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A system is conceived of as being slowly varying if it changes slowly enough 
to permit identification to within a specified error. A generic model is developed 
to study the identifiability and identification of slowly varying systems. The 
model is suitable for a large variety of nonlinear, time-varying, causal, bounded 
memory systems; it has finitely many parameters and is linear in its parameters. 
Results are obtained with the use of this general model that give guaranteed 
accuracy of identification as a function of the prior knowledge of the unknown 
system, the maximum rate of time variation of the system, and the characteristics 
of output observation noise. To derive these results, a recursive estimation 
procedure is developed for time-discrete linear dynamical system structures in 
which the observation noise is statistical but the dynamic equation noise is 
nonstatistical and is known only to be bounded. 

1. INTRODUCTION 

Our purpose in this paper is to investigate the identifiability of systems 
that are changing slowly with time in an unpredictable way. Except in 

trivial situations, if a system is not  time-invariant, a finite-time record of 
input  and output data cannot by itself yield a precise identification of the 

system, even as it existed during the period the data were taken. The  response 
to the one particular input  or sequence of inputs used will be known, bu t  
what the response would have been to other inputs cannot be found in 
general. Even less can be known about the future behavior of the system, 
unless there is auxiliary information. However, it is reasonable and it is 
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common practice to try to identify the unknown systems that are slowly 
time-varying as if they were time-invariant, updating the identification 
from time to time in order to track the changes. Such an approach is valid 
if the system is changing slowly enough to permit sufficiently good approxi- 
mate identification for the purpose at hand. The  problem we address is: 
How fast can the system change and still permit  satisfactory identification 
from input-output  data ? The  answer to this question depends of course 
on the criterion of satisfactory identifiability. I t  also depends on the extent 
of prior knowledge of the system (e.g., is the system known to be linear ?) 
and on the characteristics and state of prior knowledge of observation noise. 

Identifiability can be studied in terms of any system model that is capable 
of providing a sufficiently faithful representation of the unknown system 
in question. We choose a particular kind of generic model (i.e., a model 
with various undetermined parameters) that has the properties of being 
extremely flexible and of being linear in the parameters. The  flexibility 
of the model makes it applicable to a wide class of systems, nonlinear as 
well as linear. The  linearity in the parameters means that the identification 
is always a linear estimation problem, which is advantageous when general 
error formulas are desired that will show the interplay among the factors 
that control the identifiability. The  essential restrictions on generality 
imposed by the model structure we use are: (1) Input  observations must  
be noise-free, and (2) the unknown system must have finite memory  less 
than or equal to some known bound. Since the theory is an approximation 
theory, it is not critical in the final interpretation that these conditions be 
exactly satisfied; however, the mathematical analysis is based on these 
assumptions. 

The  generic model is developed in the next two sections. It  is based 
on the notions of classes of systems and their e-representations. In Section 3 
a theorem is stated about the identifiability of t ime-varying systems with 
noise-free observations of output. This  is a relatively simple result which is 
preparatory to the main identifiability theorem, Theorem 5 of Section 5. 

A recursive statistical estimation procedure is developed in Section 4, 
which is also preparatory to Theorem 5. This  procedure applies to a mixed 
linear model with both stochastic and unknown-but-bounded terms, and 
is new as far as we are aware. Since the estimation problem is perhaps of 
some interest in itself, we have treated it a little more generally than is 
necessary for the application in Section 5. 

Some of the results of this paper were presented in the conference papers 
(Fiske and Root, 1974; Fiske, 1975a); see also Fiske, (1975b), where there 
is further related material. 
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2. PRELIMINARIES CONCERNING e-REPRESENTATIONS 

The concept of e-representation is introduced and developed somewhat 
by Root (1971, 1975a); the use of e-representations in identification is 
discussed abstractly by Root (1973). For the convenience of the reader 
a summary of those definitions and results concerning e-representations 
which are needed is provided here. 

A class of bounded systems is the 4-tuple 50 = (~/, f ,  O, ~ ) ,  where ~ is a 
Banach space, O and 2~ are metric spaces, and f is a continuous map from 
the topological product O × ~ into Yg, bounded on 5~. W, 0 ,  and 5F are 
called the output space, system parameter space, and input space, respectively. 
If  ~ E 0 ,  s = (Y/, f ,  ~, 5~) is a system belonging to 5 °. The  equation y = 
f(a, x), x ~X ,  describes the transformation of inputs to outputs for the 
system s. 

A class of systems 50 is prelinear if 6g is a subset of a linear space and 

f(ca~l -k c2~2, x) : clf(~Xl , X) @ c2f(~x2, X) 

for all x c W whenever the scalars c 1 , c 2 and the parameters ~1, c~2 are such 
that all three terms are defined. Note that the systems in a prelinear class 
need not have any linearity properties. 

Let ~" = ~-(W, ~J) denote the set of all bounded continuous maps from 
into ~J made into a Banach space in the standard way (see, e.g., Dieudonn6, 

1960); i.e., if F E Y ,  [] F ]l is defined by [] F ]l = sups. [I F(x)ll, where the norm 
on the right is the norm in ~J. Define g: ~ × W --+ ~ by g(F, x) = F(x). 
Then  g is continuous on ~ × 5~ and actually linear in ~-. Thus  50~ = 
(~,  g, ~ ,  W) is a linear class of bounded systems. 

Note that f(~,  ") defines an element, call it HE, of J ( f ,  ~ ) .  Let ¢ be 
the map from O into ~(2~, Y/) defined by ¢(~) = HE, and put ~f' = a  ¢(0) .  
Then  500 = (~/, g, g/t°, YY) is a class of systems, and is a subclass of 50o~. 
500 is called the natural representation of 50 = (~ ,  f, 0 ,  ~ )  and ~b the natural 
mapping for the class 50. 500 is always a prelinear class, whether 50 is or not. 
I f  50 is itself a prelinear class then it follows that ¢ is a restriction of a linear 
map from the linear span of O into ~ .  I f  ~b is injective and O and ~ are 
compact metric spaces, then 50 is equivalent to its natural representation 
500 (see Root, 1975a, for definition and details) and nothing is lost by con- 
sidering 500 directly. 

Let ~ = (Y/, f l ,  O1,5~) be another class of bounded systems with 
natural mapping ~b 1 . I f  there exists a map ~1 from 9f'  into O 1 such that 
[l H - -  ~b 1 o ¢I(H)I[ ~< e for all H ~ ~t', (501, ¢1) is said to be an e-representation 
of ~0 (and also to be an e-representation of any class for which ~0 is the 
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natural representation). The  definition does not require that ~b 1 o¢1(H ) 
necessarily belong to W.  I t  does require that 50 and 5:1 have the same 
input and output spaces. An e-representation (5:1, ¢1) of -5: is linear if 5:1 
is a prelinear class and ¢1 is a restriction of a linear mapping;  it is finite- 
dimensional if 51 is a subset of a finite-dimensional Euclidean space; it is 
continuous if both ¢1 and ¢1 are continuous; it is determined by ~ o ,  Y'o C ~ ,  
if the map ¢1 depends only on the functions H, H E W,  restricted to ~0 • 
The  basic existence theorem is the following. 

