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Chladintic characters are used by many numenical taxonomists in the estimation of evolutionary
history. We make use of semlattice theons to give an alpebrae formulation of the ideas involved
m this process and to gine nigorous proofs of theorems which jusufy certain operational
procedures in cutrent use In particular, we discuss certam compatibtlity tests for a collection of
vharacten

1. Introduction

The problem of estiimating the evolutionary history of a set S of evolutionary
umits has challenged brologists since the time of Darwin. If one views § as a
partially ordered set by taking © <0 v to mean “x s an ancestor of v then the
cvolut:onary history of § may be viewed as a partially ordered set §$° containing S.
In the Large majonty of cases 1t s considered reasonable to assume that $7is a finite
tree lower semulattice in which the greatest lower bound x ~ v is the most recent
common ancestor of x and v, In practice $7 s, of course. unknown and in
attempting to estimate 1t, working comparative biologists make use of ““cladistic
characters™ on 8§ A cladistic character is, in mathematical terms, an equivalence
relation on S together with a partial ordenng of the equivalence classes intended to
represent evolutionary relationships among the “character states™. The structuring
of cladistic characters on a given study collection S is by no means an exact
procedure, beimng subject to many possible erros in judgment by the biologist. It
may happen that several characters on the same S turn out to be “incompatible™,
cither intuitively or in subtler wavs. in which case one or more of the characters
may be restructured or thrown out. This structunng process is highly intuitive. 1t
having been noticed years ago and accepted as reasonable. for example. that
several cheracters are compatible of they are pairwise compatible. In the present
paper we give algebrae formulations of all the above notions and rigorous proofs of
theorems which give mathematical justification for (1) the exclusion of certain
characters (the non-isotone ones). (2) a relatively simple compatibility test, and (3)
the practice of inferring compatibility from pairwise compatibility. It is our feching
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that these definitions and resulis are an accurate reflection of current practice in this
field. For further biological background and motivation we refer the reader to
references [1-4].

2. Definitions and results

We suppose throughout that all sets are finite. EU's are evolutionary units.

Definition 2.1. A rree poset is a partially ordered set having the preperty that a < ¢
and b < ¢ together imply @ < b or b < a. A tree semilattice is a tree poset in which
any two clements a and b have o greatest lower bound. denoted a » b.

in what follows. § will denote a fixed set of EU’s under studv and $* will
represent an estimate of §°, the (unknown) true evolutionary history of S. By taking
x <2 v to mean “x is an ancestor of ¥ we view § as a tree poset, $"and $* as tree
semilattices in which x » v is the most recent common ancestor of x and v.

Definition 2.2. A cladistic character on S is a map K: §— P and a cladistic
character on $* is an onto map K: $*-- 2 where P is a tree semilattice (the
character state tree).

Definition 2.3. Let $* be a tree semilattice. A cladistic character K: $* — P is true
if and onlv if K satisfies the following three conditions for a. b€ S*:
(1) a € K (K(a)) where a = A K '(K(a))

(i1) @« = b implies K(a)=< K(b)

(iiiy K(a)= K(b) implies @ < b.

Definitions 2 and 2 are discussed in some detail in [3] and we will simply
“translate”™ Definition 3 here. Condition (i) asserts that a character state must
contain the most recent common ancestor of the EU’s belonging to it. Part (1)
requires that if one EU x is an ancestor to another EU y, then the state to which x
belongs is ancestral. in the character state tree of K. to the state to which y belongs.
Finallvy (in) savs that if one character state is ancestral to another in the character
state tree. then the most recent common ancestor in the one state is ancestral to the
most recent common ancestor in the other state.

The proof of the following theorem can be found in [3].

Theorem 2.1. A cladistic character is tree if and onlv if it is a semilattice
homomorphism.

Theorem 2.2 provides a quick check to determine whether a cladistic character
could possibly be true on the historicallv correct §'. We find that cladistic characters
which reverse the evolutionary directions evidenced in § may be excluded from
consideration,
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Theorem 2.2. Let S be a tree poset, P a tree semilattice, and K a map K: S - P
Then there exists a tree semilattice S* extending S (SC S* and x < y in S implies
X <yinS?*) and an extension of K to a true cladistic character on S* if and only if
a < b implies K(a)< K(b) for all a.b € S (i.e., K is isotone).

Proof. Necessity is obvious from Theorem 2.1.

