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Abstract

In a previous report [1], we derived an E-field integral equation
for the scattering from resistive cards. Current and charge integral
equations were developed using linear and doublet basis functions,
respectively, and both formulations were shown to yield identical re-
sults for flat strips. In this follow-up report, we extend these formu-
lations to arbitrary curved strips and reformulate the charge integral
equation for solution using pulse basis. Of the presented current and
charge integral equations, both have a field matrix time of O(N?).
In addition, new results are presented for the S-shaped surface which
illustrate that a small surface blemish can cause significant scattering
returns at near grazing incidences.



1 Introduction

In a previous report [1] we derived a version of the E-field integral equation
for scattering by resistive cards (see Figs. 1 and 2) in terms of the charge
density rather than the current density as is usually done. The result-
ing charge integral equation was then solved for a flat strip via Galerkin’s
method using doublet basis functions, and it was shown that the resulting
system was identical to that obtained from the current integral equation
in conjunction with linear basis and Galerkin’s testing. In this follow-up
report the same integral equations are implemented via Galerkin’s method
for a curved resistive strip. Linear basis are employed for the current inte-
gral equation (see Fig. 3) and the resulting matrix elements are developed
in detail. The charge integral equation is implemented using pulse basis
to yield the same accuracy as the current integral equation with linear
basis but because of the simplicity of pulse basis, the charge integral equa-
tion leads to a simpler implementation. In this case, however, the standard
Galerkin’s method (where the test pulse is the same as the expansion pulse)
is not applicable because it leads to vanishing self cell elements for one of
the two integrals in the equations. To avoid this, the test pulses are shifted
one-half segment width but since the integrands are slowly varying over the
test pulse, it was found sufficient to sample at two symmetric location over
the test pulse. This makes the implementation of the charge integral equa-
tion rather simple and provided the CPU time for generating the matrix
is maintained at O(N?), where N denotes the number subdivisions, the
charge integral equation is more attractive. A way to achieve this is dis-
cussed and results are presented which demonstrate that the simpler charge
equation is at least as efficient as the standard current integral equation.
Further new results are presented for the scattering by the S-shaped surface
which illustrates that a small blemish placed at the lower knee can cause
substantial backscattering near edge-on incidence.



2 The integral equations
Referring to [1] and assuming the plane wave

Hi — erjko(xcos¢o+ysin¢o) (1)

to be incident upon the resistive strip shown in Figure 1, the pertinent
current integral equations are

. k ,
LE(s) = RI(s)+ /C To(s) {3 S HP (kor)} ds

1 d]sl(S’) 0 (2) ’
Sy LA d 2
+4ko/c ds’ asHO (kor) ds (2)

where r = \/(a: — 22+ (y—y')?, Yy =1/Z is the free space admittance
and J,(s) denotes the current density on the strip of resistivity R. Setting
the charge density p(s) as

8(s)
= - 3
pls) = -2 (30)
where
dJ
=2 b
o5)= 22 (31
we can alternatively write (2) as
BE(s) = RI(s) =7 [ 4(s)Gile 2, y')d
c
1 N :
— — k
+4k0 C¢(3)05H0 ( QT)dS, (4)
which is the charge integral equation. In this
Gi(z,y;2',y') = /Os (8- §")Hé2)(kgf) ds", (5)
F= e =2+ -y (©)



and it can be shown (see Appendix) that

1) = = [ (B2 e+ ) - ot )

_ _%{/smh [1__2_(3_'1:__8)] 5(s)ds
Lo [ 2 ot 0

with L denoting the length of the strip and s’ is the cumulative distance
along the strip up to the point (2’,y"). Substitution of (7) into (4) then
leads to an integral equation only in terms of the charge density ¢(s').

3 Galerkin’s Solution of the Current Inte-
gral Equation for an Arbitrary Surface
Using Linear Basis

Consider now an arbitrarily curved strip or a closed cylinder, shown in
Fig. 4, whose surface satisfies the resistive sheet condition. The excitation
is a plane wave and we are interested in the solution of the surface current
density Jy(s), where s is a measure of the distance along the cylinder’s
or strip’s contour. Hereon, § will denote the unit vector tangent to the
resistive surface.

