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1. INTRODUCTION 

In this paper, we consider Fredholm integral equations of the second 
kind with weakly singular displacement kernels. Generically, our problem is 

where K, an integral transformation of the form KI/ = $ A( 1 x - y I) +!J( y) dy 
whose kernel function K(t) is unbounded over 0 < t < 1, is a 
completely continuous operator on P[O, 11. By virtue of the complete 
continuity of K, we are guaranteed the existence of a unique L2[0, l] solution 
C$ for each f gL2[0, 11, provided the value of h is such that the homogeneous 
equation 4 = hK$ has no nontrivial solutions C$ EL~[O, 11. 

Solutions of integral equations of this type will in general contain sin- 
gularities in their derivatives, even for “smooth” inhomogeneous functions f, 
and our purpose here is to develop a systematic way of characterizing these 
singularities. This question has particularly important implications for the 
problem of solving such integral equations numerically, since the success 
of any numerical procedure depends crucially on one’s ability to approximate 
the solution accurately. In a subsequent paper, the numerical analysis 
aspects of the problem will be discussed more fully. 

In Section 2, we restrict our attention to unbounded displacement kernels 
of Hilbert-Schmidt type (k(t) EL~[O, l]), and develop a means of analyzing 
the singularities in the solution. In Section 3, we use the results of Section 2 
to explicitly characterize these singularities for the important special cases 
k(t) = log t and k(t) = P, 01 > -8. Finally, in Section 4, we briefly 
indicate how the analysis of Section 2 can be extended to accomodate kernels 
for which k(t) EL~[O, 11, e.g., k(t) = ta, 01 > -1. 
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2. HILBERT-SCHMIDT KERNELS OF DISPLACEMENT TYPE 

We consider here the integral equation 

4 =fSK$ (1) 

where f~L~[0, l] and K# = si k(j x - y I) 4(y) dy, with k GL~[O, I]. We 
first prove the following: 

LEMMA 1. For K as dejined as aboae and # E Hl[O, l] (i.e. Ji [#‘(x)]~ < co), 

VW’ = K4’ + W) k(x) - dJ(1) k(1 - 4. (2) 

Proof. Write 

K# = joz 4x -Y> #(Y) dY + 1’ 4Y - 4 4(Y) dY 3c 

= joz HY) +, [-j-o'-y 40 dj 4 + ?:' HY) $- Is,"-' 44 dt/ dy 
= [(-s"-" 4) dt) KY)]~=~ + [(j-'--% k(t) dt) #(Y)]'=~ 
4- j-ozo(j-;-y k(t) dt) #‘(;)‘dy - ;t (I;-” k(t) dt) ;;;) dy. 

Differentiating, we then obtain 

W)’ = ?w> 44 - Y+(l) 41 - 4 + jol 41 2 - Y I) 4(Y) dY. Q.E.D. 

This result amounts to a commutation formula for the differentiation 
operator (D) and the integral transform K, viz. 

DIG+ = KD# + #(O) k(x) - #( 1) k( 1 - ix). 

We now impose an additional restriction on K which will enable us 
to use the commutation formula to characterize the singularities in the 
solution of $ = f + AK+. We will assume that for some positive integer 1, 
the composition Kz maps L2[0, l] into Hl[O, 11. (It will be shown in the 
next section that the integral transforms associated with log / x - y 1 and 
1 x - y /=, OL > -3 , satisfy this additional hypothesis for I = 1 and 2 = 2, 
respectively). 

We will now construct functions h, and g, such that the nth (distribu- 
tional) derivative of 4 satisfies the integral equation 

D”+ = h, + AK(D”# - g,J (34 
D”+ - g, eL2[0, 11. (3b) 

The “non-L2” part of On+ will thus be contained in g, . 
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For II = 0, we take g,, = 0 and h, = f. We then proceed inductively 
to develop recursion formulas for h,,, and g,+r , assuming the validity 
of (3a) and (3b) f or a given integer n. We begin by writing 

D”$ - g,, = h, - g, + =(D*+ - g,J, (4) 

and note the equivalent interated form 

D”+-gn = [I+i-+ ... + W)“l(h, - g,) + W)nl+VW - g,), (5) 

where m is any nonnegative integer. Taking m = 1 in (5) and differentiating, 
we obtain 

