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SUMMARY 

In 1972, Lieb, W. R. and Stein, W. D. (Biochim. Biophys. Acta 265, 187-207) in 
their review of sugar transport in human erythrocytes concluded that the conventional 
two-state carrier model was inconsistent with the experimental data available at that 
time. Since then, other papers have appeared which question the validity of the model. 
In this paper, we give a brief derivation of the equations describing the two-state 
carrier model, and analyze the predictions of the model in the classical experiments, 
i.e. zero-trans,  infinite-cis, and equilibrium exchange. We show that the estimate of the 
half saturation constant of 2.8 mM for glucose at the inner face of the human red cell 
membrane for the infinite-eis procedure reported by Hankin, B. L., Lieb, W. R. and 
Stein, W. D ((1972) Biochim. Biophys. Acta 288, 114-126) is unreliable. We note that 
all of  the other experimental findings are consistent with the asymmetric carrier model. 

I NTROD UCTI ON 

In 1972, Lieb and Stein [1 ] reviewed the experimental data on sugar transport 
in the human erythrocyte and concluded that they were not consistent with the con- 
ventional carrier models. These findings have stimulated some controversy as to the 
validity of the carrier model as well as the rejection criteria presented in [1 ], by Hankin 
et al. [2], and by Hoare [3]. Geck [4] discusses the incompatibilities of the symmetric 
model and shows that they are resolved by the asymmetric model. Geck's observa- 
tions are confirmed by Regen and Tarpley [5]. These authors also address themselves 
to the rejection criteria pointing out the error in Hoare's equation (Eqn. 1 in ref. 3) 
and mentioning th.e inconsistency between the data collected by Hankin et al. [2] and 
Lacko et al. [6]. Edwards [7] states that the only published data which is inconsistent 
with the asymmetric model is given in ref. 2. He speculates that the estimates presented 
there are probably low because the extracellular glucose concentration is not truly 
saturating. 

The rejection criteria that have been presented to date involve relationships 
among the Michaelis-Menten constants predicted by the carrier model for the zero- 
trans, infinite-cis, and equilibrium exchange experiments. The problem in applying 



211 

these criteria is that data on influx experiments are required. Hankin et al. [2] have 
devised an influx experiment under the infinite-cis condition which allows them to 
calculate the parameters needed to apply their rejection criteria. These are then used to 
reject the asymmetric carrier model. Lacko et al. [6] have estimated the parameters in 
zero-trans influx experiments. I f  their estimates are used in the criteria in [1 ] and [2] 
we see that the asymmetric model is consistent with the data. Bloch [8] has studied the 
asymmetric features of  sugar transport, and his data also satisfies the criteria in [1 ] and 
[21. 

It is easy to infer from the discussion above that the theoretical treatment of  
the two-state carrier model has been motivated by the theory of enzyme kinetics. 
Several authors, most notably Regen and Morgan [9], Britton [10], Sen and Widdas 
[11 ], and Miller [12] have analyzed the model f rom the mathematical point of  view. 
Unfortunately, the derivation of the basic equations is not as obvious as it is in enzyme 
kinetics. For this reason, we begin this paper with a succinct derivation of the basic 
equations describing the two-state carrier model. We see that the flux equation arises 
naturally as the zero-order singular perturbation solution of a system of equations 
whose development closely parallels the usual development of the Michaelis-Menten 
equation. Although the final equations for the different fluxes and the form of the 
Michaelis-Menten constants for the classical experiments remain the same, we believe 
that because of the brevity of the derivation the reader can get more insight into the 
theoretical nature of the model. This is especially true in the equilibrium exchange 
case. 

In the final part of the paper, we will analyze the theoretical treatment of  the 
infinite-cis experiments in more detail. Our interest in this is motivated by the fact that 
the estimates for K m and V reported in [2] in the infinite-cis influx are the only data 
which are inconsistent with the two-state carrier model. We will show first that the 
equation used in [2] to estimate these numbers is far too sensitive to be reliable. We 
will then show that a similar method for estimating these values based on the full form 
of the flux equation is also too sensitive. Our conclusion is that these values for K m and 
Vm,x should be disregarded. 

The derivation o f  t he f lux  equation 
The conventional two-state carrier model is given in Fig. I. To facilitate the 

comparison between our work and that given in [l ] and [2], we are using the same 
notation. 

