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Using s-channel unitarity and the standard picture that diffraction dissociation and 
elastic scattering are the shadow of non-diffractive particle production, we derive rigorous 
upper bounds for the diffraction dissociation cross section. The bounds are valid at each 
impact parameter, and are derived for an arbitrary number N of diffractive channels. Our 
results are a generalization of previously derived bounds for the special simple case of 
N = 2 channels. 

1. Formulation of the problem 

It is well-known that the requirement of  s-channel unitari ty restricts the amount  
of allowed inelastic diffraction dissociation. What makes such bounds especially 
interesting and useful is the fact that diffraction is often substantial,  and the bounds 
are close to being saturated (for example in pp scattering at CERN ISR energies). 
Therefore, the manner in which these bounds are attained is a valuable guide for 
building models of  diffraction dissociation and multiparticle production.  

The simplest upper bound on the diffraction dissociation cross section is 

Odiff(b ) ~< [ O'T(b ) -- Oel(b). (1) 

This bound,  which was first published by Pumplin [l ], is valid at each impact param- 
eter b. A simple derivation is given below. Reasonable additional assumptions (about 
the elastic scattering of diffractively excited channels) lead to considerably stronger 
bounds on Odiff. In this article we derive the lowest upper bounds on diffraction for 
an arbitrary number N of  diffractive channels. This is a generalization of  previously 
derived hounds for the simple case o f N  = 2 channels [2]. The results depend fairly 
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Fig. 1. General bounds on diffraction as a function of the number of diffractive channels N and 
the elastic amplitude g for the case of equal diagonal entries (sect. 2). The dashed inverted parab- 
ola g ( l  - g) is the simple bound of eq. ( l) ,  and it corresponds to N = =. The bounds on diffrac- 
tion are more stringent when the number of  diffractive channels is small. 

substantially on the value of N, especially for small N, as can readily be seen from 
figs. 1 and 2. Note that there is a substantial improvement over the simple bound of  
eq. (1), especially near the "edges", where the elastic scattering amplitude is close to 
zero or one. In general, we also obtain much improved bounds in other regions, as is 
discussed in detail in sect. 3. 

The case of  only two diffractive channels (N = 2) was recently treated in detail in 
ref. [2]. Although the mathematical bounds derived there are correct, the subsequent 
physical reasoning is somewhat misleading since all the physically present diffractive 
channels are combined into a single "effective" channel in order to make use of 
N = 2 results. This point will be further discussed later (sect. 4). 

Let us now establish our notation and formulate the problem clearly. The S-ma- 
trix is S = I + iT. The rows and columns label the various initial and final states e.g. 
pp, pp*, p ' p ,  p ' p * ,  etc.  Let us assume that there are N diffractive states, and that 
the scattering sub-matrix between these states is pure imaginary and denoted by 
gT, where G is a real, symmetric N X N matrix. The eigenvalues of G are real num- 
bers fi (i = 1 ..... N). s-channel unitarity and the standard requirement that the scat- 
tering of diffractive eigenstates be purely absorptive (shadow of non-diffractive par- 
ticle production) constrains the eigenvalues f i  to lie in the closed interval 0 to 1 
[1,2]. ft" = 0 corresponds to a transparent eigenchannel, whereas fi = l is a completely 
opaque eigenchannel. Let Q denote the orthogonal matrix which diagonalizes G, 

F = Q T G Q ,  F i /=  f i S i / ,  0 ~ f i  <~ 1 , QTQ = QQT = 1 .  (2) 

These relations are true at each impact parameter. We want to investigate bounds on 
diffraction dissociation cross sections imposed by unitarity. (For concreteness, we 
can think about pp scattering and let the row label 1 correspond to the initial pp 
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Fig. 2. Bounds on diffraction dissociation for pp scattering at ISR energies. The curve labelled g 
is the pp elastic amplitude in impact parameter space. We have chosen a convenient Gaussian 

b 2 representation of the da tag  --=gll(b) = 0 . 7 e -  , where b is in fm. The dashed curve marked 
g( l  -- g) is the simplest bound on the diffractive cross section Odi ff ,~ g(1 - g) (eq. (1)), and is 
seen to be mildly peripheral. The solid line (marked N = 2) is a much stronger and more peri- 
pheral bound on cliffracti6n - it corresponds to the case of  two diffractive channels with equal 
elastic scattering discussed in.sect. 2 of  the text. The bound corresponding to three diffractive 
channels is labelled by N = 3. Note that as N increases, the improvement of  the diffractive bound 
over the simple dashed curve gradually decreases, and occurs only near the edges. 

s t a t e . )  A t  a n y  pa r t i cu l a r  i m p a c t  p a r a m e t e r  b ,  t he  t o t a l ,  e las t ic  a n d  d i f f r ac t ive  c ross  

s e c t i o n s  are  given b y  

N 

o r ( b )  = 2 g l l ,  ° e l ( b )  = g 2 1 ,  ° d i f f ( b )  = ~ glk" (3)  
k=2 

I n t e g r a t i o n  over  b y i e ld s  the  t h r e e  t y p e s  o f  m e a s u r a b l e  c ross  s ec t i ons  

oj = 27r / b db oj(b), J = T,  el,  d i f f .  

