13)
G =

=(31)
G

=(33)

G

=(35)

G
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=strip

—jwuccel.im (1.57)
=strip
eKint (1.58)
:-‘J[Oll_
"mJint (1.59)
. =slot =slot}
—Jw [CCG mK.int + CSGmK,slot] (160)
. =slot
= chSGmK.slot (1'61)
=sloty
= Jwe, mK slot (162)
. =sloty =sloty
—jw &G mi sl T €4G mK ext (1.63)

For the radiating slot problem, it remains to find the various dyadic Green's function

components, solve the equations for the unknown currents, and interpret the results to

obtain parameters which characterize the slot’s electrical behavior and properties.

The coupler problem differs only in the final equation. Equation (1.56) which involves

the Green'’s function for the half-space is replaced by an EFIE as follows. The field on the

upper slot is now contained by another cavity which may also have a conducting strip as

illustrated in Figure 1.3. Under these circumstances, we then have the following integral

equations:

_strxp,_

~jon [[ G
stripg
// _:lol[_
stripg

/ /' lotu
stripy
_atrlpu
—jwp
strtpu

-Jp d§'

-Jg dS*

Jy dS'

Jy dS'

-+

/ _ﬂrlPL .KL dsl - g (164)
lotL
=slot =slot -
slot
=sl — -
Jwestot / / Gow Kyds'=H (1.65)
sloty
| l
Jw// [t’u ;:}((I + €500t o‘u] v dS’
sloty
=sl
JWestor // Col . KLdS' = (1.66)
sloty
// trxpu.R-U ds' = 8‘ (1.67)
sloty

The subscripts U and L here indicate whether the source is associated with the upper or
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Figure 1.3: Electric and equivalent magnetic currents for microstrip-to-microstrip coupler
with a ‘thick’ slot.

lower cavity strip or slot opening.






CHAPTER II

DYADIC GREEN’S FUNCTIONS

In this chapter, the dyadic Green’s functions needed to evaluate the integral equations
are derived. The method used in all cases is a ‘field expansion method’ using Vector
Wave Functions (VWFs) as opposed to the perhaps more conventional, ‘vector potential
method’. Some of the Green's functiohs derived will not be needed in the later analysis
but are included in this chapter for completeness.

The use of vector wave functions with dyadic analysis is presented as an alternative.
[t has the advantage of producing the complete dyadic Green's function in one solution.
The process also may involve a reduced number of simultaneous algebraic equations which
must be solved for unknown coefficients as compared to the vector potential method. The
disadvantage of the approach is that it requires dyadic analysis which may be unfamiliar,
although it is quite straightforward.

The field expansion approach using VFWs has been extensively detailed by Tai over an
extended period of time {72]-(79]. Nevertheless, the method is not widely employed which

may be due to several factors including:

1. Early development of the technique involved the use of the vector wave functions
designated L, M and N. As will be shown, the M and N functions have clear, physical

interpretations, however, the interpretation of the L functions is somewhat obscure

18
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and its handling, at times, somewhat difficult. Consequently, the approach may have

been avoided.

2. Anoversight in [72] but corrected in [77], stirred up some controversy which may have

caused some to avoid the method (see [11] also for details and a list of references).

The current method is more mature, having evolved to a stage where the previous difficul-
ties have been eliminated. Problems can now be solved in a methodical and straightforward

manner with no difficulties in physical interpretation (the need for the L functions can be

avoided).

2.1 Impedance Boundary Conditions for Layered Structures

It can be shown that a plane wave in a homogeneous region exhibits a constant wave
impedance defined by the ratio of a component of the electric ﬁeld to an orthogonal com-
ponent of the magnetic field, both transverse to a given direction [6, p.142]. A ‘plane
wave expansion’ of the field is convenient in many problems due to this property. For
many canonical structures, the expansion itself is unnecessary since wave impedances can
be derived directly. For instance, modal wave impedances for homogeneously filled rect-
angular waveguides are well known. In somewhat more complex structures such as those
treated here, the boundaries are still always planar owing to the rectangular geometry. As
a result, wave impedance surfaces can be chosen to conform to the boundaries and the
wave impedance concept becomes a vehicle through which the boundary con&itions can be
applied in a simple way.

The dyadic Green's functions for all of the structures treated here will be derived using
this approach. As the Equivalence Principle states, the fields in a given layer depend
only on the fields at the boundaries and internal sources. We therefore can derive the

Green'’s function for the source layer alone with the other layers represented by impedance
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boundary conditions applied at the layer interfaces. In this way the Green’s function can
be generalized to represent any number of layers above or below the source layer. The

approach greatly simplifies the analysis of the total structure by allowing the fields to be
found first for the source layer alone. Once they are found, expressions for the fields in
the remaining layers can be immediately written in terms of the homogeneous solutions

by matching tangential components on the boundaries. As in [13], this process is greatly
facilitated by expanding the solutions in terms of ‘Longitudinal-Section Electric’ (LSE)

and ‘Longitudinal-Section Magnetic’ (LSM) fields because the field matching procedure
can then be done on a one-to-one basis. (An individual mode on one side of an interface
matches an identical mode on the other side exactly, with an appropriate coefficient.)
The impedance boundary conditions, as used here, are not to be confused with the ap-

proximate impedance boundary conditions discussed in (63, 64]. Both usages may be exact
under certain circumstances. The present usage is in the context of the modal impedances
of various structures and is exact under the assumption of perfectly conducting walls where
applicable. For example, the approach is exact for a closed, perfectly-conducting rectangu-

lar cavity with uniform side walls. A counter-example is a cavity with perfectly conducting

side walls, but which is open on one end: terminating the open end with the impedance

of free-space as proposed by some, is not exact since this condition is not exact. For all

structures studied in this work, the geometries are such that the representation is exact to

the extent that perfectly conducting walls can be assumed.
In our structures, the impedance boundary conditions require the fields to satisfy
i-E
= = 2.1
=R (2.1)
(2.2)

For electric currents, this becomes
Jn or
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Similarly for the equivalent magnetic current Green’s functions, the impedance boundary

conditions are;

z

.G ‘ .G ‘
—= eK = jwen or t——%— =17 (2.3)
¥-Gmk -V xGex WH

For simpler notation, 7, will be the wave impedance associated with the LSE modes and
7m Will be used for the LSM modes. Furthermore, 7. and 7}, will denote normalization to

the intrinsic modal impedance in the layer and are defined as

K ziTlei

f]ei - ziTlei (2.4)
wp
WENm;

T.’mi = —krz'ﬂ' (23)

where i is an index associated with the it* layer.
We can then evaluate the impedance conditions using transmission line analysis and

wave impedances for the various layers as illustrated in Figure 2.1. The impedances on a

L34 . «

Figure 2.1: Impedance boundary condition representation of a multi-layered structure.

given layer’s upper boundary are found by the transmission line equation

Fe = ki [")e(.'-x) +jta.nk,(,-_l,l(.-_,)] (26)
kei-1) |1+ Jfle(i-1) tan kyimn)li-1)
P €iky(ioy) [f)m(i-x) + jtan kyi_y)li-y) ] 27
' €ii-1)kzi | 1+ J7m(i-1) tankyionyl(i-1)
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where the index i is iterated from the top layer through successive lower layers to the layer
of interest with /; the thickness of the i** layer. (We have assumed that p, = 1 throughout

this work.) Similarly, for the lower layers, since the wave impedance is negative,

. k. [ fle(iﬂ.) = jtank, iyl } (28)
Kaigry | 1= I0e(ivny tan koipnliivn
P 6K(i41) [ Mm(i+1) = J L0 K (ig1)l(ig1) } (2.9)
™ i)k [ 1= Jm@er) tan kgl

where here the iteration proceeds from the lowest layer upwards.

2.2 Dyadic Green’s Functions for an Infinite Covered Half Space

We begin with the derivation of the Green’s function for an infinite covered half-space.
The method of solution closely parallels that of the other cases, except for the boundary
conditions, so that by covering this case in greater detail some of the steps for the later
cases may be omitted. For completeness, we also include the solutions for electric currents
in this section, although this function is not needed for the characterization of the slot. It

is, however, widely used in the analysis of open microstrip and microstrip patch antennas.

2.2.1 Magnetic Current

The dyadic Green's functions for the slot problems use a magnetic current ( K) as the

source. They are the solutions to the dyadic Helmholtz equations:

V XV xGmk - k¥*Gmk = 16(R - R) (2.10)
VXV xGek - k2Gek = V x I6§(R - R (2.11)
The key to eliminating the need for the L vector wave functions, and thus simplifying the

analysis, is in the choice of which of Equations (2.10) or (2.11) to solve first.

The functions L, M and N form a complete set of solutions to the homogeneous equation
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V x Vx F—k%F = 0. They are defined in the general forms

L = vy (2.12)

N o1 -

M = Vx%:;:;VxN (2.13)

_ 1 R 1 _

N = -VxVxV¥zi;=-VxM (2.14)
K K

where ¥ is a scalar function solution to the equation V2¥ + x?¥ = 0 chosen to satisfy the
boundary conditions of the problem; Z; is a unit vector called the ‘piloting vector’; and
is the separation constant k2 = k2 + k2 + k2.

Following the Ohm-Rayleigh method as described by Tai [72], we can find the particular
solutions by expanding the right hand sides of (2.10-2.11) in terms of the eigenfunctions
L, M and N with unknown vector coefficients; deriving the values of the coefficients using
the orthogonality properties of the VWF's; expanding the dyadic in terms of the same
functions with scalar coefficients; and enforcing the equations by performing the derivative
operations. From Equations (2.12-2.14) it can be seen that only L can have a non-zero
divergence and since the right hand side of (2.11) has no divergence, the L function is not
needed in its solution. We therefore find the solution of (2.11) first. It can also be shown

that (=}mK and éeK are related by

VXészéeK (215)

V x Gek = I6(R - ') + kG mk (2.16)

so that émK can be found from (2.16) once (=}eK is known. This is the essence of the
method described in [77).
As with the vector potential method (see Appendix C), we begin as if the space were

infinite and homogeneous. We therefore expand the field in terms of VWF's for free space

defined by

¥ = e-ilksztkyytksz) (2.17)
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To simplify later application of the boundary conditions, we choose the piloting vector to

be z. The orthogonality properties of these functions are then

// M(kz, by ks) - N(=KL, =k, =k,)dV = 0 (2.18)

J[ ] ey ) ¥ ke 8 -k @V

J[] Stk k) Rk -k k) av
v

(27 )3(k2 + k2)8(kz — k3 )8(ky — ky)o(k. — K)) (2.19)

where the volume of integration corresponds to the entire space.

To find éeK we first let
V x [TJ(R - R’)] = /JJ dk,dk,dk, [M(kz, kg, k,) A + N(kp ky k) B](2.20)
—oo/ =0/ ~00

By taking the anterior scalar product of Equation (2.20) with M(—k’r.—-k’y‘ -k%) and
N(-k, -k}, —k) respectively, and integrating throughout V', we can determine the un-

known vector coefficients A and B through the orthogonality properties. The results are

kN'(=kz, —ky, —k.)

e e (221)
- KM(=kg,—ky, —k.)
B= e+ ) (222)

in which the primed functions are defined with respect to (z', 3, 2’), the site of the source

at R = R'. Thus,
= - kdk.dk,dk,
\%) - =
x [To(R - R)] @) /JJ W)
: [M(k,,ky, k)N (= ks, —kyy —k2) + N(kz, kyy k)M (= k7, —ky, —k2)| (2.23)
Now we let

B /JJOO rdkdk,dk,
eK = 21r k2+k2

- [aM (ke by kI (=, ., =k2) + DN ke, by, ko) M (=kz, —ky, TE)| (224)
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with @ and b unknown scalar coefficients, and substitute into Equation (2.11) yielding

a=b= ! = ! (2.25
Y R ) )

The integration with respect to k, in Equation (2.24) can now be carried out in closed

form by applying Cauchy’s theorem:

& jk /i/“’ dk dk, ) B
T TS k
e 872 ool -co ks (K2 + K2) [M(£k,)N'(Fk.) + R(£k, )M (Fk,)
222 (2.26)
where k, = |/k? — k2 — k2 (note that x becomes k). As indicated, the top sign applies

when z > 2’ and the bottom sign when z < z’. This condition is a result of requiring
the solution to satify the radiation condition at infinity which determines whether the
contour of integration is closed in the upp-:: or lower half-plane. Also, from here on it will
be understood that the primed functions, M’ and N', have —k., —k, or —k, arguments,
unless indicated otherwise.