THEOREM (Root (1975a)). Let ~/ be a Banach space and 5 and ~ be 
compact metric spaces. Let 5:  = (~ ,  f ,  5 ,  f )  be a class of bounded systems. 
Given e > O, there exists a continuous, finite-dimensional e-representation 
(5:1, ¢1) of 5:  that is determined by a finite subset f o  C Y:. 5:1 is a prelinear 
class. I f  ~t is a Hilbert space, then in addition (~1 can always be a linear map 
so that (5:1, ¢1) is a linear e-representation. 1 

T h e  proof of this theorem is by construction and the formulas given 
by the construction are needed here; so some further discussion is necessary. 
I t  is shown that one can find a finite-dimensional subspace ~ '  of ~ '  that 
has a subset arbitrarily close to the total image set Y { ( f )  C Y/. A continuous 
map ~r from ~ into ~/ '  is devised that carries points in d/f (W) into sufficiently 
nearby points of ~t,. In  case ~ '  is a Hilbert  space, ~r can be taken to be the 
orthogonal projection on ~ ' ,  and this is the only case we consider. Lett ing 
y '  = ~ry, y '  is expressed in terms of an arbitrary basis {e I .... , eu} of ~/' 

M 

y ' =  ~, e , * ( y ' ) e , ,  (2.1) 
i= l  

where the ei* are continuous linear functionals. Now if the determining set 
f 0  = {xl .... , xx} , the parameter space 51 of the c-representation is a subset 
of RuM. T h e  map ¢1: ~ - - +  51 is defined as follows. ¢1(H) = h, where 
h is that point in R g u  with coordinates, with respect to an arbitrary ortho- 
normal basis, given by 

am~ = e~* o 7r o H(x, ) ,  m = 1 .... , M; n = 1 ..... N.  (2.2) 

A set of continuous interpolation functionals {yl(x),..., ylv(X)}, x e f ,  is 
constructed. These functionals depend on the set {x 1 ,..., X2v}, and have 
the properties 

1 I t  can happen  tha t  ¢1 is l inear  when  ~d is only a Banach space, bu t  i t  is not  k n o w n  
to us whe the r  this  can be guaranteed.  
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(1) 7.(x) ~ 0 ,  n =  1 ..... N, x E ~ ,  
N 

(2) Z,,=, y,~(x) -= 1, x e W, 

(3) 7,,~(x~) = 8 ,~ ,  n, k = 1,..., N .  

Finally, the map f ,  is defined by 

f , (h ,  x) = 7,~(x) am % .  (2.3) 
m = l  n = l  

An e-representation of the form just described is called a standard e-repre- 

sentation. I t  depends on the set {xl ,..., xN} , and that set is called its determining 

set. 

T h e  integers M and N depend on f ,  dr '  (or 0/) and e, but are not uniquely 
defined simply by the condition that  (~1 ,  ¢1) is a standard C-representation. 
However, given f ,  3/d, and e there is a smallest N such that there exists 
a standard e-representation with a determining set with N elements (we 
are not concerned with the size of M).  With fixed ~0 and W this min imum 
N is nondecreasing as e is made smaller; with fixed ¢ the minimal N is 
nondecreasing as either f or 35 ° is made larger in the sense of set inclusion. 

Two  simple preparatory lemmas are needed that are not given in the 
references. 

LEMMA 1. For a standard e-representation with ~ a Hilbert space and 

{era}, m -~ 1 .... , M ,  an orthonormal set, ~ is a restriction of  a linear map f rom 
o~(97, ~ )  -+ R NM with linear operator norm ~N1/2 .  

Proof. Let  R ,  M be M-dimensional  Euclidean space with basis {e, , . . . ,  eM} , 

and let the image of 3(¢ ~ given x~ under the mapping defined by (2.2) lie in 
R~ M. Let  R MN = R1 M @ "'" (~) R ~  M, and assign the basis {emn}, m = 1,..., M;  
n = 1,..., N ,  where em~ is the element of R MN corresponding to e~ in R ,  M. 

Then  with respect to this basis, let h = ~,(H),  h' ---- q~,(H') have coordinates 
{a~},  { a ~ }  in R NM, respectively. From (2.2), 

(a ,~  - -  a~,~) % II H(x.) - H'(x.)l l  ~ 

II H - -  H '  II ~, n = 1,..., N .  

Hence, 

llh - -  h'l] ~ ~ NIl H - -  H'[[~ 

from which the assertion follows. | 
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LEMMA 2. With the same hypotheses as for Lemma 1, ¢~ is a restriction 
of a linear map from R NM -+ ~-(£r  ~ )  with linear operator norm bounded 
by one. 

Proof. Because of the proliferation of norms in different spaces which 
appear, subscripts are used with the norms initially, except for the linear 
operator norm of ~b 1 which is denoted 1 ¢1 ]. Then, 

I ¢1 I = sup II ¢1(h)1l 
R ~  11 h II~NM 

= sup sup IlA(h, x)lle~ 
RNM .~ 

= sup s 7.(x) a~ .  
R NM u.vP ~a=l 1 

,} 
em ] R M 

~< sup 1 sup [ a,~,~ [ 
R NM "~" \~'t=l 

~< sup 1 sup (x) • max [am~ 
RNM X 1 n 

l = sup I 
R NM 

N 
because ~,~=1 y~(x) = 1 for all x ~ :T. Then  

E~=l max. l a~. 
I¢11 ~< sup EM ~.N a ~ " ~<1. | 

3. A MODEL FOR TIME-VARYING SYSTEMS 

Some further notations, conventions, and definitions are useful. In  what 
follows we deal with spaces of functions (or equivalence classes of functions) 
on R 1 or subsets of R1; in each case the functions take values in a finite- 
dimensional Euclidean space. L2(a, b) denotes the L2-space formed from 
functions defined on (a, b) and square integrable Lebesgue. We shall identify 
the spaces L2(a, b) and L~(t + a, t + b), t any real number, without further 
comment. The symbol A will sometimes be used as a generic symbol for 
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an interval in R 1 (of the form (a, b], if the endpoints matter). The  linear 
operators L~, Pa and P~ are defined on functions x on R 1 by 

(Lax)(t) ~- x(t  + a), 

(Pox)(t) --- x(t), t ~< a, 

-= 0, t ~ a, 

(P~x)(t) -~ x(t),  t ~ A, 

= 0 ,  t ~ A .  

The symbol W e denotes a set of functions x on R 1 that satisfies the conditions 

(i) (shift invariance) x ~ f e  ~ Lax ~ We for all a ~ R1; 

(ii) (projection property) x ~ W e ~ Pax ~ We , ( I - -  Pa)x ~ f ~ and 
Pax  ~ f e  for all a and A. 

To  avoid confusion between different uses of the word system, we introduce 
the term extended system to represent the kind of ongoing, in general time- 

varying, system that is to be identified. Precisely, an extended system is a 
triple (a# e , H e, We) where &r e is as just  defined, ~ is a linear function space 
on R 1 that also satisfies 

(iii) shift invariance, and 

(iv) projection property. 

H e is a map 2 from W~ into oy~. The  extended system is causal if PaHe(x) --= 

P~He(Pax) for all x a We and all a. It  has bounded memory m if ( I  - -  Pa) He(x)  = 

( I  - -  Pa) H~[(I  - -  Pa_~)(x)] for all x a We and all a. These can be combined: 
An extended system is causal with bounded memory m if and only if for 
every T > 0 

(v) (Pt+r - -  Pt) He(x)  = (Pt+r - -  e t )  He[(Pt+T - -  Pt_~)(x)] for all t 
and all x ~ We (see Root, 1975b). 

The  idea we follow in modeling a natural system operating for an indefinite 
time period is first to represent it as an extended system with certain addi- 
tional restrictions on We, ~/e and H e, and then to regard the extended system 
as corresponding to a trajectory in some fixed class of systems, as defined 
in Section 1. We choose to set up the problem so that the topological function 

2 In Root (1975b), spaces satisfying the conditions for £r e and ~/~ are topologized; 
the H e are taken to be continuous maps, and classes of what are here called extended 
systems are formed. A much more elaborate structure is developed than is necessary 
for our purposes here. 
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spaces that appear (this does not include £ r  and g¢~) are LZ-spaces. This 
is not necessary, but it seems sufficiently general and it facilitates the statistical 
estimation discussed in the next section. 

