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Abstract: The Coulomb displacement energies of the T = ~ mirror nuclei (A = 15, 17, 27, 29, 31, 
33, 39 and 41) are re.examined with the best available HF wave functions (the DME and the 
Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are 
compared with the experimental s.p. charge dependent energies extracted from the experi- 
mental data taking into account admixtures of core-excitation corrections with the help of pre- 
sent shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer 
anomaly is not removed by these improvements, it ts found that the remaining observed ano- 
malies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a 
simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can 
also account for the observed anomalies m the higher excited s.p. states, while those of  the 
deeper s.h. states need further explanation. 

1. In troduct ion  

The Coulomb displacement energy is the binding energy d~fference between the 
ground states of mirror nuclei or between the parent and its isobaric analogue states. 
Under the assumption of the charge independence of the nuclear force, this is regarded 
as a difference between electromagnetic (e.m.) energies of these states. The Coulomb 
displacement energy has been studied by many authors t) with the employment of  
Coulomb interaction as the e.m. interaction. The major properties of the Coulomb 
displacement energy have been well understood. Moreover, fruitful information 
about  the nuclear charge radius has been obtained through these studies. 

However, with the improvement  in the accuracy of the experimental data of  the 
nuclear charge distribution and of the binding energy of the nucleus, a serious dis- 
agreement between the theoretically calculated e.m. energy difference and the experi- 
mental Coulomb displacement energy has been pointed out 2-4). The disagreement 
(4-10 %) is far beyond the experimental error, and moreover it appears throughout 
the periodic table w~th the same sign. This is the so-called Nolen-Schiffer anomaly. 
While many attempts have been made to explain the anomaly by the inclusion of 
many others e.m. corrections s -9) ,  such as core polarization corrections and many- 
body correlations, and by the introduction of charge symmetry breaking (CSB) 
forces, no definite resolution of the anomaly has so far been achieved. 

The dtfficulty with the theoretical investigation of this anomaly stems from the 
simultaneous uncertainty of the nature of  the nucleon-nucleon (N-N) interaction 

t Supported by the US National Science Foundation. 
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and of the many-body structure in the nuclear wave function. Present theoretical 
treatments are subject to two definite shortcomings. The first stems from the single 
particle (s.p.) wave functions which have been used in almost all calculations of the 
e.m. energy. For instance, most calculations have used Woods-Saxon or harmonic 
oscillator wave functions. This problem may be resolved by the employment of 
presently available Hartree-Fock (HF) wave functions lo). The second problem is 
that all calculations based on the simple shell model have compared their results 
with raw experimental data. However, recent detailed shell-model studies l L ~2) and 
earlier studies in terms of the so-called co-existence model 13, J 4) show the necessity 
of an appreciable admixture of core excitation in the ground-state wave functions 
even for closed shell plus (minus) one particle systems. The important implication of 
this admixture is that the experimental Coulomb displacement energy is not a pure 
s.p. charge dependent energy. W~th the resolution of these shortcomings, one may 
expect that any remaining observed anomaly shows some systematics as an ind:- 
cation of its origin. 

In this paper, therefore, we carefully re-examine charge dependent energies and 
effects of e.m. origin, employing the best available HF  wave functions, and compare 
the results with the s.p. charge dependent energy extracted from the experimental data 
taking into account admixtures of core excitations with the help of present shell- 
model and co-existence model calculations. Then we attempt to clarify the true 
anomaly in the Coulomb displacement energy and to seek the possible source of 
the anomaly. Throughout this work, we employ the s.p. HF  wave functions ob- 
tained by the theory of the density-matrix-expansion (DME) as given by Negele 
and Vautherin 1 s). We also compare the results with those given by the Skyrme II 
interaction 16). We choose in particular those T = ½ single particle (or hole) sys- 
tems whose root mean square (rms) radii agree with those given by the DME (A = 
15, 17, 27, 29, 31, 33, 39 and 41). 

In sect. 2, we determine the s.p. wave functions, which include the unbound states, 
by the DME, and carefully recalculate the charge dependent energies of e.m. origin 
and of s.p. nature. The corresponding experimental s.p. energies, w~th which those 
theoretical predictions are to be compared, are extracted from the experimental 
Coulomb displacement energies with the aid of presently available shell-model and 
co-existence model calculations in sect. 3. The net amount of the Nolen-Schiffer 
anomaly is then given in the same section. 

In sect. 4, we show that the magnitude and the systematics of the anomaly can be 
explained by a phenomenological CSB N-N force, which is not inconsistent with 
present free N-N ISo scattering data. 

2. Wave functions and energies of e.m. origin 
2.1. DETERMINATION OF THE s.p. WAVE FUNCTION 

The neutron s.p. wave function q~. is generated by the neutron HF  Hamiltonian 3¢~.: 

~ . 1 ~ o . )  = ~ 1 ~ . >  = enid.) ,  (2.1) 
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where.~':, n is the nuclear part of the neutron HF Hamiltonian. The proton s.p. wave 
function [tpp> is also necessary in the calculations of the second order Coulomb 
perturbation and of the core polarization effect. This is generated by the proton HF 
Hamiltonian ~,~p: 

~pl~p> --  ( ~ +  Uc)l~p> - -  epl~p>, (2.2) 
where ~'°vn and Uc are respectively the nuclear part of the proton HF Hamiltonian 
and its Coulomb part. The Hamiltonians ~ and ~,op are generated by the DME (or 
the Skyrme II interaction) code given by Negele and Vautherin 17). 

There exists a small difference between the ~ and ~ .  The effect of this differ- 
ence is taken into consideration in terms of the core polarization correction ~a). 