We now can write émK by performing the operations indicated by Equation (2.16).
This can be done almost by inspection using the relations between M and N from Equa-
tions (2.13) and (2.14) except for the discontinuity which occurs at z = z'. As in [77], it
can be shown that these relations apply but an additional term is needed to account for

the discontinuity at the source; specifically,

= - _ik dk.dk, [ . o
VxGe = T 8x? / ,/ ko(k2 + k2) [M(:HQ)M (Fk:)+ N(xk:)N (;k,)]
+16(R- R 227 (2.27)

where the transverse idemfactor, I, = £% + §j, appears in this case as a result of the
combination of the choice of the piloting vector  and the partitioning of the z dependence.

Notice that the singular terms come from the second derivative of

e~ike(a=5) 5 5 o
f(z) = (2.28)

eiks(z=2) 5
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or the first derivative of

g9(z) =

(2.29)

af(z2) . {‘e—wz-f) > 2
= jk,
0z

elke(2=2") z<

which is

2 e~Ik(z=2) 55
ag(zz) 8612(22) -2 { ~ 2jk,b(z - 2') (2.30)

erka(z=2') g

This term has sometimes been overlooked in the potential function method as well, as

discussed in Appendix B. Thus, Equation (2.16) leads to

i o dhdk,
Gk = _k_zza(R R') 81r2/m/_°°k L2)

- [WCEROM (F5,) + N(2, )N’(q:k,)] 222 (231)

We now divide the infinite space into layers surrounding the source point above and
below. The layered structure can be represented by impedance boundary conditions for

the source layer as previously described and as illustrated in Figure 2.2. We then apply

Z=C nUJ <

& = E‘I B R R
L, "L‘l !

R

<

Figure 2.2: Layered infinite space as represented by impedance boundary conditions.

the method of scattering superposition to this case by letting

= =P =S
G G K+GeK (‘
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). . . . . .
éeK is the particular solution found above for the infinite space which may be referred to

. =(5) .
as the primary term, and G - the secondary or scattered fields - is made up of solutions

to the homogeneous equation as follows:

g9 _ /J dkdk,
ek = s:ﬂ w k, k2+k2

[M( DAY + M(=k;)A™ + N(k, )B*+N(-k,)B‘] (2.33)

where AT, A7, B* and B~ are unknown vector coefficients to be determined. The physical
interpretation of this procedure is that the t coefficients represent the waves traveling in
the £z directions as a result of reflections, i.e., scattering, from the interfaces. In evaluating
the boundary conditions, it is also useful to find (=}m|< through V x éeK = k2G mK Which

is the source-free version of Equation (2.16). Hence,

& // dk,dk,
mKk T Tgg2 k7+k7)

-[N(k,)A + N(=k,) A~ +M(k,)B++M(—k2)B'] (2.34)

Note that additional boundary conditions need only be imposed at the newly introduced
interfaces and not at the source, since the primary fields satisfy all boundary conditions at
the source and the secondary terms are continuous there.

Applying the boundary conditions at the top and bottom of the source layer, we derive

the following set of algebraic equations for the unknown coefficients:

(flew = 1)~ AT — (R + 1)e?* A” —(fler = 1)e7kvN'(=k,) (2.35)

(e — 1)e™ ¢ AT — (e, + 1)e*v¢ A” (et + 1)e*vN' (k) (2.36)

and

(fimu = 1)e™*1°BY + (fimu + 1)e** B

~(fimy = Ve~ oM (—k,)  (2.37)

(imr = 1)e™ %8 BY 4 (fime + 1) B™ = —(fimr + 1) M (k)" (2.38)
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Here the ‘U’ and ‘L’ notation indicates the upper and lower interface conditions respectively.

These four equations decouple into two pairs due to a judicious choice of the piloting
vector in the VWF's. Because the piloting vector was chosen as the unit vector normal to
the layer interfaces, the M and N VWFs appearing in (:;mK correspond to the LSM and
LSE modes of the structure respectively. (In contrast, it should be noted that M and N
correspond to the LSE and LSM modes, respectively, when they appear in (:}eK.) As is well
known, the LSE and LSM modes are decoupled on the interfaces, that is, the tangential
components of an individual mode on the interface can be matched by an identical mode
in the adjacent layer, therefore the coefficients are decoupled. That there are only four
equations is a result of the fact that the field in a given layer depends only on the field in
the adjacent layers.

The solutions are easily found to be

o [ = Ve + D R () # (G + D + Ve ()
(e + Dt = DT = (R = (7, + De=hule=d

(2.39)
e (e = 1)(ier, = V)em44N (=k2) + (v = 1)(Fer, + DN (k)]
) (lew + 1)(er. = D)er*s(=) = (ijery = 1) (et + 1)e7*s(e=4)

(2.40)
T (inw + D(me ~ DD = (G = D(fme + DD

(2.41)
e M [(fimy = 1)(fime, = Ve (<k2) = (mw = 1(ime + D8 (k)

B™=- : :
(it + 1)(fimr, = 1)e?%3(e=9) — (fmy = 1)(fime, + 1)e73ksle=d)

(2.42)

With some algebraic manipulation and use of the relations found in Appendix A, we now

can write

C)u

/ / dk.dk,
41«'2 k, L2 + L2)
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[ﬁeuMe[kz(z - ¢)] = jMolk.(z - c)]J [ﬁc[,N;{kz(z’ - d)] - N[k (2 - d)]}

[f],LMe[k,(z = d)] = jMo[k.(z - d)l] [r’kUNL[k,(z' = o)) = jNg[ k(2" - C)l]

(ﬁeU - r-]eL)COSkz(C - d) - j(f)eUka - 1)sink,(c - d)

[flmUNO[kZ(Z -c)l+ jNe[k,(z - C)]] [flmLM;[kZ(zl - d)] + jNI;[‘kz(zl - d)]}
+
[ﬁmLNO[kZ(Z -d)]+ jNe[kz(z - d)]} [ﬁmUM;[kZ(ZI -]+ jM:[‘kz(zl - C)]}

(ﬁmU - T-ImL)COS kz(c - d) - j(f]mUﬁmL - 1)5“1 k,(c - d)

for :2:' (2.43)

where the M, and N, functions are defined by

cos(k,z)e"’(k‘”k”)
Wy(k,) = | (2.44)
sin(k,z)e"(k‘”k"y’
This expression contains all components of the dyadic Green's function separated into LSE
and LSM modes. Note that our convention will be to denote even and odd trigonometric
dependence by the substripts ‘¢’ and ‘o’. In order to avoid any ambiguity when these
subscripts are used, the corresponding &, k, or k, arguments will be shown explicitly in

the same order, sometimes followed by other arguments as appropriate (see Appendix A).

The magnetic field type is given by

= 1 _ . dk.dk,
Gmk = ~z#6(R - R) 412/ k(k2+k2

[ﬁmUMo{kz(z - o)) + iMe[k.(z - C)]] [ﬁmLM;[kz(zl - d)] + jM'e[—k,(z’ - d)]]

[ﬁmbMO[kz(Z - )] + jMelk.(2 - d)]} [f?mUM;[kz(Zl -0+ jl\_d:[—k,(z' - C)]]

(ﬁmU - ﬁmL)COSkz(c -d) - j(ﬁmUﬁmL - 1)sink;(c - d)
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AeuNe[k.(z = ¢)] = jNo[k,(z - c)l] [ﬁCLN;[k,(z’ —d)] - jN [—k.(2' - d)]}
+

[fleLNc[kz(z— d)) —iNo[kz(Z—d)]] [neuN [ko(2' = €)] = jN[=ka(' - C)]]

(e = Mer) cosk,(c = d) = j(fevfer — 1) sink,(c - d)

for 222" (2.45)

When applied to the case of a slot on an infinite, perfectly conducting ground plane,

fiL is set to zero. For a single dielectric cover layer, on the upper interface we set

7 = £ 2.46

MU = ko ( . )
k,

Nm = € — 47

hmu € (2.47)

corresponding to the normalized impedance boundary conditions for free-space above the
slab. For a slot in the ground plane with its axis along Z, we take the z > z' terms which

results in

ml\ r = / dk dk —J[k!("rl)"'kv(!/'!l')]
4r? oo k2 lc2 + k2

[e,kn sink;(z —d) + jk,cosk,(z - d)] N k2k? [k, sink;(z — d) + jkncosk,(z - d)}
€rkncosk,(c - d) + jk,sink,(c - d) k? k,cosk,(c—d)+ jkasink,(c-d)

(2.48)

By transforming the spectral integrals to a cylindrical coordinate system the double integra-
tions can be replaced by a single radial integral on recognition of the integral representations
of Bessel functions in the angular variable. Through some very tedious algebraic manipu-
lations, the result can be transformed from the present form, which separates the LSE and
LSM modes, to a hybrid form which can be compared to the result in Appendix C or with

previously published forms [38, 36]; although not necessary for numerical evaluation.
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2.2.2 Electric Current

For the case of the electric current source, the steps are exactly the same as in the

preceding section, except here the Helmholtz equations take the forms:

V XV xGey - k2Gey = I6(R - R) (2.19)

VxVxGmi-kGmi=VxI§R-R) (2.50)

where now we solve for (=}mj first. Due to the similarity to the previous set of Helmholtz
equations and because of the way the VWF's have been defined - particularly the symmetry
introduced in the curl relationships - the solution proceeds with identical equations but

with the following notational replacements:

M&<N (2.51)
Gex = Gy (25
émK=>c=;eJ (2.53)

The process is similar to replacements made under the guidance of the Duality Principle,
however, it is important to note the difference. The replacements dictated by the Duality
Principle alone would result in functions which satify ‘dual’ boundary conditions, i.e., the
electric field dyadics would satisfy the Neumann rather than the Dirichlet conditions on
the conducting boundaries 13, pp. 29-39]. By replacing the M and N functions with each
other, the true boundary conditions remain valid since these functions are complementary
with respect to these boundary conditions. Although it would be interesting to more gen-
erally state and define this process under a heading such as say, the ‘Similarity Principle’,

the development and proof is beyond the intended scope of this work, however, we will use

it repeatedly.
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The final result then is
/ /‘ dk dk,
47r2 k, lc2 + lc2

[ﬁmUMO[kz(z = o)+ iMe[k,(2 - C)]] [f)mLN;[kz(zl -d) + lee[‘kz(zl - d)]]

C)u

{ [f)m[,Mo[k,(z - d)) + M,[k.(z - d)]] imuNo[k.(2' = )] 4 FNL[—k.(2' - c)]]
V (ﬁmU - f]mL)COS k,(C - d) —.j(i’me’mL - I)Sin kz(c - d)

[neUNe[kz(’ = ] - JN {k ]} [TleLM [k d)] - jM:;[“ky(zl - d)]}
+

[fchNe[kz(z - d)] - jNo{ky(z - d)]] [ﬁeUMIe[kz(Z’ -c)] - jM;[—ky(z’ - C)]}

(ncU ncL)COSI" (C"' d) (neUneL - 1)5mk (C_ d)

for 227 (2.54)

ée,y can be found by substituting the coefficients into equations similar to Equations (2.32-
2.34), but also can be derived from émj directly, applying Equation (1.15) with special
care in performing the derivatives at the source discontinuity. The final expression is

5 I dk,dk,
Ge"'k‘?*”&R R w/ / k(K2 + k2) L?)

[ﬁeUMe[kZ(z -¢)] - jMO[ky(l - C)]] [ﬁeLM:[kZ(z' - d)) - jM;[‘ky(Zl - d)]]

[ﬁcbme[kz(z -d)] - jMo[ky(z - d)]]'[ﬁeUM;[kz(Z' -0)- jM;[‘ky('zl - C)]}

(flev = fleL) cos k,(c = d) = j(TerTier, — 1) sin k. (c - d)

\

( [ﬁmUNo{kZ(z - C)] + jNe[kz(z - C)]} [ﬁmLN;[k:(z’ -d)+ jN’e[—k,(z' = d)]]

\ [r'),,.[,ﬁo[k,(z ~ d)) + jN[k.(2 - d)]] [ﬁmuﬁf,[k,(z' - o)) + jNL[=k.(2' - c)]]

(mU = fim) cosk:(c = d) = j(AmuTime — 1) sink;(c - d)




33

2.3 Dyadic Green’s Functions for Layer Filled Rectangular Waveguides

The electric and magnetic dyadic Green’s functions for an electric current source in
rectangular waveguide are needed for the radiating slot problem. As will be shown later,
the electric type is used in an integral equation approach to solve for the propagation
constants of the structure. Once a propagation constant has been determined for a selected
mode, both the electric and magnetic fields on the entire cross-section are required to apply
the Reaction Method to the three-dimensional cavity problem. The magnetic current case
is not needed in the main body of this work but will be discussed briefly in Chapter IV.