The equation which describes the conservation of carrier in this system is 

T --- E, + E  2 +(ES)I  +(ES)2 (1) 

where 7" is the total amount of carrier per membrane unit. The time derivatives of  E; 
a n d ( E S ) i , i  --  1 , 2 a r e  

d,E)_!( ~ = hE 2 + b ( E S ) , _ g E  I - a S , E ,  (2) 
dt 

d'E2J( ~ = gE,  + e(ES)2 - hE 2 - - f S  2 E 2 
dt 
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E 1 ~ ~ E 2 
h 

S 1 \ "  b [ /  e _ / ~ $ 2  

\ ,  ~ . J -  

c - - ~ D .  

(~5)1 ~ (ES)2 

Fig. 1. Kinetic scheme for the conventional carrier model. St and $2 represent substrate concentra- 
tions in the solutions bathing sides 1 and 2 of the membrane respectively. Et and E2 represent the 
concentrations of free carrier while (ES) I and (ES)z represent the concentrations of carrier-substrate 
complex at faces 1 and 2 of the membrane respectively. The rate constants are denoted by a through 
h. Movement counterclockwise through the system is taken to be positive. 

d((ES), ) 
- a S ,  E l  

dt 

d((ES)  2) 
- fS2  E2 + c(ES),  - (d + e)(ES)2. 

dt 

The standard assumption used to solve these equations is that the concentrations o f  
the different carrier species do not  change much,  i.e. upon the addition o f  substrate 
they rapidly assume values which then change very little over a substantial portion of  
the transport process. Consequently,  the derivatives in Eqn. 2 are set equal to zero. 
This "pseudo-stat ionary state" assumption is also used in solving the differential 
equations for enzyme reactions. Mathematical ly,  it gives the zero order singular 
perturbation solution o f  the system. With this assumption,  Eqns. l and 2 become a 
system of  linear equations in El ,  E 2, (ES)1, and (ES)2. Solving, we obtain 

T [h(bd + be + ce) + b d f S ,  (3) El = - - D  

E2 = _ __T [g (bd+be+ce)+aceS~}  
D 

T 
(ES)I  - {ah (d+e)S  1 +dfgS2 +ad fS1  $2} 

D 

(ES)2 = - T [ f g ( b + c ) S  2 +achS~ + a , f S  l 82} 
D 

D = - { ( h  + g)[b(d + e) +ce] + [g(b + c + d) + b d ] f S  2 

+ [ h ( c + d + e ) + c e ) a S ,  + ( c + d ) a f S  t S2~. 

In the model ,  the possible one way fluxes through each step are 

) ,  = aE L S, ~lt = - b ( E S ) ,  (4) 

= = - d ( e S h  
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J3 = e(ES)2 )3 = - f S z  E2 

= hE 2 ~ = - - g E l o  

Here, --+ represents positive flux which is taken as tile direction going counterclock- 
wise around the reaction path in Fig. 1 while .-- represents movement in the opposite 
direction. Therefore, in the pseudo-stationary state we have 

• ] l k + L  = - ~ ( a c e h S l - b a f g S 2 ) ,  k = 1, 2, 3, 4. 
D 

If  we use the fact that for uncharged substrate aeeh = bdfg (see Britton [10]), and if 
we write Jn for tile net flux through the system in the pseudostationary state, we have 

d ,  = L + ~ l  k = acehT  (S 1 _S2)  ' k = 1,2, 3, 4. (5) 
D 

This is the same equation as Eqn. 1 in ref. 2, the derivation of which is attributed 
to Britton [10]. It is also the same as Eqn. 6 in ref. 9. One should notice that this equa- 
tion has been derived from the assumption that the net flux of carrier through each 
step is equal to the overall transport  rate. This assumption depends on the validity of  
the pseudo-stationary state assumption. 

Analysis o f  the two-state earrier model 
We will now consider the zero-trans, infinite-cis, and equilibrium exchange 

experiments where we assume movement of  substrate f rom side 2 to side 1. In present- 
ing the results, we will list those for movement  from side 1 to side 2 as well with the 
understanding that they are found in an analogous manner to those actually derived. 