TABLE 1 

T h e  s.p.  ene rg i e s  ea, ep a n d  r m s  c h a r g e  r a d i i  o b t a i n e d  b y  t he  D M E  a n d  the  S k y r m e  
a n d  t h e  e x p e r i m e n t a l  d a t a  for  t he  l e o  a n d  4 ° C a  c o r e  s y s t e m  

I I  i n t e r a c t i o n ,  

N e u t r o n s  P r o t o n s  

s t a t e  D M E  S K I I  e x p  *) D M E  S K I I  exp  ") 

t 6 0  

4OCa 

Is  t. - - 38 .63  - - 4 1 . 4 0  - -34 .98  - -37 .71  - - 4 0 4 - 8  

lp~_ - -19 .99  - - 2 1 . 0 9  - -21 .8  - - 1 6 . 6 0  - - 1 7 . 6 4  - - 1 8 . 4  

lp½ - - 1 4 . 1 9  - - 1 5 . 9 2  - -15 .7  - - 1 0 . 9 4  - -12 .56  - -12.1  

ld{. - -  4 .00  --  4 .00  - -  4 .17 --  1.01 --  0 .90  - -  0 .60  

2s½ --  2.58 --  1.57 - -  3.27 0.03 0.87 - -  0 .10 

I d.~ 1.47 1.43 4.20 4.31 

rrms 2.768 2.707 2.73 

IS½ - -52 .42  - -55 .07  - -44 .73  - -47 .38  - - 5 0 4 - 1 1  

l p ~  - -37 .33  - - 3 8 . 8 4  - -29 .93  - -31 .44  - - 3 4 4 - 6  

l p t  - - 33 .39  - - 3 5 . 7 4  - -26 .08  - - 2 8 . 4 0  

ld{_ - -22 .18  - -22 .75  --  15.13 - -  15.68 

2S i. - - 1 7 . 1 6  - - 1 6 . 6 7  - -18 .1  - -10 .22  --  9.62 - -10 .9  

l d ~  - -15 .51  - -17 .13  - - 1 5 . 6  - -  8.67 - -10 .17  - -  8.3 

l f~  - -  7.73 - -  7.73 --  8.36 - -  1.17 --  1.07 --  1.4 

2p4  - -  3.95 - -  2.69 --  6.2 1.95 3.11 

2p~ --  2.13 --  1.30 3.35 4.39 

lf~r - -  0 .07 --  0.79 5.81 5.39 

rrms 3.481 3.464 3.49 

") Ref .  t6). A l l  e n e r g i e s  a r e  in  un i t s  o f  MeV,  a n d  r m s  r a d i i  a re  in  un i s  o f  fro. 

Table 1 shows the s.p. energies 8n, ep and rms charge radii obtained with the DME and 
the Skyrme II interaction for the 160 and ~°Ca core systems. The experimental 
numbers are also shown in the table. 

In the case of the unbound s.p. states, such as the proton 2si, ld t. and neutron ld~ 
states for the 160 core, and the proton 2p~, 2p~ and If t states for the 4°Ca core, we 



COULOMB DISPLACEMENT 381 

connect the radial wave function of the irregular Coulomb wave functions Gt(kr) 
[ref. tg)] in the region far beyond the nuclear field: 

R , ( O  ~ 

so that the asymptotic form corresponds to a ½n phase shift at the resonance energy. 
The calculational method of Buck and Hodgson 2o) is used to make the smooth 
connection. While there exist several methods 2t) for the normalization of the un- 
bound state, we employ the following normalization method. The normalized s.p. 
wave function lip) *°r= is related to the unnormalized wave functions [tp) in the fol- 
lowing manner: 

I~,> "°'m Iq,>/~/  C 2 = EI . t ,  (2.3) 
Nmltx 

Iq~> = T, C, Iq~°), (2.4) 
n=O 

where Cn is the expansion coefficient and Iq)~°> is the normalized harmonic oscil- 
lator wave function having the same angular momentum. The harmonic oscillator 
constant is adjusted to give the same rms charge radius. The dependence of the 
normalization constant on the choice of Nmax is negligible for values of Nmx >- 10, 
and N. ,x is chosen to have the value 10. On the other hand, this normalization 
method is effectively the same as one in which the unbound state wave function is 
limited to a specific range. For instance, the value 10 of N.,x corresponds to normali- 
zation within a range of 14 fm for the *°Ca core system and of 12.5 fm for the t60  
core. Therefore, the integration in the calculation of the matrix element is undertaken 
within the same range. 

2.2. ENERGIES OF e.m. ORIGIN 

Employing the s.p. wave function obtained with the DME, s.p. charge dependent 
energies of e.m. origin and other charge dependent corrections of s.p. nature have 
been calculated for the s.p. and s.h. systems with the use of the multipole expansion 
of the force 22.23). The results are summarized in table 2, and compared with the 
experimental Coulomb displacement energies of the lowest states of the assigned spin 
and parity. The calculated charge dependent energies are the Coulomb energy 8c, 
the proton finite size correction 8f.,.p. [ref. 2,)], the e.m. spin-orbit interaction 
8]~o=. ", the vacuum polarization correction *v.p., the short range correlational correction 
8,.r.c., the core polarization correction 8c.p., the kinetic energy correction 8k.e.," due 
to the mass difference between the bare neutron and the bare proton, and the Coulomb 
perturbation energy e~ c'. Here the vacuum polarization correction is estimated with 
the method given by Auerbach et al. 7). The short range correlational correction is 
obtained with the use of matrix elements estimated by Bertsch and Shlomo 25). The 
core polarization correction is estimated with the method given by Giai et al. ts). 
The Coulomb perturbation energy is calculated with the method given by Arima and 
Yoshida 26). 
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TABLE 2 

The s.p. charge dependent energies (keV) calculated with the D M E  and the experimental Coulomb 
displacement energies o f  lowest states o f  the assigned spin and parity 

ee.m. ~per Total Exp ") Diff. A State ec et.,.p, s.o. ev.p. e,.r.¢, e¢.p. ek.,.¢. ~c 

15 lp~ -1 3275 -- 80 -- 35 20 125 --100 25 -- 15 3215 3395 180 
l p t  -1 3200 -- 75 70 20 105 --140 20 -- 20 3180 3542 360 

17 l d ]  3195 -- 50 -- 60 20 85 15 30 -- 35 3200 3542 340 
2s t  2910 -- 40 0 15 95 25 20 --120 2905 3166 260 
ld~ 2495 -- 25 50 15 55 285 15 -- 15 2875 3562 685 