As in [79], the solution for the multi-layered waveguide problem is built upon the
solutiog for the parallel plate problem. The parallel plate waveguide solution has already
been obtained in the previous section if we set iy = 7, = 0 on the source layer boundaries.
However, although the parallel plate solution we need is based on VW Fs defined with
respect to a piloting vector Z as was used above, the desired planes for the parallel plates
are defined by z = 0 and z = a which do not correspond to the impedance boundaries
used previously. Therefore, the parallel plate solution will first be derived based on the

appropriate conducting planes followed by the layered rectangular waveguide solution.

2.3.1 The Parallel Plate Green’s Function

A parallel plate waveguide shown in Figure 2.3 is formed by bounding wallsat z = 0
and z = a filled with a uniform dielectric material represented by the wavenumber .,

where i will ultimately represent the i2 layer of a waveguide containing a source. We now

define the functions

Mo(ks) = V x Wo(ks)i=V x [sin(mxz/a)e'j(k”’"""‘)2] (2.56)

No(k:) = %V XV X U(ky): = év X V x [cos(mrz/a)e-iththe)s]  (2.57)
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Figure 2.3: Parallel plate waveguide coordinate system.
which satisfy V x V x F—«?F = 0 where x = ,/k2 + k% + k? and the boundary condition
ixF=0 (ie., Ix E=0) (2.58)

at = 0 and z = a. The wavenumbers k, and k, are two continuously distributed
eigenvalues and k, = mr/a where m is an integer including m = 0 for N,.

The orthogonality properties of these functions are

// Me(m, ky, k;) - No(m' k), k%) dV = 0 (2.59)
v

for any combination of even and odd functions and for any two sets of eigenvalues (m, k,, k,)
and (m',k},k;). The volume of integration corresponds to the entire space inside the

parallel plate waveguide. The normalization constants of these functions are stated by the

following relations:

///V Me(m, by, k.) - Me(m', —K], K.} dV
/ / /V Ne(m, ky, ky) - Ne(m', —k!, —KL) dV
0

m# m'

(2.60)
{ (14 8m)2m%a(k2 + k2)6(ky - K,)6(k. - K)) m=m'=0,1,2,...



= [[[ Rolmiky ko) Ro(m', =k, -k2) dv
v
0 m#m
, { (2.61)
2n2a(k2 + k2)8(ky - k})8(k, — k) m=m'=1,2,...
1 m=20
where é, is the Kronecker delta function defined by é,, = {
0 m#0

To find én” we first let
v x [T6(% - 1‘2')]—/ / dk,dk, Z [Mo(m, ky, ks) Ao + Ne(m, ky, k.) Be(2.62)
=0
By taking the anterior scalar product of Equation (2.62) with My(m’, -k, —k;) and

Ne(m', k!, —k’) respectively, and integrating throughout V, we can determine the vector
|, —k}) respectively grating throug

coefficients Ao, and Be through the orthogonality properties. They are

Ao (2 = 6 )&Ny(m, —ky, —k.)

°- 4r2a(k2 + k2) (263)
= (2= 6n)sML(m, -k, k)

= 2.64

Be ax%a(k2 1 R2) (2.64)

In Equations (2.63) and (2.64) the primed functions are defined with respect to (z', ', z'),
the location of the source. Although for m = 0 the function N:, vanishes, m = 0 is
included, as implied by the factor (2 - é,) in Equation (2.63), to put it in a form similar

to Equation (2.64). Substituting Equations (2.63) and (2.64) into (2.62) we obtain

s = = S 6
Vx[I§(R-R)] = / / dkydk; 3 47r(2a(k2 +)k2)

: [Mo(ms kyﬂ kz)No(mv _kya - z) + Ne(m» kys kz)Me(mv "'kyv —kz)] (2-65)

Now we let

Ou

(2 = bm
- L S pat
: [aMo(m,ky, k)N (m, —k,, —k;) + bNe(m, ky, k:)ML(m, =k, —k.)|  (2.66)
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Substituting Equations (2.65) and (2.66) into (1.12), and making use the relations given

by Equations (2.13) and (2.14), one finds

1

a=b= m (267)

as before. The integration with respect to k, can be carried out in closed form by applying

the residue theorem together with the radiation condition yielding

= m)ki
Gms = '/_ dky ka L2+k2)
[ Mo(m, ky, £k NG (m, —ky, FK,) + No(m, ky, 2k )M (m, —ky, Tho)| 222 (2.68)

where k, = (/k? — k2 — k2. Again, the top sign applies to z > 2’ and the bottom sign to
i —hp—ky. Ag 8 g

z < 7. Now applying Equation (1.15), again through use of the relationships given by

Equations (2.13) and (2.14), and taking into account the discontinuity at the source. we

can write

= 1 _ _ X
= 336
Ces gii(R-R) /_ dky Z 41rak k2+L2)

) [Me(mv kyv ik:)M:(ma "kyv Fk.)+ No(m’ kya :HC,)NO(TT!, ‘kyv q:kz)] zz 7 (2.69)
The solutions for the magnetic current follow the same procedure yielding

= _ 1 ..., = 7(2-6m
Cmk = k3226(R /_ &, ka (k2 + k2)

- [Mo(m, ky, £V (m, ~ky, Fho) + Ne(m, by, 2k )NU(m, —ky, Fhe )| 22 @210

5 _ (2~ 8m
Gk = _/; dky Zzta’alc,(lc’ k’)

[Me(mv ky, ik!)Ne(mv —ky, Fk:)+ No(m» ky, ﬂ:k,)M:,(m, —ky, ¥k:) ZZ 2 (271)

Note again that this can also be obtained from the previous case by simply replacing

ée] = (-_jmK, ém_] == éeK, and M — N
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2.3.2 Rectangular Waveguide with Electric Currents

We now construct the dyadic Green’s function for the source layer of a multi-layered
rectangular waveguide (see Figure 2.1) by using the parallel plate Green’s function solutions

above and the method of scattering superposition. Let

= =(P =(S
Gmy=G 4G (2.72)

=(P =(S
where an} is the parallel plate solution and Ginf, is defined as

= (S) J(2-6m
mJ = ‘/_ dky ka (k2+k2)

: {Ne(mq ky, kz) A + Ne(ma v -kz) A + Mo(m, ky, kz) B+ + Mo(m,ky, "kz) B—] (273)

C)l

representing fields which are scattered from the dielectric layer interfaces located at z = ¢
and z = d. The unknown vector coefficients, A, A”, B* and B~, can be found by
applying the upper (ny) and lower (n;) impedance boundary conditions for the layer. This

produces two pairs of equations for the unknown coefficients:

(ev = D)e™ €AY = (e + )™ A7 = =(fiey = 1)e7"M(m, —ky, k,)  (2.74)

(et — 1)e ¥ AY — (fep + 1)e¥ AT = (fier + 1) My (m, —k,, —k,) (2.75)
and

(fmu = 1)e™ B + (fimy + 1)e*B™ = —(fimy — 1)e7*°N (m, —ky,k;) (2.76)

(ime = e %4 B* + (fim + De** BT "= ~(fime + 1)/ IN (m, —ky, —k,) (2.77)

Notice that these equations are identical to Equations (2.33-2.35) with the replacements:
M'(+k,) => My(m, —k,, £k;) (2.78)
N'(£k,) = Ny(m, —k,, £k,) (2.79)

This feature is characteristic of all of the solutions we will be dealing with, and should be

expected since the functions differ only in whether the functional dependence is exponential
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or trigonometric. As a result, the solutions are identical to Equations (2.39-2.42) with the

corresponding notational substitutions.
Algebraic manipulation of Equations (2.68,2.72) and (2.73) and use of the relations

given in Appendix A then leads to

Cmy = /_ dky ka k2+k2)

o[nmUym k(Z_C]N[quvm k(z -d]

Mo[f?mﬁm ki(z - d) ]N[Umuvm k.(2' = c)]

(Mmu = fime) cOsk;(c = d) = j(mUTmL — 1) sink,(c — d)

/Vc[f]cu; m, kz(z - C)] M’e[ﬁeL; m, kz(z’ - d)]
+

Ne[fler; m, k(2 = d)] Mi[fiew; m, k(2" = c)]
(ﬁcU — 7L ) COS k,(C = d) - ](UeUneL - )Sm kz(c - d)

for 22:' (2.80)

where we have now defined the new operator functions, Mg and /\73, for the sake of compact

notation:

Ma[mia] = nMoola] + jMaoe[a] (2.81)
Mcnia] = nMela] - Meofa] (2.82)
Nolma] = 1Noo[a] + Noca] (2.83)
Ne[ma] = nNeela] - jNeo[a] (2.84)

Since a here is [m, k,(z - c)] and m is associated with k,, we recognize that the ‘e’ and

‘o’ subscripts in this case imply trigonometric functions of z and z. Also recall that the

primed functions use —k,.

We can find (—jej as we did in the parallel plate case, by performing the derivatives
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indicated by Equation (1.15):
Gey = -izza(R R') / dki m)
Y _ 27raL L2+k2)

Me[flevim, ky(z = ¢)] MLfer;m, ko(2' - d)]

Me[fierim, ko2 = d)) M[flewi m, ko(2' = )]
(th - UeL)COSkz(C -b)- J(TkUneL - l)sm k,(C - b)

Noliimoi Mo ko(2 = ¢)] Ni[fime; m, ko2 = d))
+

Noliimei m, ko(z = d)] N [fimus m, ko2 = )]
(f)mU - UmL)COSkz(C - b) - ](nmUnmL - l)smk,(c— b)

J

for 222 (2.85)
Both ée] and (:}mj involve a spectral integral which can be reduced by Cauchy’s Theorem,
once the impedance functions are specified.
2.3.3 Rectangular Waveguide with Magnetic Currents

The magnetic current cases can be found through the same method or ‘Similarity

Principle’ substitutions (section 2.2.2) to obtain

G = 'kl,. oR-R +/ dky Z 2xak,(k2+k2)
' Moiimus My k(2 = €)] M.[fime; m, ko(2' - d)|
Maliimeim, ko(z - d ]Mo{nmu,m ki(z' = c)]
{ (MmU = ime) coskz(c = b) — j(AmUilme — 1) sink;(c - b)
[ttt - ) Wi (s - )|

~—

Nc[ka; m, k,(Z - d)] N;[fku; m, kz(zl - C)]
(fleU = ﬁcL) cos kz(c - b) - j(ﬁeUﬁeL = 1) sin k:(c - b) )

for 222 (2.86)
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and

= [ e _I2=bm)k
Gel( = /—oodkvn;) o'rak (U-{-kz)
e[fku»m k ]N[nel.lm k (Z "'d)]
M [nel.am k d)] -’V’[ﬂemm k ( )]
(Mev = TleL) cos kz(c = b) = j(fevfer — 1) sink;(c - b)

Nolfimui M, ko(z = €)] Mi[fimei m, ko(2' — d)]
+

Noliime; m, ko(z = d)] Mb[fimy; m, ko(2' =€)
(MmU = fimL) cos k(¢ = b) = j(AmuTimL — 1) sink;(c - b)

for 22z (2.87)

2.4 Dyadic Green’s Functions for Layer Filled Rectangular Cavities

The scattering superposition approach can now be applied to fhe result of the previous
section directly to obtain the dyadic Green'’s functions for the cavity problem by introducing
conducting walls at y = 0 and y = b and applying scattering superposition to the ty
directed waves. As an alternative, one can take a somewhat simpler approach by first
deriving the dyadic Green's function for a waveguide with its axis along the Z direction
(ky becomes nx/b). Then scattering superposition is applied along the 2 direction with
impedance boundary conditions to obtain the result for the cavity (see also [72, 75, 79]).