When measuring the appearance or disappearance of substrate in this situation, 
we are examining the reaction given by Eqn. 6: 

SI + E 1 +~-(ES), . (6) 

Of  the steps shown in Fig. l, this is the step that involves movement of substrate from 
the environment to the cell or in the reverse direction and hence is the step observed 
experimentally. Therefore, the correct form of the net flux equation is 

J ,  = aE, S , - b ( E S ) , .  (7) 

Zero-trans. In the zero-trans experiments, St is kept equal to zero while $2 is 
varied. Thus 

szzt~, = ) = - b ( E S ) ,  b T  { a h ( d + e ) S ,  + d f g S 2 + a d f S ,  $2}. (8) 
= - D  

Setting S~ --  0 we can write this in Michaelis-Menten form as 

zt 
zt V2 + 1 8 2  

] 2 ~ 1  - -  zt ' (9) 
K 2 +  1 --}-S 2 

From Eqn. 9 and the corresponding equation for J1 ~2 z` we obtain 
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,zt (g+h)[e(b+c)+bd] z, (g+h)[e(b+c)+bd] 
K z ~ t  = ' K142 = ( 1 0 )  

[g(b + c) + d(b + g)]f  ' [ h ( d +  e) + c(e + h)]a 

zt bdg T zt ceh T 
V 2 + I  . . . . . . .  " VI ~ 2  . . . . . . . .  • 

g(b+c)+d(b+g)  h(d+e)+c(e+h) 

The estimates for V2_+~zt and Kz~Zt  are obta ined f rom an inverse plot. The 
accuracy of  these estimates depends upon  S1 being equal to zero. Thus in the experi- 
mental  design provisions for  maintaining St at or near  zero must be taken into 
account.  

Infinite-cis. In the infinite-cis experiments,  the assumpt ion  is made that  $2 far 
exceeds the saturat ing value at face 2, and St is varied. In this case, Eqn. 7 cannot  be 
written in Michael is-Menten form. We can, however,  derive analogs of  the Michaelis- 
Menten constants.  The assumpt ion is made that  the maximal  flux will occur when S1 
iszero,  titus V 2 + I  ic = V2~tzt. To find K2+ti¢, we simply solve J2+l ½V2_.iiCfor Sl.  
I f  we do this, we find that  S 1 is a quotient  o f  two polynomials ,  both  quadrat ic  in $2. 
To  find S t as an expression involving the rate constants,  we let $2 --* or. Collecting our  
results, we have 

V 2 L  = z,  ic zt 
1 V 2 + l  V t - 2  = V l ~ 2  

i~ g(b+c)+d(b+g)  i¢ h(d+e)+c(e+h) (11) 
K 2 ~  t ~-~ . . . . .  : . . . . . .  K I ~  2 = 

o(,.+ d) J(c + d) 

The prob lem here involves letting $2 --+ oo. Experimentally,  we must  have $2 
far enough above the saturat ing value at face 2 so that  the expressions for  the K ~¢ are 
close approximat ions  to the solutions of  J :  ½V i~. 

Equilibrium exchange. In this case, we have a true steady state where S t = $2 
= S, and Jn 0. Thus suppose that  at t ime zero the cells are in an overall steady 
state, and we have specific activities 0{ 2 of  substrate at face 2, ~ at face 1. I f  fit and [J~2 
are the specific activities of  (ESh and (ES)2 respectively, we have 

d ( f l 2 ( E S ) 2 )  
-- ~2 f e z  S + cfl,(ES), - ( d  + e)fl2(ES)2 

dt (12) 

,t(~,( ES), ) 
- -  O~ t a E  I S - ( b - } - c ) f l l ( E S ) ,  + d f l 2 ( E S ) 2 .  

dt 

i f  the pseudo-s ta t ionary state assumpt ion  is valid for the kinetics of  this system, it 
applies to the tracer as well, hence we set the derivatives in Eqn. 12 equal to zero. If, in 
addition, we assume ~2 is constant  and ~t is zero th roughout  the experiment,  we can 
solve the resulting system for  fit and f12 obtaining 

O~ 2 df E 2 S 
fiL = 

(bd+ be + ce)(ES)~ (l 3) 

(be + bd + ce)(ES)z 

Now the tracer  movemen t  which is measured is propor t ional  to J1 or J l  depending 
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upon which side has the tracer initially. In the case when Eqn. 13 holds, the flux of 
measured label is 

)~  = fl,~I 1 -- ~ 2 b d f E 2 S  . (14) 
bd + be + ce 

Writing this in Michaelis-Menten form, we have 

J *  = - V 2 " l S  . 0 5 )  
K~L1 +g 

Eqn. 15 is easily derived using a limit argument, but it can also be derived by algebra- 
ically manipulating Eqn. 14. Since V2.1 e° = ( l / a / )  V2o~*, we have 

Tbcde  v e e  e e  e e  
= V : ~  1 = V l ~  2 

(c + d)[e(b + c) + bd] (16) 

K . . . . . .  bd(g + h) 
~-~ g 2 ~  l ~ K I ~  2 ~ _ ._ 

a h ( c + d )  

In doing the equilibrium exchange experiments, the cells are first allowed to 
equilibrate with a given concentration of glucose. A small amount of  tracer is then 
added, and it is the movement of  tracer that is measured. The theoretical considera- 
tions to be kept in mind when designing the experiment involve th.e system being in a 
true steady state and the restrictions on the specific activities cq, i = 1, 2, of substrate. 