Let T and m be fixed positive numbers. T will be the duration of each 
observation interval; m will be a bound on the memory duration. The 
number m is chosen to fit the problem; either the natural systems in question 
have bounded memory in, or they can be approximated sufficiently well by 
having the memory truncated to m. T is arbitrary. Let 5¢' = (go, f ,  6g, ~ )  
be a class of systems satisfying the conditions 

(a) W is a compact subset of L2(- -m,  T), 

(b) ~/ is  L2(0, T), 

(c) 6g is compact. 

We deal with the natural representation of Y, ~o = (q/ ,g ,  2/f, 3?). It 
follows, (c'), that 3¢g is a compact subset of ~(.gr, g/). 

Now let (q/a, H% ~, )  be an extended system that satisfies the following 
additional conditions. The input space ~ ,  satisfies 

(vi) P~Ke~ CL~(A) for any A, 

(vii) P(e_,~.,+r)£re = L_~£ r. 

Note that, by virtue of (i), it is sufficient that (vi) hold for some A and that 
(vii) hold for some t. The output space gca satisfies 

(viii) P ~ a  CL2(A) for any A. 

Given any t, the map H a induces a map H, from P(*-m,e+r)fa intoL2( t, t q- T )  
defined by 

H~(xe) = P(e,e+r)He(P(e_~,e+r)x), x c ~a  , 

x t = P ( e _ m , e + r ) x .  

In fact, because of (v) the first equation can be written H~(xe) = P(e,e+r)H~(x). 
Since by (vii) all x 6 5~ are translates of such xe, He can be regarded as a 
map from f into @' = L2(0, T). It is required that H ~ be such that 

(ix) H e s S .  

With 5~ o as given it is clear that any extended system that satisfies the 
additional conditions (v),..., (ix) generates a trajectory {He}, t ~ R 1, in the 
subset ~ of o~(5~, ~g). We regard an extended system satisfying these 
conditions as "identifiable" if it is possible to determine Heo for any t o on 
the basis of input-output data taken over a finite time interval terminating 
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at time t o -1- T. We regard the extended system as "approximately iden- 
tifiable" if it is possible to determine Hto to within a prescribed tolerance, 
in a prescribed sense, under the same conditions. As indicated in the 
Introduction, we are concerned with approximate identifiability. 

To  make a measurement on the extended system at t will mean to apply 
an input signal during the time interval (t - -  m, t -[- T] and observe the 
output during the time interval (t, t @ T]. Measurements may be made 
for overlapping time intervals, but  if they are, the successive inputs are 
necessarily related. To  allow a completely arbitrary choice of successive 
inputs, we suppose that measurements are made at the times t 1 = 0, 
t~ = m -[- T,..., t~+ 1 = k(m + T) .. . . .  The maps Htk, denoted Hk,  describe 
a discrete trajectory in W.  Setting W~ = H~+ 1 - -  H~ gives the equations 

g~÷l = g~ + W~, 
(3.1) 

y~ = H~(gk), k = 1, 2 ..... 

to describe the successive measurements, where 2~ is the input signal applied 
during the interval (t~ - -  m, t~ @ T] and y~ is the output observed during 
the interval (t~, t~ -[- T]. 

I t  is to be noted that even though we are defining a system to be an input-  
output map, there are no serious restrictions on the "state" of the extended 
system at any time during the measurement process. In  particular, since 
the duration of the input interval is equal to that of the output interval 
plus a bound on the duration of the system memory, the "output"  for each 
measurement depends only on the " input"  for that measurement, and is 
independent of the state of the system at the beginning of the measurement. 
This holds true even in the case where measurements are made for over- 
lapping time intervals. 

To get a finite-parameter model for the H~ we employ e-representations. 
Let  ¢ > 0 be fixed at an arbitrary value; then by virtue of conditions (a), 
(b), (c) on o ~ there exists a standard e-representation ( ~ , ¢ i )  as given 
by Eqs. (2.2) and (2.3), with determining set {x 1 .... , x~}. As before ~ = 
(~#, f l ,  691, ~ ) ,  and the parameter set 51 C R rim. Also, rr is the orthogonal 
projection from ~ onto ~ ' ,  which is an M-dimensional subspace; {e I ,..., eM} 
is an orthogonal basis for o#,, and the orthogonal basis for R NM is chosen 
as in Lemma 1. 

The  fundamental identification problem is to find He,  k = 1, 2,...; we 
are satisfied if we can find a suitably close estimate of h~ = ¢1H~, the 
corresponding vector parameter for the standard E-representation. 
Suppose, temporarily, that the extended system is time-invariant so that 
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H k = H  l f o r a l l k . L e t 2  k , k  = 1 .... ,N ,  be chosen to be the N elements of 
the determining set, thus xk = xl~, k = 1,..., N. Then, from (2.2) 

y~' = ,~(y~) = ~ o  H~(x~) 

M M 

= Z (~ro H,(x~), % )  e m =  • am~e~, k = 1,..., N .  (3.2) 
qTq,=l m = l  

Let h 1 be represented by the column vector 

hi = [an ,..., aM1 ; al~ ,..., aM2 ;.-.; a~N ..... aMN]T; 

then (3.2) can be written as a matrix equation 

y~' = X , h i ,  n = 1,..., N ,  (3.3) 

where y~' is now interpreted as a column vector of length M ,  and X~ is an 
M × M N  matrix which in partitioned form is X n = [0" "'" i 0 i I i 0 i "'" " 0], 
each block being M × M and the identity matrix appearing in the nth 
block. Setting 

y l  = 

i _ H ' J  

and combining Eqs. (3.3) yields 

since 

y~ = X h  1 = h 1 , 

X =  = I .  

Thus,  in this case of noise-free identification of a time-invariant extended 
system, an identification to within ¢ is obtained by making measurements 
wkh each input signal in the determining set. The  parameter values a ~  
are actually the coordinates of the projections of the outputs on an appropriate 
M-dimensional subspace wkh a certain orthonormal basis. 
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Now suppose that the extended system is continually changing so that 
each measurement is performed on a (slightly) different system. From (3.1) 
and the argument leading to (3.3) we have 

h~+ 1 : h~ Jf-w k, 

y~ '  = X k h ~  , k = 1, 2 . . . . .  N ,  

(3.5) 

as the equations describing the skuation at the kth measurement in terms 
of the standard e-representation. Since ¢1 is linear, w k = ¢ lWe.  We want 
to consider blocks of N measurements, and for the purposes of the next 
section, successive blocks of N measurements, each with the same successive 
inputs from the determining set {x 1 ,..., xn} .  Equations (3.5) are then 
meaningful for all k = 1, 2,... if X ~  = X j ,  j = k - -  [ k I N ] N ,  where [a] 
denotes the integer part of a. Put 

and 

h n = h N N ,  y n  

, ] 
Y(n-1) N+I 

Y'(~-.1) N+~], 
y;N J 

(3.6) 

I 
--XI(W(~_I)N+ I ~- f]O(n_l)N+ 2 + ''' -j- WnN--1) ] 

-X~(w(~-1)N+2.+ " ' "  + w~N-1) [, 
__ X N_ol WnN_ 1 I ] 

(n+l) N--1 
= )_~ g0k. W n 

tc=nN 

Then the successive blocks of N equations given by (3.5) can be written 

hn+l =. h n @. w n, 

y ~  = X h  ~ + ~ = h n + ~ ,  n =  1,2,.. . ,  
(3.7) 

since X is the N M  × N M  identity matrix. With the w,~, and hence the w n 

and e n, unknown, it is now impossible to find any of the h ~ precisely from 
observations of the y~; however, if each w ~ is small one would expect 
//n = y~ to be a pretty good approximation to h ~. We have the following 

simple result. 
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LEMMA 3. In the model (3.7) we let wn satisfy only the condition I] w~ [[ ~ ~1, 
where [[ w~ Ii is the Euclidean norm of  w ,  in RuM. Then h ~ =  y~ satisfies 
It//" - -  h" H ~ (N - -  1)~/, and no estimate of  h" formed from y~ can have 
guaranteed error less than ( N  -- 1)~/. 