To discretize the integral equation (2), the surface is subdivided into
straight segments as shown in Fig. 5 and as in the case of the flat strip
we again choose the expansion and testing functions to be the triangle
functions shown in Fig. 3(a). To define these more explicitly, let us assume
that one of them is centered at the node (., ), as shown in Fig. 6, with
the left and right segments being of length

Smy = \/(lm - CL’m—l)2 + (ym — ym—l)2

Smy, = \/(:Em—{—l - $m)2 + (ym+1 - ym)2



respectively. We can then express W,,(s) and L,,(s) as

— 0 <8< 8mi

which are suitable for integration along the s coordinate. In the subsequent
calculations we shall also make use of the parameters

6, =tan™" (gﬁ____ym_‘1> ’ (10)
Ty — Tm-1

6,., = tan~! (M) , (11)
Tm+1 — Ty

'§m1 = T cos 9m1 + QSin emlv (12)

8ma = & €08 b9 + §sinb,,,, (13)

where the last expressions represent unit vectors which are tangent to the
segment on either side of the point (2,,,yn ). Using these parameters, the
parametric equations for the linear segment to the left of (z,,,yn ) are

T =Tpo1 +5C080n1, Y =ym_1+5sinb,, (14)
and those for the segment to the right of (z,,y.,) are
T =Ty +5c080n2, Y =Yym+ssinb,,. (15)

Thus, given N samples of the strip’s or cylinder’s surface we can proceed
with the computation of all parameters describing the linear segment which
make the discrete version of that surface.

Substituting (9) into (2) we obtain the discrete system

[Amn] [J2] = [bm] (16)

where the elements of the matrix [A,,,] and those of the excitation column
can be defined in terms of the parameters introduced in (10)- (15). For the



excitation matrix elements we have

b, = (sin@gcosb, — cos¢gsinby)
s . .
/ nl _S_ejko{(z,._l+scos@nl)cos¢o+(yn_1+ssm€n1)smdag} ds
0 Sni

+ (sin ¢g cos fny — cos ¢o sin 6,2)

. /8"2 Sp2 — 3ejko{(a:n+scosﬁng)cos¢o+(yn+ssin€"2)sin¢o} ds (17)
0 Sn2

which after integration can be written as

by, = L (sin ¢g cos 8,1 — cos @g sin b, ) eko[zn—1 cos $o+yn—1 sin do]

"t elkosgn1 ‘ Sn1

’ [m (7kogn1 — 1)] 0

+ i (sin ¢ cos B,y — oS B sin By ) e?Fo(@n cos dotuasindo)

Jkosgn2 7ko sgn2 Sn2
' [Sn;'legognz t ]:g(gnz)z (7 kogn2 — 1)}0 (18)
in which
gn1 = €0s b1 cos g + sin b, sin ¢ (19)

and ¢y, is similarly defined upon replacing the subscripts in (19) from nl
to n2.
The impedance matrix elements can be expressed as

Anm = a‘:lm + a721m + a?Lm (20)
where
al = / R(3)Lon(8)Wi(s) ds, (21)
k

2 _ M / 2. an(2) / o
U = . W/n(s)/cm L(s ){(3 §YH, (kor)} ds' ds, (22)

s _ -1 dIVn(s)/ dLn(s") . (2) , 5
B = T / L T HE ko) ' ds. (23)



The first of these integrals can be readily integrated once the resistivity is
specified over the mth segment. Given that the resistivity will be discretely
defined as a constant within each segment, with the mth segment defined
as that between the (m — 1)th and mth node, it follows that