The development which we have just given is based upon the fact that what is 
being measured is the movement of  a small amount of  tracer in a system that is in an 
overall steady state, i.e. ~ = S~ = Sz. It is interesting to note that if instead of doing 

this analysis we set g = S~ := S 2 in J1  w e  obtain a flux which is different from that 
given by Eqn. 16. Indeed in this case 

b d T  - 
- - S 

~I, = c + d (17) 

b d ( g + h )  + S  

ah(c + d) 

The Km is the same and the V m a  x differs from that in Eqn. 16 by the factor 
l/(r + (b /e)+ (bd/ce)). 

The infinite-cis influx experiments 
As we mentioned in the introduction, in order to apply the rejection criteria 

given in refs. 1 and 2, we must have information on influx experiments in either the 
infinite-cis or zero-trans case in order to calculate 

ic zt zt K2~l K1 ~ 2  VI ~ 2  
Q = -~  = - z F - - =  z;-- '  

K'1%2 K 2 .  1 V 2 + l  
(18) 

Q is a measure of the asymmetry of the system, i.e. if the system is not symmetric, we 
would expect Q to be different from unity. Bloch [8] has reported values of  Q for 
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glucose equal to 20 at 7 °C and 10 at 37 °C. If we combine the zero-trans influx data of  
Lacko et al. [6] with the zero-trans efflux data of  Karlish et al. [13], we find a value of 
Q of approximately 15.5 for glucose at 20 °C. In ref. 2, the following equation is 
derived: 

K °e K~'~z 
Q = _ + - 1 .  (19) 

K'1~ 2 K ee 

Notice that this expression for Q involves data from efflux experiments but not influx. 
In [2] a value of Q equal to 17.6 for glucose at 20 °C is reported using Eqn. 19. Eqn. 19 
can also be used to find a lower bound for Q. Indeed Eqn. 19 can be rewritten as a 
quadratic in K ec and the resulting discriminant analyzed. Doing so, we find 

F Q > 2 i K~'~2 I (20) 
z iC  ' 

LK1 ~2/ 

In ref. 2 the value of the lower bound reported is 6.5±0.5, i.e. Q ~> 6.5. 
]n their review of 1972, Lieb and Stein [ l ]  analyzed the predictions of the 

symmetric carrier model and, on the basis of efflux experiments alone, showed that 
these were inconsistent with the experimental data which was available in the litera- 
ture. The rejection of the symmetric model means that Q must be different from one. 
Therefore, we have to question the statement given later in ref. 1 to the effect that Q is 
not significantly different from unity and certainly not greater than 3 for glucose at 
20 °C. 

In ref. 2, a value of Q equal to 1.6±0.3 was reported having been calculated as 
the ratios K 2_~ ~ic/K~ ~2 ic. Given the fact that there is close agreement among the values 
for K 1 ~2 ic reported in the literature (see refs. 2 or 1 ) and all other reported values of Q 
reported lie in the range from 10 to 20, we are led to suspect the calculations of  K2_+ ~ 
given in ref. 2. Indeed, either this estimate is correct, a result which would cause one to 
question the validity of the two-state carrier model, or it is incorrect, a result which 
would remove from the literature the only set of data which are inconsistent with the 
model. In this section, we will study the theoretical nature of the problem. 

To facilitate the comparison between what follows and that given in ref. 2, we 
list and adopt their notation. 
N = cellular glucose concentration at time t in retool/cell unit. 
P = osmolarity of  non-penetrating salts in both the extracellular solution and in the 
isotonic cells. 
Vrd = liters of  cell water per cell unit at time t. 
U -  V 2 ~ l  ic. 