Proof. I t  is sufficient to consider only y :  in (3.7), that is, to consider 
k = 1,..., N,  in (3.5). Given the same h : ,  the two following sets of values 
for the w~ yield the same observations y j .  (1) w 1 = w 2 -- --  WN_: , 
1[ Wl I]-----7, Wl G JV"L(X:) (the orthogonal complement of the null space 
of X:);  (2) @: = @2 - -  - -  @u-: = - - w l -  In  fact, in either case y~' = 
Xkh l ,  k = 1,..., N,  since all the w~ and ~ belong to W(X~) for k > 1. 
The  values of h n for the two different cases differ by  an element of norm 
2(N - -  1)~/. This  proves the second assertion. I t  is easy to see that the choice 
of w: ,..., wn_ 1 just given defines a worst case for ~n, and the first assertion 
follows immediately. | 

The  following theorem summarizes the discussion of the model (3.7) 
by stating to what extent identifiability of a t ime-varying system, meeting 
certain conditions, can be guaranteed. This  is, of course, a statement of 
the situation when noise-free observations of the output are possible. I t  is 
preliminary to a corresponding result in the final section that takes account 
of noisy observations of output. 

THEOREM l. Let ( ~  , H e, f ~) be an extended system satisfying (i),..., (viii) 
for some m > O. Suppose there is a class of systems 5P satisfying (a), (b), (c) 
with the same m and arbitrary T > 0 and such that the extended system satisfies 
(ix) with respect to 5C Finally let it be required that the changes in the extended 
system during one measurement interval are always such that Ii H~+I - -  Hk ][ ~ 3 
for all k. 

Fix e > 0 and let N be the minimum number of elements in the determining 
set of a standard E-representation of $f. Then there exists an estimate Hk of 
H k ,  for any k, formed from a preceding block of N measurements such that 

11 H~ - H~ II ~< ~ + ( N  - -  1) N:?& 

Proof. Consider the model (3.7) based on the standard e-representation 
of ~9 v. From Lemma  1 and the condition that II Hk+: - -  H~ [[ ~ 3 for all k, 

II ~v~ II ~< I14111 ]1 w~  II ~< N1/~& 

Then  from Lemma  3 the estimate ~n = y ,  satisfies [1/~ n - h n [ I  
(N - -  1) N:/28. Put H ~ = ¢:(/~); then from Lemma  2, 

N H ~  - -  ¢:(h~)l] ~ (N - -  1) N:/23. 
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Since h n = ¢I(H.N), and (..cP1,41) is an E-representation, putting HaN = H '~ 
yields 

I[ H,~v - -  Hnx II ~ e • ( N  - -  1) N1/2~, 

from the triangle inequality. However, since a block of measurements may 
be started anywhere, nN may actually take on any integer value, which 
proves the result. | 

Remarks. (1) Conditions (i), (ii), (vi) on £ r ,  together with the com- 
pactness of ~ ,  are compatible and not even very restrictive (see Proposi- 
tion 2.4 of Root, 1975b). The  compactness condition of input spaces may 
seem confining to one used to dealing with linear system theory, but  in a 
practical situation it can often be argued that potential inputs must  indeed 
belong to a compact set because of very real physical constraints (see com- 
ments in Root, 1971). 

(2) I t  is evident that even in the case of noise-free observations the 
identifiability of a t ime-varying system depends on a trade-off between 
actual rate of system variation on the one hand and the state of prior 
knowledge (specification of ~ )  and size of the class of admissible inputs 
(specification of W) on the other. This  is indicated in Theorem 1 in the 
dependence of N on e, ~ and £r. I t  would be highly desirable to estimate 
the dependence of N on e for simple examples of W and 5 ,  but no at tempt 
is made to do this here. T h e  problem is akin to estimating the e-entropy 
of a set, but  is more complicated because of the sense in which the x~ are 
required to cover W. 

(3) In  many situations some simple ad hoc construction can be used 
to obtain a linear-in-the-parameters model of the form of Eq. (3.7) (but 
usually not with X = I) ,  and the statistical estimation theory of the next 
section will apply to such models. 

We now suppose that the observations of the output of the extended 
system are contaminated by additive noise. Then  Eqs. (3.1) are replaced by 

H~+I = H~ + W~, 

zk = Hk(X~) + V~, 

where V~ is a random variable 3 taking values in L2(O, T). Assume 

(3.9) 

That is, we take V~ to be a strongly measurable map from a complete probability 
space into L2(O, T) (see, e.g., Barucha-Reid, 1972). 
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(o 0 E ( V e )  exists and is equal to zero. 

(fl) g~ has a covariance operator / '  (which will necessarily be self- 
adjoint and of trace class). 

(7) V~ and Vj are uncorrelated for k =/= j ;  i.e., the cross-covariance 
operator is zero. 

The  development leading to (3.7) can now be repeated with the only change 
being that in each observation equation there is an additive noise term. Let  
z~' be defined to be ~r(z~). Then,  since ~r is linear, Eqs. (3.5) are replaced by 

hk+l = h~ + w~, (3.10) 
zk '  = X ~ h k  + vk , 

where v k = ~V~ is represented as a column vector with respect to the basis 
{e 1 .. . .  , era}. The  random vectors v~ have mean zero, are uncorrelated and 
have covariance operator ~ / ~ ,  which will be represented by the covariance 
matrix R. Using the same convention as before as regards superscripts 
versus subscripts leads to 

h~+l = h~ + w~' (3.11) 

where v n is a random vector with mean zero and covariance m a t r i x / ~  = 
N-block  diagonal [R i R : ... i R]. Furthermore,  v n and v m are uncorrelated 
for n ~- m. 

Equations (3.11) describe the model  we consider for identification of a 
t ime-varying system in the presence of output  noise. In  the noise-free case 
one can compute ]~n = h n + en as an estimate of hn; in the noisy case one 
can make a statistical estimate f~n of h n + e ~, which is again regarded as an 
estimate of h% In  both cases there is nonremovable error due to the presence 
of ¢~. In  the noise-free case one block of N measurements suffices; in the 
noisy case continuing measurements allow for a reduction of statistical 
error, as usual. In  the next section the statistical estimation problem is 
treated. 

4. PARAMETER ESTIMATION IN THE TIME-VARYING SYSTEM MODEL 

The  estimation problem posed by (3.11) is a "mixed"  problem which 
is somewhat unconventional; the terms w n and en are nonstochastic dis- 
turbances while the term v ~ is stochastic. Even if the e~ were zero, the 
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usual Kalman recursive linear least-mean-squared (LMS)  error estimation 
theory would not  apply because of the nature of w% Since such an estimation 
problem is at least of some academic interest, 4 we generalize it a little, 
considering however only the case e n ~ -  O, before constructing an estimate. 
This  more general version also is of use for some t ime-varying system 
models formulated on an ad hoc basis with no reference to s tandard E-repre- 
sentations, as mentioned above. When  the solution we obtain for the estima- 
tion problem with E ~ = 0 is applied to (3.11) an adjustment has to be made 
to account for the presence of e n and the extra error it causes, and this is 
done in the next section. 