D”+$b - Dgn = DII + AK + ... + (AK)“](hn -g,) 

+ ADK[AzKz(Dn+ - g,J]. (6) 

Since, by assumption, D%$ - g, EL~[O, l] and Kz mapsL2[0, 1 
we can use the commutation formula to write 

] into Hl[O, 11, 

hDK[Mz(Dn+ - g,J] = [PIKz(Dn+ - g,)], k(x) 

- [P+w(D~+ - gn)]l I?( 1 

+ hKD[hzKz(Dnq5 - g,J]. 

Letting 

- 4 
(7) 

a, = [AL+‘Kz(Dn+ - g,& , 

6, = [Az’lKz(D”+ - gn)ll , 

and using (5) with m = 1 - 1, we obtain 

XDK[hzK7(D’%$ - gn)] 

= a,k(x) - b&(1 - x) 

(8) 

+ AKD[D”$ - g, - [I + x + ... + (XK)‘-ll(h, - gn)l. (9) 

Hence, Dnfl$ = h,+l + AK(D”+l# - g,,,) where 

gn+1 = Dgn + D[I + AK + *.a + (AK)“-‘](h, - g,) 

h -Dg,+D[I+hK+... n+1 - + (XW’l(h, - gl,) + d44 - b&(l - 4 
(10) 

and 
Dn+‘# - g,+l sL2[0, 11. 

Moreover, if we define a sequence {cm(x)> by 

co =f 
C - hzDKzc, + a&(x) - 6,&l - x), m+1 - 

(11) 
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then 

g -Dg,+D[~+XK+-~+(K)~-l]c, WI+1 - for m = 0, I,... . (12) 

Using (12) repeatedly with g,, = 0, we get 

n-1 

g, = c D-y1 + AK + * * * + (AK)Z-11 c, . 
?T+O 

(13) 

Finally, we have On4 = g, + an L2[0, l] function, and upon integration 
-with the integral operator denoted by S-we obtain 

G> = AL(X) 

+ H”[O, l] function (H”[O, l] = tf(~) j IO1 [f(“)12 < -1) (14) 

where I,&(X) = Czli P[1+ AK + ... + (XK)I-l] cm(x). 
It is, in general, impossible to ascertain a priori the values of the scalars 

a, and b, which appear in the recursion formulas for the functions c,(x), 
since they involve derivatives of the solution. However, it is possible to 
ferret out the singular (non-EP[O, 11) t erms in $Jx) and thus characterize 
the solution C$ as a linear combination of certain known singular functions 
plus an H”[O, l] function. For numerical purposes, this is all that is needed 
to construct accurate approximations to the solution. 

We collect these results in the following. 

THEOREM 1. Let K# = st k(l x - y 1) 4(y) dy, where k E L2[0, 11, and let 
K2: L2[0, l] + Hl[O, 11. Then with the sequence offunctions {cm(x)} defined us 
in (1 l), the solution of the integral equation 4 = f + AK+ (f~L*[0, 11) can 
be written 

(b(x) = &(x) + an H”[O, l] function, 

with I,&(X) defined by (14). 

We have at this point obtained a prescription which can be used to 
characterize the singular terms which may arise in the solution of 4 = 
f + AZ@. Of course, there need not be any singularities at all in the solution 
of such a problem-take C$ to be an analytic function and set f = $ - AK+, 
for instance. This is an anomalous situation, however, in which the values 
of the scalars a, and b, in (8) are such that $,, in (14) becomes an P[O, l] 
function. In a heuristic sense, one may anticipate singularities in the solution 
of an inhomogeneous integral equation when the eigenfunctions of its 
kernel exhibit singularities. This is guaranteed to be the case when the 
conditions of the following theorem are met. 
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THEOREM 2. Let h(x) be an L2[0, l] f uric ion such that no nontrivial linear t 
combination of h(x) and k(1 - x) yields an H1[0, l] function. Also, let 
K: H1[0, l] ---f H1[0, l] and KC L2[0, l] 
where K# = Ji h(l 

-+ H1[O, l] for some positive integer 1, 
x - y I) 4(y) dy. Then for each eigenvalue of K, the 

corresponding eigenspace is a subspace of H1[O, l] but not of Hz[O, I]. 