K = K 2 ~ I  ic. 

k = K2~l z'. 
Here a cell unit is that number of cells whose solvent water volume is one liter under 
isotonic conditions. Using tb, is notation, we may write Eqn. 7 as 

a 2 + l  = v{1 -S~/$2} (21) 

1+ k +$1 {1 + 1 I 

$2 OSzJ 
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In the infinite-cis case, i.e. letting S 2 ~ 00, and writing J2~l ~ to denote J2~J in this 
case, we obtain 

t~ K 
Jz'~, = • (22) 

K+SI 

This shows, incidently, that Eqn. 7 cannot be written in Michaelis-Menten form in 
this situation. The estimates of v and K, however, can be obtained by plotting l/J2~ L ~ 
as a linear function of S 1. Notice that Eqns. 20 and 21 are the same, mutatis mutandis, 
as Eqns. 8 and 23 in ref. 2. 

The starting point for the theoretical development in ref. 2 is Eqn. 22 which we 
can rewrite 

dN vK 
-- (23) 

tit K+N/Vrel" 

Notice that $2 does not appear in this expression having been eliminated in passing 
from Eqn. 21 to 22. 

Hankin et al. next assume that the cells are always in osmotic equilibrium with 
the extracellular solution and obtain 

P+N 
P+S2 = (24) 

l/~cl 

This equation is solved for l/Vre t and the result substituted into Eqn. 22 to obtain 

dN vK 
dt K + N(P + Szi (25) 

P + N  

This reintroduces $2 into the equation thereby neglecting any interplay that might 
occur between the terms containing $2 that were eliminated and that which has just 
been reintroduced. Furthermore, Eqn. 24 is wrong dimensionally, and this carries over 
into the remainder of the derivation. To put Eqn. 24 into the proper dimensional form, 
let V o equal Vrel under isotonic conditions. Then Vo -- I liter cell water/cell unit. The 
correct form for Eqn. 24 becomes 24': 

P + S2 = PI% + N .  (24') 
I/~cl 

Since Vo I, Eqn. 24 is correct numerically hence we do not carry V o explicitly in 
what follows. 

How were the estimates of Kcomputed? In ref. 2, Eqn. 25 was integrated under 
the assumptions that S2 was constant, N - - 0 w h e n  t =0, and N - -  N w h e n  t t 
giving 

KN +(P+ S2) [ N - P  In (I + N ) I  = vKt. (26) 

This was rewritten 



218 

TABLE 1 

EFFECT OF ROUND-OFF IN SLOPE, o-, AND OF AN lNCREASE IN SLOPE 
ESTIMATED K 

Data in ref. 2 

K or. 10 3 
(mM) ((raM)- ') 

Round-off 2°i; increase in (r 5 % increase in 

or. 103 K o. 103 K rr. 103 K 

2.2 3.245 3.25 2.8 3.310 9.64 3.407 20.8l 
0.5 3.230 3.23 0.5 3.295 7.91 3.392 19.03 
2.8 3.250 3.25 2.8 3.315 10.26 3.413 21.44 
3.7 3.258 3.26 3.9 3.323 I 1.17 3.421 22.39 
3.6 3.257 3.26 3.9 3.322 11.07 3.420 22.28 
1.3 3.237 3.24 1.6 3.302 8.73 3.399 19.87 

Av. 2.4 3.247 3.25 2.6 3.311 9.8 3.409 20.97 

ON 

( Np) K+P+S2 N vK 
1 I n  1 + = - - . ( 2 7 )  

, e ( e + s 2 ) ,  F(P+S2) 
To compute K, ( l / t )  In (I + N/P) was plotted against Nit and the slope was set equal to 
(K+P+S2)/(P(P+S2)). Once K was known,  v was found  from the intercept of this 
line. Because this involves an extrapolat ion outside the range of the experimental  
points,  we will not  investigate the problems with v. 

Let us denote by ~r the slope of this line. Then 

K = (P+S2)(Pa-1). (28) 

In most of the experiments reported in ref. 2, P 310 mM and $2 = 60 m M whence 

K = 1147008-370 .  (29) 

Two facts are readily apparent .  One is that for K to be small, ~ must  just  exceed 
1/310 ~- 3.226 • 10 -3, and the other is that Kwi l l  be extremely sensitive to even small 
errors in estimates for or. 

We are now in a posit ion to show why the data presented in ref. 2 in conjunct ion  
with Eqn. 29 produce unrel iable estimates for K. Let us begin with the data given in 
Table ll in reL 2. For the first six experiments, S2 60 m M  and P -~ 310 mM, and the 
average K for these is 2.4. For  each of the individual K values the corresponding ~ can 
be calculated from Eqn. 29. These are summarized in the first two columns of Table I. 
Notice that we must  record c;-4 significant figures to produce the correct value of K. 