27 ld~ -1 5165 -- 85 -- 95 30 125 0 30 -- 40 5130 5592 460 
29 2s t 5475 -- 80 -- 20 35 130 -- 90 25 -- 60 5415 5762 310 
31 2s~ -1 5795 -- 90 -- 20 35 145 --105 25 -- 75 5710 6224 515 
33 ld~ 6015 --  80 100 35 120 --155 25 -- 70 5990 6365 375 
39 2s t  -1 7085 --100 0 45 160 --195 25 -- 80 6940 7253 315 

Id~ - j  6955 -- 95 115 40 125 --205 25 -- 60 6895 7304 410 
41 lf~ 6775 -- 70 --105 40 120 70 35 -- 75 6790 7278 490 

2p~ 6465 -- 65 -- 30 40 125 180 25 --410 6330 7051 750 
2p½ 6075 -- 55 55 35 105 290 20 --545 5980 6803 ~) 825 
I f  t 6235 -- 55 120 35 75 180 25 --260 6355 

") A = 15; ref. zT). A = 17; ref. 2a). A = 27--41; ref. 29). 
b) Refs. 3o.31). 

T o  e x a m i n e  t h e  m o d e l  d e p e n d e n c e  o f  t h e  r e s u l t s ,  w e  c o m p a r e  t h e  v a l u e s  o b t a i n e d  

w i t h  t h e  D M E  w i t h  t h o s e  g i v e n  b y  t h e  S k y r m e  I I  i n t e r a c t i o n  i n  t a b l e  3. I n  t h i s  t a b l e ,  

opcr a n d  8total, b e c a u s e  t h e  o t h e r  c o r r e c t i o n s  ef.s.p., w e  s h o w  o n l y  t h e  e n e r g i e s  8c, 8c. v. oc 
e . m .  ~s.o., ~v.v., es ,.c. a n d  ek.,.¢, d o  n o t  c h a n g e  s i g n i f i c a n t l y .  I n  g e n e r a l ,  t h e  S k y r m e  I I  i n t e r -  

a c t i o n  g ive s  l a r g e r  C o u l o m b  e n e r g i e s  ec f o r  t h e  s t a t e s  o f  z e r o  n o d e .  T h i s  s t e m s  f r o m  

TABLE 3 

Compar ison  o f  the s.p. energies (keV) calculated with the D M E  with those obtained with the Skyrme 
I I  interaction 

D M E  Skyrme I I  

A state ec ec.p. e~ ©r e,ot.t ec ec.p. e~ er e,om 

15 lp~ -1 3275 --100 -- 15 3215 3320 --  95 -- 10 3270 
lP½ -1 3200 --140 -- 20 3180 3280 --130 -- 15 3270 

17 ld~ 3195 15 -- 35 3200 3260 55 -- 30 3305 
2s~ 2910 25 --120 2905 2785 150 --265 2760 
ld~ 2495 285 --  15 2875 2610 315 -- 15 3030 

39 2s½ -1 7085 --195 -- 80 6940 7090 --125 -- 60 7040 
ld~ -1 6955 --205 -- 65 6895 6990 --155 -- 45 7000 

41 If~ 6775 70 -- 75 6790 6780 140 -- 60 6875 
2p~ 6465 180 --410 6330 6270 485 --595 6260 
lp½ 6075 290 --545 5980 5830 385 --320 6055 
I f  t 6235 180 --260 6355 6405 275 --245 6645 
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large rms charge radii obtained with the Skyrme II  interaction. The D ME gives 
larger Coulomb energies 8c for the states of higher node. This is related to the model 
dependence of the s.p. energies shown in table I. The ec.p. is dependent upon the 
details of the model rather than the binding energies obtained. On the other hand, 

oPc~ is only dependent upon the binding energies e, and ca" the oc 

3. Core-excitation correction 

Thus far we have examined the corrections of s.p. nature. On the other hand, 
recent detailed shell-model studies and earlier studies in terms of the so-called co- 
existence model indicate significant admixtures of core excttation in the ground-state 
wave functions even for closed shell plus (minus) one particle systems. The experi- 
mentally observed Coulomb dtsplacement energies for the lowest states are therefore 
not the pure s.p. (s.h.) charge dependent energies. The effect of the core excitation 
could be handled as a correction to the calculated s.p. (s.h.) charge dependent energy. 
However, we prefer instead to consider the presence of the core excitation as implying 
a change in the interpretation of the experimental data and use our knowledge about 
the core excitations to extract an experimental s.p. charge dependent energy from the 
experimentally observed Coulomb displacement energies. 

3.1. GENERAL TREATMENT 

In the s.p. systems the T = ½ states of a particular spin and parity have wave 
functions which can be expressed in terms of the s.p. wave function and particle-hole 
excitations as follows: 

I~'~ = x / l -  ~ IC~[21~:lp)+ ~ C~lot:(n~p-(n~-l)h)~, (3.1) 
s 5 

where the subscript s specifies the core excitation and the superscript i is the identi- 
fication number of  the state starting with i = 1 for the lowest state. In general the 
state with i = 1 has a predominant s.p. component,  whereas the core excitations are 
the major components in states with i = 2, 3 . . . . .  For  the truncated p-h space, with 
N p-h excitations, the amplitudes C~ satisfy the relationship, 

N + I  

Z IC;I 2 = 1, (3.2) 
l 

where N = ~ "  1, and where the summation of s is undertaken over all the possible 
core excitations up to sN. 

The charge dependent energy o~i(~) of the state I ctl) is defined by the binding energy 
difference, 

¢'(~) = - lB. E.(~i)] r ,  = - ½ + [B.E.(~')] T. = ½. (3.3) 

Using the wave function (3.1), 8i(~) is given by 

= E , 2  cE IC, I A, (~), (3.4) 
s 
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where e(~) is the total s.p. charge dependent energy of the state ~t and the AcE(ct) is 
the calculated Coulomb energy correction for the s-type core-excitation relative to 
s(~), [see eq. (3.8) below]. Here we neglect the cross terms between two different 
core-excited states. Thus, the s.p. charge dependent energy 8(~t) can be obtained from 
eq. (3.4) in those cases where theoretical model wave functions are available to give 
an estimate of the C~. On the other hand, using the relationship (3.2), we can deter- 
mine the s.p. charge dependent energy s(0e) from the experimental d'~(~) and the calcu- 
lated d cE by 

N+I sN 
e(~) = _ _ 1  ( Z e ' ( ~ ) -  2 A~(~)), (3.5) 

N + I  ~=1 

provided the assignment of the experimental levels i = 1 . . . . .  N +  1 is consistent with 
the core excitations implied by the states s in eq. (3.1). This method has the additional 
advantage that cross terms between two different core-excited states (which were 
neglected above) are cancelled out. 

