AN ALGEBRAIC ANALYSIS OF CLADISTIC CHARACTERS

G.F. FSTABROOK
Deparmeent of Botant. Intervity of Michigan. Ann Arbor. Michigan 4K]o4. L'S A
C.S. JOHNSON. Jr. and F.R. McMORRIS

Recersed : : Septeminer 107.

Abstract

Cladivice hatacters ure ased hs many numencal tavonomests in the extimation of ebolutionary hotors. We make use of sembatice theors to gine an algebrate formalatos of the deas involved in the proces and to gue rigorous proof of theorems which justify tertan operational chatacters

I. Introduction

The prothem of evimating the evolutionary history of a set S of evolutionary unts has challenged hiologests since the time of Darwin. If one views S as a parthally ordered set by taking x * to mean ${ }^{*} x$ is an ancestor of y ". then the colutonary hivory of S may be viewed as a patially ordered set S ' containing S. In the large majority of cases it sconsdered reasonable to assume that S^{\prime} is a finite tree lower semilatice in which the greatest lower bound $x \wedge y$ is the most recent common ancestor of x and y. In practice S is, of course. unknown and in attempting to estimate it. working comparative biologists make use of "cladistic characters" on S A cladistic character is, in mathematical terms, an equivalence relation on S together with a partial ordering of the equatence classes intended to represent evolutionars relationships among the "character states". The stocturing of cladstic characters on a given study collection S is hy no means an exact procedure being subject to many powible ermo in judgment by the bologist. It mat happen that several chatacters on the same S turn out to be "incompatible", ctither mfuituely of in subter wass. in which case one or more of the characters mat he restructured or thrown out. This structuring process is highly intuitive. it having been noticed lears ago and ascepted as reasonable. for example, that several cheracters are compatible of they are pairwise compatible. In the present paper we give algebrace formulations of all the above notions and rigorous proofs of theorems which give mathematical justification for (1) the exclusion of certain characters (the non-isotone ones). (2) a relatively simple compatibility test, and (3) the practice of inferring compatibility from pairwise compatibility. It is our feeling
that these definitions and resuhs are an accurate reflection of current practice in this field. For further biological background and motivation we refer the reader to references [1-4].

2. Definitions and results

We suppese throughout that all sets are finite. EU's are evolutionary units.
Definition 2.1. A tree poset is a partially ordered set having the property that $a \leqslant c$ and $b \leqslant c$ together imply $a \leqslant b$ or $b \leqslant a$. A tree semilattice is a tree poset in which any two elements a and b have a greatest lower bound. denoted $a \wedge b$.
in what follows. S will denote a fixed set of EU's under study and S^{*} will represent an estimate of S, the (unknown) true evolutionary history of S. By taking $x * y$ to mean ${ }^{*} x$ is an ancestor of $y^{\prime \prime}$ we view S as a tree poset. S^{\prime} and S^{*} as tree semilattices in which $x \wedge y$ is the most recent common ancestor of x and y.

Definition 2.2. A cladistic character on S is a map $K: S \rightarrow P$ and a cladistic character on S^{*} is an onto map $K: S^{*} \rightarrow P^{P}$ where P is a tree semilattice (the character state tree).

Definition 2.3. Let S^{*} he a tree semilattice. A cladistic character $\boldsymbol{K}: S^{*} \rightarrow \boldsymbol{P}$ is true if and only if K satisfies the following three conditions for $a, b \in S^{*}$:
(i) $\bar{a} \in K^{\prime}(K(a))$ where $\bar{a}=\wedge K^{\prime 1}(K(a))$
(ii) $a \leqslant b$ implies $K(a) \leqslant K(b)$
(iii) $K(a) \leqslant K(b)$ implies $\bar{a} \leqslant \bar{b}$.

Definitions 2 and 3 are discussed in some detail in $\lfloor 3\rangle$ and we will simply "translate" Definition 3 here. Condition (i) asserts that a character state must contain the most recent common ancestor of the EU's belonging to it. Part (ii) requires that if one EU x is an ancestor to another EU y, then the state to which x belongs is ancestral. in the character state tree of K. to the state to which y belongs. Einally (iii) says that if one character state is ancestral to another in the character state tree. then the most recent common ancestor in the one state is ancestral to the most recent common ancestor in the other state.