The  criterion used for the quality of estimates is, as usual, mean-squared 
error. However,  in the model  used the mean-squared error depends on 
the values of the unknown, bounded,  but  nonstochastic quantities. Wha t  
we would like to do is minimize the maximum mean-squared error. However,  
the recursive linear estimate constructed only minimizes an upper  bound  
on the maximum mean-squared error, so a comparison lower bound is 
obtained to provide a guarantee that  the estimation procedure is not far 
from optimum. No linear estimation procedure can yield an estimate with 
mean-squared error less than the number  given by  the lower bound for 
all possible values of the parameters.  

We consider 

h-+l = h,~ + w ~, 
(4.1) 

z ~ - - X h  ~ + v  '~, n =  1 , 2  ..... 

where again h ~ is the vector parameter  to be estimated, but  where the as- 
sumptions are now: h ~ is a p-dimensional  vector; z n is an r-dimensional  
vector, r > / p ;  X is arbi trary except that ~V(X) = 0; 5 v ~ is a random vector 
with first and second moments  satisfying 

E v  n = O, 

Evn(v~)  r = R ~ , ~ ,  
(4.2) 

4 Recurs ive  es t imat ion  for mode l s  where  the  noise is u n k n o w n - b u t - b o u n d e d  ha s  
been  s tud ied  by  Schweppe ,  Schlaepfer ,  Bertsekas and  Rhodes ,  and  o thers  (see 
Schweppe ,  1974, and  o ther  references given there).  T h e  es t imator  developed here  is 
different f rom any previously  d iscussed as far as we know. 

T h a t  par t  of  h tha t  lies in the  nul l  space of  X is not  es t imable  anyway,  so there  is 
no real loss in general i ty in cu t t ing  down the  pa rame te r  space,  if necessary,  to coincide 
wi th  dV'z(x).  

643/3z /3-z  
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with the covariance matrix R strictly positive definite, and w" is bounded 
componentwise, as will be specified. Let  {¢1}, i = 1,..., p, be a set of ortho- 
normal eigenvectors belonging to ( X r R - 1 X )  -1, i.e., 

( X r R - ~ X ) - ~ ¢ i  = a f t e r ,  i = 1,..., p .  (4.3) 

Then  it is required that ~ 

[¢~ rw" I = I(w", ¢~)1 ~< ~/~, i = 1,.. . ,p; all n. (4.4) 

Note that since J V ' ( X ) :  0 and R is strictly definite, ( X r R - 1 X )  -~ exists 
and the eigenvalues {ai =} are real and positive. 

A recursive estimator for h ~ is now developed. I t  is suggested by the 
nonrecursive modified linear unbiased minimum-variance (modified L U M V )  
estimator described by Root (1973); there is also a vague resemblance to 
the standard Kalman recursive estimator. T o  start, let h 1 be the ordinary 
L U M V  estimate of h 1 using the observation z 1, i.e., 

h 1 = ( X r R - x X )  -1 X T R - l z  I = C z  1, ( 4 . 5 )  

where the matrix C is defined implicitly by (4.5). As is well known (Albert, 
1972), the mean-squared error in this estimate satisfies 

E [[ h ~ - -  h 1 [I 2 = EII C( x h l  ÷ vl) - -  hI II 2 

= EII cv~ I[ 2 = Tr [ (XrR-1X)  -1 

= E a* ~" (4.6) 
i=1 

Here and in the rest of this section the norm is the Euclidean norm in R ~. 
I t  is convenient to introduce the notation b~ ~ aft, i = 1 .... ,p ,  so that 

9 

EII ha - -  h ~ Ii 2 = Z b~,. (4.7) 
i = 1  

Now consider the second observation 

and rewrite this as 

z 2 = X h  ~ + v ~ = X h  1 ÷ X w  1 ÷ v 2, 

z~ - x h l  = X[ (h l  - -  h~) + w q  + v 2. 

6 W e  o c c a s i o n a l l y  u s e  i n n e r - p r o d u c t  s p a c e  

n o t a t i o n  i n  th i s  sec t ion .  

(4.8) 

n o t a t i o n  i n s t e a d  of  v e c t o r - m a t r i x  
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Define 0 2 ~ z  2 - X h  1 and ~1~  (h ~ - h  t ) - / w  l = h  2 - ] ¢  so that (4.8) 
becomes 

0 2 : X~  1 -]- 7) 2. (4.9) 

The LUMV estimate of ~1 is 

CO 2 ~ ~1 + Cv 2. (4.10) 

Equation (4.10) can be interpreted as describing a linear model for estimation 
in which the linear transformation is the identity, the "observation" is CO 2 
and the "noise" is Cv 2. Since the LUMV estimate of ~1 in (4.10) is just 
the observation itself, there is no conflict in thinking of (4.10) this way. 
We now wish to use the a priori information that we have about ~,  i.e., 
the information in (4.4) and (4.7), to modify the LUMV estimate of 
so as to obtain a new estimate with smaller mean-squared error. 

Consider a completely arbitrary linear estimate ~1 of ~x in (4.10) and 
expand it in terms of the {~bi}. Thus, 

~0 
~ = ~ a,,(CO 2, ~j) ¢, ,  (4.11) 

i,j=l 

where the {%} are real numbers. The error in this estimate is 

~ 1  ~1 = ~ [(aii - -  1)(~1, ~i)"q- ~ ai.$(~ 1, t~j).q- ~ g/j(C'v 2, ~,)] $ i .  
i=1 J=l j=l 

(~ei) (4.12) 

Then, from (4.2) and (4.3), and using the facts that ~ is uncorrelated with 
v 2 and that C R C  r = ( X r R - 1 X )  -1, it follows that 

EII~I ~[12 E (a~, 1)(~ ~ ,$4)+ a~j(~,$~ .+_ ~ 2 2 
i=1 ~=1 i,~=l 

(J~) (4.13) 

We should like to choose the {ai~} so as to minimize the supremum of 
E II ~1 _ ~111~ for all h and all w satisfying (4.4). However this minimization 
problem appears to be extremely complicated, and perhaps not even worth- 
while in view of what follows, so we content ourselves with minimizing 
the obvious upper bound to (4.13) given by 

[ ]' E11~1--~1[12--.<2~ ( a i , - - 1 ) 2 E [ ( ~ l , ~ i ) ] 2 + 2 ~  E ~ aij(~l,$j) 
i=l i=1 J=l 

+ y~ 2 2 (4.14) aijG ~. . 
i,J=l 
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To  minimize the right side of 
i @ j. Making this assignment 

i=1 
Now 

z[(~ ~, ¢ 3 ]  2 = E [ ( h '  - -  h I + 

SO 

(4.14), one should obviously set ai~ = 0 for 
reduces (4.13) to 

~o 
(aii _ _  1)2 E[(~I, ¢,)]2 _? ~ a , ,~  ~ 2. (4.15) 

i=1 

= E [ ( C v l ,  ~i)2] _ 2(w 1, ~i) E[(  C~I, ~i)] -~ E[(  g})l, ~i)2] 

<~ c,~ 2 + 2~7,,~ + ~ = (bli + Vi)2, 
(4.16) 

1o 
2 2 

E II ~ - -  ~1112 ~ ~ [(a. - -  1) 2 (bl, + W~)2 + a . ~  1. (4.17) 

Obviously the bound in (4.16) could be improved to b~i + ~i 2, since the 
unbiasedness of ]21 causes the cross term to vanish. However, this calculation 
is used all over again in an inductive proof, and in general the preceding 
estimate h ~ is biased so the use of the Schwarz inequality is necessary. 

