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Abstract

In Part I of this report, the diffraction of a resistive half plane over
a planar resistive sheet under plane wave illumination is determined
via the dual integral equation method (a variation of the Wiener-
Hopf method). The solution is obtained upon splitting the associated
Wiener-Hopf functions via a numerically efficient routine. Based on
the derived exact half plane diffraction coefficient, a simplified equiv-
alent model of the structure is developed when the separation of the
half plane and resistive plane is on the order of a tenth of a wavelength
or less. The model preserves the geometrical optics field of the original
structure for all angles and is based on an approximate image theory
of the resistive plane. Good agreement is obtained with the diffracted
field exact solution.

In Part II, a higher order diffraction model of two overlapping re-
sistive half planes is developed. The model is based on viewing the
overlapping section between the edges of the half planes as a two
port resistive parallel plate waveguide. The coupling, reflection, and
launching coefficients of the waveguide modal fields are derived for
each port via the dual integral equation method, and the multiple in-
teractions are accounted for using a transmission line analysis. The
results are verified by comparison with a method of moments solution.
A simplified equivalent model of the structure is developed when the
separation of the half planes is on the order of a hundreth of a wave-
length or less. The geometrical optics field of the original structure is
preserved for all angles, and the diffracted field of the simplified model
is in good agreement with the higher order diffraction solution for the
resistivities of concern.



Part 1
Characterization of a Resistive Half
Plane Over a Resistive Sheet

The angular spectrum method set forth by Booker and Clemmow [1] has
been applied to many diffracting structures composed of a half plane over
a substrate [2], [3], [4], [5], [6]. In many cases resistive sheets [7] are used
over dielectric layers for radar cross section control, transmittivity control,
or other applications. Also, when the dielectric layer is thin, it can be equiv-
alently replaced by a resistive sheet.

In this report we particularly consider the diffraction by a resistive half
plane vertically displaced from a uniform resistive sheet (see Fig. 1). The
corresponding exact diffraction coefficient is derived for this configuration
with an H-polarized illumination using the dual integral equation method,
following a development similar to that in [5], [8]. The encountered Wiener-
Hopf split function is factorized via an efficient numerical procedure discussed
in [9].

When the separation between the resistive half plane and resistive sheet
is on the order of a tenth of a wavelength or less, the structure is virtually
planar. Thus a simplified model of the original configuration is a single equiv-
alent resistive half plane illuminated by a direct and an image wave. This
model relies on image theory to remove the lower planar sheet by introduc-
ing an image field and a second half plane placed symmetrically below the
original resistive sheet. The two half planes are then combined into a single
one with an equivalent resistivity such that the geometrical optics field of
the original structure is preserved everywhere. The diffraction coefficient for
this equivalent half plane is much simpler and given by [10]. Several patterns
are presented for assessing the model’s accuracy for various resistivities and
separation distances. This is done by comparison with the exact solution
which is in turn validated using a moment method solution.

1 Dual-integral equation formulation

Consider a resistive half plane of resistivity R;, placed a distance d above
a planar resistive sheet of resistivity R as shown in Fig. 1. Mathematically,
the resistive half plane and the uniform resistive sheet satisfy the boundary
conditions

~Rigx[HY—H] y=0, >0 (1)
= —Ryx[H*-H") y=-d, -co<z<oc (2
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Figure 1: Geometry of the resistive half plane over an infinite resistive sheet.

in which H* denotes the total magnetic field above and below the appropriate
resistive sheet and E is likewise the total electric field which is continuous
across the sheets.

Assume the plane wave

Hi = 3e7kpcos(é—¢o) (3)

1s impinging upon the structure in Fig. 1, where k is the wavenumber, (p, ¢)
is the usual cylindrical coordinates and ¢y is the angle of incidence such that
0 < ¢o < 7. For this excitation the total field may be represented as

H, =H +H +H; (4)
in the region y > —d and as
H, =H2+H; (5)

when y < —d. We identify H] and H! as the reflected and transmitted fields,
respectively, of the planar resistive sheet satisfying (2). Namely

H; — ——F(sin ¢0) e—j2kdsin¢oejkpcos(¢+¢o) (6)
H! = T(sin ¢o) e =(#=%0), (7)
where in
. sin @q
T = —
(sin ¢o) 7+ sn g (8)
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Figure 2: Dlustration of the C' contour in the a- and A-planes.

and

T(singo) =14 I'(sin ¢o) (9)
are the plane wave reflection and transmission coefficients in which 5 =
2R/Z,. Further, we identify H? in (4) and (5) as the scattered field caused
by the presence of the half plane at y = 0. In the absence of the uniform

infinite resistive sheet, this field is due to currents excited on the isolated
half plane which can be represented by the angular spectral integral [11]

H = ﬂ:/CP(COS o) emikeeos(#Fa) o -y > (10)

where the contour C is defined in Fig. 2 and P(cos ) is the unknown spectra
proportional to the current on the half plane. In the presence of the resistive
plane at y = —d, this field generates additional reflections from (and trans-
missions through) the plane. Treating (10) as a sum of plane waves, the total
scattered field becomes

H: _ / [1 + F(Sil’l CY) e—ijdsina] P(COS a) e—jkpcos(d>—a) da (11)
JC

for y > 0,
H: = _/C [e‘jk”“’s(‘b”‘) —I'(sina) e"j2kd5i“°‘e"jk"°°s(¢_")] P(cos a) da

(12)



for —d <y <0, and

H = - /C T(sin @) P(cos a) 37 <os#+2) g (13)
for y < —d.