This will be the approach demonstrated here since the intermediate Green's functions will

also be needed in Chapter IV.

2.4.1 Homogeneously Filled Rectangular Waveguide: TE and TM Modes

As with the use of the half-space solution as a building-block for the previous solutions,
the preceding modal representations of layered rectangular waveguides are not in a con-

venient form for the formation of the cavity solution. Again, the VWFs there are defined
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with the normal to the layer interfaces, resulting in the LSE and LSM mode representa-
tion. What is more convenient here is the solution for a homogeneously filled rectangular
waveguide expressed in terms of VWF's defined to represent the modes Transverse-Electric
(TE) and Transverse-Magnetic (TM) to the waveguide axis. We again will first find (:}(,:,J)

. &wW)
from which G¢;  will follow.

Gy must satisfy the wave equation:

= w = - -
VxVx Gy - Ky =V x [18(R - &) (2.88)

To construct the solution we will need the vector wave functions satisfving the Neumann

boundary conditions which are:

Moo(kzrky) = V X Woo(ks, ky)Z (2.89)

Nee(kz,ky) = év X V X Weel(ks, ky)2 (2.90)

where

cos k;z coskyy
U ee (ks ky) = g ket (2.91)

sin kzz sin kyy
with k; = km = mr/a and k; = k, = n7/b.
Following the Ohm-Rayleigh method as before, we expand the source term as
v x [l6(R-R)| = / dk, Z Z [Moolkz, ky) A + Nee(ks. ky) B] (2.92)
m=0n=0

The coefficients A and B are found from the properties of the vector wave functions to be

A — (2 - 6mn)’< =/
A= e+ gy ool Fe =) (2.93)
R (2 — bmn )K 1

= - 2.94
B = oz, + ki ee(ber kv k) (291)

where the Kronecker delta function §,,, is equal to 1 for m = 0 or n = 0 and 0 otherwise

(the case where both m = 0 and n = 0 is the trivial, zero field solution for thiscase). Thus.



Equation (2.92) can be written as

—6mn
v x [T6(R / dk, szbk?+k2)

m=0n=0

. [Moo(k,,ky,k,)Noo(k,,ky, k) + Neel, by, ko) Wi (ke by, —K2)] - (2.95)

= (W)
To find Gp,; we let

(W)

Qn

~ oo [o o] (2 6mn
) /. ‘“‘mzo,‘z;mb K21 R2)
.[aMOO(k,,ky,k,)Ngo(k,,ky,— &)+ DNee(kz, ky, ke Moo (kzy by, =k2)| (2.96)

Substituting into Equation (2.88) we find as usual

a=b= —0 (2.97)

Kz—k?

so that

= (W) 22 (2= bmn) K
Gms = / k- gogmbw +k7)[x2—k?}

- [Moolke, by ko )NG (ke by ) + Nee(kz, Ky, ke Mo (k2 Ky, —K2)] (2.98)

The Fourier integral can be evaluated in closed form by means of contour integration and

the radiation condition leading to
-(W) 2 o ki Jki(2 = bmn)
Z= ?;: abk, (k2 + k2)
- [Moolks, y, £K,)N, ok, by, Fh) + Noe(ke, by, 2k )Mo (2, by, 52|

for z22' (2.99)

where k2 = k? — (k2, + k2). Using Equation (1.15):

=W Looe o 3(2 = bmn)
Ges = g bR - ®) mz_ogabk,(kz +k2)

: [Moo(kz, by, £k g ke, by Fhe) + Neelka, by, 2h) Mo (ko by, FE2)]

for z2z' - (2.100)
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2.4.2 Cavity with Opposing Impedance Walls: Electric Current

We now introduce impedance walls at z = ¢ and z = d where the added boundary
conditions given by Equation (2.1) are to be enforced. Using the method of scattering

superposition we let

Gms=GLY 4+ G0 (2.101)

where

2(S) o= o= Jki(2=bmn)
Cmi=- 2 abk,(k2, + k2)

 [Moo(key kys ko) AT + Moo(ke, kyy —ki) A™ + Neelkz, by, k) BY + Nec(kz, ky, =) B

m=0n=0

(2.102)

Evaluating the boundary conditions given by Equations (2.1) we get the same system of
equations as (2.33-2.35) except this time with
M'(tk,) = ML (ks ky, £k.) (2 °03)
N'(k,) = N (ks ky, £k,) (2.104)

Again we already have the solutions for this set by changing the notation of the VWFs.

With some algebraic manipulation and use of the relations in Appendix A the results are

B

Mooliime; Kz, ky, k2(2 = d)) Nooliimus ks, ky, k2(2" = ¢)]
(ﬁmu - f?mL)COSkz(c = d) - j(ﬁmuﬁmL - l)sin kz(c -d)

(Moo[ﬁmu; kr» ky, k,(l - C)] Néo[ﬁml.; k,,-, kyy kz(zl - d)]

\

(Nee[fku, k:) kyv kz(z - C)] Mlee[ﬁcln kra ky, kz(z' - d)]
+
(

ee[ﬁel.; kt\ ky) kz(z - d)] M::e[iku; k:, kya kz(Zl - C)]
fku - f’el.) Cos kz(c - d) - j(ﬁevﬁcl. - 1) sin kz(c - d)

for 222" (2.105)



44

and
= 1 2 25(2 = bmn)
Gey = -k—?-zzé(R R') +mZ___o,§oabk T+ K2)

Mce[fkv; kz, ky» k,(z - C)] M’ee[f]eL; krv ky1 k,_(Z' - d)]

Mee[ﬁeL; kz, kyvkz(z - d)] M’ee[f?w; ke, kyskz(z, = C)]
(ev = Mer) cos k(¢ — d) = J(NevTer — 1) sink,(c - d)

/\-[oo[f)mui kz, ky, k.(z - C)] Néo[f]mL; kz, ky, k,(z' _ d)]

Noo[".’ml.; kt! kyv kz(3 - d)] Néo[ﬁmu; kzs kyv kz(zl - C)]
(f)mu - f]m,_)COS k,(C - d) - j(f)muf)mL - 1)5in kz(c - d)

for 222’ (2.106)

The operator functions are defined by the relations

Maoo[mia] = 1Mooola] + jMooela] (2.107)
Meelmia] = 1Meeela] = jMecola] (2.108)
Noo[mia] = 1Nooo[a] + jNooela] (2.109)
Neelnia] = nNeeea] = jNeeola] (2.110)

2.4.3 TE and TM Modes in Homogeneously Filled Rectangular Waveguide

and Cavities with Opposing Impedance Walls: Magnetic Currents

To model the slots, we also need the cavity dyadic Green’s functions of both types
for magnetic currents. The derivation could follow the previous case explicitly, however,
because of the way the functions have been defined, we can take advantage of the symmetry
of the equations and write the solution by making simple notational replacements. (The
c;nly exception is the treatment of the (2 — é,,) term which here is expanded as (2 -
6m)(2 — 65) since the m = n = 0 case may produce non-zero field components.) Using

this approach we can write the TE and TM solutions for magnetic currents in rectangular



45

waveguide as

oo

7ki(2 = 6)(2 = 62)
Z Z:« abk, k? + k2)

-[Mec(k:,ky,ik,)N;(k,,ky,;k,)+Noo(k,,ky,ik,m;o(k,,ky,xk,)] 22 (211)

w1 J(2 = 6m)(2 - én)
mk =~z £20(R ZZ abk, k? +£2)

t m=0n=0

On

Ou

. [Moo(krykya ikz)M;o(kzy ky, q:kz) + Nce(kzakyv :tkz)Nce(kr, ky, q:k,)] zzz' (2112)

The cavity solutions are

27ki(2 = 6 )(2 = 62)

C=:eK = Z
_ORX_; abk,(kZ, + K2)
Mce[ﬂeU:"- L k ]N [qcbvkrvkgnk (Z —d)]
ee[nekar’ Lyyk ]NI [ﬂeu,kz,ky,k (Z - C ]

(ncu - neL)COS k,(C - d) - J('kunel. - l)sm kz(c - d)

OolnmUsk k k ] Moo[r]mLakrv kyvk (Z - d)]

oo[r’mLa kta kyak zZ - ] Moo[nmUv kz:v kysk (z - C)]
(ﬁmu - T]mL)COS kz(c - ) - ](nmunml. - 1) sin kz(c - d)
for 222" (2.113)

2(2 = 6 )(2 = 62)
abk, (K2, + k2)

Gmk = 2226(R R’ +ZZ

m=0n=0
o‘,[r),,,,,,l;: ky, k z—c]M (fime; kzo kys ko(2' = d))

Mooliimes kzy kys ko2 = d)] Mo iimus s, ky, ka2 = ©)]

(tmu = fime) coskz(¢ = @) = j(MmuTime — 1) sink,(c - d)

Nee[fleu; kz, kyv k,(Z - C)] /V;e[ﬁe.L; kzv kyy kx(zl - d)]
+

A_/ee[fkl.; kg, ky» kz(z - d)] Ne'e[fku; kz, kya kz(zl - C)]
(Nev = fler) cOs kz(¢ — d) = j(TevyTler — 1) sin k(¢ - d)

1]

for _'zjzz’ (2.114)
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We now have derived and specified the dyadic Green’s functions for all types of struc-
tures to be treated in this work. The integral equations are therefore fully defined and the

task remaining is to solve for the unknown currents in each case and interpret the results.






CHAPTER III

METHOD OF MOMENTS FORMULATION

A general methodology for application to the various problems treated will be presented
in this chapter for the case where two components of current will be allowed on both the
strips and slots. Later, we will restrict our attention to strips and slots which are narrow
so that only the longitudinal component of current need be considered. This assumption
is sufficient to yield accurate results for the experimental cases to be used for verification,
and thus simplifies the numerical implementation without loss of generality.

The solutions to the presented integral equations can be found by choosing basis func-
tions to approximate the various currents. The error in the approximation is minimized
by applying the well known Method of Moments, resulting in highly accurate representa-
tions of the currents from which the electrical behavior of the structures can be deduced.
Furthermore, the method of moments formulation will be discussed in the context of the
radiating slot problem only, since this problem contains all the essential elements of the

coupler problem as well.

3.1 Definition of Coordinate Systems and Basis Functions

Let us expand the current on the strip in the following manner. We first define a

strip-fixed coordinate system as illustrated in Figure 3.1. The currents on the strip in this

47
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Figure 3.1: Cavity (z,y) and Strip-fixed (v, v) Coordinate System.

coordinate system can now be expanded as

Js=J,0+J,0
Jy = ‘I’(V)Z(I’(UJ)[UJ

J
Jo=9(v)Y 1,
J
where @ are piecewise sinusoidal basis functions defined by

¢(a) =

1 sinky(@ —aq_y) for -l,<a-a,<0
sin kplqy

sinky(ag41 — @) for 0<a-a,< !,

and [, is half the subsection length defined by

la = [ag41 — @g-1)/2

(3.4)

(3.5)

The subscript ¢ is an index identifying basis functions at various points along the strips

and slots. Actually, k, will always be chosen so that kyl, < v/2, making the function

basically a triangular pulse. This way, because the basis functions overlap, the current will

essentially be approximated by piecewise ‘linear’ segments between sample points (see [32]

for an introduction to the method of moments and basis functions). The sampling rate is

determined by field phenomena, phase resolution requirements or numerical limitations, as
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will be shown later. Typically, the sampling rate will be at least 20 samples per wavelength,
often much higher, so we generally set k, ~ k; which is more than sufficient to ‘linearize’
the basis functions. The motivation for the sinusoidal dependence is to simplify later
integrations and evaluation of the resulting functions.