Proof. We first show that all eigenfunctions are in H1[O, 11. From the 
L2 theory of Fredholm integral equations [3], we know that the eigenfunctions 
-solutions of CJ~ = AK+are in L2[0, I]. We can also write + = )lzKz4, 
from which it follows by hypothesis that 4 E H’[O, 11. 

Now suppose that for a given eigenvalue h of K, all associated eigen- 
functions are in H2[0, I]. Let 4 be such an eigenfunction, i.e., 4 = XK$ 
with // 4 11 # 0. Using Lemma 1, we obtain 

D+ = @(O) k(x) - A+(l) K(1 - X) + XD$. 

Since KDq4 E H’[O, l] and no nontrivial linear combination of K(X) and 
K(1 - x) can yield an H1[O, l] f unction, we must have C+(O) = +(l) = 0, 
in which case D$ satisfies the same homogeneous equation. A repetition 
of this argument leads to the conclusion that for any eigenfunction 4 associated 
with h, all derivatives of 4 satisfy the same homogeneous equation and also 
vanish at x = 0 and x = 1. But X has finite multiplicity, p say, so there 
exist scalars 01~ ,..., az, such that 

The general solution of this constant coefficient ordinary differential equation 
consists of (exponential and/or polynomial) entire functions-hence 4 is 
an entire function. But 4(x) has a zero of infinite multiplicity at x = 0 
(and at x = 1 also), so $( x must be identically zero, in which case it cannot ) 
be an eigenfunction. From this contradiction, we conclude that for no 
eigenvalue h is the corresponding eigenspace a subspace of H2[0, 11. Q.E.D. 

3. APPLICATION OF THE RESULTS OF SECTION 2 TO 

SOME SPECIFIC KERNELS 

Here we will use the results of the previous section to characterize the singu- 
larities which appear in the solutions of 4(x) = f (x) + h $ h( 1 x - y I) 4(y) dy, 
where k(t) = log t and h(t) = ta for 01 > -4 . We begin with the logarithmic 
kernel. 

K# = ,s log I x - Y I 4(y) dy- (A) 
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LEMMA 2. K:L2[0, l] ---f W[O, 11. 

Proof. Let 4 E P[O, l] and define an extension $ EL~( - co, co) of $ as 
follows: 

?+w = w, x E [O, 11 

= 0, x $ [O, 11. 

Now let ,8(x) = D{J-“m log 1 x - y j q(y) dy}. As shown in [2], B(X) is the 
Hilbert transform of 6, 

and the Hilbert transform maps L2( - co, co) into itself. Hence /3 EL~( - 03, CO), 
and since DK# is the restriction of /? to [0, 11, we obtain DK$gL2[0, I] 
and Kaj E H1[O, I]. 

Using Theorem 1 with I! = 1 we can therefore write the solution of 
C# = f + hK$, (f~L~[0, I]) in the form 

n-1 

4 = C S”c, + W[O, l] function (15) 
nt=o 

with co =f, 

C m+l = ADKc, + a, log x - 6, log(1 - X) 712 = 0, 1) 2 )... . 

For the case in which f~ IP[O, 11, we have the following. 

LEMMA 3. Let f E Hn[O, 11. Then 

cm(x) = [log X )...) (log @][I, X ,...) P-l] 

+ [log(l - 4,..., (log(1 - %))“][I, 1 - X,..., (1 - x)111-1] 

+ H”[O, l] function. 

(For purposes of clarity, the notation [&(x),..., &(x)][&(x),..., #n(~)] is 
used here and subsequently to signify a linear combination of the form 

To establish the validity of this statement, we need the following two 
results: 

(1) f E H” =s DKf = [log x][l, x,..., x%-l] 

+ [log(l - X)][l, 1 - X,..., (1 - x)“-11 

+ Hn[O, l] function 
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(2) DK{(log x)7 x”} = [log X,..., (log X)‘+r][X”] 
+ [log(l - X)][(l - A)‘,..., (1 - q-11 
+ H”[O, I] function 

DK((log(1 - qo - X)“} = [log(l - X),..., (log(1 - x))‘+‘][(l - LX)“] 
+ [log X][X’,..., P-l] 
+ H”[O, l] function. 