(2] 4 (5) ne
Rps,
g L n=m+1
i, = (24)
Rm m
68 ! n=m-—1
0 otherwise,

where R,, denotes the average resistivity of the mth segment.
To evaluate a?,, we proceed with the substitution of the expansion and
weighting functions as given in (9). Doing so we obtain

a2 — @(3‘ .5 )/snl {.i}/sml _i H(2)(k‘ P )dS,dS
nm R T T P
k R R Snl S Sm2 Smo2 — Sl
+ ZO (Snl ' 5m2)‘/O {-8:—;}/0 { ;7712 } H(g2)(k07'12) dS,dS
k Sn Sn2 — Sm !
+—°(§n2-§m1)/ 2{‘” 2 8}/ ’ {—S—}Hg”(kom)ds'ds
4 0 Sn2 0 Sm1

k’ Sn2 n2 — Sm m2 — ! ,
+ ZO(§H2 . §m2)/0 {S 2 S}/ ’ {82—8} Hé2)(k07'22)d3 ds
0

Sn2 Sm2
U + G, + @i, + @l (25)
where
r = [(xn_l + 5¢080p1 — Ty — 8" 08 Oy )?
+ (Yn-1 + ssin b, — Y1 — &' sin 9m1)2] %, (26)
rg = [(l‘n_1 + $¢08 81 — Ty — 8" cO8 Op2)°
+ (Yn—1 + ssinb,; — y,, — s'sin 6m2)2] %, (27)



rg = [(mn + 508 bpg — Ty — 8’ €Os Op1)?

1
+ (Yn + s5inbh2 — Y1 — ' sin 9m1)2} ’ (28)
Tog = [(xn +scosb,y — 2, — s cos 9m2)2
1
+ (yn + ssin b,y — Y, — ' sin 9m2)2] 2. (29)

All of the integrals in (25) can be evaluated numerically except when
n =m and n = m=+ 1. In this case some of the integrands become singular
and although their singularity is integrable, the associated integrals must,
nevertheless, be evaluated with care. When n = m, the integrand of the
first (a2},) and fourth (2! ) integrals is singular at s = s’. To evaluate them
we can rewrite a2, as in (27) of [1]. However, a more accurate procedure is
to regularize the approximate integrands by adding and subtracting a term
which can be integrated analytically. Applying this procedure to the first
term of a2, gives

Sn Snl !
o= 7L G |(5) s
4 Jo Jo Sn1 Sn1

! 2
_ (-S—-> 21 <lk0|s - = 1)} ds' ds
Sp1) T 2

jko (Snl )2 kQSnl
L0 ) 35 1 041
S—— 354+ 241In 5 (30)

and for the fourth term we obtain

k 5n Sn n2 — n2 — ! /
I A A e | [ LX)
4 Jo 0 Sn2 Sn2
n2—381 72 1
_ {S 278 }J—ln <—k0|3—s'|>] ds' ds
Sn2 s 2
.& (5112)2 kO 9
27r{ Ti4 61 +481In 5 + 121n(sn2)

) /Om {Snz - 3}2 (s —5.0)1n s s ds} (31)

Sn2

+

The integrands of all integrals appearing in (31) and (32) are now non-
singular and can be evaluated numerically. We note that in obtaining the



analytical portions of (30) and (31) we employed the integral identities
/aln (c|lz —2'|) d2’ = aln(c) —a+zln|z| — (z —a)ln|z —a]  (32)
0
and

/:r:ln |t — d|dz = 3 (a: B d2) In(z —d) — —d2 [Z % (g)? (33)

The second (a2?)) and third (a?3)) term of a2, have singular integrands
whenn =m+1 and n=m-1, respectively. Regularizing their integrands
as above yields

k Sm2  [Sm2 S Sma — &'
99 0 m2
= — - H g
Um+1)m 4 /0 /0 {sz} [{ Sm2 } ol
— , '
3 {sz S }Jﬁln <lk0|5_5’|>} ds' ds
Sm2 s 2
» . 2 k m
+J_0{(3 2) _19+121n( O‘; 2))} (34)

ko [sn2 [sn2 (8,9 — s s
23 _ 0 n2 (2) /1.
om = [ [ s 1)
Jko 3112)2 ko Sn2
+—- e -19+4+12In — (35)