The ¥ function will be either a ‘Maxwellian’ distribution or a ‘pulse’ basis function

defined as

q"A'larwcllmn(ﬁ) = l

¥(B) = nio\J1-(8/1s)" B = B < g (3.6)
\[’pulu =1

The Maxwellian function is often used since it closely approximates the true solution for
narrow strips or slots [52, 88]. These expansions are further illustrated by Figure 3.2 where

the sinusoidal functions are exaggerated for clarity.

Longitudinal
w2 piecewise sinusoidal w -wn W
Maxwellian
Transverse
w2 pulse - rectangular w wn wnR

Figure 3.2: Current Expansion Functions.

In this work, we will deal exclusively with strips and slots which are narrow with re-
spect to wavelength so that only one basis function will be used to represent the narrow
dimension. For wider structures, rooftop functions are commonly used, involving similar

overlapping basis functions in the direction of each component of current, but using the
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pulse basis function for the transverse dependence. Because our strips and slots are nar-
row, we will typically only model the longitudinal component of current, however, both
components are discussed here for generality and to form a basis for future efforts. The
primary motivation for the use of piecewise functions is that they are very efficient in terms
of changing strip or slot lengths as opposed to entire domain basis functions.

The strip-fixed system is related to the cavity coordinate system by

v= (z-1z,)cos¢+(y—yo)sing (3.7)

v=—(z-2,)sind+(y - yo)cos¢ (3.8)

We also define a slot-fixed coordinate system as illustrated in Figure 3.3 where

Figure 3.3: Slot-fixed Coordinate System ((,§).

(= (z-s5,)cos8+(y—-t,)sinb (3.9)

E=—(z-s,)sind + (y—t,)cosf (3.10)

The slot currents are now written as

K = KpeC + Kreé (3.11)

KU = I{U(C. + I\"Ueé 3
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where the ‘L’ subscript represents the slot opening to the cavity and the ‘v’ subscript
represents the slot interfacing with the dielectric cover. Assuming similar expansions for

these currents,

Ko = ()Y ®(()Vig (3.13)

Kyc = ‘[’(f)i‘f’(C,)Vuo (3.14)

Kie = ‘I’(E)XJ:VM (3.15)

Kue = ®(€)) Ve (3.16)
)

Equations (1.54-1.56) can be written in matrix form

r 1T ] [ ]
Zy Z; Yiz Yy 0 O L, £

Zyn Zy Y3 Yoy OO L, £
Z3y 2y Y3z Yaq Y3s Y Vi
Za Zao Yo Ya Yis Y Vig;

0 0 Yss Ysqa Yss Yse Vug;

X x*x X X

0 0 Ye Yeu Yos Yoo Vue;

L B -

where each term in bold face is a submatrix described by integrals such as

Z = ] GUN(z, y, ', ) ¥(4)8(v;)dS

/ / Gz, y, ', y)¥(v;)(v)dS
/ / GOz, y,2',y')U(£)®((;)dS,

Y= | / G0z, 3,7, y)¥((;)(E)dS,
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or in a more compact form as

[ 17 ] i

Gh) GUWP Gl ¢l 0 o V()8 (v, £
2 2
G Gl ¢® 6% 0 o U(v;)8(v)1,, £
3[) (32) 33) 34 35 36 ]
/ / GEY Gt G g8 G 6B || we)e(¢)Vie; | dz |
s a1 a2 a3 44)  ~(45) (46 ,
el et 6 6l 6 G || W@V |y | H
0 0o G&GBY Gl GBI I were)vue H
0 0 G Gl 6l 6% || we)e©Veg | M
(3.18)

The functions on the right hand sides of Equation (3.17) and (3.18) are discussed in Chap-
ter [ and are further defined in section 3.2.

Note that §; is the j& ‘source’ segment of the corresponding strip or slot. We also have
a triply mixed coordinate system which must be accommodated using the transformations
given by Equations (3.7-3.10). For example, computation of G(U‘(s) involves both G((l(s) and
G'?(‘”. In addition, the derived Green'’s functions are in the cavity-fixed coordinate system.
Consequently, all terms must be transformed to a common coordinate system before the
integrations can be performed. Treatment of these integrations and manipulation of the
various G terms will be discussed in a later section.

The evaluation of the elements of the matrix at the positions where the boundary con-
ditions are being imposed has not yet been discussed. Following the conventional method

of moments formulation, we introduce a weighting function and impose an inner product

to be evaluated at each subsection on the strips or slots. The inner product is defined as

(@,b) = //a.a ds (3.19)

where @ = w, the weighting function, and b will be the vectors represented by Equa-
tions (1.54-1.56). Note that the elements of Equation (1.54) are to be evaluated on the

strip as indicated by (1.57) and (1.58). Similarly, Equation (1.55) is evaluated on the lower
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slot as indicated by Equations (1.59-1.61) and Equation (1.56) on the upper slot as implied

by (1.62) and (1.63).
Following Galerkin’s method we can choose w to have the same form as the basis

functions used in the expansions of the currents. Thus, for Equation (1.54)
w=¥(v)®(v)o+ Y(v)P(v)r (3.20)

Similarly, for Equations (1.55) and (1.56)

D, = (€)B(C)C + ¥(()B(£)E (3.21)

The elements of the matrix in Equation (3.17) are then changed to

- / U(v)®(v)Z3,dS.

2y = // ¥ (v)@(v) 21,45,
=/ / U(E)B(()Y 1S,

where the 7 index represents the ‘field’ point integration locations.

For certain cases we will use point matching on the slots driven by considerations in the
evaluation of the Sommerfeld integrals of the half-space Green’s function. [n this case the
weight function for the transverse do.zpendence of the longitudinal component of magnetic

current on the slot becomes a delta function resulting in the evaluation of the field at a

point at the center of the slot.

3.2 Excitation Models

The final element to be discussed is the excitation vector represented by the right hand

side of Equation (3.17). As mentioned previously (Section 1.3), the & terms represent
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non-zero values in the excitation vector corresponding to gap generator locations on the
strips. Likewise, the H terms will be non-zero for the incident H field excitation used with
the Reaction Method. In this case, the incident field must be weighted the same way as

the left hand side so that the right hand side terms become

H,-://S @ 0™ dS, (3.22)

For the gap generators, the corresponding field for the gap subsection can be designated

E,. Application of Galerkin’s method then, results in the integral

£,~=//5 w- E, dS, (3.23)

on the right hand side of Equation (3.17). Eg is an unknown caused by a source at that
location on the microstrip. If we assume E, = E,, 0, then we can set £ =0 in the second
row of Equation (1.54).

In most cases, we can arbitrarily set the integral of (3.23) so that & of the first row
of (3.17) becomes a zero column vector except for one element corresponding to the position

of the gap generator of the form
E=[(0 - 010 --- 00 (3.24)

where T denotes the transposition operator. Setting the magnitude of E, is arbitrary be-
cause the Standing Wave Method used w:-i the gap generators uses relative interpretations
of the resulting current, not absolute quantities.

For certain problems, however, we need the use of the gap generator model to determine
absolute values of current on the lines. If we set the field in the gap such that the voltage

over the gap given by

v, = -/ E, dl (3.25)
gap
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is equal to 1 Volt, the input impedance at the feed point is given by Zin = 1/, to first
order. A similar model can be used for slots with a coaxial feed, as in [21, p.360] for
example, by replacing the coaxial feed with a current source on the slot.

Before moving on, it is worthwhile to examine this process a little more closely in the
context of some of the terminology and physical interpretations of gap generator models
found in the literature. Restricting this discussion to one dimension, at the source our

system of equations represents the enforcement of the boundary condition

/ wf(z) dz = K (3.26)

where w is the weight function, f(z) is the field quantity and K is the constant specified
on the right hand side of the matrix equation row corresponding to the location of the
source. It is clear that the only non-zero contribution to the integral can occur on the
domain of w for which w is non-zero so that any physical interpretation is confined to
that region. It should also be noted that there may be an infinite number of solutions
f(z) satisfying this equation and that this equation does not force further constraints on
what f(z) might be, i.e., the right hand side does not specify how f(z) behaves on a
scale smaller than the domain over which w is non-zero. We then also have no basis for
a physical interpretation which imagines the terminals of the source within this domain,
but rather we should interpret the terminals to be at the domain’s endpoints. Obviously,
K will depend on the nature of w. The physical interpretation of the nature of the source
then also depends on w. For simple cases such as a pulse weight function, the delta-gap
physical interpretation is appropriate since Equation (3.26) reduces to a form similar to
-Equation (3.25). The point match case, or delta-function source can be interpreted in
the same manner by taking the limiting case of the pulse weight function, shrinking its
width to an infinitesimal gap while keeping the area constant. For more complex weight

functions, the physical interpretation is unclear except that we can consider the source to
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be ‘distributed’ over the domain of the weight function.
The system of equations represented by Equation (3.17) is now fully specified. The
unknown currents J,, K, and Ky can now be found by solving for the matrix elements

and inverting the matrix.

3.3 Expansion of the Dyadic Green’s Functions for the Cavity

To evaluate the elements of the matrix, we need to expand the dyadic Green’s functions
into the components corresponding to the electric and magnetic currents which are in z-y
planes. All of the required terms can be separated into trigonometric functions of z,z’,y
and y' multiplied by a complex coefficient which contains the z and z' dependence. The
Green’s functions can then be written in a condensed form as follows. Also, a constant
complex coefficient Cnp can be factored out which appears in all Green’s functions for the

cavity and is defined by

2j(2 - 60)

Cmn = E(RL 4 KD)

(3.27)

Cavity EFIE - Electric Currents J

The electric field integral equation contribution of the electric currents involves the z-y

components of Gej which can be written in the form

o0 [e o]
Gejxx = z Z Crmn Geixx €0skmz sin kpy cos kyz' sin kny'
m=0n=0
o0 [o o]
Geyyx = Z }: Cmn Getyx sin kmz cos k,y cos kymz' sin k, 3y’
m=0n=0
[o <] [o o]

Geixy = Z Z Cmn Geixy €S kmz sin kpysin kmz' cos kny’

m=0n=0

[> <] [ <]
Geyyy = ZZC,,,,.eryysink,,.zcosk,,ysinkmz'coskny’ (3.28)

m=0n=0
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where k; = km = mr/a, ky, = ko = n7/b, and

-mkl 2 -
Gerx = [kizu(ﬁcn( _ ) zeemm)] (3.29)
knk,\? .
GeJyy = {kvznzee(ﬁe)"f'( k. ) Zee(”m)} (3.30)
k 2
Getyx = Gelxy = —kmkn [Z“(ﬁc)—<f-> Z“(f)m)] (3.31)

The z dependence of the Green’s function is contained in the Z.. function defined as

[fv cosk,(z — ¢) — jsink,(z — ¢)] [fiL cosk,(z' - d) - jsink,(2' - d)]

Zee(R) = [fiL cos k.(z = d) — jsink,(z = d)] [y cosk,(2' = ¢) = jsink,(2' - ¢)]

(v = L) cosk.(c — d) - j(HunL - 1)sink,(c - d)
for 222’ (3.32)

Here again we use the ‘ee’ subscript notation to imply the trigonometric dependence of the

function.