0 
Us ing  eq .  (2 )  G = QFQ T, we can re -wr i t e  eq .  (3 )  in t he  e q u i v a l e n t  f o r m  

ovb)=2 .ofi i, 
l ! 

N 
. . . . . .  ~ , ' ~ " ~  _ . ' ~  ~ ,~ '~ . . 
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Since 0 ~< fi  < 1, we have -~f'2 < ~ .  Therefore 

or 

Odiff(b )+Oel(b ) =  ~. <~ ~i Q~i f i= lOT(b) ,  

Odiff(b) < l O T ( b  ) _ Oel(b) =g l l (1  _ g l l ) ,  

which establishes eq. (1). Since this simple bound is true at each impact parameter b, 
it is of course also valid when we integrate over b. The dashed curve in fig. 2 shows 
this bound for pp scattering at ISR energies. If only gl  1 were known, this would be 
the best we could do. However, one usually has a reasonable idea about the b-depen- 
dence o f  elastic scattering in other channels too, i.e. the diagonal elements of G. 
With this additional information, one should get improved bounds on Odiff. This 
leads us to formulate the following problem: 

"Assuming that all elastic scattering amplitudes are known (i.e. the diagonal ele- 
ments of  G are given functions of  impact parameter), what bounds does unitarity 

impose on Odiff?" 
A more precise mathematical formulation is 

"G is a real, symmetric N × N matrix whose diagonal entriesgii (i = 1 ..... N) are 
given. The eigenvalues fi are required to lie in the range 0 ~< fi ~,,1. What is the 
maximum value which the quantity Odiff--- ~kk=2 g21k can have? 
For clarity, we first solve the problem in sect. 2 for the special (but interesting 

and physically relevant) case when all the diagonal entries are equal. The more gen- 
eral case of  arbitrary diagonal elements in G is treated in sect. 3. 

Before we begin, it is good to note the following useful theorem on diffractive 
bounds. 

Theorem A : IfDa(gii ) is an attainable upper bound for diffraction in a real, sym- 
metric matrix G with given diagonal elementsgii and eigenvalues fi(gii) between 0 
and l, then DB(1 - gii) is also an upper bound• 

Proof: Consider the matrices G and I - G. They both have the same amount of 
• diffraction odiff. The eigenvalues of  I - G are 1 - f i (g i i ) ,  and they lie between 0 and 
1, since 0 <~ ~'(gii) <~ 1. Therefore, ifDB(gii ) is a diffractive upper bound for G, it 
is also an upper bound for I - G, whose diagonal elements are 1 - gii. Relabelling 
the matrix elements of  I - G by the transformation 1 - g i i  -~ gii, it follows that 
DB(1 - gii) is an upper bound on diffraction for the transformed matrix G with 
diagonal elements gii. Note that the eigenvalues of  G are fi = 1 - f i ( 1  -gi i ) .  

Given any bound, theorem A allows the immediate construction of a new 
bound by the interchange gii o 1 - gii. Note that an application of theorem A to 
eq. (1) does not yield anything new, since the interchange gl I ~ 1 - gl 1 leaves the 
bound g I 1 (1 - gl 1 ) unchanged. 
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2. Equal diagonal  entries in G 

Here we want  to obta in  the lowest upper  bound  on diffraction dissociation for 
the case of equal diagonal entries in the diffractive scattering submatr ix  G. Let 

g l l  = g22 = .-. = gNN =g (say). In this case, we will show that diffraction is bounded  
from above at any  b by all of  the following three bounds:  

Odiff ~ (N - 1)g 2 , (5a) 

Odiff ~< g(1 -- g ) ,  (5b)  

Odiff ~< (N - 1) (1 - g)2 . (5c) 

Eq. (5b)  is just  the previously derived simple b o u n d  (eq. (1)). Eq. (5c) follows from 
(5a) by theorem A. So we need only  establish (5a). 