It remains to evaluate the integrals belonging to the term @3 which
appears in (23). We have that

@ = / / HP (koryr) ds' ds

4A0 Snlsml
/ H(()2 1\07'12) dS dS
0 0

)

_|.___

4ILO Sn1Sm2
1

= ) (korar) ds' d
+4l~03n23m1/0 /0 HO 0721) 7

H (koraq) ds'd
41«0 Sn28m2 / / Or22 5 a8
=y + o+ g, + g, (36)




where 7, are the same as for a2, and were defined in (26)-(29). As in
the case of a2,,, all of these integrals can be evaluated numerically except

nm)
when n = m and n = m £ 1. When n = m, the integrands of ¢3! and a>*

are singular and by regularizing them we obtain the alternate expressions

31 _ (2)
= i L s =)
- —ln( k0|3—3'|>} ds' ds
™

1 1 j2((sm)? ko
——4_]60(3711)2?{ 2 (3+21n(~>+21n(8n1))} il
and

..1 1 Sn2 Sn2
34 _ (2) Eals — '
Gon 4k (Sn2)2/0 ,/o [HO (Fols = ')
)2 1
LM <—ko|s - s’|>] ds' ds
s 2

2 (o) )] o

These are now suitable for numerical evaluation. When n = m + 1, the
second term of af’m has a singular integrand and must be evaluated as

32 _ Sm2 /sm2 k
= S — S

- — ln (—k0|3 - 3'|)] ds' ds
m 2

11 32 [(sm2)? ko
[ () o

Finally, when n = m — 1, the third term in (37) should be evaluated as

33 _
a’(m—l)m - 4]»0 S 2)2 / / HO }”0 S - $ I)

1
— —1n< k0|5—3|)] ds' ds
s 2

11 52 [(sn2) ko
p— _ 2 ~o 2 S




By comparing (37)-(40) it is evident that Atitym = —Uomp and that
Ao —1ym = —Uo,- We further note that the simpler result in (34) of [1]

could be used for evaluating a3!, a3, a?ﬁl +1)m and a?%_l)m.

4 Solution of the Charge Integral Equation
Using Pulse Bases

Let us again consider the curved strip or cylinder shown in Fig. 4. We are
now interested in solving the charge integral equation for this geometry.
To do so we shall use pulse basis for expanding the quantity ¢(s) and not
the doublet function used in [1]. Thus, the charge conservation require-
ment must now be imposed explicitly. At first this would appear to yield
an overdetermined system of equations. However, the usual Galerkin’s or
point matching technique leads to ill-conditioned systems and cannot be
employed in the standard manner. In particular, on using point matching
(at the center of the segment), the self-cell term of the last integral (4)
vanishes making this testing/weighting procedure completely inappropri-
ate since it zeros the most important term of the integral equation. Also,
the usual Galerkin’s testing leads to a similar situation. To avoid this, we
can shift the weighting/testing pulse one-half of a subdivision as shown in
Fig. 7. This type of weighting retains the dominance of the self-cell term
but leads to N — 1 equations for open surfaces, if N denotes the number of
expansions employed in the discretization of (4). Consequently, the natural
condition for a unique solution of the charge distribution is the conservation
of charge equation

N
Z ¢n =0 (41)

where ¢, /(—jw) denotes the charge amplitudes at the nth segment. That
1s, they appear in the expansion

N
¢~ ¢.P(s—s,) (42)
n=1
where
1 sy <8< sy
P(s) = { 0 elsewhere (43)
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with so = 0. Alternatively, in the case of point matching the test point can
be placed halfway between the segment midpoint and its beginning or end
point.