(1) can be obtained by writing 

n-1 

D”Kf = KDglf + c D”-‘-“[(Dy)O log x - (D”f)l log(1 - x)] 
k=O 

through repeated use of the commutation formula, and then integrating 
n - 1 times. (2) can be verified by writing K{(log x)r x8} = I,(X) + I,(X) 
whereI, = jt log(x - y)(logy)ly” u’y, I,(X) = si log(y - x)(logy)rys dy. 
The variable change y = xt in the first integral easily yields I,(X) = 
[X”+‘][log x,..., (log xy+l]. Writing log(y - x) in the second integral as 
logy + log(1 - x/y) and expanding log(l - x/y) in a Taylor series about 
x/y = 0 yields la(x) = [xs+l][log x,..., (log x)r+l] + an Hm[O, 1 - S] function 
for S E (0, 1). Finally, expansion of y”(logy)T in a Taylor series about y = 1 
yieldsI, = [log(l - x)][(l - x)r+l,..., (1 - x)“-l] + an Wa[S, I] function 
for 6 E (0, 1). The first part of (2) then follows upon differentiating I,(X) 
and &(x); the second part is obtained through symmetry. 

Now for m = 0, the assertion of the lemma is obviously true since the 
bracketed terms are void, while for m = 1, its validity follows immediately 
from (1). Its validity for arbitrary m follows easily by induction using (1) 
and (2). Q.E.D. 

Upon integrating c,(x) m times and applying (15), we obtain the following. 

THEOREM 2. Let K$ = j: log 1 x - y 1 t)(y) dy. Then for f E H”[O, I], 
the solution of the integral equation 4 = f + AK+4 can be written in the form 

[x log x][l,..., P-21 
+ [(x log X)2][1,..., P-31 

A- [((l - 4 l%(l - 4)“-‘X11 
+ H”[O, l] function 
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K = J‘,’ 1 x - Y Ia P(Y) dYP 01 E (-l/2,0). w 
We first prove: 

LEMMA 4. For s < & , K: HS --j Hs+l+a. 

PYOO~. Let $ E Hs where s < 4 . Then define an extension $ E H*( - co, a) 
as follows: 

4(x) = #(x>, x E P, 11 
zz 0, x $ [O, 11. 

Let /I(X) = D s+l+a{jzm 1 x - y Ia 4(y) dy}. With the Fourier transform 
defined by 

we obtain 

where_ k = (2/7r)lj2 I’((Y + 1) cos((o1+ 1)7r/2). Since 4 E Hs(--co, co), 
J:a 1 $([)/a 1 8 12* d[ < co. Hence B(t) EL~(---co, co) and /3(x) E L2(-a, 00). 
Now DS+l+aK# is the restriction of /3(x) to [0, 11; therefore, Ds+l+UK$ E 
L2[0, I] and K$ E Hs+l+a[O, 11. 

COROLLARY. K*: L2[0, l] -+ H1[O, 11. 

Proof. 

K: L2[0, I] + H1ta[O, l] C H’1/2’-8[0, 11, s > 0. 

K: HW-a[(), 11 -+ H(3/2)+=-6[(), 11 

and for 

o<s<m+*, H(3i2)+=--S C H1[O, 11. 

Using Theorem 1 with 1 = 2, we may thus write the solution of 4 = 
f + AK+ (feL2[0, I]) in the form 

4(x) = ni, P(I + AK) c, + Hn[O, l] function. (16) 
VIZ=0 
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If we again consider the special case where f E H”[O, 11, the following result 
can be established. 