In the following we shall invoke the appropriate boundary conditions to
determine the unknown spectra P(cos a). First, to maintain the continuity of
the total magnetic field across z < 0, y = 0, the condition §x (H* — H~) =0
must be satisfied. Upon using (3), (6), (11) and (12) in conjunction with (4),
this condition implies

H* - H™ = 2/ P(cosa) ek do =0, z <0.
C
On setting A = cos a, this can be rewritten as

= P(}) Kz
———e""dA =0, <0, 14
| 7w (14
and the path of integration is shown in Fig. 2. Since this integral equation is
valid only for z < 0, the path of integration can be closed by a semi-infinite
circle in the upper A-plane without altering the result of the integration.
From Cauchy’s theorem, P(A)/+/1 — A? must then be free of zeros, branch

cuts, or any other singularities in the upper half plane. Consequently, we can

state that
P())

Vi-x o
where U(A) is a function regular in the upper half of the A-plane.

The application of (1) across the half plane z > 0, y = 0, leads to the
integral equation

U(N) (15)

T 1+ T(VT D) VIR | () ke gy
~eo [VI = N2

= Jio e [1 4T <\/1 - /\3> e-ﬂkd\ﬂ-ké] e o0, (16)

in which n; = 2R, /Z, and )¢ = cos ¢. Since (16) is valid only for z > 0,
the path of integration may now be closed by a semi-infinite circle in the
lower half of the A-plane. On applying Cauchy’s theorem we then obtain the
functional equation

o0) PN 1 L \/I—AE‘;A< /—I—A(%) (1)

VI— 22 275 L(=Xo) A+ Ao




where
QM) = m+VI=X[14+T(VI=)7) e #VI=0] (1)
A (\/1 _ /\3> = 14T (\/1 - )\3) ¢~2kdy/1N (19)

and L()) is a function regular in the lower half of the A-plane.
To proceed further, @(A) must first be factorized as a product of upper
and lower half plane functions. In light of (8), we write (18) as

Uu(A) Luw(A)

where
Uu(X) Lu(N) = (n + VI = X2)(n + VI = R2) = (1 = M) 72#I=2 (g7
and
Uy(V) Ly(\) =+ V1= X2 (22)

Here U,(X) and U,(A) denote upper half plane functions and L,()) and
L,()) denote lower half plane functions. The factorization of (21) can be
accomplished using numerical methods [3]. For the case of (22), the known
factorization [12]

('r+ ﬁ) = Ky K-(0\7) (23)

1s noted, resulting in

V9=

G =V T

= Ly(-)). (24)

Explicit, non-integral expressions for K (A, ) are given in [13] for Re(y) > 0.
If Re(y) < 0, then K4(),v) must be replaced with the expression [4]

1 A—/1 =72
j————
v Ki(A—7y)

Returning now to (17), upon making use of (20) and (15), we obtain

Us(A) LA\ ]~ 2m5 L(=X) A+ Ao )
To assure regularity of U()) and L(\) in their respective planes, it is clear
that




and from (17) we obtain that

. VI —T2,/1_A3A( v Ag) UN) L=do) o)

2rj A4 o Uu(A) Lu(=X0)

This is proportional to the spectrum of the current on the resistive half plane
in the presence of the resistive sheet at y = —d.

The far zone scattered field is determined by substituting the spectral
function P()) as given by (25) into (11) and (13) and evaluating the integrals
via the steepest descent method. Doing so, we obtain the form

e~ ike
N

where S()(9, @) is often denoted as the diffraction coefficient of the config-
uration and is given by

SN (g, o) = — et {A(Sin¢) }A(sm o) _singsingo

st = S(l)(¢a ¢0) (26)

V2rk | T(—sin¢) cos ¢ + cos ¢
Us(cos @) Us(cos ¢o)
: (27)
Uw(cos ¢) U, (cos ¢o)
for 0<o<m In deriving these expressions the identities Us(\) =
T o< 2T’ ’

Ly(=X) and Uy(X) = Ly(—)) were employed. S()(¢, @) is generally re-
ferred to as the diffraction coefficient of the upper resistive half plane in the
presence of the lower sheet.

The diffracted field expressions can be verified for two limiting cases.
When n — oo, the resistive sheet vanishes, and the diffraction coefficient
becomes

SW(¢,¢) = Di(,d0,m) (28)

T
2e7i%  cos 2 cos &

_ 2 008 7 -
= T ank cosd + cos de K (cos ¢,1/m) Ky (cos ¢o,1/m)

as given in [9]. The other limiting case is d — 0; in this case SM (¢, ¢o)
reduces to

(6,0 = (l ) l)

Verk \n  m
K, (= cos ¢,%) Ky (= cos o, 1) Ky (cos g, L) Ky (cos o, L)
. cos ¢ + cos ¢g ’
y 20 (29)



This is recognized as the H-polarization diffraction coefficient of a junction
formed by two coplanar resistive half planes as derived in [14]. The pertinent
half planes have resistivities R = 2Zy/n (z < 0) and R; = 2Z,/n2, (z > 0),

where 1, = mn/(m + 7).