In this work, we employ the above two methods to determine the s.p. charge 
dependent energy 8(~). In the first method, based on eq. (3.4), the 8(~) are deter- 
mined from the single experimental number, dn = 1 (~), and knowledge of the C~ffi 1 
from theoretical methods. In the second method, based on eq. (3.5), the ~(~) are 
extracted from the full set of experimental numbers, ~ ( ~ )  (i -- 1, 2 or 1, 2, 3 , . . . ) ,  
with the help of the calculated quantities, AcE(~), which are less model dependent 
than the C~. 

In addition, we have the following methods for the verification of the reliability of 
these 8(u). If  the spectroscopic factor S t- is known experimentally, we can determine 
rough upper and lower limits for the s.p. charge dependent energy n(~): 

8'(u)--(1--S~-)AC~,z(u ) < 8(u) ~ d~'(u)-(1-S~)AC~t,(u), (3.6) 

ACE , x where the ~ffi,xl,~) is the largest core-excitation correction and the ACCt.(u) is the 
smallest one. Moreover, combining eqs. (3.4) and (3.5), we have a consistency relation- 
ship 

SN N + 1 SN 

IcA A, (u) e'(u) 1 = - ~ A~ (u)), (3.7) Z i 2 CE 
s j=l  s 

which, when satisfied, can serve as a strong criterion for the validation of the model 
wave functions. 

3.2. CORRECTIONS FOR CORE EXCITATIONS (AsCe) 

We assume that the most important core-excited states in the T = ½ s.p. systems 
are the 3p-2h states with the particle isospin Tp = ½. In the case of the 160 and *°Ca 
core systems, we also take into account a 5p-4h state with isospins (Tp, Th, 7") ffi (½, 
0, ½). Although the corrections due to 2p-lh states of 2ho~ excitation are neglected, 
some of the effects of these p-h excitations are contained in our s.p. wave functions 
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since they are folded into the H F  wave function 32). We also assume that the particle 
states p and the hole states h in core-excitation are constructed from the spherical 
shell-model states nearest to the Fermi level, and the coupling of their angular 
momenta is neglected. For the T = ½ s.h. systems, we simply interchange the roles 
of the particle and the hole. 

The correction dsCE(u) for the s-type core excitation relative to the single particle 
state u is defined by 

AC~(u) -- ECDE(U:s)--ECDE(u:Ip), (3.8) 

where EcDE(u:s) is the Coulomb displacement energy of the s-type core-excited state 
u and ECaE(u:lp) is that of the s.p. state ~. The correction AcE(~) has a different 
form for each type of core excitation. 

(i) The correction to the Coulomb displacement energy for the 3p-2h state (sl)  
with isospins (½, 1, ½) relative to the lp-0h state u is 

A c~(u) = e(p) - e(u) - ~(2e(p) - 2e(h) - 4 Vphpu + F;ppp + Vnhhh ) + X( V, ppp -- Vphph). (3.9a) 

The correction for the 2p-3h state with isospins (1, ½, ½) relative to the 0p-lh state q 
is 

AcrE(q) = e ( h ) -  e(q) + ~(28(p) - 2 e ( h ) -  4V, hvh + V, ppp + Vhmah) + ~(V, hph-- Vhhhh). (3.9b) 

(ii) The correction for the 3p-2h state (82) with isospins (½, 0, ½) relative to the lp 
state u is 

AcE(~) = e(p)-e(u)  +(V, ppp- V, hpa). (3.10a) 

The correction for the 2p-3h state with isospins (0, ½, ½) relative to the lh state q is 

ACE(q) = e(h) - e(q) + ( Vphph - -  Vhhhh ). (3. lOb) 

(iii) The correction for the 5p-4h state (s3) with isospins (½, 0, ½) relative to the lp 
state u is 

ACE/'U'Is3, , = g(p)-,g(u)+2(Vpppp- Vphph)- (3.11a) 

The correction for the 4p-5h state with isospins (0, ½, ½) relative to the lh state q is 

ACE(q) = e(h)--e(q)+ 2(Vpbph-- Vhhhh ). (3.11b) 

The calculated corrections are shown in table 4. Here we employ the total s.p. charge 
dependent energies obtained in the previous section for the e-contributions to the 
correction. For the two-body part, V, we take simply the angular momentum- 
averaged Coulomb matrix elements. 

From eqs. (3.5) and (3.9) to (3.11) and the essential u-independence of the V 
matrix elements, it can be seen that the difference between two s.p. energies must be 
related to the experimental Coulomb displacement energies by 

N + I  

= Z (# ' ( ' ) -  (3.12) 
/=1 
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TABt~ 4 

Coulomb displacement energies for the core excitations relative to the lp-0h (0p-lh) state 

A State AstCE d ~  cE A~ cE 

15 lp~ - l  --540 --100 0 
l p t  -x --505 -- 65 0 

17 ld~ 475 -- 35 -- 65 
2s~ 770 260 230 
ld~  800 290 260 

27 ld~ -1 -- 85 -- 15 -- 30 
29 2s ,  90 25 0 
31 2s~ -1  --  80 - -  35 0 
33 ld~ 70 5 5 
39 2$~ -1 --640 -- 60 -- 75 

ld~ - I  --595 -- 15 -- 30 
41 lf~ 585 -- 20 - -  40 

2p~ 1045 440 420 
2p~ 1395 790 770 
lf~ 1020 415 395 

The AsCE are calculated by the D M E  and are in units o f  keV. 
For T = ½, s.p. systems: 

0) sx = the 3p-2h state with i sosopms  (~, 1, ½), 
(n) s2 = the 3p-2h state with isospins (½, 0 ½), 

(hi) sa = the 5p-4h state with isospins (It, 0, ½). 
For T = ½ s.h. systems,  the roles o f  the particle and the hole are interchanged. 

where both states ct and fl must be either particle states or hole states. Although the 
derivation of the relationship (3.12) depends upon each correction term, its final 
form does not include the correction terms. Therefore, this relationship can serve as 
another strong criterion for the validation of the model. 