To discretize (4) as stated above, we introduce (42) in place of ¢(s) and
this yields the integral equation

. k N Sn
YoE™ = RIJ,(s) - =2 Z d)n/ Grz,y;2',y")ds'

4 n=1 -1
b1 fj 6 [ 9 5O kyr) ds (44)
4k0 n=1 " Spn—1 63 0 0

To generate a system of equations from this, we shall employ a dual set of
test points located one-fourth of the mth and (m + 1)th segment lengths
from either side of (2, ym) as illustrated in Fig. 8. This testing procedure
is simpler than the shifted pulse approach and should not compromise the
accuracy of the solution in view of the reduced singularity of the kernels
in (4) versus those in (2). That is, each equation to be generated will
be the sum of the equations obtained by testing at (Tm-1/4, Ym-1/4) and
(Tm41/4> Ym+1/4), and consequently the resulting system will retain certain
symmetry with respect to the sample points (., ym ).

To generate the matrix elements of the system resulting from (44) we
must evaluate the integrals

Tln(mt,yt) :/ " G[(l't,yt;wl,y/) dsl (45)
Sn—1
and p
Tyn(e, 1) = Eyg”(km )ds’ (46)
Sn—1

where Tt = Tmt1/4y Yt = Ym+1/4,

/

')

s(z’!
Grlz,ys'y) = /0 (8¢ 3"V HS (o) ds”, (47)
o= -+ (g -y (48)
P, = \/($t — "2 + (y, — y)2, (49)

and s(z,y) denotes the cumulative distance up to (z,y).
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Assuming equal segment lengths As, T}, can be approximated as
Tln(mta yt) = As Gl(xta Yt Tn-1/2, yn-—l/2)

= AsY /0 (3 - 8,0) HD (koriy) ds’
p=2

= As ) Ly(e,y:) (50)
p=2
where
smp=As p<n
$p =14 Sm As (51)
— =-—— p=n
2 2
and

1
Fip = {ftg — Tpo1 — 8" cosOp )2 + (s — yp_1 — &' sin 9,,1)2}2 (52)

It is important to note that in generating the coefficients of ¢,, it is not
necessary to perform the entire summation in (50) for every n. Instead the
nth coefficient should be generated by adding one term to the (n — 1)th
coefficient, thus retaining our O(N?) operation count to fill the matrix.
Also, there is substantial overlap in computing the coefficients for each of
the two testing points and this could be exploited to further reduce the
CPU matrix fill time.

All of the integrals Ij,(z¢,y:) appearing in the sum (50) have well-
behaved integrands except when t = ¢, = p—1/4 or t = t5, = p + 1/4.
In this case the integrands are singular and I,(z;,y,) must be evaluated
analytically. We have (p < n)

Dylwopt,) = [T B (holsyn - 1) ds
3

_ 15p1 H(()z)(kOISIDdS/

_p
1

2 k e
{s—j; [sln( "273) —SH (53)

where v = 1.781 is Euler’s constant. Also

°r S ’ '
Ly(@enn,) = [ HE (k|2 - ) ds

2

12



where

and

2

Sp—
o HPkols) ds

4

2 k' sp—sp2/4
~ {s——j— [sln( 0278)—3}} (54)
4 Sp2/4
where s,5 = As and s, = As ifp<norsp=%ifp:n.
The evaluation of I, is rather straightforward. We have
_ ™9 Lo :
Don(ze,ye) = - Ho" (korin) ds
o Os
Snl
= —k / 5 Fen HO (horen) ds' (55)
0
1
Tin = {(mt — Tpo1 — s’ cos 9n1)2 + (yt —Yn-1 — s’ sin 0n1)2}2 (56)
- (2y — 2py — 8" c080,1)T + (Y1 — Ynoy — §'sin Gnl)g)' (57)

Ttn

Fort#mn—jort# (n—1)+1 the integrand of (55) is non-singular, and
T, can then be evaluated numerically. When t = t;, = n— ;11-, T,, becomes

T2n(xt1m ytln)

Similarly when t = t,,

Tzn(-’ftzn, ?/tzn)

Snl

0 ,
A —0-—8—,H52)(k0rm) ds

~[HS (koren)
B [ @

0
(n—1)+ %
Sn2 6

o O0s
= (B o

_ [Hég) (3k0AS

Sn1
0

koAs
)

we have

3k0AS

; (59)