2 Simplified model for small d

When the separation between the resistive half plane and lower resistive sheet
is small (i.e. kd < 1), the structure is virtually planar, and it is possible and
instructive to seek a simplification of the exact solution developed in the
previous section. To do so we shall first construct an equivalent geometry
which recovers the geometrical optics (GO) fields of the original one in Fig. 1.
With this in mind, R can be removed by introducing an appropriate image
of the resistive half plane and of the incident field as illustrated in Fig. 3.
To recover the GO fields of the original geometry it is necessary to sum the
GO fields associated with the pair of half planes in Fig. 3 under the direct
(H:) and imaged (H?) illumination. In addition, an appropriate value for
the resistivity R; of the imaged half plane must be specified. To determine
Ry and HT we consider the GO fields of the original structure. The reflected
field associated with its right side (side of the resistive half plane) is found
to be A
T12Fe—]2kdsind>o

1 — I‘ll’e—ﬂkdsinq&o

where I' and T are defined in (8) and (9) and

H'=-1I'1+

ejkPCOS(¢+¢o), y >0 (30)

r, - sin @ N

= — - , - 31
7 + sin @ ! 71 + sin @o ( )

with 7, = 2R, /Zy. The appropriate reflected field for the left side of the same
geometry can be obtained by letting 7; — co. The mechanisms leading to this
expression are illustrated in Fig. 4 along with the equivalent ones associated
with the new pair of sheets in Fig. 3 (dashed line should be compared with
dashed and likewise solid lines should be compared with solid). On comparing
the sum of the GO fields generated by the pair of sheets in Fig. 3 under the
two illuminations with (30), we deduce that

~ Zo ., 1+4+I4I7?
Rl = ——2—51n¢0 F1F2

and -
ET: FH: ¢<7T'—¢0
‘ H} ¢>7m—¢o



Figure 3: Intermediate equivalent geometry problem recovering the GO field
(y > 0) of the structure in Fig. 1.
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Figure 4: Tllustration of the GO mechanisms associated with the original structure
(Fig. 1) and the equivalent one in Fig. 3.
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Figure 5: Equivalent set of single resistive half planes recovering the reflected GO
field (y > 0) of the structure in Fig. 1. The half planes lie in the y = —d plane.

in which

T
14 T,I?

and H? is given in (6). Note that R; and T are functions of the incidence angle
since our requirement was to recover the GO fields of the original structure
for all incidence angles.

Having determined the resistivity of the imaged half plane R;, we now
proceed to combine the pair of half planes into a single equivalent half plane
at ¢ >0, y=—q, 0<gq<d This is illustrated in Fig. 5 and for each
illumination a different resistivity is required. This can be determined by
comparing the GO fields (reflected for the direct illumination and transmit-
ted for the imaged illumination) of the configurations in Figs. 3 and 5 and
requiring that they be equal. Doing so, we find that the resistivity of the
single equivalent half plane subjected to direct illumination must be

=

Di ZO . 1 + f; p
R =- 5 sin o ¥ (32)

where o
T12P28—]4kdsm do
1 — [2[2e-sikdsingo

R ithasindo. (33)

When ¢ = 0, the equivalent half plane is coincident with the original resistive
half plane, and the equivalent resistivity R} was observed to have an average

10
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value of R; as d was varied. When the Elependence in ¢ is also taken into
account, an excellent approximation to Rj is

E; ~ R1 - (Rl - R2)e—j4kd5in¢o’ q= 0 (34)
where 5
RQ = RlRl., y
R+ R

and this expression is the same as (32) and (33) with d = 0. We note that
for R S R, (R — R;) S 0.2Ry, and in that case we can approximate R;
by Ry, its average value. For the cases when ¢ # 0, the equivalent resistivity
in (34) is transferred to a position y = —gq by preserving the GO fields of the
original geometry. From (34) an approximate expression for ]~%‘1 is

Ezl ~ [Rl — (R, - R2)6—j4kdsin¢o] ¢~ i2kgsin o

7 . .
+ ?Osin o (e_]qusmd"’ - 1) . (35)

We found that for far field scattering, the best results were obtained by
setting ¢ = d. That is, the accuracy of the model was not adequate when
R is replaced by its average value of R;. It is necessary to retain the more
accurate expressions for Ri given by (32) or (35) which are, unfortunately,
functions of the incidence angle.
For the imaged illumination, the corresponding half plane resistivity is
found to be 5
nr ZO : TlT
R] = 5 sin do T (36)

with 72

T o 1

I = 1— I‘%I‘2e—j4kdsin¢o (37)
and the associated imaged field being set to H], 0 < ¢ < m. With this
imaged field, the reflected field of Fig. 5(a) plus the transmitted field of
Fig. 5(b) completely recover the GO field of the original configuration in the
entire y > 0 region. Equations (36) and (37) show that R} < R;/2 as d
and ¢o are varied, although its average value is not a constant. We found,
however, that if Ry < R, the variation of R} with d and ¢, is sufficiently

small such that a good approximation is the constant

= Ty ni(n +1)?
R ~ — 38
T2 Ot D)+ 1)2-1 (38)

which is the expression reduced from (36) and (37) on setting d = 0 and
¢0 = 7T/2
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Figure 6: Equivalent problem recovering the transmitted GO field of the structure
in Fig. 1.

The far zone diffracted field as predicted by the single half plane models
of Fig. 5 is easily computed by using the diffraction coefficient (28). In
particular, on superposing the fields generated by the direct and imaged
illumination, we obtain the composite diffraction coefficient

g(l)(éa ¢0) = [DH(d)) ¢0> ﬁ;) - F(Sin ¢0) -DH(QSa 2m — ¢0a ﬁ;)]

—jkd(sin ¢+sin ¢g)
qe s

0<o<m (39)

where 7 = 2R} /Z, with ¢ = d, 7] = 2R} /Zy, and Dy is given in (28). This
should be compared with the exact diffraction coefficient given in (27).