The proof of the following theorem can be found in [3].
Theorem 2.1. A cladistic character is trie if and only if it is a semilartice homomorphism.

Theorem 2.2 provides a quick check to determine whether a cladistic character could posibly be true on the historically correct S^{\prime}. We find that cladistic characters which reverse the evolutionary directions evidenced in S may he excluded from consideration.

Theorem 2.2. Let S be a tree poset, P a tree semilattice, and K a map $K: S \rightarrow P$. Then there exists a tree semilattice S^{*} extending $S\left(S \subseteq S^{*}\right.$ and $x \leqslant y$ in S implies $x \leqslant y$ in S^{*}) and an extension of K to a true cladistic character on S^{*} if and only if $a \leqslant b$ implies $K(a) \leqslant K(b)$ for all $a, b \in S$ (i.e., K is isotone).

Proof. Necessity is obvious from Theorem 2.1.

To prove sufficiency, we first enlarge the relation \leqslant partially ordering S so that $K^{\prime}(K(z))$ is a chain (any two elements are comparable) for each $z \in S$. We may do this because of the fact (see [5]) that every poset can be embedded in a chain. letting \leqslant denote this enlarged relation. we note that $\leqslant=$ is reflexive and antisymmetric ori S, transitive on each $K^{-1}(K(z))$, but not necessarily transitive on all of S.

Now let S^{*} be the disjoint union of S and P, and extend K to S^{*} by defining $K(x)=x$ for all $x \in P$. We now have K an onto map $K: S^{*} \rightarrow P$. For each $x \in P$ define $x \leqslant y$ for all $y \in K^{\prime}(K(x))$, so \leqslant is now a reflexive relation on S^{*} extending the original partial order on S and having the property that each $K^{\prime}(K(z))$ is a chain. Notice also that $x \leqslant y$ in S^{*} implies $K(x) \leqslant K(y)$, since either $\boldsymbol{K}(x)=\boldsymbol{K}(y)$ or $x \leqslant y$ in the original partial order on S giving $K(x) \leqslant K(y)$ by hypothesis. Define a relation \leq on S^{*} by $x \leq y$ if and only if either $K(x)=K(y)$ and $x \leqslant y$, or $K(x)<K(y)$. We claim that ($\left.S^{*}, \leqslant\right)$ is a tree semilattice extending S on which the extension of K is a true cladistic character. It is clear that $x \leqslant y$ implies $x<y$. that $x \leqslant y$ implies $K(x) \leqslant K(y)$, and that \leqslant is reflexive and antisymmetric. To see transitisity. suppose $x \leqslant y \leqslant z$. If $K(x)=K(y)=K(z)$, we have $x \leq z$ by ransitivity of \leqslant in $K^{\prime}(K(x))$. If $K(x)=K(y)<K(z), K(x)<$ $K(y)=K(z)$, or $K(x)<K(y)<K(z)$, we have $x \leqslant z$ since $K(x)<K(z)$. To show that \leqslant vatistics the tree condition. assume $x, y \leqslant z$. This implies that $K(x), K(y) \leqslant$ $K(z)$. Since P is a tree we have $K(x) \leqslant K^{\prime}$;) or $K(y) \leqslant K(x)$. If $K(x)<K(y)$ or $K(y)<K(x)$. we have $x \leqslant y$ or $y \leqslant x$ by definition. and if $K(x)=K(y)$ we have $x \leqslant y$ or $y \leqslant x$ in $K^{\prime}(K(x))$ since $K^{\prime}(K(x))$ is a chain. Thus \leq is a tree partial order on S^{*}. It is easy to show that any two elements $x, y \in S^{*}$ have a lower hound, namely. the smallest element in $K^{\prime}(K(x) \wedge K(y))$. Hence $\left(S^{*}, \leqslant\right)$ is a tree semilattice. The fact that $K: S^{*} \rightarrow P$ satisfies Definition 2.3 is immediate and the proof is complete.