HP (kory) ds'

-

koAS
4

4
—Tln(:ctlna ytln)-

)
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Finally, before completing the discretization of (44) it is necessary to
also consider the integral given in (7). From the Appendix we find that

1 N N + 1 1
Js(sm:tl/‘l) = E Z ¢n [_?7mn + (n + 2 —m + Z)AS
n=1 =

+(N+1-n+3;-mFAs

N
n=1
with
As (n+%_m:{:i) > %
Yo = Antz-mFDAs ntz-mF i <
| —As nty-m¥Fi < L

The matrix system resulting from (44) can now be written as

(Zmn)[6n] = [V]

where

Vi = %[Eshlc(»’l?m—u‘;, ym-1/4) + Einc(iﬂmﬂ/% ym+1/4)]
k
Zmn = R[B:;n + Br-r-‘m] - ZO[Tln(xm-H/éh ym+l/4) + Tln(l‘m——lﬁla y771—1/4)]

1
+ m[TZn(xm-i-l/ﬁb ym+1/4) + T2n($m-—1/4a ym—l/4)]'

Provided Ty, is computed via the recursive procedure noted above, the fill

time of [Z,,,] will be of O(N?).
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5 Numerical Implementation

In this section we present some numerical results based on the solution of
the systems given in sections 3 and 4. We have numerically verified that the
two systems give identical numerical results and thus only patterns based
on the solution of the current integral equation will be presented.

Figure 9 compares the bistatic echowidth at 2 GHz of a 4 cm square
metallic cylinder as computed using a pulse basis-point matching moment
method program and a linear basis moment method program which em-
ployed Galerkin’s technique. Figure 10 illustrates a similar comparison for
a circular cylinder of radius 5 cm also at 2 GHz. Clearly, the results based
on the two formulations are identical validating the given formulations for
metallic surfaces.

Let us now look at scattering results for resistive surfaces. As an exam-
ple, let us consider the flat resistive strip. Figure 11 compares the backscat-
ter patterns for a 5 cm strip at 2GHz having a normalized resistivity of
R =1.1-730.2. A similar result is given in figure 12 for a flat strip whose
left side is metallic whereas the right side has a normalized resistivity of
R = 2. Once again the agreement between the two different formulations
serves as validation for resistive surfaces.

We have been very interested in simulating infinite structures with finite
models. One method of hiding the undesirable edge of a finite structure is
to gradually taper the resistivity of a strip. An example of this is shown
in figure 13 where a metallic halfplane is modelled by a 100\ long tapered
card whose normalized resistivity varies as

16

T
2)=20]-2] —100<2< f
R(z) 0[100 100 < ¢ <0 (60)

In this figure, the scattering by the tapered card is compared to the known
metallic halfplane diffraction coefficient. These results are also compared to
those obtained by a range gating procedure which is used for removing the
contribution from the trailing edge. The range gating procedure involved
the computation of the scattered field from a 0.5m wide strip for 128 fre-
quencies between 100MHz and 10GHz. By inverse Fourier transforming
this data, one is then able to isolate and gate the first order contribution
of the strip’s unwanted edge. The shown pattern is simply obtained by

15



applying a Fourier transform to the gate profile for each observation angle.
This technique is very effective for E-polarization but for H-polarization,
we are still hampered at grazing incidence by the difficulties discussed by
Hermann [2].