In the above, we presented a simplified equivalent model which recovers
the reflected GO field of the original configuration in Fig. 1. It is not therefore
expected that the same resistivities and associated model will also recover
the transmitted GO field through the same configuration. Nevertheless, a
similar procedure can be employed to construct an equivalent problem which
is associated with the same GO field in the y < 0 region. Such a model is
illustrated in Fig. 6, and in order for this model to recover the same GO
transmitted field as that associated with the configuration in Fig. 1 we find
that the resistivity of the equivalent half plane must be

= 7 . T
t _ 1
R = 5 squgl_Tlt

(40)
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where T,

-
Tl - 1 — l"ll"e—j2kdsin¢o : (41)

The corresponding diffracted field is given by
5)(9, o) = T(sin ¢o) Dr(4, go, ) ¢ 7 #+einéo) (42)

where 7 < ¢ < 27 and as usual 7! = 2R!/Z,. This diffraction coefficient
should be compared with the exact one given by (27).

3 Numerical results

The far field amplitude SM(g, ¢o) in (27) was programmed for solution.
The numerical factorization routine [9] was used to determine the upper half
plane function U,. As part of the verification of SM)(4, @), the limit as
R — oo was taken and the result converged to that of an isolated resistive
half plane R, as given in (28). Also, by taking the limit d — 0, S™M(¢, ¢o)
was found to be in agreement with the material junction result of (29). To
complete the verification, the RCS based on the derived diffraction coeffi-
cient SM(4, ¢o) was compared with data generated by a method of moments
implementation of the resistive half plane over resistive plane structure. RCS
backscatter results are shown in Fig. 7 for separations of d = 0.1\ and 1.0\
with R = Ry = Zy/4. The moment method data were generated by replac-
ing the resistive half plane and infinite sheet with very wide resistive strips
whose resistivity profile after being equal to either R or R; was then tapered
quadratically to 20Z, over a 60\ section. As seen, the agreement between
the numerical and high frequency solutions is excellent. Having validated the
high frequency solution, Fig. 8 then shows a characterization of the resistive
half plane over the resistive sheet for different separation distances ranging
from d = 0.001) to d = 0.1\

To test the validity of the proposed simplified model (see Figs. 5 and 6),
the far field amplitudes S™M(¢, ¢o) in (39) and (42) were programmed as
well. Backscatter results in magnitude are shown in Fig. 9 for d = 0.01X
with R = Ry = Zy/4 and for d = 0.25) with R = Zy/4, R, = Z,/20.
Good agreement is obtained between the magnitudes of the high frequency
solutions based on the original and simplified geometries for all angles ¢, and
d ~ 0.25) was found to be the upper limit of the half plane model. This also
holds for bistatic computations except near grazing angles of observation for
some values of d. An example of a bistatic pattern is shown in Fig. 10, and
it is again verified that the simplified model is a good representation of the
original geometry.

13
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Figure 7: Comparison of backscatter as computed by the moment method and
high frequency solutions (of the exact geometry) for the resistive half plane con-
figuration in Fig. 1 with R = Ry = Zo/4. (a) d = 0.1X (top); (b) d = 1.0\
(bottom).
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Figure 8: Family of backscatter RCS curves (using the original geometry high
frequency solution) of the half plane configuration in Fig. 1 for different separation
distances d. (a) R = Ry = Zy/4 (top); (b) R = Zo/4, Ry = Z/20 (bottom).
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and simplified high frequency solutions for (a) R = Ry = Zo/4, d = 0.01) (top);
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4 Summary

The exact diffraction coefficient was derived for a resistive half plane over
an infinite resistive sheet using the dual integral equation method. An ef-
ficient numerical routine was employed to factorize the associated Wiener-
Hopf split function. The high frequency solution was found to be in excellent
agreement with data generated by a method of moments implementation of
the structure, and the results were also verified for the two limiting cases (in
the absence of the infinite resistive sheet and when the separation distance
between the resistive half plane and sheet goes to zero).

Using the exact solution as a reference, a simplified equivalent model of
the structure was developed for the case when the separation of the resistive
half plane and sheet is on the order of a tenth of a wavelength or less. The
model consisted of a single resistive half plane illuminated with a direct
and an image wave equal to the reflected field of the infinite sheet. Good
agreement was generally obtained between the high freqeuncy solutions based
on the original geometry and the simplified equivalent model for separation
distances of up to d ~ 0.25).
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Part 11

Characterization of Overlapping
Resistive Half Planes

We now turn our attention to the case when the lower resistive sheet in
Fig. 1 is truncated at some point £ = W, W > 0, yielding two overlapping
resistive half planes as shown in Fig. 11. The dual integral equation method
will not provide an exact solution for this configuration since the integral
equations obtained in the procedure cannot be decoupled. Therefore, the
proposed method of solution is to first consider the field scattered by each
edge separately and then develop a higher order diffraction model to account
for the interactions between the edges.