Lemma 2.1. Le't $f: A \rightarrow B$ be a homomorphism from the tree semilattice A into the semilattice B. Then $\operatorname{Im}(f)$ is a tree subsemilattice of B.

Proof. Suppose $f(x) . f(y) \leqslant f(z)$ for $x, y, z \in A$. Since $x \wedge z, y \wedge z \leq z$, we have $x \wedge z \leqslant y \wedge z$ or $y \wedge z \leqslant x \wedge z$. Thus $f(x \wedge z) \leqslant f(y \wedge z)$ or $f(y \wedge z) \leqslant f(x \wedge z)$. from which it follows that $f(x) \leqslant f(y)$ or $f(y) \leqslant f(x)$.

Notation. I.et $P_{1} \ldots \ldots P_{n}$ be tree semilatices and

$$
P=\prod_{1}^{n} P_{1}=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{i} \in P_{1}\right\}
$$

A is a semilatice (but in general not a tree) with respect to the partial order $\left(p_{1}, \ldots p_{n}\right) \leqslant\left(q_{1}, \ldots q_{n}\right)$ iff $p_{1} \leqslant q_{1}$ for $i=1, \ldots, n$. The meet operation in \mathscr{P} is $\left(p_{1}, \ldots, p_{n}\right) \wedge\left(q_{1} \ldots q_{n}\right)=\left(p_{1} \wedge q_{1} \ldots p_{n} \wedge q_{n}\right)$. We let $\rho_{1}: \ngtr \rightarrow P_{. .} i=1 \ldots \ldots n$ be the projection onto $P_{\text {. }}$ That is. $\rho_{1}\left(p_{1}, \ldots, p_{n}\right)=p_{1}$. Each ρ_{t} is clearly a semilattice homomorphism. We will use this notation for the remainder of ihis paper.
L.emma 2.2. Let T be a tree subsemilatice of Then there exists a tree subsemilattice T^{*} of $: P$ such that $T \subseteq T^{*}$ and $\rho_{1}\left(T^{*}\right)=P$ for $i=1 \ldots . n$.

Proof. We prove this lemma by showing that the elements necessary to make each $\rho_{1} . T \rightarrow P$. onto can be adjoined to T one by one. resulting in a tree subsemilatice at each step. Since all sets are finite, a finite number of such steps will suffice. In the proof we let T represent the tree subsemilattice resulting from step $k(k \geqslant 0)$ and show how to carry out step $k+1$.

Without loss of generality we assume $\rho_{1}(T)$ is a proper subset of P_{1}. Let $e_{i} \in P_{i} \rho_{i}(T)$.

Case 1. Assume that there exists $a_{1} \in \rho_{!}(T)$ such that $e_{1} \leqslant u_{1}$. We may assume that e_{i} is covered by a_{i} in P_{1}, choosing a larger e_{1} and smaller a_{i} if necessary.

Since $a_{:} \in \rho_{1}(T)$, there exists $x=\left(a_{1}, x_{2} \ldots, x_{n}\right) \in T$. Let $a=A\left\{x \in T: \rho_{1}(x)=\right.$ a.\}. Thus $a=\left(a_{1}, a_{1}, \ldots, a_{n}\right) \in T$ and $\left(a_{1}, x_{1}, \ldots, x_{n}\right) \in T$ implies $a \leqslant x_{1}$ for $i=$ $2 \ldots . . n$. Now let $T^{*}=T \cup\{e\}$ where $e=\left(e_{1}, a_{1}, \ldots, a_{n}\right)$.