The  upper bound in (4.17) is minimized by putting 

(bli + ~)2 i = 1 ..... p.  (4.18) 
aii = (bli @ ~i)2  _~_ (yi 2 ' 

We let ~1 denote the estimate of ~1 given by (4.11) with aii as given by 
(4.18) and a,a = O, i @j .  Since h 2 = h 1 @ (1, we take as our estimate o f h  2, 

h2 ~ hi + ~1. (4.19) 

I t  is perhaps interesting to note that the definition of h 2 in (4.19) is analogous 
to a key step in a standard derivation of the Kalman recursive least-mean- 
squared error estimate; the difference is that there the step is shown to 
lead to an opt imum estimate by a projection argument, whereas here there 
is no such structure available. With the use of (4.17) a short calculation 
shows that the error in h 2 satisfies the following inequality, 

EI] h~ - -  h21] 2 = E II(h ~ + ~1) _ (hi + ~l)ll2 

= E [l ~1 - -  ~ II 2 

i=l i=1 

= X b~,, (4.20) 
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where 

b~ A (b~ + ~;)~ ~? 
(bli + Vi) 2 + ~P " 

Repetition of the procedure just described leads to the recursive estimate 

h~, = hn--1 _1__ ~n--1 

~=1 (b(n-1)i + ~i)2 + ai 2 

b~ = (b("-l)i + ~)2 ~2 i = 1 ..... p (4.21) 
(b<._a)~ + n~) ~ + ~C" ' 

with initial conditions given by 

h 1 ~ Cz l~  

b2i = Gz2, i = 1 .... ,p .  (4.22) 

THEOREM 2. Given the statistical model defined by Eqs. (4.1) and subject 
to the conditions of (4.2) and (4.4) and to ~A/'(X) = O. The recursive estimates 
defined by Eqs. (4.21) and (4.22) satisfy the error bound 

23 
E [I h" - h" ii z <~ ~ b ~ .  (4.23) 

Proof. At the kth stage the model (4.1) gives the observation equation 

z k = X h  ~ + v  ~ = X h k - l + X w  ~ - l + v  k, 

which can be rewritten as 

0,~ = X~k-1 + v k, 

where O k a= z~ _ Xhl. 1 and 

~7~-i ~ (h~-i __ hk-i) _}_ wk-i = h k __ hk-i. 

From these relations Eqs. (4.21) follow for n = k exactly as they did for 
n = 2 and the calculation of the accompanying error bound (4.23) also 
goes the same way. The  assertion follows by induction. | 

The  behavior of the error bound in (4.23) as n --+ oo is of concern. Before 
presenting a result for this limiting case we state without proof a simple 
preparatory lemma (see Fiske, 1975b). 
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LEMMA 4. 
and satisfies 

(i) lim~_~0+f(x ) > 0, 

(ii) lim~_~ f ( x )  = constant < ~ ,  

(iii) i f (x )  > O, x > O, 

(iv) f"(x) < O, x > o, 

then~ 

(a) 

(b) 

FISKE AND ROOT 

I f  f is a real-valued C ~ function defined on the positive half-line 

f ( x )  = x has a unique solution x* for x > O, 

the sequence xn = f(x~_z), xl > O, converges to x*. 

THEOREM 3. The equation 

(xl/2 + ~i)2 °l~ = x, x > 0, (4.24) 
(xll ~ + m) 2 + c~ ~ 

with ~ll, ai > O, has a unique solution xi*. For the recursive estimates of  
Theorem 2, l i m , ~  b~i = xi*. 

Proof. Follows from Lemma 4 and (4.21). I 

A graph of xi* is shown for certain values of ~7i and a i in Fig. J. 

Upper Bound (Recurslve) 

/ 
/ / 

%- I / /Lower Bound 
0.2I / / {X=I,R Diogonal) 

oov 
0 0.1 0.2 0.3 0.4 0.5 

~/i/°'i 

FIc. 1. Upper  and lower bounds on MSE (ith component). 
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EXAMPLE. For a system with input-output relation charaeterizable by a 
linear integral operator, or more generally by a polynomial integral operator 
(Volterra polynomial), there is an easy and obvious way to get a linear- 
in-the-parameters model of the form of (4.1) to which Theorem 2 applies. 
We indicate how this goes for a second-degree polynomial, and then consider 
details in a simple special case. It will be clear how this procedure generalizes 
to higher degree polynomials. Two comments should be made, even though 
they are obvious. First, some approximation is necessary to reduce the 
model to a finite-dimensional one; second, this is an example of an ad hoc 
system model and has nothing to do directly with e-representations. 

Suppose the system is described by 

~r+T er (r+T) 
y(t) = ,-m hl(t , s) x(s) ds + "~t[['r-m) h2(t' sl '  s~,) x(sl) x(s2) ds 1 ds2, 

r ~ t ~ r + T ,  r ~ R  1, (4.25) 

z(t) = y(t) + v(t), (4.26) 

where the kernels h 1 and h~ are square-integrable in all their arguments 
over any bounded set; where x is square integrable on any finite interval; 
where rn ~ 0, T > 0 are arbitrary but fixed, and where v(t) is a wide-sense 
stationary stochastic process with mean zero. The pair (hi, h2) represent 
the system, x is the input, v is noise, and z is the observed output. T is the 
duration of an observation interval and m is the maximum duration of the 
finite memory. 

Let r be temporarily set equal to zero; let {¢i} and {~i} be complete 
orthonormal systems (c.o.n.s.) for L~(--m, T) and L2(0, T), respectively. 
Expansion of both sides of (4.25) with respect to these c.o.n.s, yields 

cz = ~ b~,a i + ~ b~ilqa,fli2, k = 1, 2 ..... (4.27) 
i il,i ~ 

where 

. .  = (x, ¢ . ) ,  

T T 

T T T 
b/cil'/] = fO ~ m  ~m h2(t' Sl, $2)¢i1(31)¢~:2($2)~k(t) dsl ds~. dt. 
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Since it may be assumed without loss of generality that h 2 is symmetric  in 
s 1 and s2, it may be assumed that b~hi, = bki~q. Under rather obvious 
compactness conditions on the class of systems and class of inputs in 
question (e.g., if h 1 , h~, and x are required to belong to compact subsets 
of the appropriate L l spaces) Eqs. (4.27) can be approximated uniformly 
in an L ~ sense by a finite system of equations in finitely many unknowns: 

M M 

ck = E bk~a' q- E bk,,,,ailai=, k = I .... , K.  (4.28) 
i=1 i1,~2=1 

These equations can be written in the form of the linear vector-matr ix 
equation y = Xh,  where h is the vector of the b's, y is the vector of the c's, 
and X is determined by the a's. 

Equations (4.28) correspond to one measurement,  as the term is defined 
above, at ~- = t 1 = 0. Successive measurements can be made independently 
at t~ ~ m q - T ,  t a = 2(m q - T ) ,  etc. With the c.o.n.s, translated appro- 
priately, each measurement will correspond to a system of equations (4.28) 
with the input for that measurement determining the a 's  and the condition 
of the system during that measurement determining the b's. I f  the b's do 
not change for a sufficient number  of measurements,  input signals can 
always be chosen so that the b's can be uniquely determined (see Fiske, 
1975b). 

Now we suppose that the system in question is causal, and we temporarily 
also assume it to be time-invariant. The  ¢~ and ~/~ can then be chosen to 
take advantage of these conditions. In  particular, define ¢1 ,..., eM by 

( m ~1[2 (i - -  1)(T "4- m) i (T  + m) 
¢~(t) = \ T - - - ~ ]  ' - - m +  M ~ < t < - - m +  M ' 

= 0, for all other t ~ [ - -m,  T]. 