A first order diffraction model of the overlapping resistive half planes
is the superposition of the diffracted fields from the edge of each resistive
half plane in isolation over/under a resistive sheet. The diffracted field from
the edge of the upper half plane is given by (27) in Section 1, whereas the
diffracted field from the lower half plane edge requires the solution to the
inverse problem—the resistive sheet over a resistive half plane—which will
be derived in Section 5 below. To develop a higher order diffraction model,
we must first obtain the (near zone) fields interacting between the edges of
the half planes. The section of the structure between the edges is viewed
as a parallel plate waveguide, and we find from an analysis of the scattered
field integral equation ([8],[9]) that the incident field couples to waveguide
modes. The modes have complex propagation constants associated with the
half plane resistivities and the distance separating them. Thus, the modes
decay exponentially as they propagate, and upon reaching the opposite end,
they reflect back into the waveguide, as well as transmitting or launching a
field. Upon deriving coupling, reflection, and launching coefficients for each
mode in the parallel plate waveguide, we will obtain a higher order diffraction
coefficient of the structure, using transmission line analysis to account for
the multiple interactions between the edges due to these modes. There also
exist surface waves associated with each half plane which cause additional
interactions between the edges, but we find this contribution to the far field
scattering can be neglected for the resistivities of concern.

When the separation of the half planes is on the order of a hundreth of
a wavelength or less, the structure can be modeled by a simplified planar
geometry consisting of a resistive strip inserted between two resistive half
planes. The strip insert corresponds to the parallel plate waveguide section of
the original structure, and the half planes account for the remaining portions
of the original half planes which are not overlapping. The resistivities of this

19



equivalent structure are determined such that the geometrical optics field of
the original one is preserved. The diffraction coefficient for the equivalent
simplified model is provided by the program STRIPINS which computes up
to third order terms of the diffracted field of the strip [15]. Backscatter
and bistatic patterns are presented for various resistivities and separation
distances, and good agreement with the higher order diffraction solution is
obtained.

5 Resistive sheet over a resistive half plane

Consider now the plane wave (3) incident on a resistive half plane of resistivity
R occupying ¢ < W placed a distance d below a planar resistive sheet of
resistivity R; in the y = 0 plane. The boundary conditions for the total
fields of the structure are

gxE=-Rigx[H —H], y=0, —0c0o <z < o0 (43)
xE=-Rjx[H"-H7), y=—-dz<W (44)

in which H* denotes the total magnetic field above and below the appropriate
resistive sheet and E is likewise the total electric field. The representation
of the total field for this structure is given by (5) in the region y > 0 and by
(4) when y < 0. The reflected and transmitted fields are associated with the
resistive sheet of resistivity Ry, leading to the expressions

HT = —Ty(sin o) Jkp cos(¢+0) (45)
H; = Ty(sin ¢0)ejkpc°s(¢—¢°)7 (46)

where I'; and T are given in (31).
Referring to (10) as a sum of plane waves emanating from the edge of the
half plane at z = W, y = —d with the unknown amplitude

P(cos a)e*(W cosa¥dsine) > —d,
the total scattered field is
H: = /CTl(sin a) P(cos a) e?*(W cosadsina) g —skpcos(¢=a) 4, (47)
fory > 0,

H = /C [e—jkpcos(da—a) _ Fl(Sil'l a) e—jkpcos(¢+a)] P(COS a) ejlc(Wcosa-—-dsincx) do

z (48)
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for —d < y <0, and

e = _/ [ejkdsina 4+ Ty(sina) e—jkdsina]P(cos @) (IKW cosa~jkpcos(d+a) j
c

(49)
for y < —d, with the contour C defined in Fig. 2a.
Applying the boundary conditions for the total field on the y = —d plane,
we obtain the dual integral equations

% PO\ T
/_ _@( \/—1—(_—)7—26]“@ WIVn = /1 - X2 Tl(\/l - )\3) ¢~ikd/1=F gikada,
t< W

o P() .
/_m—i_(___%e MW\ =0, 2> W
where Q)1()) is given in (18) with R interchanged with R;. Following the dual
integral equation solution method given in Section 1, the spectrum P()) was
found to be

-\ ")‘(2) sl s1\— A0 kW A
PO) = g B (VT 8) e et )

27Tj A + /\0

where
B <\/1 - A%) - Tl<\/1 - A?,) e=ikd/1X (51)

() = Vit G r7ems = (A, (52)

and Uy, L,, are the split functions defined by (21). Given the spectrum in (50),
the integrals (47) and (49) are evaluated by the steepest descent method, and
following the definition of the far zone scattered field in (26), the diffraction
coefficient of the resistive sheet over the resistive half plane is

_ e% [ Bi(sin ?) . sin @sin ¢o
S9(8,90) = 5 {Ai(—sm ?) e~f"cdsin¢} Bulsin bo) o+ oos b

.LSI(COS ¢) LSI(COS ¢0) ejkW(cos $+cos ¢g)
L(cos @) Ly (cos ¢o)

(53)

0<o<m D .
for {w < q(f< o }, where A; is given in (19) with I' replaced by T';.

6 Higher order diffraction model

The overlapping resistive half plane structure is defined by a half plane of
resistivity R; located at y = 0, ¢ > 0 positioned above a half plane of
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Figure 11: Geometry of the overlapping resistive half planes.

resistivity R at y = —d, ¢ < W, (W > 0), as shown in Fig. 11. Combining
the results of Sections 1 and 5, the first order far zone scattered field of the
overlapping resistive half planes is

e_jkp

H ~ S®
z \/ﬁ (¢7 ¢0)
where
SO (@, do) = SU(4, 40) + 5S4, bo) (54)

is the diffraction coefficient of the structure with S®) given in (27) and S
given in (53). For large resistivities, large overlap widths and small separa-
tions, this first order model is sufficiently accurate in predicting the scattered
far field, since the edges of the half planes do not interact. However, we would
like to develop a general model that can handle considerably small overlap
widths, which requires an investigation of the near fields interacting between
the edges of the half planes. Viewing the section 0 <z < W, —d <y < 0 as
a parallel plate waveguide, a transmission line analysis can be applied upon
finding the coupled modes and pertinent reflection and launching coefficients.