To prove sufficiency. we first enlarge the relation < partially ordering S so that
K '(K(z))is a chain (any two elements are comparable) for each z € S. We may do
this because of the fact (see [S]) that every poset can be embedded in a chain.
Letting = denote this enlarged relation. we note that = is reflexive and
antisymmetric on S, transitive on each K (K (z )}. but not necessarily transitive on
all of S. :

Now let $° be the disjoint union of § and P. and extend K to S$* by defining
K(x) = x for all x € P. We now have K an onto map K: $* - P. For cach x € P
define x <y for all y € K '(K{(x)). so < is now a reflexive relation on S*
extending the original partial order on S and having the property that each
K '(K(z)) is a chain. Notice also that x < v in $* implies K(x) =< K(y), since
either K(x) = K(y) or x < y in the original partial order on S giving K(x) < K(y)
by hypothesis. Define a relation < on $* by x< v if and only if either Kix) = K(y)
and x = yv. or K(x)< K(v). We claim that (S$*. <)is a tree semilattice extending S
on which the extension of K is 2 true cladistic character. It is clear that x sy
imphes v <y, that x<v mmpliecs K(x)< K(v). and that < is reflexive and
antisymmetric. To see transitivity, suppose x<y< z. If K(x)= K(y)= K(z), we
have x <z by rransitivity of = in K '(K(x)). If K(x)=K(y)<K(z), K(x)<
K(v) = K(z) or K(x}<- K(v)< K(z). we have x < z since K(x) < K(z). To show
that < satisties the tree condition. assume x, vy < z. This implies that K(x). K(y) <
K(z). Since P is atree we have K(v)< K/ . )or K(y)< K(x). If K(x)< K(y)or
Kiy)< K(x). we have x< y or v<x by definition. and if K(x)= K(v) we have
x=<yory=xin K '(K(x)) since K '(K(x))is a chain. Thus < is a tree partial
order on $*. It is easy to show that any two elements x, y € $* have a lower bound,
namelv. the smallest element in K '"(K(x)» K(y)). Hence (S*, <) is a tree
semulattice. The fact that K: §* — P satisfies Definition 2.3 is immediate and the
proof is complete.

Lemma 2.1. Lei f: A — B be u homomorphism from the tree semilattice .A into the
semilattice B. Then Im(f) is a tree subsemilattice of B.

Proof. Suppose f(x). f(v)=f(z) for x,y.2 € A. Since x Az, v Az = 2, we have
xaz<syazor vazrsxaz Thus fixaz)sf(varaz)or flyaz)<fixnaz),

from which it follows that f(x)< f(v) or f(y) =< f(x).

Notation. L.et P...... P, be tree semilattices and
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2=[1P=Ap.....p): pEPL

[

2 is a semilattice (but in general not a tree) with respect to the partial order
(pi..... IS (@ ... .q) iff p<gq for i=1,....n The meet operation in 2 is
P pIAGr )= (P A PaAgs). Welet pr P—P.oi=1....nbe
the projection onto P. That is. p, (pi.....p.) = P Each p, is clearly a semilattice
homomorphism. We will use this notation for the remainder of ihis paper.

Lemma 2.2. Let T be a tree subsemilattice of P. Then there exists a tree subsemilat -
tice T* of P such that TC T* and p(T*)=P fori=1..... n

Proof. We prove this lemma by showing that the elements necessary to make each
p. . T— P, onto can be adjoined to T one by one, resulting in a tree subsemilattice
at each step. Since all sets are finite, a finite number of such steps will suffice. In the
proof we let T represent the tree subsemilattice resulting from step k (k = 0) and
show how to carry out step k + 1.

Without loss of generality we assume p(T) is a proper subset of P, Let
e. € Pip(T).

Case 1. Assume that there exists a, € p.(T)such that e, ¥ a,. We may assume that
e; is covered by a; in P,. choosing a larger e, and smaller a. if necessary.

Since a. € p(T), there exists x = (a,. x.... ., x)ET Leta=r{x € T: py(x)
a.}. Thus a =(a,.a,,....d.)ET and (a..x:,....) x.)E T implies a, < x, for 1 =
2., in. Now let T* =T U{e} where e = (e,.a......a.).

We first show that T* is a tree poset. There are two cases that must be
considered. Suppose ¢.d < e where c.d € T. Since ¢ < a and T is a tree. we have
< d or d < c. The other case is when e,d < ¢ for d.c € T. Now e = ¢ implies

(e-. a...... a.)<(c.....,c.)and thusin P, we have e, < a, A ¢, < a.. Since a, covers
e, we must have e, = a, » ¢,, contradicting the fact that e, & p, (TL Or a, A ¢, = d.
Thisvieldsa s c sothata, d <c,andthusasdord<a lfa<dwehavee = d
Ifd < awechaved < a.in P,.. Bute, << a,in P, also.sothat d, < e, giving d = ¢, or
e.<d.lfe <d thcn e, < a, »d < a, and since a, covers e, we have ¢, = a, A d,.
a contradiction to ¢, € p(T). or a,n d, = a,. Now a. rd, = a, gives a, = d, and

~hence a; = d,. Since d € Tand py(d) = a.. wehavea < d andhence e €a = d.

We now must show that T* is a subsemilattice of 2. Let b = (b...... b,)ET.
Then we claim that b » ¢ is equal to e or b A a. both elements of T*. Since ¢ : a,
we have bre<bna Now e<a and bra<a imply esbra or bmz‘
since T* is a tree poset. Frome<b rasbwehavee rb=eandfrombra<e
we have bra=<er b giving e ab =bnaa.

Case 2. Assume that there does not exist an element a, € p(T) such that e, < a,.
Since we may assume O = p(T) (if itis not. add (O..... O) to T where O denotes
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the least element of P,), there exists a, € p,(T) such that a, < e,. We may assume
that a. is covered by ¢,. Let a =(a,.a-.....a,) be an element of T such that
pla)=a, and let T* = T U{e} where ¢ = (e, a.,....a.).