3.3. D E T E R M I N A T I O N  OF T H E  s.p. E N E R G Y  

Using the calculated corrections for core excitations of table 4, the s.p. charge 
dependent energies have been calculated by the two methods outlined in subsect. 3.1. 
The results are summarized in table 5. The first column of this table shows the experi- 
mental excitation energy E~x(0t) of the state I~ ~) (in the nucleus with Tz = - 3 ) .  The 
second column gives the experimental Coulomb displacement energy ~'(~) of the 
state 10ei). The third column, sav(~), shows the s.p. charge dependent energy which is 
determined from the average Coulomb displacement energy of the first N +  1 levels 
by eq. (3.5) using the DME. The number in parenthesis is obtained using the Skyrme 
II interaction. The core excitations in this averaging are denoted by the s ,  in the next 
column. Here sl is the 3p-2h state with isospins (Tp, Th, T) = (½, 1, 3), s2 is the 3p-2h 
state with (3, 0, 3) and s3 is the 5p-4h state with (3, 0, 3). For the s.h. system, we 
simply interchange the roles of the particle and the hole. The fifth column, ethc°r(ct), 
shows the s.p. charge dependent energy obtained by eq. (3.4) using the best available 
model wave function and the core-excitation correction generated by the DME. The 
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TABLE 5 

The s.p. charge dependent energies extracted from the experimental Coulomb displacement energies 

A State EcJ .) ¢1(~) .) e.v(~) eib¢.r(0t) eop,(~) 
DME (SklI) type DME (SklI) 

15 ~-  6.32 3395 3465 (3460) 3460 

9.15 3310 b) 

10.45 2700 b) 3350 (3325) st d-s2 

~- 0.0 3540 3570 (3570) 3560 
9.23 3295 b) 

l 1.29 3270 3560 (3560) Sl q-s2 

17 ~+ 0.0 3540 3495 (3495) 3500 

½+ 0.87 3165 2995 (2940) 2970 

5.73 3490 

6.36 3740 3130 (2970) Sl -Fs3 

~+ 5.08 3560 3285 (3320) 3300 

5.87 3490 3125 (3155) s2 

27 ~z + 0.0 5590 5610 5610 

2.73 5505 5590 st 

29 ½+ 0.0 5725 5705 5700 

4.84 5650 5645 sl 

31 ½+ 0.0 6225 6250 6250 

3.13 6170 6240 Sl 

33 ~+ 0.0 6365 6350 6350 

2.31 6405 6350 st 

39 ½+ 2.50 7255 7310 (7310) 7310 

4.10 7225 7315 (7315) ¢) 

~+ 0.0 7305 7315 (7315) 7430 

5.27 7170 

5.61 7185 7430 (7440) sl+s2 

41 ~- 0.0 7280 7235 (7230) 7230 

2.96 7505 

3.53 7450 7230 (7220) sl +s2 

~- 1.94 7050 6710 (6640) 6600 

2.46 7225 

3.73 a) 7325 6710 (6600) SlWS3 

4.60 7210 6725 (6605) sx ~-s2 +sa  

½- 3.94 a.©) 6805 6390 
3.61 d,e) 7395 

4.75 7165 6400 (6385) Sx+S3 
- 4.88 7345 

For notation see text. Here, E, ,  l are in units of MeV, and other quantities are in units of  keV. a) A = 
15, ref. 27); A = 17, ref. 28); A = 27-41, ref. 29). b) Ref. as). c) See subsect. 3.3.4. d) Ref. 3o). c) 
Ref. 31). 
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number in parenthesis is the corresponding value generated by the Skyrme II inter- 
action. The last column of the table shows the optimum value of the s.p. charge 
dependent energy chosen for each system (see the discussion in the subsequent 
sections). 

3.3.1. The A = 15 nuclei. Two different model wave functions are available for 
this system. Shukla and Brown 33) include only the 2p-3h state with isospins 
(T o, Th, T) = (1, ½, ½). Their wave functions give the values et~'°r(5- ) = 3495+55 
keV and etacor(½-) = 3605+20 keV. These values are obtained from eq. (3.4) using 
the C~ from the model wave functions and A cE approximated by spin averages over the 
dominant shell-model components contained in the p- and h-parts of the model 
wave functions. The more detailed wave functions of Lie and Engeland 34) include 
2p-3h (Tp, ½, ½) states with both Tp = I and 0 as the major core excitations as well as 
a small component of the 4p-5h state with (0, ½. ½). The Lie-Engeland wave func- 
tions yield the values nthc*r(5- ) = 3465 keV and ethcor(½-) = 3570 keV. 

The value forsaV(½-)based on a three level model (with i = 1, 2, 3 = lp, s t, s2) 
agrees with 8the°r(½- ) as calculated with the Lie-Engeland wave function. On the other 
hand, ~av(½-) based on a two level model (with i = 1,2 = lp, s 1, the appropriate 
choice for the Shukla-Brown wave function), using the levels at E~a = 0.0 and 9.23 
MeV, has the value 3670 keV which does not agree with the value of 8the°~(½- ) calculated 
with the Shukla-Brown wave function. We therefore conclude that the Lie-Engeland 
wave function gives the most accurate description of the core excitations and choose 
3460 keV as the optimum value for g(½-). The observed 10 keV difference between 
this optimum value and the Lie-Engeland value of e t~ , (½-)  may b.  ~ explained in 
terms of the neglected cross terms in eq. (3.4). 