We first show that T^{*} is a tree poset. There are two cases that must be considered. Suppose $c . d \leqslant e$ where $c . d \in T$. Since $e \leqslant a$ and T is a tree, we have $c \leqslant d$ or $d \leq c$. The other case is when $e, d \leqslant c$ for $d . c \in T$. Now $e \leqslant c$ implies $\left(e, a, \ldots, a_{n}\right) \leqslant\left(c_{1}, \ldots, c_{n}\right)$ and thus in P_{1} we have $e_{1} \leqslant a_{1} \wedge c_{1} \leqslant a_{.}$. Since a_{1} covers $e_{:}$we must have $e_{1}=a_{1} \wedge c_{1}$, contradicting the fact that $e_{1} \notin \rho_{1}(T)$, or $a_{1} \wedge c_{1}=a_{1}$. This yields $a \leqslant c$ so that $a, d<c$, and thus $a \leqslant d$ or $d \leqslant a$. If $a \leqslant d$ we have $e \leqslant d$. If $d \leqslant a$ we have $d_{i} \leqslant a_{i}$ in P_{1}. But $e_{1}<a_{1}$ in P_{1} also, so that $d_{1} \leqslant e_{1}$, giving $d \leqslant e_{1}$, or $e,<d_{1}$. If $e_{1}<d_{1}$ then $e_{1} \leqslant a_{1} \wedge d_{1} \leqslant a_{1}$, and since a_{1} covers e_{1} we have $e_{1}=a_{1} \wedge d_{1}$. a contradiction to $e_{1} \notin \rho_{1}(T)$, or $a_{1} \wedge d_{1}=a_{1}$. Now $a_{:} \wedge d_{1}=a_{1}$ gives $a_{1} \leqslant d_{1}$ and hence $a_{1}=d_{1}$. Since $d \in T$ and $\rho_{1}(d)=a_{1}$, we have $a \leqslant d$ and hence $e \leqslant a=d$.

We now must show that T^{*} is a subsemilattice of \mathscr{P}. Let $b=\left(b_{1}, \ldots b_{n}\right) \in T$. Then we claim that $b \wedge e$ is equal to e or $b \wedge a$, both elements of T^{*}. Since $e^{*} a$. we have $b \wedge e \leq b \wedge a$. Now $e \leqslant a$ and $b \wedge a \leqslant a$ imply $e \leqslant b$, ar $b \wedge a \leqslant e$, since T^{*} is a tree poset. From $e \leqslant b \wedge a \leqslant b$ we have $e \wedge b=e$ and from $b \wedge a \leq e$ we have $b \wedge a \leqslant e \wedge b$. giving $e \wedge b=b \wedge a$.

Case 2. Assume that there does not exist an element $a_{1} \in \rho_{1}(T)$ such that $e_{1} \leqslant a_{1}$. Since we may assume $O \equiv \rho_{:}(T)$ (if it is not, add (O, \ldots, O) to T where O denotes
the least element of P_{1}), there exists $a_{1} \in \rho_{1}(T)$ such that $a_{1}<e_{1}$. We may assume that $a_{\text {: }}$ is covered by e_{1}. Let $a=\left(a_{i}, a_{2}, \ldots, a_{n}\right)$ be an element of T such that $\rho_{1}(a)=a_{i}$ and let $T^{*}=T \cup\{e\}$ where $e=\left(e_{1}, a_{2}, \ldots, a_{n}\right)$.

We assert that T^{*} is a tree. As before we have two cases. If $d, e \leqslant c$ where d. $c \in T$, then $e_{1} \leqslant c_{1}$ with $c, \in \rho_{1}(T)$ which is impossible. Therefore we must check only the case when $c, d \in T$ and $c, d \leqslant e$. This gives $c_{1}<e_{1}$, and since $a_{1}<e_{1}$ we have $c_{1} \leqslant a_{1}$ or $a_{1} \leqslant c_{1}$. If $a_{1} \cdot c_{1}$. then $a_{1}<c_{1} e_{1}$, contradicting the fact that e_{1} covers a_{i}. Hence $c_{1} \leqslant a_{1}$ thereby giving $c \leqslant a$. Similarly one can show $d \leqslant a$, and since T is a tree we have $d \leqslant c$ or $c \leqslant d$.