6.1 Mode coupling

We first seek to find the field coupled to the waveguide section at the opening
z =0, -d <y <0, defined in Fig. 11 as port 1. Using the solution to the
resistive half plane over the resistive sheet for the analysis of the field coupled
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at port 1, the integral equation of the scattered field within the waveguide
(z >0, —d < y < 0) is obtained from (12) with A = cos a:

0 . (1) A
s __ kyv1-)2 1 _ —jk(y+2d)vV1-)2 P ( —jkz)
Hz“/_oo[e” ~ (VI =A% e ]mej dj )
9

where P)(X) = P(X) in (25). Since this integral equation is to be evaluated
only for £ > 0, the contour can be closed in the lower A-plane, to re-express
(55) by a sum of pole residues and branch cut contributions. The evaluation
of the integral over the branch cut (shown in Fig. 2b) gives a surface wave
field associated with the resistive half plane. We find that for the resistivi-
ties of concern, this contribution is small compared to that of the dominant
waveguide mode and will therefore be neglected. For the captured poles, the
residues are collected at A = A,, the zeros of U, ()), producing the field

H:es _ ad C,(Ll)()\o) [ejky 1-)2 F( 1— )\%) e-jk(y+2d) 1-)22 e—jkz)\n (56)
2 T ”
where we have defined
1-X Ua (M) Ut (Xo)
(1) - _ 0 (1_/\2) s1\\n s1\"0 7
Cl0o) = = AWV =%) T T o) (57)

as the coupling coefficient of the incident field to the n" mode at port 1 with

, dU,(\
L) = i)
A=Ap
A 2kdy /TN
S P % —2(1—jkd,/1—xg)e-ﬂ’°d i
Lu(An) NV

The summed fields in (56) correspond to waveguide modes propagating and
decaying exponentially in the positive = direction, requiring that the zeros
of Uy(A) lie only in the fourth quadrant of the complex A-plane. This was
verified by determining the first five zeros (closest to the origin) using a
numerical search routine, and the zeros \; corresponding to the dominant
mode are listed in Table 1 for several 5, 7;, andd. Since the resistive half
plane and sheet form a penetrable waveguide, another condition to ensure
proper modes is that they decay away from the structure in the +y directions.
Referring to the scattered field expressions in (11) and (13), this condition

is met when Im(y/1 — A2) < 0, requiring the particular branch cut shown
in Fig. 2b such that the zeros A, lie to the right of the branch in the lower
A-plane.
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n M d/)\ /\1

0.5 0.5| 0.1 |(1.0021581,-0.4706920)
0.01 | (2.1109666,-2.0023438)

0.001 | (6.3453235,-6.3947592)

0.1 05| 0.1 |(0.9622725,-0.2955593)
0.01 | (1.6968256,-1.5045357)

0.001 | (4.9344730,-4.9452179)

0.1 0.1 0.1 |(0.9956063,-0.0869338)
0.01 | (1.1930695,-0.6856712)

( )

0.001 | (2.9100025,-2.7588511

Table 1: Zeros of Uy (A) corresponding to the dominant modes.

Considering next the field coupled to the waveguide section at port 2, the
substitution A = cos « in (48) gives the scattered field integral equation

PO _.
e e TIkEmWIA ) 58
NiESvh (58)
for —d < y < 0, where P@(X) = P()) in (50). Closing the contour in the
upper A-plane and retaining only the contribution of the residues at A = =),

the waveguide modes propagating in the negative z direction from port 2 are
summed as

He = i CO(\) [e—jk(y-}-d)\/l—,\% B F1< - A%) ejk(y—d)\/l—/\ﬁ]ejk(:c—W)/\,,
n=1
where we have defined

i |
0P 00) =~ =2 g, () FallalLalle) sy g

/\n - )‘O Ut’u()‘") w(/\O)

as the coupling coefficient of port 2.

6.2 Reflection and launching coefficients

As the coupled fields (56) and (59) impinge upon the opposite ports, the
scattered field can be represented by (47) through (49) and (11) through
(13), respectively, and we are concerned only with the fields reflected back
into the waveguide and those launched to the far zone. Therefore new spectral
functions need to be derived for these scattered fields, which is accomplished
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by applying the dual integral equation method with the coupled modes as
the incident fields.