THEOREM 3. Let KI/ = $ j x - y l” 4(y) dy where 01 is an irrational 
number between -$ and 0. Then for f E H”[O, 11, the solution of the integral 
equation 4 = f + AK4 can be written in the form 

++a 1, X,... x”-“1 [ 
+ xa(l$l, X,..., x”-1 
-+ 

+ X(2n-l)(l+a)[l] 

+ X2nu+a)[l] 

4-J + 

1 . 
+ (1 _ “42n-l)U+a)[1] 

+ (1 - X)an(r+a) [l] 

- x)“-l] 

i 

i 

+ H”[O, l] function 

This may be proved by first showing that 

cm(x) = [l, x1+2n,..., X(m-l)(l+qp, 9+2a] 

+ [l, (1 - C++aa,..., (I - x)(m-l)(r+s=)][(l - x), (1 - X)r+aa] 

+ Hn[O, l] function 

and then applying (16). The details are entirely analagous to those used 
in the proofs of Lemma 4 and Theorem 2, and will be omitted for the sake 
of brevity. For irrational (y. the exponents j(1 + cy) in the statement of the 
theorem become integers at regular intervals, and the foregoing result 
requires modification. The correct modification is to include (log x)” as a 
factor the 9th time an integer exponent occurs, while leaving unaltered 
the terms which do not involve integer exponents. 

The mathematical details of this section are, to be sure, somewhat op- 
pressive; however, there is no known alternative way to obtain these results. 
Fortunately, for numerical purposes, one typically needs only the singular 
terms in the first few derivatives of the solution, in which case some of the 
more arduous calculations can be circumvented. 
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As an illustration of the use of these results, consider the problem of 
approximating, via Galerkin’s method, the eigenfunctions of the logarithmic 
kernel 

464 = X j’ log I x - Y I C(Y) 4. 

One immediately encounters the problem of choosing a finite dimensional 
subspace of L2[0, l] in which the eigenfunctions can be approximated 
accurately. It follows from Theorem 2 that all eigenfunctions can be expressed 
as a linear combination of x log X, (1 - X) log(1 - X) and an H2[0, I] 
function. Moreover, any H2 function can be approximated to within O(h2) 
by a piecewise linear polynomial over a uniform mesh of width h[l]. Hence 
if the approximating subspace is chosen to consist of piecewise linear basis 
functions, and includes, in addition, the two non-H2 functions x log x and 
(1 - x) log( 1 - x), the existence of an O(h2) approximation to the solution 
is guaranteed. Without the inclusion of the two singular functions in the 
basis, the full O(h2) approximating capability of the piecewise linear 
polynomials will not be realized. 

5. EXTENSION TO L1 KERNELS OF DISPLACEMENT TYPE 

We now very briefly consider integral equations + = f + AK+ where 

K# = i1 Ml x - Y I) 4(Y) dY 

with K EL~[O, 11. A procedure similar to that already developed for L2[0, l] 
kernels can be used to characterize the behavior of the solution, provided 
we make the assumption that for some positive integer I, KC H-1/2[0, 11 + 
H112+“[0, l] for some S > 0. The following amended versions of Lemma 1 
and Theorem 1 are easily established: 

LEMMA 1'. Let # E HS for some s > 4 (4 is thus continuous) and let 
h ELI[O, 11. Then 

DK+ = KDz+b + #(O) K(x) - 4(l) k(l - x). 

THEOREM 1’. Let K$ = Ji k(l x - y I) I/(Y) dy, where k E L1[O, I], and 
let Kz: H-l12[0, I] into W/2+8[0, I] for some 6 > 0. Then with the sequence 
of functions {cm(x)} as de$ned in (12), the solution of the integral equation 
4 = f + AK+ (f EL2[0, 11) can be written 

C(x) = &(x) + an Hn-(l12)[0, l] function, 
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with #,,(x) dejned by (14). If these results are applied to 4 = f + AK+ where 
h(t) = ta(a! > -1) and f E H*-(112), it can be shown that $ has the form: 

x1+a 1 [ ,..., xy 
+ x2(l+N)[l,..., x”] 

4(x> = -f- L I g X”z(l+=)[l,..., xq 

$(l - ++a [l,..., (1 - x)Q] 
+ (1 - X)g(l+a) [l,..., (1 - x)“] 

+ + 1 ’ . 

i- (1 - X)“z(l+a) [l,..., (1 - X)n] 1 
+ EP-*[O, l] function, 

For rational 01, those of the above functions which have integer exponents 
must be modified by logarithmic factors in the manner previously described. 
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