To show that T^{*} is a subsemilattice let $b=\left(b_{1}, \ldots, b_{n}\right) \subseteq T$. We claim that $b \wedge c=b \wedge a$. Now $a \leqslant e$ and $b \wedge c \leqslant c$ give $a_{1} \leqslant c$ and $b_{1} \wedge c_{1} \leqslant e_{1}$, implying that $a_{1} \leqslant b, e^{\prime}$, or $b_{1}, b_{1} \leqslant a_{:}$If $b_{, ~} e_{1} \vee a_{i}$, then $b_{:} \wedge p_{1} \leqslant a_{1} \wedge b_{1}$, from which it follow that $b \wedge e \leq b \wedge a$. This gives $b, r=b \wedge a$. If $a_{i} \leqslant b_{i} \wedge e_{i} \leqslant e_{1}$, then $a_{1}=$ $h_{:} \wedge e_{1}$ o: $b_{i} \wedge e_{1}=e_{1}$ since a_{0} is covered by e_{1}. Now $a_{1}=b_{1} \wedge e_{1} \leqslant b_{1}$ implies that $b \wedge a=b, c$ and $b_{:} \wedge e_{2}=e$, implie: that $e_{1} \leqslant b_{1}$ where $b_{i} \in \rho_{1}(T)$, which is impossible. The proof is now complete

In Definition 2.4 we generalize the concept of compatible characters suggested by Camin and Sokal in [1]. These authors define two characters to be compatible if there exists an estimate of evolutionary history with respect to which both are true.
 of isotone maps $K_{i}: S \rightarrow P_{. .} i=1 \ldots \ldots n$. is compatible if there is a tree semilattice S^{*} extending S such that each K can be extended to a true cladistic character $K^{*}: S^{*} \rightarrow P_{1}$

The following theorem gives a useful compatibility test.

Theorem 2.3. Let S be a tree poset and P_{1} a tree semilattice for $i=1, \ldots$. n. The isotone maps $K: S \rightarrow P_{\mathrm{s}}, i=1 \ldots \ldots$ n, are compatible if and only if $(\operatorname{Im}(K)\rangle$ is a tree subsemilattice of $\mathscr{P}_{\text {, }}$ where $K: S \rightarrow . \mathscr{A}$ is defined by $K(x)=\left(K_{1}(x), \ldots, K_{n}(x)\right)$ and ($\operatorname{Im}(K)$) denotes the subsemilatice of generated by $\operatorname{Im}(K)$.

Proof. Assume that the K ' s are compatible. Then there exists a tree semilattice S^{*} and semilattice homomorphisms $K_{:}^{*}: S^{*} \rightarrow P, i=1 \ldots$, n. Now $K^{*}: S^{*} \rightarrow$, ${ }^{\text {g }}$ given by $K^{*}(x)=\left(K_{i}^{*}(x) \ldots \ldots K_{n}^{*}(x)\right)$ is a homomorphism and by L.emma 2.1. $\operatorname{Im}\left(K^{*}\right)$ is a tree semilattice. Since $\operatorname{Im}(K) \subseteq \operatorname{Im}\left(K^{*}\right)$, we are done

For the converse, assume $\langle\operatorname{Im}(K)\rangle$ is a tree. Then by lemma 2.2 there exists a tree semilattice $P_{i,}$ extending $\langle\operatorname{Im}(K)\rangle$ such that $\rho_{1}\left(P_{.1}\right)=P_{1}$ for $i=1 \ldots \ldots$. From Theorem 2.2 there exists a tree semilattice S^{*} extending S and a homomorphism K^{*} from S^{*} onto P_{0} extending K. For each i. let $K_{:}^{*}=\rho{ }^{\circ} K^{*}$. Thus K^{*} is an onto homomorphism from S^{*} to P, extending K, which is what we wanted to show.

We now use the compatibility test in Theorem 2.3 to prote a fact which h is been
suspected for years - that one need only test pairs to determine the compatibility of an arbitrary set of ciadistic characters.

Theorem 2.4. Let S be a tree poset. The isotone maps $K_{i}: S \rightarrow P_{i} i=1 \ldots \ldots$. are compatible if and only if they are pairwise compatible.