Proof: 

Ng  2 = g tr G 

= g  t r F  

= ~'Q~ifi2+t ~i Q~if i  ]~i fl" ~ ~i Q~i f i2=Odi f f  + ° e l "  

Table 1 
Best upper bounds on diffraction for the case of N diffractive channels and equal diagonal entries 
g (examples of matrices G which saturate the bound are given in the last column) 

Range ofg Lowest upper bound Eigenvalues Matrix G which attains 
on Odff f bound 

O < N g  ~; 1 Odif f  < ( N  - 1)g 2 0 . . . . .  O, Ng gi]= g 

N - 1  

I < Ng < N - 1  Odiff < g ( 1 -  g) 

N - - I < N g < N  Odiff < (N -- 1)(1 - g)2 

0 Ng - 1 gii = g , ~ - _ ~  ..... 

N -  2 g lk=gkl  = v ~ ( k  ~ l) 

_ ( l - 2 g ) . . ~ k  '" 
gjk-  N _  2 ~! , l ,k ~ l) 

N g - ( N -  1), 1 ..... 1 gii=g 

gi/ = - (l - g) (i ~ /) 
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Fig. 3. The eigenvalues of  G (as a funct ion of tr G) which attain the diffractive bounds  discussed 
in the equal diagonal entry case of  sect. 2. 

Therefore, O'diff ~ (N - l)g2. 
The best bound is the least of inequalities (5), and this depends on the value ofg.  

These minimum values are in fact the best (i.e. the lowest) upper bounds since we' 
will explicitly demonstrate that they are attainable by exhibiting an example which 
saturates them. Our example for the explicit matrices G, their eigenvalues, and the 
best bounds on diffraction corresponding to various values o f g  are shown in table 1. 
It is not hard to see that our example for the matrices G is not unique, but of  course 
that does not affect any of our results. Note how the eigenvalues change asg is 
gradually increased (see fig. 3). At first only one eigenvalue is non-zero and it in- 
creases from 0 to 1. Since it is constrained to remain below unity, further increase 
ing is distributed amongN - 2 eigenvalues. Finally, when N - 1 eigenvalues reach 
unity and g is inci'eased still further the last eigenvalue increases from 0 to 1. Im- 
provement over the simple bound of eq. (1) only occurs near the edges i.e. in the 
ranges 0 ~< g ~< 1/N and 1 - 1/N ~< g ~< 1. Diffractive bounds for various values of  N 
are shown in fig. 1, and the case o f p p  scattering in fig. 2. Note that w h e n N  = 2, 
there is a substantial improvement over the simple (dashed line) result of  eq. (1). 
However, for N i> 3 (as is very likely the case in practice) the improvement over the 
simple bound is not as marked, and as we have seen, occurs only at the edges. For 
an infinite number of channels and equal diagonal entries there is no improvement, 
and one recovers the Pumplin bound (eq. (1)). 

3. Arbitrary diagonal entries in G 

We will now establish the following bounds on diffraction for arbitrary diagonal 
entriesgl,  g2 ..... gN in the matrix G, 

Odiff ~ g l  (82 +g3 + "'" +gN), (6a) 
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° d i f f  ~< g l  (1 -- g l  ) ,  (6b) 

Odiff <~ (1 -- g l  ) (N - 1 - g2  - g3  "-' g N ) ,  (6c) 

Odiff ~ - ~ [  P + ( ~ g i  - p ) 2  _ G g 2 i ,  ( 6 d )  
t i 

where P is any integer. The bound (6d) is best when P is the greatest integer in the 
t r ace  Y~igi. Note that (6b) is eq. (1), and (6c) follows from (6a) using theorem A. 
An application of theorem A to (6d) does not yield new results since the expression 
is invariant under gi ~" 1 - gi" So we only need to establish (6a) and (6d). The proof 
of (6a) is analogous to (Sa), 

gl (tr G)>1 ~ Q ~ i  I, "2 = Odiff + O e l '  
l 

Hence, Odiff ~< g l  ( g2  + g3  + -" + gN), a n d  t h i s  is a straightforward generalization o f  

(5a). 
The proof of (6d) follows from the three equations 

trG 2 = ,r-~Zag~. + 2 ~g.2. (7a) 
i i</" q ' 

t r G 2 = t r F 2 =  ~ f i  2 , (7b) 
1 

f i  2 <. p + ( p -  ~. f i  )2 . (7c) 
I 1 

The last inequality (7c) comes from maximizing ~,ifi 2 subject to the constraints 
that the trace Z i f  i = Yigii is given and 0 ~ fi ~< 1. The result follows from using 

Table 2 
Bounds on diffraction for the case o f N  = 2 channels  

Range o f g  l, g2 Lowest upper 
bound  on Odiff 

Eigenvalues Matrix G which attains bound  

0 ~; t rG  ~< 1 Odiff~glg 2 0 , g t  +g2 

1 ~ tr G • 2 Odiff ~; g l  + g2 - 1, 1 
(1 - g D  (1 - g2) 

I 
gl ~/gtg2 ] 