The  completion of the system {¢i} is irrelevant. There  is no harm done 
if m is increased if necessary so that it is exactly divisible by 8 = ( T  + m)/M. 
The  ~7i can now be defined to be functions consisting of a simple step of 
length 8, just as are the ¢ i .  However, because of the causality, bounded 
memory and time-invariance there is nothing lost by stopping the observation 
interval at 8 and defining only ~71 as a step of height (1/8)1/~ on [0, 8]. 

Thus,  T = 3 ,  K =  1, M = ( m / 8 ) + l ,  and Eqs. (4.28) reduce to the 
single equation 

M M 

C --~ 2 biai ~- 2 bijaiaj, (4.29) 
i=1 i,3=1 
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where 

c - -  ~1/~ y ( t )  dt, 

b4 = ~ -~+(~-1)~ fo h(t, s) dt ds, 

1 f-m+j  f ~ h ( t ,  s l , s2 )  d t d s l d s ~  " 
b4j = ~ --fa+(4--1)~ --'m+(J--1)~ JO 

It  will be observed that, since b~j = b~i, there are N = ½ M ( M  + 3) un- 
known b's in (4.29). We therefore consider a block of N successive measure- 
ments with N different inputs (i.e., N different sets of the ai) chosen so that 
the b's are uniquely determined. Using a superscript to denote the number 
of the measurement, we then have from (4.29) 

M M 
c ' ~ = ~ b , a # +  ~ b4,a4~a/~, n = l  .... , N .  (4.30) 

4=1 z,]=l 

Equations (4.30) can be rewritten in vector-matrix form, 

y =- X h ,  (4.31) 

where 

y ~--~ [c 1, C 2 ..... cN] T, 

h = [b 1 , b n ; bz, b2~ ; . . . ;  bM, bMM ; 2bn ,  2bla .... , 2 h i m  ; 2b2a , . . . ;  2bM_I,M] T, 

and 
a 1 a 1 ] a l  1, (a l l )  2, a21, (a21) 2,-.-, ( a 2 )  2, alia21, .. . ,  M-1 M 

X ~ ... o 
, ' " ,  aN N ! al N, (alN) 2 .. . .  , alNa2 N M_laM_I ] 

From (4.26) and (4.31), there follows the equation 

z = X h  + v, (4.32) 

where v = Iv 1 ..... v~] r, and v 4 is equal to 3-I/2 times the integral of the 
noise over the observation interval of the ith measurement. Ev  4 = O, 
E(v4)2 = constant = a 2, say; and we shall assume E(v4vj) = 0 for i =~j. 
Thus,  E(vv  r) = a2I. 

I f  it is now presumed that h (and hence the b's) changes somewhat from 
one block of N measurements to the next, and if the same cycle of inputs 
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is used for each block of measurements, we recover Eqs. (4.1), where the 
superscript n denotes the number of the block of measurements. Theorem 2 
applies with R = a2I and 

C = ( X r R - 1 X )  -1  X T R  -1 = X - L  

As an illustration, consider the simplest nontrivial case with M = 2. 
Then N = 5 so that five measurements to a block are necessary. The inputs 
may be chosen so that 

[ i  l l  0 0 i l  
- -  1 0 0 

X =  0 1 1 . 
0 - - 1  1 
1 1 1 

Then, 

C = X  -1 = 

_2o2 o oO 1 
0 2 --2 . 
0 2 2 

4 0 --4 0 

The eigenvalues and corresponding eigenvectors of ( X r R - 1 X )  -1 = 0 - 2 ( X T X ) - I  

are 

0-13 = 3.33~ ~, 
0-2 2 = 10.2 

0.32 = ½0-2, 

0"43 ~--- 10-2 , 

%3 _ 0.150-3, 

¢1 = [0.166, 0.166, 0.166, 0.166, --0.944] r, 

¢5 = (1/21/~)[-1, 1, 0, 0, 0 y ,  

~z = (1/21/2)[ 0, 0, --1, 1, 0] r, 

¢, = ½[1, 1, --1, --1, 0] r, 

¢5 = [0.474, 0.474, 0.474, 0.474, 0.331] r. 

The ~/i remain to be chosen. If limits on the possible variation of (b 1 , bn,  
b2, b~2,2b12 ) between blocks are taken to be (0 a , 02 , 08 , 0a, 05), then the ~/i 
should be 

~/i = max [%, %, %, %, o~5]T [¢i], 

In any given situation the choice of the ~h will probably be something of a 
guess. If they are chosen conservatively (too large), then the estimates 
will not be quite as good as they might be; if they are chosen too small 
the error bounds will be incorrect. Suppose in this example the ratio ~1i/0- = 
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0.5. Then  ~i/171 = 0.28, and from Fig. 1 one sees that the upper  bound 
on the final mean-squared error in the ¢l-component  is approximately 
0.5a1~ = 1.7a 2, as contrasted with a 1 2 =  3.33a 2, the error given by the 
L U M V  estimator. 

Lower Bound on Maximum Estimation Error 

As previously mentioned, since the error bound just derived is presumably 
not the best possible, it is important to establish a lower bound on upper  
bounds to mean-squared error, for comparison. This  is done by a contradic- 
tion argument  using standard results from the Kalman linear least-mean- 
squared error estimation theory. T h e  result is for linear estimators only. 

Suppose that all the conditions for Theorem 2 are satisfied, and in addition 
each w ~ is a stochastic vector satisfying the conditions 

P[( w~, ~ )  = ~d = 1/2 = P[(w ~, ~ )  = --~i], 

E[(w '~, ~ ) (w  ~, ~j) = ~i2~j8~ , (4.33) 

E[(w ~, f ) ( v  m, g)] = 0, 

for i, j = 1,..., p, all m and n, and all f and g ~ R ~ in the last equation. Note 
that  these additional conditions in no way violate the original ones. Then  
Ew ~ = 0 and w ~ has covariance Q satisfying 

(Q~bi, ~b~.) = ~ 8 ~ j .  (4.34) 

T h e  equations (4.1) can now be interpreted as representing a controllable, 
observable linear dynamical system model with uncorrelated state and 
observation noise. T o  apply the linear L M S  recursive estimation theory to 
(4.1) it is necessary to assume that h 1 is a stochastic vector with known 
mean and covariance. I t  is convenient to take 

Eh 1 = Cz 1 .~ h 1, 

cov(h 1 - -  Eh ~) ~ PI = (XTR-~X) -h  (4.35) 

The  error covariance matrix for the L M S  es t imate /~  of h ~ given the observa- 
tions zZ,..., z ~ and initial data as in (4.35) satisfies the recurrence equation 

P,~ = (P,_a -~ Q)(I  - x r [x (P~_~  ~- Q) x r @ R] -~-  X(P~_~ q- Q)}, 

n = 2, 3 . . . . .  (4.36) 

(See, e.g., Astr6m, 1970, with P1 given by (4.35).) 

LEM~A 5. The sequence {Tr P,~}, n = 1, 2,..., with P,, given by (4.35) 
and (4.36) is monotonically nonincreasing. 
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Proof. We note first that Tr  P2 ~< Tr  P1. In  fact, given the data 
{z2; hi, P1}, Tr  P2 is the mean-squared error of the L M S  estimate h 2. But 
the L U M V  estimate of h ~ has mean-squared error Tr[(XrR-1X)-I]  = 
Tr  P1. Since this is another linear estimate based on (some of) the same 
data it cannot have smaller mean-squared error than the L M S  estimate. 
Hence T r  P~ ~ T r  P1.  