The situation for the 5-  state is not as good. The observed 659 keV difference be- 
tween 81 (5-)  and o ~3 (5-)  can not be explained by the core-excitation corrections. Also 
saY(5-) based on the three level model differs by 115 keV from the Lie-Engeland value 
of eth'*~(5-). The values of ~"(5-)  based on the two level model are 3625 keV (DME) 
and 3600 keV (Skll), which again differ by more than 100 keV from the value of 
ethc°~(5- ) calculated with the Shukla-Brown wave function. We conclude that the 
assignments of the levels at E~.~ of 9.15 MeV and 10.45 MeV [ref. a 5)] as predominant 
s I and s 2 type core excitations may be open to question. However, since the Lie- 
Engeland wave function gives a good description for the core excitations in the 
½- s.h. state, we believe that it also gives the best approximation for the core 
excitations in the 5-  s.h. state and choose the Lie-Engeland value eth'°r(5-) as the 
optimum value for 8(5-). 

3.3.2. The A = 17 nuclei. The 5 +, ½+ and 5 + levels of this system have been studied 
by Brown and Green 13). Without specifying the isospin (Tp, Th, ½) Brown and 
Green included much more complicated 3p-2h and 5p-4h states than those assumed in 
this work, while the correction seems to be insensitive to the details of the core- 
excited states except for Tp, Th. By assuming the st and s3 type core-excitations for 
the Brown-Green wave functions, we obtain the smallest values 8th°*~(i+) = 3455 keV, 
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etheor(½+ ) = 2995 keV and ~theor(~+ ) = 3285 keY. On the other hand, assuming an equal 
amount s 1 and s 2 type core excitations for the 3p-2h state and s3 type core excitation 
for the 5p-4h state, we obtain ~theor(~+) = 3500 keV, eth'°r(½ +) = 3050 keV and 
~th,or(½+) = 3355 keV. Recently, Watt, Cole and Whitehead 12) have studied the 17 O 
nucleus with a detailed shell-model calculation including all possible 2h(o excitations 
of the ~ 60 core, with no truncation of the possible (sd)3(p) -2 3p-2h excitations. 
Although the details of their wave function are not published, they quote a 12.4 % 
2p-lh admixture and a 9.4 % 3p-2h admixture in the ground state of 170. The 2p-lh 
admixture can be expected to be contained in our s.p. wave functions, since this is 
folded into our HF  wave function. We therefore retain only the 9.4 % admixture of the 
3p-2h core excitation in the [+ ground state. By assuming the s 1 type core excitation 
for the Watt-Cole-Whitehead wave function, we obtain the value 8the°~(i+ ) = 3495 
keV. By assuming an equal amount of sl and s2 type core excitations for the 3p-2h 
state, we obtain etheor(~ +) = 3520 keV. 

Unfortunately, the experimental level assignment of this system is too poor to 
determine an averaged value e,v(~). The optimum value of 8(~) is obtained by aver- 
aging the smallest values 8th~or(~) obtained with the DME and the Skyrme II interac- 
tion, where we choose the ~th*°'(~Z+) obtained by the Watt-Cole-Whitehead wave 
function and the eth'°~(½ +) and 8theor(~ +) by the Brown-Green wave functions. 

3.3.3. The A = 27, 29, 31 and 33 nuclei. The core-excitation corrections are very 
small in these nuclear systems, so that the s.p. charge dependent energies e are not 
very sensitive to the details of the core excitations. It is mainly this fact which makes 
it possible to treat these systems as s.p. (s.h.) systems as far as their Coulomb ener- 
gies are concerned 36, 37). 

Theoretical values of the 2aSi core system are obtained from the shell-model cal- 
culations of Wildenthal and McGrory as). There are two different shell-model calcu- 
lations for the 32S core system. The first one, given by Glaudemans et al. 39), includes 
only 2s½-1d~ configurations. The second, given by Wildenthal et al. 40), includes 
2s~-ld~ configurations with excitations up to ld~ 2 from the d~ space. However, 
both wave functions give almost identical values for the e(=) to within ___ 10 keV. 
Therefore we employ the averaged value obtained from the two models as the 
eth~°r(~t). We choose the values of ~th~o,(~) as the optimum values for ~(~). 

3.3.4. The A = 39 nuclei. Wiktor 41) has studied the A = 39 system using the 
intermediate coupling model. In his assignments the second 3 + and ½+ states are 
composed of a l d i  hole coupled to the 2 + core excitation of the 4°Ca nucleus. 
Gerace and Green have shown that the lowest 2 + state of 4°Ca is predominantly a 
4p-4h state (87.4 %). Therefore, the theoretical values, ethe°r(Ct), have been obtained by 
the combination of the two model wave functions given by Wiktor and by Gerace 
and Green 14). The results are eth~°'(½ +) = 7310 keV and 8the°r(½ +) = 7315 keV. 
Furthermore, if we employ these combined wave functions to determine the e~v(~t), 
we obtain the values e~'(½+) = 7315 keV and 8"~(½ +) = 7290 keV. 

Since e~(½+) is in excellent agreement with gibe°r(½ + ), we choose it as the optimum 
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value for 8(½+). For the 8(~-+), the combined Wiktor-Gerace and Green model may 
be in trouble because there is athird {r + level very closely and also because the correction 
(81(½+)_ #v(½+)) cannot be explained with the core excitations. Consequently, we 
prefer the saY(g2+) calculated with the three level model as the optimum value of e(½ +) 
because it includes the Wiktor-Gerace and Green core excitation and also the nearby 
third level. 

3.3.5. The A = 41 nuclei. The {~- and ½- levels of this system have been studied by 
Gerace and Green 14). They obtained two model wave functions. The first one 
includes the 3p-2h state with (Tp, Th, 7") = (½, 1, ½), and it gives ethe°'({ - )  = 7190 keV 
and 5the°'({-) = 6885 keV. These values do not agree with the values of the 8 av based on 
a two level model (N = 1). The second model wave function includes the 3p-2h state 
with (½, 1, ½) and the 5p-4h state with (½, 0, ½), and it gives 8the°r(qZ-) = 7235 keV and 
5th©°'({[-) = 6710 keV. If we identify the third -72- level of * 1 Ca as the level at 3.53 MeV 
and that of *lSc at 3.70 MeV, 5~v({ - )  based on the three level model (N = 2) agree 
with eth©o~(½-). The value of 8tu~°~(½ - )  agrees almost exactly with that of saY(½ -)  based 
on a three level model (N = 2) using the DME. In addition to this fact, the value of 
5~v(½-) based on a four level model (A r = 3) is found to be very close to that of e~*(½- ) 
based on a three level model. Although there is no theoretical work on ½- levels in this 
system, we find that the values of 5"~(½-) obtained are quite insensitive to the choice of 
N. Therefore, the value of 6390 keV, which is the average value of the 5~(½- ) obtained 
with the DME and the Skyrme II interaction, is chosen as the optimum value of the 
5(½-). 