We assert that T* is a tree. As before we have two cases. If d,e = ¢ where
d.c € T, then e, < ¢, with ¢, € p,(T) which is impossible. Therefore we must check
only the case when c.d € T and c.d < e. This gives ¢, < e,, and since a, < e, we
have ¢, = a, or a: = c.. If a. -7 c,. then a, " ¢, < e,, contradicting the fact that e,
covers a;. Hence ¢, < a, thereby giving ¢ < a. Similarly one can show d < q, and
since T is a tree we have d << ¢ or ¢ = d.

To show that T* is a subsemilattice let b= (b,.....b,)S T. We claim that
bre=bra Nowa<eandbre=egivea, =e and b, 2 e, < e, implying that
a<sb re, or byre,<a. i b ~e, ~a. then b.rae, <a, b, from which it
folows that b 2 e =i bra Thisgivesbre=bra lfa, <bh re <e,. then a, =
h,Ae, of b; Ae, = eosinee a, is covered by e, Now a, = b, » e, < b, implies that
bra=bse and b . ae. = ¢, imphen that e, < b, where b, € p,(T), which is
1mpnmh|c The proof is now complete

In Definition 2.4 we generalize the concept of compatible Lharactcrs suggested by
Camin and Sokal in [1]. These authors define two characters to be compatible if
there exists an estimate of evolutionary history with respect to which both are true.

Defini..on 2.4. Let S be atree posct and P, a tree semilattice fori = 1,.. ., n. A set
of sotone maps Ki: S—=P. i =1...., n. is compatible if rthere is a tree semilattice
$* extending S such that each K, can be extended to a true cladistic character
K S*—P.

The following theorem gives a useful compatibility test.

Theorem 2.3. Let S be a tree poset and P, a tree semilattice for i =1,....n. The
isotone maps K.: S— P, i =1, n, are compatible if and only if (Im(K)} is a tree
subsemilattice of 2. where K: § — # is defined by K{x) = (K\(x),....K.(x)) and
(m(K ) denotes the subsemilattice of # generated by Im(K).

Proof. Assume that the K.'s are compatible. Then there exists a tree semilattice S$*

and semilattice homomorphisms« K*: S*— P, i =1.....n. Now K*: §*— ? given
by K*(x)=(KT{x).... K?*(x)) is a homomorphism and by Lemma 2.1. Im(K*)isa

tree semilattice. Since Im(K)C Im(K *), we are done.

For the converse. assume (Im(K)) is a tree. Then by Lemma 2.2 there exists a
tree semilattice P. extending {(Im(K)) such that p,(P)=P fori=1..... n. From
Theorem 2.2 there exists a tree semilattice $* extending § and a homomorphism
K* from $* onto P, extending K. For each i. let K% = p < K* Thus K% is an onto
homomorphism from $* to P, extending K., which is what we wanted to show.

We now use the compatibility test in Theorem 2.3 to prove 2 fact which has been
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wuspected for vears — that one need only test pairs to determine the compatibility
of an arbitrarv set of ciadistic characters.

Theorem 2.4. Let S be a tree poset. The isotone maps K.: S—P.i=1...., n, are
compatible if and only if they are pairwise compatible.

Proof. It is clear that compatible maps are pairwise compatible. Assume the K.'s

are pairwise compatible By Theorem 2.3 we must show that (Im(K)) 1s a tree in 2,
where K 1s as before. Suppose

Kixar. .. aK(x).K(y)r...~AK(v)<K({@z)A ... AK(2))
Then

Kxdr. . AKX ) K(vor.. . AK{(yv)=K (2)r. .. A K (z)foralli

Since each P, is a tree we have that either

Kx)r. . . aKx)sK (y)r...r K (V) (hH

or

K(v)r. .. AK (v )=EK (x)a. .2 K (x0) (2)

If (1) holds for all § or if (2) holds for all i. we are done. Otherwise there exist ¢
and j such that

K(x)r.. rK(x)<K((v)r...rnK (v} R}
and
Kv)r... nK(v.)<K (x;)r...AnK (x.)

Siace K, and K, are compatible. we have {(Im(K, x K,)) a tree in P, x P, where
(K. x K)(x)=(K.{x). K, (x)). Now

(K. % K)o (Kox K ) () (KX K ) A~ (K% K ) ()
= (K xK)z)r...a(K xK)z)
imphies that
(K, < K)x) r oo (Kox K ) ()< (K< KD)(r)a A (KX K (vs)
or
(Ko K )y A (K <K ) (vn) = (K < K)o a oA (K% K ) (x).

In ther words, Kx)n... rK(x.,)sK(y)r... A K(y.) and
K(x)r. ..o K(x.)=K((y)a.. ~ K (va), or K(y)r...AK (y.)=
RKix)r. ..+~ Kix.) and K(yv)r... oK (v,)= K(x)7 . .2 K (x.) Fither of

these contradicts (3). Hence we must have (1) or (2) and the proof s complete
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