A more pertinent application of the code’s range gating feature to this
project is the analysis of S-shaped surfaces. Previous work [3,4] presented
a uniform physical optics (PO) diffraction coefficient for this geometry and
employed the pulse basis-point matching implementation of the current in-
tegral equation to validate the PO analysis. Because the scattering return
from the S-shaped geometries is rather small in certain regions, it is of inter-
est to re-examine this geometry using the more accurate program presented
in this report. The particular S-shaped surface to be considered is shown
in figure 14 and its frequency response was computed as described above
and processed via inverse Fourier transformation at each angle. Figure
15 illustrates the resulting range profile at grazing incidence. The trailing
edge is pronounced and we observe a non-local behavior about the inflec-
tion point. The inflection point behavior effects low frequency returns and
is not as pronounced for E-polarization. Figure 16 illustrates the range
profile after removing the contribution from the termination edges of the
finite model which simulates the inflection surface. The scattering pattern
resulting from a Fourier transformation of this gated profile(repeated for
each angle) is shown in figure 17. Clearly, the scattering near grazing inci-
dence is negligible. Nevertheless, it is important to note that the current
distribution near the inflection region is not necessarily negligible. In fact,
as shown in figure 18, the current distribution at grazing incidence is much
larger than the PO current near the inflection point and it drops off rather
rapidly to small values past the lower and upper knees. The presence of
the strong current near the inflection point and at the knees implies that a
small perturbation of the surface in that region could cause a substantial
return by unbalancing the canceling contributions from the surface currents
on the otherwise smooth surface.

This conjecture was examined by placing a small depression centered
at the location of the lower knee corresponding to the peak of the range
profile shown in figure 16, i.e. at £ = —6.8cm. The actual depression was
a groove 0.01 cm deep and 4 cm wide and because of its extremely small
depth such a groove can be thought of as a small scratch(almost invisible

16



to the naked eye). At the computation frequency of 5 GHz, this groove
%6)‘ deep! Surprisingly, the numerical results for this blemished surface
are substantially different in the non-specular region for H-polarization(the
E-polarization was not affected by the blemish). In particular, as shown

in figure 19 the H-polarization pattern from the blemished surface has a

1s

distinct lobe near grazing incidence. A similar pattern is given in figure 20
when the same blemish is placed on the upper knee at £ = 6.8cm. A lobe
again appears near 165 degrees which is not as broad as that caused by the
blemish on the lower knee. Tests were performed to verify the validity of
the patterns in figures 19 and 20 and interestingly the same patterns were
generated by our older code which was based on a different formulation.
This provided some confidence that the results are not caused by numerical
inaccuracies. Results were examined when the blemish was placed at other
locations and it was observed that these grazing lobes persisted but were of
reduced strength. At this point, an interesting task would be to examine the
effect of the groove shape and position on the scattering pattern. Certainly
the position will play a major role on the scattering strength. Nevertheless,
the smoothness and shape of the blemish will likely play a role as well.

17



Appendix: The current in terms of charges

Consider the integral expression (see [1])

1

=1 " (%) (6(s+6) — 6(s — 6] db (61)

where ¢(s) represents a quantity proportional to the charge on a strip of
length L/2 and J, is the corresponding current density. In evaluating the
integral, ¢(s) must be assumed to satisfy the conditions

¢(s) = ¢(=s) = ¢(L - s) (62)

and consequently it can be considered as a periodic function of period L
(see figure). Because ¢(s) = ¢(—s), only the portion of ¢(s) in the region

o(s)

0 < s < L/2 is unique.
It is desirable to write (61) so that the integrand is a function of the
unshifted ¢(s). To this end, we write (61) as

1 L2 26 1 /0 26
Js(s) e —3 A <1~f)¢(3+5)d5+§/_L/2 (1+f)¢(3+6)d6
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_ _%{/SL/ZH [1 ~ 2(3’L— 3)] o) ds’
+[ [—1 - %L_—S)] ¢(s’)d8'} (63)

~L/2+s
Let us now assume that ¢(s) can be expanded as a summation of pulses in

the form
N

¢(s) = z_:l ¢nP(s — s5) (64)

_ I sp—A/2<s< s, +A/2
P(s —sn) = {0 elsewhere (65)

where N denotes the linear elements/segments comprising the L/2 long
strip. Substituting (64) into (63) and making use of the relation é(s) =