Proof. It is clear that compatible maps are pairwise compatible. Assume the K_{i} 's are pairwise compatible By Theorem 2.3 we must show that $\langle\operatorname{Im}(K)$) is a tree in $\not P$. where K is as before. Suppose

$$
K\left(x_{1}\right) \wedge \ldots \wedge K\left(x_{m}\right), K\left(y_{1}\right) \wedge \ldots \wedge K\left(y_{n}\right) \leqslant K\left(z_{1}\right) \wedge \ldots \wedge K\left(z_{i}\right) .
$$

Then

$$
K_{1}\left(x_{1}\right) \wedge \ldots \wedge K_{1}\left(x_{m}\right), K_{1}\left(y_{1}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right) \leqslant K_{1}\left(z_{1}\right) \wedge \ldots \wedge K_{1}\left(z_{1}\right) \text { for all } i .
$$

Since each P_{1} is a tree we have that either

$$
\begin{equation*}
K_{i}\left(x_{i}\right) \wedge \ldots \wedge K_{i}\left(x_{m}\right) \leqslant K_{i}\left(y_{1}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right) \tag{1}
\end{equation*}
$$

of

$$
\begin{equation*}
K_{i}\left(y_{1}\right) \wedge \ldots \wedge K_{1}\left(y_{n}\right) \leqslant K_{1}\left(x_{1}\right) \wedge \ldots \wedge K_{1}\left(x_{m}\right) . \tag{2}
\end{equation*}
$$

If (1) holds for all i or if (2) holds for all i. we are done. Otherwise there exist i and j such that

$$
\begin{equation*}
K_{i}\left(x_{i}\right) \wedge \ldots \wedge K_{i}\left(x_{m}\right)<K_{i}\left(y_{1}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right) \tag{.3}
\end{equation*}
$$

and

$$
K_{i}\left(y_{i}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right)<K_{t}\left(x_{1}\right) \wedge \ldots \wedge K\left(x_{m}\right)
$$

Stace K, and K, are compatible, we have $\left(\operatorname{Im}\left(K_{4} \times K\right)\right.$ a tree in $P \times P$, where $\left(K_{i} \times K\right)(x)=\left(K_{i}(x), K_{i}(x)\right)$. Now

$$
\begin{aligned}
& \left(K_{i} \times K_{i}\right)\left(x_{i}\right) \wedge \ldots \wedge\left(K_{i} \times K_{i}\right)\left(x_{m}\right)\left(K_{i} \times K_{i}\right)\left(y_{i}\right) \wedge \ldots \wedge\left(K_{i} \times K_{i}\right)\left(y_{n}\right) \\
& \quad \leqslant\left(K_{i} \times K_{i}\right)\left(z_{i}\right) \wedge \ldots \wedge\left(K_{i} \times K_{i}\right)\left(z_{i}\right)
\end{aligned}
$$

implies that

$$
\left(K_{1} \times K_{i}\right)\left(x_{1}\right) \wedge \ldots \wedge\left(K_{1} \times K_{i}\right)\left(x_{m}\right) \leqslant\left(K_{1} \times K_{i}\right)\left(y_{1}\right) \wedge \ldots \wedge\left(K_{1} \times K_{i}\right)\left(y_{n}\right)
$$

or

$$
\left.K_{i} \times K_{t}\right)\left(y_{1}\right) \wedge \ldots \wedge\left(K_{1} \times K_{t}\right)\left(y_{n}\right) \approx\left(K_{1} \times K_{t}\right)\left(x_{1}\right) \wedge \ldots \wedge\left(K_{1} \times K_{t}\right)\left(x_{m}\right) .
$$

In ther words, $K_{i}\left(x_{1}\right) \wedge \ldots \wedge K_{i}\left(x_{m}\right) \leqslant K_{i}\left(y_{i}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right) \quad$ and $K\left(x_{1}\right) \wedge \ldots \wedge K,\left(x_{m}\right) \leqslant K_{i}\left(y_{1}\right) \wedge \ldots \wedge K_{,}\left(y_{n}\right), \quad$ or $\quad K_{i}\left(y_{i}\right) \wedge \ldots \wedge K_{i}\left(y_{n}\right) \leqslant$ $\mathcal{K}\left(x_{1}\right) \wedge \ldots \wedge K_{i}\left(x_{m}\right)$ and $K\left(y_{i}\right) \wedge \ldots \wedge K\left(y_{n}\right) \mathcal{K}\left(x_{1}\right) \wedge \ldots \wedge \boldsymbol{K}\left(x_{m}\right)$ Fither of these en otradicts (3). Hence we mus have (1) or (2) and the proot in complete

References

 d.thict Math Rowencev 23 (1475) 263-2?2
 こ川 ?