Cavity EFIE - Magnetic Currents K

The contribution of the magnetic currents involves the components of Gek which can

be written as

[} [o <]
Gekxx = Z Z mn GeKxx €08 kmZ sin k,y sin k2’ cos k3
ey
Gekyx = E Z Cmn GeKyx Sin kmZ cos kpy sin kmz' cos kny'
m=0n=0
00 [}

Gekxy = Z Z Cmn Gekxy €0S km sin kpy cos kpnz'sin kny'

m=0 n=0
Gekyy = ZiCm,.(}eKyysinkmzcosk,,ycoskmx'sinkny' (3.33)
m=0n=0
with
Gekyx = ks [KaZeo(ie) + K2 Zeoliim)] (3.34)
Gexxy = ke [K2Zeolie) + K2 Zeoliim)] (3.35)

Gekxx = =Gekyy = kmknkz[Zeo(fle) + Zeolfim )] ' (3.36)



58
The Z., function is defined as

[y cosk.(z = ¢) — jsink,(z - ¢)] [ sin k.(z' = d) + jcosk.(z' - d)]

Zeo = - .. - . ' . '
(i cos k(2 — d) — jsink,(z - d)] [fusink,(2' = ¢) + jcosk,(2' - ¢)]

(v = AiL) cos k(¢ — d) = j(quic — 1)sink(c - d)

for 22 7' (3.37)

Cavity MFIE - Electric Currents J

The magnetic field integral equation contribution of the electric currents involves the

components of Gmy which can be written in the form

Gmixx = Cmn Gekxx Sin kT cos kpycos kpz'sin kny'

]38
s

3
1]
)
3
1]
(=)

|
s
s

Gm_]yx = Cmn Geny Cos ka sin knyCOS ka’Sill kny/

3
1]
(=)
S
1}
(=)

s
WK

Gmixy = Cmn Gexxy sin kmz cos kpysin kmz' cos kny’

3
1]
=}
3
1]
©

Gmiyy = Cmn GeKyy €OS kmz sin knysin kynz' cos kny’ (3.38)

|
™8
Nk

3
]
[=}
3
Il
o

Notice that the coefficients are the same as for the Gex case. It is not difficult to show

that upon application of Galerkin’s method,
(K.Gmid) = (J.Gex, K) (3.39)

where the double inner product notation is defined by

(a, %,5)://&-//%-5 dS'dS (3.40)

This implies, because of the signs of Equations (1.58-1.59), that the submatrix associated
with the electric current contribution to the MFIE is the negative of the submatrix for the
magnetic current contribution to the EFIE (diagonally opposite for the order given). This

observation reduces the computational effort required since only one of these submatrices
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needs to be calculated to fill their respective positions in the matrix. However, for the
radiating slot problem when we use the Maxwellian transverse distribution, evaluation of
the Sommerfeld integral has been accomplished through point matching which does not
produce this symmetry. Hence, in that particular case, we cannot take advantage of this
property.

[t can also be shown that the electric current EFIE terms form a submatrix which is
diagonally symmetric as are the terms in the diagonal submatrix representing the MFIE
contribution of the magnetic currents. Therefore, these also can be formed by calculating
only about half of the terms, however, as will be seen later, taking advantage of other
mathematical relations for these terms produces far more significant improvements in the

fill time for these submatrices.

Cavity MFIE - Magnetic Currents K

The cavity magnetic current MFIE terms are associated with a Green’s function which

can be expressed as

Gmkxx = Z Z Crmn G mKxx Sin kmZ cos kny sin k2’ cos kny'
m=0n=0
[} o0
Gmkyx = Z Z Crmn G mKyx €08 kmZ sin kny sin kmz' cos kny'
m=0n=0
Gmkxy = Z Z Cmn G mKxy Sin kmZ c0s kny c0s kmz'sin kny'
m=0n=0
[o o] o0
GmKyy = Z Z Cmn G mKyy €S kmZ sin kpy cos kmz'sin kny' (3.41)
m=0n=0
where
29 = kmk:\? -
ngxx = knzoo(ne) + k— Zoo(”m) (3-42)
2 ~ kak, 2 -
Gmkyy = |kmZoo(fle) + | == ) Zooliim) (3.43)
k 2
ngyx = Gmey = —kmka [Zoq(ﬁe) - (f) zoo(ﬁm)] (3.44)
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The Z,, function is defined as

[y sink,(z = ¢) + jcos k,(z — ¢)] (AL sink, (2 — d) + jcosk,(z' - d)]

2o = - . . - . . '
(AL sink,(z = d) + jcosk,(z — d)] [fiu sin k(2" = ¢) + j cosk.(z' - ¢)]

(v = i) cosk;(¢c — d) = j(fuiL - 1)sink,(c - d)

for 222/ (3.45)

Slot MFIE - Magnetic Currents K

For the slot, the transverse components of émK for a homogeneously filled cavity are

needed which can be written in the forms:

Gmkxx = 9. 9 CmnGmKxxSin kmZ cos kny sin kmz' cos kny'
m=0n=0
[o o] [o ¢]
Gmkyx = Z Z Crmn G mKyx €08 kmZ sin kny sin k2’ cos kny'
m=0n=0
Gmkxy = z Z Crmn G mKxy Sin knZ €08 kny cos kmz'sin kny'
m=0n=0
Gmkyy = Z Z Cmn GmKyy €0s kmZ sin kny cos kmz'sin k,y' (3.46)
m=0n=0
where
cosk,(2' - d) k2 k?
k2 m®z
G micxx sin k;(c — d) [ nT k2
G _cosk, (2 —d) | , KkZk?
MY T Sin ki(c—d) | ™ k2
cosk,(z' - d k?
Gmkyx = = GmKkxy = —km "m,((_c:d_)) [ - ﬁ} (3.47)

These expression are valid for currents on one end of the slot coupling to field points on

the opposite end when z’' = ¢. For currents coupling to the same end, 2’ is set equal to d.

Half-Space MFIE - Magnetic Currents K

Although the Green’s function for the half-space was derived in Chapter II, the nu-

merical treatment is quite involved and will not be detailed here. It consist of a real axis
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Gaussian Quadrature scheme with singularity extraction of the branch point and surface
wave poles and asymptotic evaluation of large arguments. The methodology has been
outlined by Katehi and Alexopoulos in [36]. The numerical implementations used to eval-
uate the half-space admittance elements of the matrix were provided by Katehi for the

Maxwellian transverse distributions and by Harokopus [31] for the rooftop functions.

3.4 Identification and Reduction of the Integrands

The elements of each of the submatrices of Equation (3.17) involve double surface
integrals as shown earlier. The inner surface integrations are over ‘source’ regions defined
by the current expansion basis functions. The outer surface integrals result from the
application of the weighting functions and cover the "observation’ or ‘field" regions of the
probleni where the boundary conditions represented by the integral equations (section 1.4)
are being enforced.

Using the condensed notation we can now write expressions for the impedance elements
in a general form which will identify the integrations to be performed for each term. To
illustrate, only the EFIE expansions for the current on the strip will be presented. The
MFIE for the strip and slot currents are handled in an exactly the same manner.

The EFIE:electric current terms can be written as follows:

Zi = 22// Yy / GUD(1)®(v;) dS, dS,
zio= LY [ wwoe / CEIU(1)®(v,) dS, dS,
zi = ZZ// ¥(v v)// GUDW(v;)(v) dS, S,
z = MZOZO [[ wwiew) | /SJGS?"F(v,-)‘D(v) ds;ds;  (3.48)

As before, the superscripts i and j represent the i*2 “field” subsection and the ji& ‘source’
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subsection. The Green's function terms can be transformed using the relations

I = vcos¢—rUsing (3.49)
Yy = Using+vcoso (3.50)

The transverse Green's function,
Ges = Gexxit+ Gesyx¥Z + Geixyz§ + Getyy¥y (3.51)

can then be written for the strip-fixed coordinate system as

Ges = Genwn®®+G enwid+ G ey + G esuii (3.52)
where
Geww = Geixxcos’d+ (Gesyx + Geixy)sindcosd + Geyyysin® ¢
Gewv = —(Geixx — Gelyy)singcosd + GeJyxcos2¢— Genysin2¢
Gejw = —(Geixx = Gelyy)singcose - G elyx sin? + G esxy cos? ¢
Gewv = Geixx sin’ @ - ( Gejyx + Geny) sin ¢ cos @ + Gejyy cos® ¢

(3.53)

When the coordinate systems are mixed, such as the case of the magnetic slot current
contribution to the EFIE, the Green’s function terms are also mixed. The relations for the

slot-fixed coordinate system unit vectors are

(cosf - Esind (3.54)

(3]
]

§ = Csinf+Ecos (3.55)

Substituting these into the posterior positions of Equation (3.51) and (3.49,3.50) into the

anterior positions, the Green’s function terms for this case become

GeKv( = Geixx€0s¢cosd + Gejyxsin ¢ cosd + Geyxy cos ¢siné + Gejyuy‘s.lHOSIH o



63

G ekve =~ Gejxx cospsing — Geyyxsindsinf + Geyxy cos pcosf + Geyyysinocosd
G ekv¢ =~ Gesxxsingcosf + Gejyxcosdcosd — Gejxysin ¢sinf + G egyy cos ¢sin §

GeKuf = GeJxxsin¢sinf — G esyx cos ¢psin § — Geyxysin ¢ cosf + G eyyy cos ¢ cos §

(3.56)

Returning to the EFIE:electric current case, we can now write the terms of the associ-

ated submatrix terms as (omitting the C, constant)

“ = Z Z geJxxCOS ¢[co(vnux)1eo(vjv )) + geJyx singcos ¢/, (v, )[eo(v)v‘/])

m=0n=0

+ GCnySin ¢COS¢[co(vhVz)[oe(vpuj) + geJyy Si"2¢[oe(L‘HUX)IOC(U]\U))

Zy = Z Z Ge.]xxsm¢COS¢[eo(UnUz)[eo(v]suj)+ Geyx €08 @loe(v,. ) oo v, 1))

m=0n=0

= GCJX)' sin? ¢[eo(Viv Ui)loc(v}v”)) + geJyy sin ¢ cos Oloe(v,. UI)IOC(U)‘V])

12 = Z Z GCJ(‘{ sin ¢COS¢1”(U.,U,) eo(V]v v]) GeJyx sin? ¢[oe(vi» UI)ICO(VJVU])

m=0n=0

+ Geixy cos? Sleo(Viy i) Loe (v, v;) + Gelyy sin ¢ cos Oloe(vi, 1) [oe(v), v))

22 - Z Z geJxxsm ¢Ico(un vt) eo(V]v U]) geJyx Sill¢(‘0$¢[oe(l/,, Ux)[eo(‘/pv))

m=0n=0

= Gelxy sin ¢ cos o (vi, vi) Loe (v}, ;) + Gesyy cos? @, (v, Vi) loe(v;,v,)

(3.57)
Now it can be seen that the only tefms involved in the integration are of the form
I(ag,B,) = // [ws k’“”i“k“”] () ¥(B,) dS (3.58)
<\Cele) = Se Lsin kmz cosk,y 7 7 )

where (aq, ;) could be either (vgy 1) OF (v, v,) with dS, = dvdv for the strip or (g, Bq)

would be replaced by (Cor&q) or (&4, Cq) with dS, = d(d€ for the slots.
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3.5 Integration

We will ultimately assume, as is commonly done, that the strip and slot are sufficiently
narrow so that the longitudinal components of current are much greater in magnitude than
the transverse components. The latter can then be neglected which, as will shortly become
apparent, greatly simplifies the book-keeping required to keep track of various Green’s
function and current components, coordinate transformations, cross-coupled terms, etc.
The assumption is further justified in that, at this point, there is no known advantage or
requirement for the microstrip or slot structure to be more complex. For the moment,
however, the complete expansion will be retained so that the numerical model can later be
extended based on these expansions, by evaluating the additional terms of the matrix.