From (56) the n't waveguide mode incident on port 2 arising from the
field coupled at port 1 is of the form

Hi = [ejky,/l-xz, _ I‘( M- )\721> o—iku+2d)\/TR2| —jkzAn (61)

for —d < y < 0. Applying the boundary conditions of the total field in the

y = —d plane, we obtain the dual integral equations
/ QW) A=z A)2 WD AN =0, 2 < W

/oo P®()) mikE=WIA gy I‘( - A%) N I

—o0 V1 — A2
Following the procedure of Section 1, the spectra for the n'! incident wave-
guide mode was determined to be

2 _ 1 1=\ / 2 L, ()‘) Lw( ) e=Ikd\/1=)% =KW An
PA0) =~ 215 A= Ay F( 1”)L(A)le(x) Vi '
(62)

To find the field reflected back into the waveguide, we use (58) with P@)()\) =
P)(X), and upon closing the contour in the upper A-plane and collecting the
residues at A = =\,

Hre = i re [e—jk(wd)\/l—xsn _ pl( - A,2n> ejk(y—d)\/l—xen] eIHz=W)Am
m=1
(63)

where we have defined

— )\2
e = TV =) UaOn) L) a7 oiinn,
/\m + )\n U, (/\m) le()‘n)

w

as the modal reflection coefficient of the n't waveguide mode coupled to the
m'® reflected mode at port 2. The reflected fields of (63) have the same spatial
dependence as the coupled fields of port 2 (see (59)). Again, the branch cut
contribution is assumed to be negligible. To find the field launched from port
2 due to the incident field (61), we evaluate the integrals (47) and (49) by
the steepest descent method after substituting P(cos a) = P{*)(cos @), which
yields the launching coefficient

@0 _ e™7% [ By(sin ) / sin ¢
LY (¢) = Vork {A;(—sin o)) e‘jdei“¢} F( - A%) cos g — A\,

_le(COS ¢) Lu(An) e=ikdy/1-03 ikW (cos p=An)
Ly(cos ¢) L (M)

(65)
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for { O<od<m }
T< ¢<2m|’
Likewise we consider the n't waveguide mode incident on port 1 arising
from the field coupled at port 2, which from (59) has the form

H = [e:‘k(wd)\/l—xz. _ p1< 1 A%) ejk(y—d)\/l—xz,]ejk(z—W)A,. (66)

valid for —d < y < 0. Applying the boundary conditions in the y = 0 plane,
we obtain the dual integral equations

- P71£1)(/\)‘)2 o=k g\ = Fl( - A%) o=ikdy/T Lik(z=W)An o<

o0 W\ :
/_OOQ(A)\}/);‘_—_(_A)Ze‘J’“*dA =0, 2>0,

which are satisfied by the spectral function

1 V1-=)2 Us(A) Up(=An) _; Y
p() - 1 _ 2 skdy/1-22 _—jkWAn
n () 25 A+ A, Fl( ! A") Us(A) Us(=Xr) ¢ ¢ '
(67)

The field reflected back into the waveguide is determined by substituting
PO(X) = PM(}) into (55) and closing the contour in the lower A-plane.
Collecting the residues at A = \,, gives

H;;S - i Fg% [ejky\/l—/\gn _ F( /1 _ /\3’1) e—jk(y+2d)\/1—/\3n e—jkx/\m (68)
m=1

where

) — Fl( 1= X) Uy (M) Lu(An) = kd\/1=02 =KW
mn A+ A UL(Am) Ls(An)

(69)

is the modal reflection coeflicient associated with port 1, and (68) has the
same spatial dependence as the coupled fields at port 1 in (56). We also note
that T{}) = I'® when R; = R. The coefficient of far zone field launched from
port 1 is derived from applying the steepest descent method to the integrals
(11) and (13) after the substitution P(cosa) = P{!(cosa), resulting in

_ eIt A(sin @) sin ¢
L6) = = {B(—sin¢)e‘jkdsi“¢}rl (i=%) cosd +

Us(cos @) Lu(An) ik /ToXE —jkW A,
Uw(cos @) Ls(An)

O<op<m
for{ﬂ'<¢<27r}'

(70)
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6.3 Multiply diffracted field

From the results above we observe that the diffracted field of each coupled
mode is comprised of the field launched from the opposite port and the
reflected field launched upon its return. Adding these doubly and triply
diffracted field terms to (54), the diffraction coefficient of the overlapping
resistive half planes becomes

SO, ¢o) = SM(9, do) + SP (4, o)
+§°j{01( [Lm ZFS,fn W l
oo [10e +ir5,:;f:sz> )}

where C(V/(? are given in (57) and (60), T1:(*) are given in (69) and (64),
and L3 are given in (70) and (65). Usmg transmission line analysis, the
summation of diffraction terms can be carried out indefinitely, accounting
for all of the interactions between the edges of the half planes due to modal
fields. Since the waveguide is lossy, the modes n > 1 decay rapidly for the
resistivities of concern (R, Ry > Z,/40) and give negligible contribution to
the far field. Thus only the dominant mode n = 1 needs to be considered for
the higher order diffraction terms. The diffraction coefficient in (71) is then

(6, 80) = 5(8,d0) + S(g, ¢o>
+{C{0(90) [LP(9) + TR LY (9)
+CP(00) [L(6) + riRLS”«ﬁ)]}
s )]

and since }Fll |, |F | < 1, the infinite series can be replaced with its asymp-
totic value, giving

(3)(¢a d)o) = S(l)(¢a ¢0) + 5(2)(¢7 ¢0)
+{C1(g0) [L(9) + T LY (9)]
i (g0) [18(9) + T LP (9)]}
-] (72)

as the dominant mode diffraction coefficient of the overlapping resistive half
planes.
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Figure 12: Equivalent geometry recovering the GO field of the original structure
in Fig. 11.