¢(—s) = ¢(L — s) yields

1 rL/2 2g — . N
Js(sm) = —3/ [E(s’—sm)——EL—S-2 Y ¢ P(s' = s,)ds’
=70 n=1
1 [L/2+s 2(s" — sm) | T~
_ - _ A8 —¢m) P(s —L/2—s,)ds'
sl =2 s - L2 s

1 /0 2(8" = sm) | <
_Z 12 —om) _2P(s'+ L/2 - s,)d{l
2 —L/2+s[ L ] ¢N+1 (S / ¥ ) .(66)

n=1

In this

1 §>s,
E(s' —sp) = { } =U(s' - sp) (67)

-1 s <s,

and the upper summation limit m* implies that the integration of the pulse
centered at s, F L/2 with |s, — s,,| < A/2, will only be over a portion of
it which corresponds to the crosshatched region in the figure.

From (66) and (65) we now have
L$s 0 L 3~ (2
Js(’sm) = —§ Z ¢nIn (Sm) - ‘2— Z ¢N+1_"In (Sm)
n=1 n=1

1 N
-5 Z ¢N+1—TLIT(¢3)(Sm,) (68)

4

n=mt
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The integral I{(V(s,,) is given by

s,.+A/2

(1) sn+A/2 ,
I (.sm)z/ U(s' —sp)ds' — = (s — spm)ds

n—A/2 sn—A[2

where U(s) denotes the unit step function, and can be evaluated to give

I () = 2(sn = 5m) = (50— 5m)A

where

A Sn— Sm > A/2
Y(8n = Sm) = 2(8n — Sm) |80 — Sm| < A/2

-A Spn— Sm < A/2
Similarly, the integrals I{%)(s,,) and If)(sm) are given by

£ Sn, Sm Sn sm
I,(f)(sm) =/2 ds' — = < + s —sm) ds'
sn—A/2 sn—A[2
snt+A/2 2 rsntA/2 L
I®)(s,, =/ -1)ds' — = (3'—-——3m> ds'
" ( ) lg(s,.,sm)( ) L £3(sn,5m) 2
in which

S+ A2 85— 8m > A)2
Co(SnySm) =

Sm |$n — sm| < A/2

and

— A2 sy =8, <A/2

EB(SnaSm) = {
Sm [$n — sm| < A/2.

Evaluating the integrals we obtain

2
—z(sn—sm)A Sp— Sm > A/2
I(sm) =
n m A 2 2
(s SL /2) |50 — Sm| < /2
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and

2
—-L-(sn—sm)A Sn— Sm < A/2
I (sm) = (76)
n - °m A 2 2
__(S SL+ /2) |sn — sm| < A/2.
Using (75) and (76), the last two sums in (68) can be combined to yield
1 1Y
Jo(sm) = =3 > $nI{V(sm) — 3 > dva1-nl{V(sm) (77)
n=1 n=1
where 5
1(50) = I0(s0) + 1050) = ~F (s =sm)d (79)
More explicitly, Js(s) can be written as
AL L
L) =T X b |55 (n =)+ (s =)+ (win—9)] . (19)
n=1

Note that s can have any value and in fact it will be later chosen to be
some distance away from s,,.
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Figure 1. Geometry of the 2D curved surface (strip).

Figure 2. Illustration of the observation and integration point parameters.
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Figure 3. Expansion functions. (a) Linear expansion functions
for the current (b) corresponding expansion functions
for the charge.
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Figure 4. lllustration of an arbitrary cross section
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Figure 5. Discretized versions of the cylinder and the
strip shown in Figure 4.
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Figure 8.  Illustration of parameters for pulse expansion and point
matching in connection with the charge integral equation.
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Figure 10.  Bistatic echowidth at a 5cm metallic circular cylinder computed with ¢i =0
and f = 2 GHz.
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Figure 11.  Backscatter echowidth of a Scm resistive strip with normalized resistivity
R = 1.1 +10.2 computed at f = 2 GHz.
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Figure 20. Backscatter echowidth of the surface (see fig. 14) with a defect placed at x =
* 6.8 cm for H-polarization.