Although the calculations with the Skyrme II interaction give results very simdar 
to those with the use of the DME for the { -  and ½- states, there is a significant differ- 
ence between the two interactions for the ½- states. We give preference to the values 
obtained with the Skyrme II interaction since only these values of 5(½-) satisfy the 
relationship (3.12) with N = 2 for the ~- ,  ½- and ½- levels. Unfortunately, we can 
not obtain any information for ~({-). In addition to the lack of data of the experi- 
mental Coulomb displacement energies, the s.p. strength [from (d, p) reactions 
etc. ] is known to be badly fragmented over many levels. Moreover, the value of 7345 
keV may not correspond to the Coulomb displacement energy of the state E~tx({r - )  
[compare the similar situation for the case of E~x(½-), refs. 3o, 31)]. 

3.3.6. Summary. In general, the value of e ~ based on a three level model (N = 2) 
agrees almost exactly with the 5 th~°~ calculated with the model wave function based 
on a co-existence of the s.p. state and two core-excited states. The net core-excitation 
correction, which is defined by c°Pt(~t)- o~l(ct), is always negative for all s.p. systems, 
while it is always positive for all s.h. systems. Generally, the core-excitation correction 
in the s.p. system has a different sign from that in the s.h. system with the same core. 
Although the core-excitation corrections are consequently important in obtaining a 
consistent description for both s.p. and s.h. systems, the core excitations cannot be 

• "P" since the anomaly, responsible for removing the Nolen-Schiffer anomaly, 5,xp- 5~¢, 
averaged over the s.p. and s.h. states in nuclei with the same core, is not changed 
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much by the effect of the many-particle many-hole core excitation. For example, the 

anomalies without the core-excitation corrections (from table 2) are respectively 340 
and 360 keV for the 1 d t  and lp~ 1 states of the 160 core system. These give an averaged 

anomaly of 350 keV. On the other hand, these anomalies become respectively 300 
and 380 keV with the core-excitation corrections. Consequently, the averaged anomaly 
becomes 340 keV. Thus, the averaged anomaly changes only 10 keV with the core- 

excitation corrections, while the difference between the anomalies of both states 
changes from 20 to 80 keV. 

TABLE 6 

Anomalies of the s.p. Coulomb displacement energies in units of keV 

A State es.p..) DME Skll exp 
~cai diff. ~©al diff. 

tot  t o t  

15 3- 3460 3215 250 3270 190 
½- 3560 3180 380 3270 290 

17 ~+ 3500 3200 300 3305 190 
½+ 2970 (3130) b ) 2905 60(220) b) 2760 210 
~+ 3300 2875 430 3030 270 

27 ~+ 5610 5130 480 5115 490 
29 ½+ 5700 5415 290 5465 240 
31 ½+ 6250 5710 540 5685 560 
33 ]+ 6350 5990 360 6070 280 
39 ~+ 7310 6940 370 7040 270 

t + 7430 6895 540 7000 430 
41 ½- 7230 6790 440 6875 350 

i -  6600(6710) b) 6330 270 (380) b) 6260 340 
½- 6390 5980 410 6055 330 
~- 6355 6645 

") The optimum value of the experimental s.p. charge dependent energy extracted 
perimental Coulomb displacement energies (see sect. 3). 

}) The experimental s.p. charge dependent energy obtained with the DME. 

from the ex- 

The optimum values of the s,p. charge dependent energies are summarized in 
table 6 and compared with the s.p. energies calculated in sect. 2. The numbers in 
parentheses are included where the optimum value depends strongly upon the inter- 
action (DME or SklI) used to calculate the core-excitation corrections. The anomalies 
obtained in table 6 are always positive and less state dependent in each mass system 
than those obtained in table 2. Moreover, in table 6, the remaining anomaly in the 
ground state of  the s.p. system is always smaller than that in the ground state of the 
s.h. system with the same core. These relationships obtained in table 6 are the same 
as those obtained with the s.p. energies due to a short range force. This suggests that 
the remaining anomaly may be resolved with the introduction of some short range 
charge symmetry breaking force. 
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4. Discussion and conclusion 

4.1. CHARGE SYMMETRY BREAKING FORCE 

Although many authors 6, s, 42) have attempted to explain the anomaly with the 
introduction of a CSB force, they have failed to explain the anomaly in a consistent 
manner. For instance, Shlomo a) showed that a CSB force, which is adjusted to fit 
the anomaly of 3He-aH, is too weak to account for the anomaly of 4xSc-41Ca, while 
it is too strong to explain the anomaly of 150_1 ~N. Such inconsistencies may stem 
from the fact that the calculated s.p. charge dependent energies have been compared 
with the raw experimental Coulomb displacement energies. With the analysis of 
sect. 3 the experimental s.p. charge dependent energies are now available to be com- 
pared with the calculated s.p. charge dependent energies. In this subsection we ex- 
amine a phenomenological CSB force as a possible origin of the observed remaining 
anomaly. We define the phenomenological CSB force having a Yukawa radial shape 
in such a way that 

vCSe(l, 2) = [ ~ 3  +~1" x2) --¼Ix1 +t2"]o 1 +½X/T['Xl x f212"l 

x ~ [a.f(p.)+b.g(Iz.)], (4.1) 
n 

where 

e - " ' "  
- - 9  

100 //n rl 2 100 ~.r12 

with/z~ = nm=c/h. Here the coefficients a. and b. are fitting parameters and l//z~ is 
a phenomenological exchange range corresponding to a particle with n times the pion 
mass (nm=). To put potentials with different n on a comparable basis, the v~ is con- 
strained by the condition 

vn/pa~ = 135 MeV- fm 3. (4.2) 

With the restriction 43) 