~/glg2 g2 

I 
gl  x / (1  - g l ) ( 1  - g 2 )  ] 

x/(l  - g l ) (1  - g2) g2 

As ment ioned  in the text,  our example for the matrices G is not  unique.  A change of  sign of  the 
off-diagonal e l e m e n t s g l 2  is another  example which saturates the diffractive bounds.  
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the technique of Lagrange multipliers with inequality constraints. Therefore, 

N 

°diff(b)=k~2 g~k~<-~ ( t r G 2 -  ~g2)<~[p+(e_,. ~gii)2_z. ~i 

which proves (6d). 
To understand the meaning of these bounds, let us study the special casesN = 2 

and N = 3. For these cases, we will show that these are the lowest upper bounds by 
explicitly exhibiting matrices G which attain them. It is very possible that our re- 
sults are in fact the lowest upper bounds for any N, but we will not demonstrate this. 
The results for N = 2 are shown in table 2, and those for N = 3 in table 3. 

For the N = 2 case, note that the bounds are always superior to the simple bound 
of eq. (1), and are considerably stronger. 

The bounds for N = 3 show four regions. There is the standard improvement 
near the edges, i.e. when 0 ~< trG ~< 1 and 2 ~< trG ~< 3. In the central region, Odiff 

is bounded by eq. (1). However, it is important to note the existence of  large special 
regions (gl  + g2 ~> 1 ,gl  +g3/>  1, I < t rG ~< 2) where further improvement occurs. 
These regions correspond to the last line in table 3, and it comes from (6d) with 
P = 1. Therefore, one has a multiple-humped surface which bounds diffraction. Un- 
fortunately, this surface is not easy to draw graphically, but can be seen by examin- 
ing table 3 carefully. These special central regions, where the least upper bound is 
lower than eq. (1), are a consequence of  considering the general case of  arbitrary 
diagonal entries in the matrix G. 

4. Discussion 

Let us consider our results in the context of pp scattering at ISR energies. Putting 
in approximate numbers in eq. (1) (integrated over b) gives 

Odif f ~< it o. T _ Oe ! ~" 21.5 - 8.5 = 13 mb 

This is not too far above the observed diffraction cross section of  approximately 
8 mb. If in addition we make the physically reasonable assumption of  equal diagonal 
entries in the diffractive sub-matrix G, as is very likely to be the approximate situa- 
tion in nature, then the bound on diffraction is more stringent, especially for a small 
number of  diffractive channels. In fact, for N = 2, one finds Odiff  < t e l  ~--- 8 mb, which 
indicates a saturation of  the two-channel bound and consequently a sharply peripheral 
diffractive cross section in impact parameter space (see the N = 2 curve in fig. 2). 
This point was recently emphasized at length in ref. [2], but is unfortunately not 
wholly correct. As we have seen, bounds on diffraction depend fairly substantially on 
the number N of available diffractive channels. It is therefore improper to combine 
these into one "effective" channel, especially since the combination procedure is im- 
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pact parameter dependent. Thus, one cannot conclude from the two-channel bound 
of ref. [2] that inelastic diffraction must be peripheral, although that may very well 
be the case for other reasons connected with unitarity [3]. A similar conclusion has 
also been reached by considering explicit simple models for pp diffractive scattering 

[41. 
This article has concentrated mainly on deriving mathematical bounds on diffrac- 

tion. There are several reasons why these bounds should prove useful in physcial ap- 
plications. Whenever diffraction is appreciable, the bounds will be saturated, at least 
in some regions of impact parameter. The bounds should also be kept in mind when 
studying low- and high-mass diffractive production, which is an interesting open prob- 
lem. One needs a specifiC prescription or model to talk about the relevant number of 
available channelsN at any energy. At very high energies, one expects a large number 
of open channels, and one has the simple Pumplin bound (eq. (1)). From the deriva- 
tion, it is clear that the bound is saturated if for all i, Q l i  = O, or f i  2 = ~. (i.e. eigen- 
channels are either transparent or black) [5]. Define the ratio R by 

R(s)= Oel + ° d i f f -  Oe/ (I  + °diff) . 

o T o T Oe I ] 

For pp scattering at ISR energies, the value of R is approximately 0.4, not too far 
from the saturation value of  0.5. Also, over the ISR energy range Oel/O T is essentially 
constant. However, there are experimental hints and some data fits which suggest 
that the ratio Odfff/Oel is at least a constant and may well be rising as a function of 
energy [6]. "Asymptotic saturation" of  eq. (1) [R (s) ~ 0.5 as s ~ o,,] is an interesting 
possibility. 

We wish to thank Prof. G. Kane and Prof. J.C. Polkinghorne for a critical reading 
of the manuscript. 
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