Now the [eo(aq,8,) function is still a mixed coordinate system function, therefore, to
perform the integration the function must be transformed to a common system. The sim-
plest approach is to transform the cavity-fixed coordinate system functions into the strip-
fixed system by solving Equations (3.7-3.8) for z and y and substitute into Equation (3.58)

giving

T = vcosd—-vsing + z, (3.59)

vsing + vcoso + v, (3.60)

<
]

Equation (3.58) then becomes

. 5 = // {cos[km(vc08¢ - vsin @ + z,)]sinkn(vsin ¢ + vsin ¢ + y")]}
(@) = S, \sin[km(vcos ¢ — vsin ¢ + zo)] coslkn(vsin ¢ + vsin 6 + yo)]

®(ag)¥p(B,) dvdy (3.61)

By introducing the notation,
kf = kpcos¢d t k,sing (3.62)
k¥ = kpsing+ kycosd (3.63)
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Vo

I

kmZ, (3.64)

Vo = knl¥o (3.65)
we can reduce these integrals to the form
leo(aq, By) = %/ s, [sin(k}v + v,) cos(ky v = v,) — cos(kFv + v,) sin(k; v - v,)
Fsin(kJ v+ v,) cos(k}v + v,) £ cos(kJ v + v,) sin(k) v + v,))]
®(aq)¥(f,) dvdv (3.66)
[t is now clear that there are only two integral forms which must be evaluated:
/ / sin(kaa + o) cos(kaB + B,)8(a)¥(8) da df
// cos(kaa + a,)sin(kgf + B,)®(a)¥(8) dadp (3.67)

The integrals involving ®(a) are expanded and evaluated in straightforward fashion to give

sin kblg [sin ] . [ 10] . { lo}
= k . S O
/ [c (ka £ ao)] $(a) da S sl COS( ag t a,)|sinc |(k + k) 5 | sine (k = ky) 5

(3.68)
where sinc(z) = sin(z)/z.

For the case where ¥(f3) is the Maxwellian distribution,

IE = /[s"’(kﬂm] (B)dB = I/I’[s"‘ ;tﬁo)]-——‘i@—— (3.69)

cos L-(£)?

Using the substitution ﬁ- = siny, we have

1 7*/2 [si
I; = -/ [sm(klasin‘r:tﬂo)]d'r

T J_x/2 Lcos
_ cos(B,) [*1? [sin o ] sin(j:ﬁ,,)/"/2 [cos ]
= + Juj Leos (klgsiny) d*/:{:——-”——- _oj2 Lsin (klgsiny)| dy

(3.70)

This form can be reduced to

IE = (+ m] / " cos (lpsin) dy = [j‘“

‘2 sin
cos

(iﬁa)] L (klgy (3.71)
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For the rooftop functions, the transverse weighting is 1/2(5 so that

o= [[Muaxs )} ¥(5)d5 = i/{{ [0 (k6 £ )] 45

[Si“ (:tﬂo)] sinc(kslg) (3.72)

COs

With these results, the integration of Equation (3.66) is fully specified and we can

proceed to evaluate the terms of the matrix.

3.6 Numerical Evaluation Considerations

Before proceeding to the applications, some comments on the numerical implementation
should be made. At this point we are in a position to go ahead and program the previous
expressions to evaluate the matrix elements as they stand, however, just a brute force
approach, without some consideration of the algorithms to be used, would undoubtedly
result in a very inefficient program which takes much longer to run than need be. In this
section, some ‘common sense’ features will be pointed out in addition to some mathematical

identities which can be used to significantly improve the convergence rate of the summations

involved.

3.6.1 Precomputation

By writing out the complete expression to be evaluated for the self-impedance on the
strips, the main points can be illustrated which also apply to other elements of the matrix.
Let us assume that the strip is oriented along the Z axis in the cavity with a width of W

and is centered at the point (z,,y,). A typical element of the [Z;;] can then be written as

1y

ZZ/ (= // GUe()¥(y) dz dy dz'dy’
m n S‘

YY" Conn Gesxxleo(zis i) eo(25, ¥ (3.73)

m
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Assuming the Maxwellian transverse dependence, the [, terms are evaluated as in the

previous section and Z;; becomes

| Crnk2l4
Zi(j“) = —Jjwu Z}: sin2 k:l geJxx COS[km(Ii + Io)] COS[km(IJ + IO)]
m n z

sin? knyoJ2(knly)sinc?[(km + ks)lc]sinc?((km — kb)l2)(3.74)

The most basic rule to optimize the speed of the computations is to perform any operation
or function evaluation as few times as possible. Immediately we recognize then, that the

constants should be factored out and the outer loop factors should be removed from the

inner loop:
(1) dfpkly —Q2-6n) ]
Z, prgEey k:l, ; 3 cos(km(zi + z,)] coslkm(z; + 7,)]
sinc?((km + ks )l ]sinc?[(km — ks)lz]
{Z Geixx sin? knyoJZ(knly)} (3.75)

Now in this expression, although evaluation of the sine and Bessel function J, in each
cycle of the loops is implied, in practice these are computed and multiplied external to
both loops and stored as a vector dimensioned to include the maximum value of ‘n’ to be
evaluated. Thus, these functions are evaluated only once per value of ‘n’. Similarly, the
(2-6m)/2 factor ( = 1 for m # 0 ) appears only in the ‘m’ loop, since for n = 0 there
is no contribution (note also that the conditional statement which tests for m = 0 can be

eliminated by calculating the m = 0 terms separately).

3.6.2 Transformations

Finally it is noted that the ‘m’ loop implies m x N evaluations of the cosine terms and
with the inner n loop implies m X n x N2 products of these terms and the remaining terms

where N is the number of basis functions on the line. This can be dramatically reduced
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by making use of the relation
cosAcos B = %[cos(A+B)+cos(A-— B)] (3.76)

so that our expression becomes

2fuk?id
absin? kyl,

)» 2= tn) (coslkm(z: + z; +22,)] + cos[km(z, — z,)))

(1)

m

sinc?((km + ky)lzJsinc?[(km — ky)l;] {Z Geyxx sin’ k,,yo.l;"(knly)} (3.77)

We now need at most m x (3N — 1) cosine evaluations, on the order of m x n x N products
and N? simple additions which greatly improves the computation time, especially as N
increases. The sum resulting from the application of Equation (3.76) is performed after
the m and n summations are complete. This is the key to the speedup since a factor of N
is removed from the number of product evaluations. A factor of N? additions are added,
however, this is inconsequential since the additions are simple (two complex numbers)
whereas the previously required product evaluations also involve the calculation of other
non-trivial coefficients. If the matrix elements are to be stored in data files, storage of the
cosine sum and difference te;rms also greatly reduces the file size - now on the order of
(3N — 1) rather than N2

This technique also applies to the slot self-impedance terms. For the coupling terms
(slot-to-strip, etc.), the same principles are used except the sum and difference scheme no
longer applies due to mixing of k,, and k, wavenumbers. However, in these cases, due to
the separation of the structures in the z direction, sine or cosine factors in the denominators
become hyperbolic for large values of m and n and improve the convergence rate so that
the upper limits of the summations can be reduced.

Other factors can be considered, however, the above points are thought to contribute
the most significant improvements in program efficiency with minimal effort. Of course,

there are other issues which have not been addressed since they often depen&ﬂén the avail-
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able facilities; memory limits for example. There are also schemes available to improve
convergence through auxiliary series transformations, however, these are often only possi-
ble at the sacrifice of generality. For example, for uniformly filled cavities, e.g., stripline
problems, techniques such as those found in [13, Appendix A.6] can be applied but then
multi-layered cases would require separate treatment. Admittedly, the full extent of these
possibilities have not been adequately explored and may offer further improvements in pro-
gram efficiency. Rather, the emphasis has been focused on phenomenological exploration

of the applications in the discussion to follow.

3.6.3 Convergence, Algorithms and Run-Time

As with other eigenfunction expansion methods, consideration of the convergence of
the modal summations is an important process in establishing reliable results. For these
types of solutions it would be desirable to analytically examine the expressions involved
and derive formulas for acceptable upper limits of the summations. Ideally these formulas
would be provided for each type of Green's function and would be functions of all the
relevant geometric and electrical parameters and the desired accuracy. To develop such
a system, however, is a major undertaking in itself and would really only be worthwhile
after a more thorough investigation of possible series transformations alluded to above.
In addition, convergence behavior generally varies depending on which output variable is
sought, further complicating the situation.

Nevertheless, it was necessary to investigate some aspects of this question in order to
produce reasonably efficient programs, the intention here then being to pass along some of
the information gained to those who may extend the scope of this work. Also it should be
recognized that although it has become common practice to discuss convergence by showing

the behavior of particular parameters for the structure at hand as a function of the number
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Figure 3.4: Convergence behavior for several parameters of a centered shielded microstrip
transmission line. Dimensions a = b = .25, w = h = .025, ¢, = 9.7. Terminal
values at 1000 modes were Z, = 49.63Q, €,.ss. = 6.90, Hx = 12.45A/),.

of modes used in their calculation, this information is really of limited value since when
the technique is applied to a different structure, there is usually no guarantee of similar
results. The plots given here are therefore provided only to illustrate some intuitive points
and to give the reader an ‘order of magnitude’ feeling for the required range of upper limits.
Unless some analytical guidelines are developed and become available for these problems,
similar numerical experiments mus.t be performed for each new application.

To illustrate, let us first look at the convergence rates for several transmission line
characteristics. The theory behind the calculations is presented in Chapter [V. Figure 3.4
shows the convergence behavior for three key transmission line parameters of a shielded
microstrip line. As can be seen, the rate of convergence depends on which characteristic

is to be computed. We re-emphasize that these features may vary as a function of the
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geometric and electrical specifications. It should also be mentioned that this application
does not present any practical difficulties since not only does the convergence appear to be
quite rapid but these parameters are computed by a two-dimensional formulation involving
only a single summation. The efficiency of evaluating the summation for this problem is
not a significant issue given today’s desktop computer capabilities. For example, the data
in the figure were efficiently computed on an Apollo DN2500 workstation®.

This brings us to the consideration of the two dimensional summations required in
the analysis of three dimensional problems of the type discussed in Chapters V-VII. The
required number of terms in the double summations depends on their behavior in the
mn-plane, where m and n are the two parameters of summation. The real problem is in
predicting or anticipating this behavior a-priori so that the corresponding limits can be
set. Some progress in this direction can be achieved by recognizing that these summations
are similar in many respects to the Fourier series. By drawing on our understanding of this
topic, we can gain some intuitive understanding of how the modal summations behave. For
example, it can easily be shown by numerical experiments that the closer two elements are
in spatial coordinates, the greater will be the extent of the mode spectrum as in Fourier
analysis. In addition, there may be no sign changes for the self coupling terms so that we
can immediately conclude that these terms will display the slowest convergence. Thus, we
could potentially monitor only the selfl coupling and nearby terms to determine whether
the summations have converged or not. There is also a potential savings in time, if we
can monitor the convergence of the series as a function of one direction (referred to as an
‘eigendirection’), the direction of m say, while the other (n) is constant. Thereby we can

potentially eliminate significant fractions of individual rows or even entire rows, depending

'The Apollo DN2500 is quite slow relative to most other engineering workstations, perhaps comparable
in speed to standard Intel 80386 based personal computers. The above data was computed at a rate of

approximately one minute cpu time per 1000 modes. The relation is approximately linear since there 1s
only a single summation.



on the behavior of the functions involved.

While these ideas have an attractive generality to them in that we might be able to
develop an algorithm for monitoring the convergence of the sum, making the convergence
question invisible to the user, there are serious difficulties when we try to put it into
practice. Most significant of the pitfalls involved include the fact that the final result is not
known a-priori so it is quite difficult to establish a criteria for convergence. To illustrate,
consider what happens if a ‘percent change’ criterion is used. Suppose some of the terms of
series at the early stages of summation contribute very large values which are later canceled
by similar terms of the opposite sign. At the early stages then, the sum will be large and
a fixed percentage of the current sum may be quite large compared to the final result.
Thus, truncating the local contributions to the series based on the current percent change
may prevent important terms from making their contributions which in the end leaves a
significant error. Another problem is that, as with Fourier analysis, the mode spectrum
may have extended gaps along the eigendirections so that a summation in that direction
may appear to be converged when in fact there are addition terms farther along which are
needed.

Some time was invested in pursuing an algorithm which takes these factors into account
based on observations of the spectra of various cases. In the end, however, it was found
that while some progress could be made by instituting various monitoring schemes, the
final conclusion was that the overhead required for keeping track of the progréss of the sum
and the periodic testing of sum’s status, more or less offsets the gains made in reducing the
number of actual terms added to produce the result. However, one scheme that emerged
does bear mention here since it is straightforward. It should be recognized that the cancel-
lation of terms generally occurs along both eigendirections and also the largest terms occur

near the origin. Then, one can readily accumulate the bulk of the sum by making sure
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to sum the low index terms near the origin at the onset, thus providing a good estimate
of the final result and alleviating the problem of not having a good estimate of the final
result in advance. A very simple algorithm accomplishes this scheme by simultaneously
incrementing either m or n while decrementing the other and successively moving away
from the origin, thereby summing in a direction normal to the diagonal of the mn-plane.
However, because of the tradeoff mentioned, the final versions did not use any of the de-
veloped schemes but simply scanned the mn-plane in a straightforward, raster-lik:e fashion
with terminating conditions set by experience.