-~.,a,+3Eb. = 0.0+0.8, (4.3) 

the interaction is consistent with the free N-N IS o scattering data. The s.p. energy 
due to the CSB force is given by 

ecse(ct) = ~ (~ql vCSnlctq),.s.. (4.4) 
q 

Fig. 1 shows the e-values calculated with the DME as a function of the range 
parameter n for pure f(/~) and g(#) type interactions. Values for both the 16 0 and 
4°Ca core systems are shown. The e-values for the pure f(/z) type interaction are 
almost independent of the range parameter n. Also, the ratio of one e(~c) to another 
e(fl) is insensitive to the choice of the range parameter n for the pure g(#) type inter- 
action. Therefore, if the anomaly is resolved by a CSB force having alf(Ih) and 
bmg(IZm) terms, it can also be resolved by another CSB force having a~f(Izt.) and 
bug(/~u) terms, where b• =bm [<y(pm))J(y(/~u))=].The difference between these 
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Fig. I. The s.p. energies due to p u r e f ~ )  and O ~ )  type CBS forces calculated with the D M E  as a 
function of  the range parameter n in units of /~z = mnCih. Energies of  the lp~. -z,  Id t. and 2s~ 

states of  ~60 and the 2s~. - t ,  ld~ -~, If]. and 2p~ states of  '*°Ca are shown. 

two CSB forces affects only the value of the left hand side of  the restriction (4.3). 
These facts suggest that it is sufficient to examine a CSB force made f rom a combi- 
nation of onef ( /h )  and one g(PM) type term. Assuming a CSB force of  puref(pz)  type 
with a single term, we obtained a I = - 1.33 for I = 1 and a2 = - 1.26 for I = 2 by 
adjusting the coefficient at to fit the anomaly of the ground state of  A = 41 with the 
DME.  For  the anomalies of  the ground states of  the A = 15, 17 and 39 systems, the 
first CSB force gives the s.p. energies of  335, 265 and 520 keV respectively, while the 
second gives the values of  400, 290 and 555 keV respectively. The corresponding 
coefficients with the Skyrme I[  interaction are a t  = - 1.06 and a2 = - 1.00. For  the 
anomalies of the ground states of  the A = 15, 17, 39 and 41 systems, the first CSB 
force gives the values of  275, 220, 415 and 350 keV respectively. The second gives 
the values of 340, 240, 440 and 350 keV. For  pure f ( y t )  type CSB force with 1 > 3, 
the s.p. energies are almost the same as those with l = 2. Table 7 shows the s.p. ener- 
gies due to the CSB forces having onef(#~) and one g(#m) term, whose coefficients are 
adjusted to fit the anomalies of  the ground state of  A = 15 and 41. In general the 
anomalies of  the ground states of  mirror  nuclei can be reproduced in a consistent 
manner with the introduction of the CSB force with the possible exception of the 
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TABLE 7 
The s.p. energles (keV) due to phenomenological CSB forces adjusted to fit the anomalies of the 

ground states of A = 15 and 41 

A State DME SkII 
diff. I"1 ") V2 b) ga c) diff. Vt a) Vz ") Va t) 

15 lp~ - l  250 395 405 405 190 300 300 295 
lp~ -x 380 380 380 380 290 290 290 290 

17 ld~ 300 275 285 285 190 225 235 235 
2s½ 60(220) 225 255 255 210 155 180 175 
ld~ 430 150 150 150 270 135 130 130 

27 ld~ -1 480 460 470 470 
29 2s~ 290 465 510 510 
31 2S~ -1 540 495 525 525 
33 ld~ 360 490 480 480 
39 2S~ -1 370 575 585 590 270 440 450 455 

ld~ -1 540 550 540 540 430 420 405 410 
41 lf~ 440 440 440 440 350 350 350 350 

2p~ 270 (380) 400 420 425 340 295 320 320 
2p~ 410 340 355 360 330 250 255 255 
lf~ 345 340 340 295 290 290 

Diffs. are taken from table 6. 
V~ = atf(la~)d-b~g(laa), 1I, = a2f(laz)q-b~g(ta~), V3 = azfOaz)q-bzg(pz), 
where f(pn) = --(vn/lOO)(exp(--pj/p,r) and g(p~) = (at • ct2)f(p,) with vn = 135p, 3 MeV and p, = 
nm=c/h. 

a) (al, bl) = (--1.14,0.31). b) (az, bl) = (--1.37, --0.19). c) (az, bl) = (--1.42, --0.13) 
d) (ax, bl) = (--1.00,0.09). c) (a2, bi) = (--1.26,--0.43). f) (a2, b2) = (--1.36,--0.29). 

mass 29 and  33 systems. The CSB force which resolves the anomaly  in the g round  

states also gives a good fit for the s.p. states of higher excitat ion energy, part icularly 

for the 2p~ and  2p~ states of A = 41. The predict ions for the ld~ state in  A = 17 are 

very sensitive to the exact na ture  of the I-IF wave func t ion  and  core-excitation cor- 

rections which are uncer ta in  due to  poor  level assignments.  However,  it is almost  

impossible to reproduce the anomal ies  of the deeper hole states with the same CSB 

force. The a m o u n t  of the CSB force is abou t  1 %  of the charge independent  nuclear 

force, and  is no t  inconsis tent  with the present  free N - N  1S o scattering data. Al though 

we have examined a spin-orbi t  type con t r ibu t ion  to the CSB force, we find that  it 

does no t  play an  impor t an t  role in the remain ing  anomalies  of the g round  states of 

mir ror  nuclei. 

4.2. CONCLUSION 

Al though  the use of the best available H F  wave funct ions  and  the in t roduc t ion  of 

the core-excitation corrections have made the observed Nolen-Schiffer anomalies  

in the T = ½ s.p. and  s.h. systems more systematic and  less state dependent ,  the overall 
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magnitude of the observed anomalies cannot be reduced with these refinements. We 
therefore conclude that a CSB force or another effect is needed to resolve the anomaly. 
A simple phenomenological CSB nucleon-nucleon force, which is not inconsistent 
with the present free N-N tS o scattering data, can account for the observed anomalies 
of the ground states of s.p. and s.h. systems. This force also accounts for the observed 
anomalies in the higher excited s.p. states, while those of the deeper s.h. states need 
further explanation. 
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