7 Simplified model for small d

When the separation d between the overlapping resistive half planes is small,
kd < 1, the structure is virtually planar and can be modeled by a resistive
strip inserted between two resistive half planes. This equivalent geometry
of the structure is shown in Fig. 12, where the lower half plane has been
effectively transfered to the y = 0 plane. The equivalent resistivities R and
R}* must be determined such that the geometrical optics (GO) fields of the
original structure are preserved. For the waveguide section 0 < z < W in
Fig. 11, the reflected field is that of two parallel resistive sheets and is given
in (30) of Section 2. For the equivalent resistive strip, then, we obtain

- Zo . 14Ti
RI = - —~——l
] 5 Sindo T (73)

where , Dedsing
-7 sin ¢g
TiTe

[i=T+

T T T e-s2kdsingo - (74)

For the equivalent resistive half plane z < 0 in Fig. 12, the reflected field
of the original geometry is given in (6), and it follows that its equivalent
resistivity is simply

.7 1
R = —70 singg (1 + feﬂkdsm%] : (75)

28



In the case of the transmitted field, the same equivalent geometry is appli-
cable, though different equivalent resistivities are required than those for the
reflected field case. In order for the model to recover the same GO trans-
mitted field as the original structure, we find that for the equivalent resistive
strip

Z Tt

R = 5 sin @g I—_-l—:l? , (76)

where

T\T
1-— 1"1F e—i2kdsingg
The transmitted field of the equivalent resistive half plane £ < 0 must be
equivalent to (7), requiring that its resistivity is

7t =

(77)

R'=R. (78)
In the limit as d approaches zero, the equivalent resistivities become

o RiR - .
R =R = R=R=R
1 1 R1+R,

for all y as expected.

The program STRIPINS computes the E-polarized diffraction by a re-
sistive strip inserted between two resistive half planes, accounting for the
singly, doubly and triply diffracted fields associated with the strip for as-
pects of 0 < ¢, ¢ < 7 [15]. We denote the diffraction coefficient generated
by this code as Dg(¢, ¢o, M, s, 7., W), where n;, are the normalized surface
impedances of the left and right hand half planes and 7, is the normalized sur-
face impedance of the strip insert of width W. Using duality, the diffraction
coefficient of the equivalent geometry in Fig. 12 under H-polarized illumina-
tion is then

SO, 60) = Dr(8, do, /7', 1/, 1/n1, W) (79)
for 0 < ¢ < 7, and
S®N(8, d0) = —Dp(27 — ¢, do, 1/, 1/, 1/m, W) (80)

for 7 < ¢ < 27, where, referring to (73) through (77), 7t = 2R/ Z, and
7' = 2R'/Z,. This diffraction coefficient should be compared to the one for
the higher order diffraction model given in (72).

8 Numerical results and discussion

To check the validity of the assumption that the branch cut contributions in
(55) and (58) are negligible, the currents on the upper resistive half plane due
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Figure 13: Magnitude of current on the resistive half plane of Fig. 1 with d = 0.1,
¢o =m/18,and R = Zy/4. (a) Ry = Zy/4 (top); (b) Ry = Zy/20 (bottom).
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to the dominant mode field and the branch cut contribution were generated.
Results are shown in Fig. 13 for R, = Zy/4 and Z,/20, with d = 0.1},
¢o = ©/18, R = Zy/4, where the branch cut current was computed by
a numerical integration of (55) over the branch cut in the lower A-plane.
The magnitude of the dominant mode current is indeed much greater than
the branch cut current for most R, R, and would therefore have a greater
contribution to the higher order diffracted field. However, Fig. 13b indicates
that for R; < R the branch cut contribution is on the order of the dominant
mode contribution and would have to be accounted for in the higher order
diffraction model.

The far field amplitude S®)(¢, ¢o) in (72) was computed using the numer-
ical factorization routine in [9] to determine the necessary split functions. To
verify the higher order diffraction model, the results were compared with data
generated by a method of moments implementation of the overlapping resis-
tive half planes. RCS backscatter results are given in Fig. 14 for the dimen-
sions d = 0.1\, W = 0.5 and d = 0.05A, W = 0.1\ with R = R, = Z,/4,
showing very good agreement. We point out that the lobe in Fig. 14a arises
from the launching of the modal fields, which is accounted for in the diffrac-
tion model by the higher order terms in (72).

To test the validity of the simplified equivalent model shown in Fig. 12,
the STRIPINS code was utilized to compute the far field amplitude S®)
in (79) and (80). Backscatter results are compared to (72) in Fig. 15 for
the dimensions of d = 0.01A\, W = 0.2\ and d = 0.001\, W = 0.15) with
R = Ry = Zy/4. Good agreement is obtained between the two models,
given the limitations on the STRIPINS model of d < 0.01A and W 2
0.15X. This very small limit on the separation d is expected because of the
limitation on effectively modeling the edges of the half planes. In the original
geometry the edge at = = 0 is much more distinct than the edge at = = W
for 0 < ¢o < 7, whereas in the simplified geometry both edges are modeled
by material junctions having the same scattering characteristics. Also, for
grazing aspects of incidence and observation (where any guided modes are
the dominant contributors), the STRIPINS model cannot account for these
effects. From Table 1 it is seen that only for very small separations the
dominant modes are largely attenuated, and thus the STRIPINS model is
restricted to those cases. The lower limit on W is due to the accuracy of
the STRIPINS code for small W. These same limitations apply for bistatic
results as well, and two patterns are shown in Fig. 16 for ¢y = 7/4 and
¢o = 3m /4. Good agreement with the higher order diffraction model is again
obtained, verifying that the simplified model is a good representation of the
original structure.
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Figure 14: Comparison of backscatter as computed by the method of moments and
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