Generally, to avoid any question of convergence while other investigations were under-
way and because sufficient processing power was available, far more terms than necessary
were used anyway, typically on the order of 1000-1500 modes in the eigendirection associ-
ated with the directions of the lines or slots, and half as many in the other direction. For
the cases studied here, not nearly as many modes in the one eigendirection are needed as
in the other. This is due to the fact that in the particular cases studied for comparison to
experiments, the strips and slots were always parallel to the side walls of the cavities so
that one coordinate describing the position of the basis functions is constant. This tends
to cause the spectral variations in the corresponding eigenvalue to be similar for all basis
functions, although the variation of the other coordinate prevents this from being strictly
true. If, for example, the y coordinate is constant for all basis functions and n is the
associated eigenvalue, the spectra in n at a fixed value of m will be identical“except for a
constant scale factor which depends on z. Truncation error in n then tends to get averaged
out by the variation in z. To illustrate, let the aspect ratio in this example be defined by
N/M, i.e., the denominator is the maximum eigenvalue corresponding to the coordinate
which varies and N is the maximum of the other eigenvalue (N < M). Figures 3.5 and 3.6

demonstrate a typical convergence experiment in which the aspect ratio has been fixed
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Figure 3.5: Convergence behavior for peak normalized resistance versus maximum mode
number.

at 0.5. The quantities examined are key parameters to be introduced in Chapter VI.
As always, other parameters may converge at different rates and the rates may vary as
geometric or electrical parameters change. The key point here is that at least for this case,
when the maximum m value is set to M = 600, the changes which occur as N/M is reduced
from 1.0 to 0.25 are less than 0.1% for the resistance and 0.03% for the resonant length.
Thus, far fewer modes are needed in the n direction.

For subsectional basis functions, the spatial sampling rate also requires convergence
criteria. Since the quantities we are dealing with, e.g., impedance, are typically highly
sensitive to the behavior of the near-field and also often depend only on the fields in a
small region, the required spatial sampling rate is generally substantially higher than what
is required for far-field type problems (or non-uniform sampling is needed which is more

complex to implement). Again, the actual requirements depend on the circumstances
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Figure 3.6: Convergence of resonant slot length as a function of the number of modes.

and techniques used so it is difficult to provide general statements on these requirements.
Twenty samples per material wavelength is often used as a ‘rule of thumb’ for far-field
problems which we generally increase to the 30-40 samples/wavelength range for sampling
on strips or non-resonant slots. For the resonant slots, we often increase the sampling to
100-125 samples per wavelength making sure to overestimate the resonant length of the
slot by a significant amount. This practice is not driven so much by convergence criterion
as it is by practical matters. It takes far longer to generate the matrix eléments than
it does to invert and process the cases studied here. Changes in length or the relative
positions of slots and lines for example, can easily be accomplished by loading a matrix
“with longer than needed lengths and scanning the behavior of the structure as a function of
lengths or distances by successively removing the appropriate rows and columns; inverting

and solving for the appropriate parameters at each stage. Thus, the matrix elements
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need to be generated only once for a given frequency, allowing a wide variety of geometric
variations to be studied as long as the cavity dimensions are not changed. We also use this
technique to provide greater resolution of lengths and relative distances without requiring a
regeneration of the matrix. The upper limit of the spatial sampling rate when the elements
of the matrix are computed with double precision seems to be on the order of about 250
samples per material wavelength. This number, attributable to round-off and truncation
error, is machine and algorithm dependent which brings us to the final point on this subject.

For problems of these types, it is common practice to quote run iimes typical for certain
machines, often not very well identified. It is common knowledge that machines vary widely
in their ability to execute codes, especially from machines of one type to another, but even
for the same type of machine with different hardware configurations. In addition, the
information provided can quickly become dated and irrelevant since available computing
facilities are changing rapidly. Not only this, but also the execution time of the same
analysis implemented with different algorithms and different degrees of generality can vary
widely (easily on the order of a 10 to 1 variation, depending on both the abilities and
knowledge of the programmer as well as the time spent in optimizing the algorithms for
speed). Undoubtedly, there are techniques which can be used, in addition to those discussed
above, to improve the run time of codes developed for this analysis. The real issue comes
down to a tradeoff between time spent on optimizing codes versus producing and examining
results. Of course, the outcome of this tradeoff depends on available resources,rthe objective
in producing the codes, and their intended end use. Suffice it to say that the key element in
the current approach is the generation of the matrix, which for a typical three dimensional
structure at a single frequency, can be generated in 45-60 minutes or less on a ~ 25 million
instructions per second machine such as the IBM RS6000/320. This amount of processing

time has been sufficient for our needs.



CHAPTER IV

ANALYSIS OF TWO-DIMENSIONAL STRUCTURES

The treatment of multiple layers can be illustrated in greater detail by presenting the
methods used to analyze structures which are uniform in one dimension. Complex three-
dimensional problems are often treated initially in this manner by analyzing their more
fundamental elements - two dimensional transmission lines — with lumped elements added
to represent discontinuities. The total problem can then be treated by network analysis if
the basic properties of the individual structures are known.

The objective here is to show how these fundamental properties can be obtained, for
instance, the propagation constants and characteristic impedances of transmission lines.
These quantities are directly tied to the solutions for the fields in the structure which
thus becomes the main objective of this chapter, that is, to demonstrate the procedure for
matching field components through multiple substrate and superstrate layers as applied to
th—dimensiona.l problems. The presentation also serves to illustrate how the technique can
be applied to more general three-dimensional problems since the procedure is the same.
Some examples of field solutions are given to demonstrate the utility of the approach. The
work in this chapter is also needed in later chapters which deal with the microstrip-fed slot
antenna elements.

The scattering of waveguide modes by vertical wires is also studied in this chapter. This

problem reduces to two dimensions for the homogeneously-filled waveguide case wlich
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is relevant to the experimental work on stripline to be discussed later. The problem is
unique in this work in that the currents are normal to directions of the other currents
discussed. The treatment of wires inserted through multiple layers cannot be reduced to a
‘two-dimensional problem and will not be discussed although, as will be seen, the solution to
this problem would be needed to complete the general analysis of waveguides and especially
cavities formed by inserting wires through the ground planes of multi-layered parallel plate
waveguides. It is also noted that even for the homogeneously-filled case, the problem of
vertical posts or wires has not been extensively treated in the literature, especially for
parallel plate structures, even though they are often used in practice for the suppression

of unwanted higher-order modes.

4.1 Application to General Multi-layered Shielded Microstrip Struc-
tures

The objective of this section is to show how the fields in the various levels can be calcu-
lated from a known form of current density on a single microstrip line in a straightforward
way. Also, although to this point we have considered multiple components of current, the
applications to be discussed will be restricted to narrow strips with one current component
to minimize the complexity of the presentation. There is no restriction on the placement
of the current or the number of strips which can be used, however, a simple case here
will better serve to outline the method. The procedure for the treatment of ‘more complex
multi-layer coupled strips cé.n be found in {83], which serves as an example of the use of
potential theory with impedance boundary conditions to generalize multiple layers in a way
similar to what has been done here. This reference also addresses the modelling of strip
conductor loss. In additon, we compare to a @uch earlier work on this type of analysis
by Yamashita {90}, whose method of non-uniform discretization would be appropriate for

wider strips where the form of the current density cannot be assumed.
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[n order to calculate the characteristic impedance, the definition Z = P/I? is used
where P is the time average of power propagating along the guide. Thus, if weset [ = |,
the characteristic impedance is simply Z = P which can be computed analytically by
integration of the average Poynting vector on the cross section of the waveguide. Also, in
some cases, the reaction of the fields (R) on the waveguide cross section is needed which
can be computed in the same way.

For our purposes, let us assume a geometry such as shown in Figure 4.1 with a longi-

Figure 4.1: A shielded stripline, uniform in the y direction with multi-layered substrate
and superstrate.

tudinal current component on a single narrow strip of the form

I y,2)=§ e~ RV |2~ 1| < W/2 (4.1)

26(2' - d)
o \2
wW\/ -4 (Z)
i.e., a Maxwellian transverse variation of the current density which satisfies the edge con-

ditions on an infinitesimally thin narrow strip. The propagation constant k, represents the

set of characteristic complex phase constants associated with shielded microstrip modes.
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These complex constants are the eigenvalues of the equation
E,:—jwp///r‘zxéej-.]_dV'zﬁxi,-.l_ (4.2)

which enforces the appropriate boundary conditions on the surface of the microstrip line [83].
A particular value for k; must be found first, before the fields of a p_articula.r mode can be
calculated.

Using Equation (4.1) in (4.2); the §§ component of (=}e1 as derived for layered rectan-

gular waveguide in Chapter II; and the integral representation of the delta function,

+00 . ,
/ e=itka =RV 4y = 9k, - k,) (4.3)

-00

we find that the y component of the electric field can be written as

wp [t -ky) . .
E, = — | dk, Z k2+k2) y)SInk,zS|n@,zoJo(k,W/2)

{ [ el cos k(e — 5) 4 jsin k(e - 2] |
(neU 77eL COSk (C - ) j(kaﬁeL - I)Sin k,(C - d)
+k§k3 [ fimL[fimu cos k;(c — z) + jsink,(c - z)] ] } (4.4)
(U = fime) cos k(¢ = d) = j(fmuTimL — 1) sink.(c - d) ‘

where the Fourier integral can be eliminated using the sifting property of the & func-
tion. Then, using Galerkin’s procedure to enforce the boundary condition given by Equa-

tion (4.2), we can write

wp o= (2-6m) ., 9, kW
Eyy = —Z—;WSIH kzIoJO( 2 )

{ @ [ L [ew cos 4(c — d) + jsin ks(c — )] ]
('ku fleL) COS k (C -d)- ](neUfleL - 1)sink, (C -d)

k2k? [ TimL|fimU cos k;(c — d) + jsin k,(c - d)] ]} (45)
k? (ﬁmU = f)mL)COS kz(c - d) - j(ﬁmUﬁmL - 1) sin k,(C - d) .

+

We now numerically search, using Muller’s method for example [60, p.262], to find the
values of kg which satisfy Equation (4.2) and thus correspond to microstrip modes.
With the propagation constants known, the fields in the i** layer can be easily found.

By inspection of Equations (2.80) and (2.85), the fields can be written in a general form
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in terms of the homogeneous solutions to Equations (1.10) and (1.12). Thus, the fields in

the 1P layer can be written as

o]

= J(2 = bm)k;
fy = g:omk k2+k2)

[ﬁmUMoo[knkz(z - )] + jMoelkz, k(2 - C)]}

B;
[ﬁm[;h}.{oo[kzv kz(z - d)] + ]Moe[kxa kz(z - d)]}
{T.kUNee[kta k:(z - C)} - jNeo[kza kz(z - C)]}
+ A (4.6)
[ﬁeLNee[km kz(z - d)] - jNeo[km kz(z - d)]}
and
- & j2-6)
b= mzo 27rak,(k2 +k2)
[ﬁeUMee[kn k,(Z - c)] - jMeo[kr, k,(Z - c)]}
A;
[kaMee[km k:(z - d)] - JMeo[kn kz(z - d)]]
[flmUNoo[kza kz(z - C)] + jﬂoe[k:y kz(z - C)]]
+ B; ' (4.7)

[f]mLN [l"z‘) k Z - ] + JNoc[kz, k (z - ]}
which are valid for all layers except the source layer. Some of the leading constants are

preserved for convenience in later notation.

4.1.1 LSE Modes

Expanding the VWFs we then find that the LSE mode fields in each layer can be

written in the form

= 2 .- . i1 . /
Erse = A; [m-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>