Now observe that because of the stationarity of the statistics in the model, 
the L M S  estimate of h n given {z 2 ..... z~; hi, P1} has the same error covariance 
matrix, P~,  as does the L M S  estimate ofh  n+l given {z 3 ..... z~*+l; it~ = Cz2, P1}. 
Thus,  given {z2,..., zn+1; h I, P1}, one can form a (nonoptimum) linear 
estimate of h ~+1 by first computing the L U M V  estimate ]z 2 = Cz 2, which 
has error covariance matrix P~, and then replacing /~2 in the recursive 
L M S  algorithm by h 2. This is equivalent to finding the L M S  estimate of 
h n+l given {zz,..., zn+l; ]~2, P1}. By the remark just made, the mean-squared 
error of this estimate is Tr  P~,  which must then be greater than or equal 
to the minimum mean-squared error Tr  P~+z. | 

Let  e ~ lim~oo Tr  P~+I, then e is a lower bound on uniform upper 
bounds on mean-squared error. More precisely, we have: 

THEOREM 4. Let the conditions of Theorem 2 be satisfied. Then for any 
linear estimator of the system parameters h n and for any m ~ 1 there exists 
an admissible sequence {hn}, n = l, 2,..., m such that the mean-squared error 
in the estimation of the h ~ is greater than or equal to e. 

Proof. We are free to suppose that h 1 is a stochastic vector with covariance 
Pz and that the w ~ are stochastic vectors satisfying (4.33) and bounded as 
required. Denote an arbitrary linear estimate of h ~ b y / ~ .  Suppose that for 
some m ~ 1 

E{II ~ - -  h~  I12 I h 1, wI,.-., w ~- l}  < e, 

for every h 1 and every sequence {w 1 ..... w m-l} meeting the conditions just 
imposed. Then  

g I1 h~ - h ~ II 2 = E[E{Jr h~  - -  h ~ ]]2 ] h 1, w l , . . . ,  w ~ - l } ] .  

But by Lemma 5 the L MS estimates of the h ~ for the given conditions all 
have mean-squared error Tr(P,,) /> e. Thus,  by the minimum mean-squared 
error property of the L M S  estimates there is a contradiction. | 

For the very special case that X is the identity this lower upper bound 
can easily be computed. We compute it here because it gives an immediate 
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comparison with the upper bound of Theorem 2, and also because, simple 
as it is, it is the case of interest in the general theorem of the last section. 

With X = I the ¢ i ,  i = 1 .... ,p ,  are orthonormal eigenvectors of R. 
Thus,  if they are chosen as a basis for a vector-matrix formulation, R is the 
matrix diag[a12 ..... %2], and from (4.34) Q is the matrix diag[~?le,..., %2]. 
Furthermore, (4.36) then becomes, after a small amount of manipulation, 

P~ = (P,~_~ + Q)(P~_~ + Q + R)-~R,  n = 2, 3 ..... (4.37) 

Since/)1 = R is diagonal, each P~ as given by (4.37) is diagonal. In particular, 
if p,~_ 1 diag[fl~_m, ~ 2 ~ 2 ,..., fi(~-l)~], then P~ diag[fi~l ]3~ 2 = ~ ] ,  = ]~(n--1)2 , ~'" ", 
where 

2 2 2 
= ~ ~ = - ~ 2  , i = 1 .... ,p .  (4.38) 

P(n-1) i  ~i  ~ -  i 

It  follows from Lemma 4 that the fi~, converge monotonically to the fixed 
point of the function 

(X @ 7]i 2) O'i 2 X ~ 0 ,  
f ( x )  = x -+- 7Jig -~ (Yl 2 ' 

which is 

Thus,  

0.2 1/2 
--.~vi + 1 + 4 ~qi  ° (4.39) 

P 

e = lim Tr(Pn) = ~ /5i 2. (4.40) 
n ~ o o  

See Fig. 1 for a comparison with the upper error bound for the recursive 
estimator. 

5. IDENTIFICATION OF A SLOWLY VARYING SYSTEM 

WITH NOISY OBSERVATIONS OF O U T P U T  

As previously indicated, there is really no way to distinguish between 
h ~ and e n in (3.11) in estimates based on z n. So, in analogy to what was 
done in the noise-free case, we estimate h ~ + e ~ and simply allow for the 
error possibly introduced by E n when the estimate obtained is used as an 
estimate of h n. From (3.7) yn = h,~ + En, so (3.11) can be rewritten in the 
form 

y~+l = y~ + V~, (5.1) z n = yn + v s. 
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Since [1 r ~ [] = I](Y ~+1 - -  hn+l) + ( hn+l - -  hn) + ( h~ - -  Yn)l] it follows from 
Lemma  3 that if lI wn ][ < ~/then 

II ~" I1 ~< 2(N - -  1)~/+ N~ = d, (5.2) 

where d is defined-by (5.2). We define an estimate for ]z ~ of h n in (3.11) to 
be the estimate ~" of y~ in (5.1) specified as in Theorem 2. The  following 
theorem is an extension of Theorem 1 that accounts for the statistical errors 
in the system parameter estimates when the output observations are noisy. 

THEOREM 5. Let ( ~ ,  H a, Y£~) be an extended system satisfying all the 
conditions of Theorem 1. Suppose that the output for each measurement is 
observed in the presence of additive noise V~, as in (3.9), and that the Hilbert- 
space-valued random variables V~ satisfy the conditions (a), (fi), (7)following 
(3.9). Fix ~ > 0 arbitrarily and let N be as in Theorem 1. Then, given any 
~' > O, there exists an estimate I:I~ of H~, for any k, formed from a finite 
sequence of blocks of N measurements such that 

tl ~q- - -  H .  l[ ~< E + (X  - -  1) N1/23 + ~, (5.3) 

where ~ is a nonnegative random variable satisfying 

M N  

E~ ~ <~ ~ Bt 2 + d. 
i=1 

The length of the sequence of blocks depends on #. Each constant B i iS the 
unique nonnegative solution of 

(B~/2 + d) ~ ai ~ 
(B 1/~ -k d) ~ + a~ 2 = B i ,  i = 1,..., MN,  (5.4) 

i 

where the ~2, i = 1 .... , MN,  are the eigenvectors of ~F~r (each ai 2 is repeated 
N times), and where 

d = 2 (N - -  1) Na/23 + N*/2& (5.5) 

Proof. We maintain the convention that superscripts refer to blocks of 
measurements.  Put  / ~ " =  ~bl(h" ) = ~bl(#" ). F rom Theorem 1 it follows 
that if the estimate of 3~ n is perfect, /]r~ = Hn, where H n satisfies (3.8). 
F rom L e m m a  2 it follows that if ]1 h n - -  yn [[ ~ ~, then 

II-'q'~ - H n  II ~< [I B '~ - H '~ It + II Er-  - -  H,~ II 

~< ~ + E + ( N  - -  1) N1/~, 
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since $1(h n - -  yn) = / 4 ~  - -  H% This much is true no matter what estimate 

is used for hn; however, consider h n as defined above. From Theorem 2 

~9 
E I1 h- - h~ lj ~ ~< Z b~,, 

where now p ~ M N ,  and where the b~i are defined recursively by (4.21) 

and (4.22). Since X - ~ / ,  the ai ~ in these equations are now simply the 
eigenvalues of the covariance operator R = ~r_P~r. Since (5.2) is to hold, 

each ~?i, i = 1 .... , p ,  is replaced by d, which, in terms of S is as in (5.5). 
The  assertion then follows from Theorem 3 for H n, which corresponds to 
the n N t h  measurement. The  conclusion also follows for any H,~ ; one can 
simply delay the beginning of the first block of measurements by the 
appropriate amount  so that n = k N  for some k. | 
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