Our first study involves the question of what happens to K as a result of small 
changes in or. The third and fourth columns summarize what happens as a result of 
round-off  error. Notice that  a l though the average K rises, it is still well below the value 
predicted by the model. The last four columns summarize what happens as a result of  
a 2 % and 5 % increase in each a. A 2 % increase produces an average K of 9.8; a 5 % 
increase produces an average K of 21. If we return to Eqn. 20, we see that Q/>  6.5 
together with K 2 ~ ~c 1.8 implies K >/ 11.7. Thus a 2 % increase in each ~r brings the 
average K to a value just  below the cutoff point  whereas a 5 % increase produces an 
average K well above this limit. 
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DATA USED TO ESTIMATE SLOPE, cs. (FROM REF. 2) 
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t (rain) N( ~ S.D.) mmol/cell unit N/t l/t In(I t N/310) • 10 z 

0.17 3.8 t 0.3 22 (22.4) 7.2 (7.17) 
0.33 5.8 ] 0.5 18 (17.6) 5.6 (5.62) 
0.50 7.4 z 0.6 15 (14.8) 4.7 (4.72) 
0.67 8.6:~ 0.7 13 (12.8) 4.1 (4.08) 

The next step in our study involves the question of  whether or not  such changes 
are possible in a as a result o f  experimental error. To investigate this question we turn 
to the data presented in Fig. 2 ofref.  2. The values for t and N which we have taken f rom 
the figure are listed in the first two columns of  Table II. Notice that we have retained 
two significant figures. 

Next we investigated how sensitive Nit and ( l / t )  [In(1 +N/P)] are to small 
changes in N, t and P. Thus we calculated these values for P 305 raM, 310 mM, 
3 1 5 m M ,  t 0.16 rain, 0.17 rain, and N - 3 . 7 5 r a M / c e l l  unit, 3.8raM/cell  unit, 
3.83 raM/cell unit, and 3.85 raM/cell unit. We found  a sizable variation in both Nit 
and ( l / t )  [ln(l "N/P)] with the differences occurring in the second significant figure. 
Because of  this, we decided to use P - -  310 m M  and to calculate Nit and (1/t)[ln 
(1 =N/P)] from the data listed in the first two columns of  Table I I  retaining two fig- 
ures. These values are listed in the final two columns with the respective numbers  to 
three significant figures given in parentheses. 

We th.en did a least squares fit to the data  in Table II  that  was correct to two 
significant figures and obtained the line, 

' °  43°1  

The value for cr : 3.435- 10 .3  when substituted into Eqm 29 gives an estimated K 
equal to 24. Since this value is considerably different f rom that given in [2], we decided 
also to fit the data that  were correct  to three significant figures (in parentheses in 
Table I1). Then, the least squares fit was, 

l l n  ( I + 3 N ( ) )  = 3 " 2 2 0 " 1 0 - 3 N - - 4 " g 6 1 " 1 0 - 4 " t  t- 

Here, a = 3.220 • 10 -3 and when this is substituted into Eqn. 29, K = 6.7! 
Finally, we did some least squares fits where the points chosen reflected I o / t o  

/ O  

2 ~o errors in N, t and P and found values o f  Krang ing  numerically between - 15 and 
30. Thus it is clear that  the changes in a listed in Table I are indeed possible, and may 
be smaller than what may  actually occur. Therefore, the estimates given in ref. 2 are 
unreliable and no conclusion based upon them concerning the two-state carrier model 
is possible. 

The final question to which we addressed ourselves concerns the possibility of  
salvaging the data generated experimentally in [2]. Our concern here is that  the 
starting point  for the theoretical development in [2], namely Eqn. 22, is a poor  choice. 
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A more fitting starting point is Eqn. 21, for using Eqn. 21 we do not have the problem 
with $2 mentioned above. 

If we substitute for I/Vre~, we can rewrite Eqn. 21 as 

[ P (S2 -N)  1 ]S2+k / [  QS2 I 

dN _ V ~(p+ N)(S z+k)2K_l S-2-!IQs2+-KJ (30) 

dt ts +ki( O_S  i N(P+S ) 
K + ................ t ItOs ; t e + N  

If we set 

P(S2-N)  

( P +  N)(S2 + k) 

and 

S 2 71- k QS2 

S 2 QS 2 q- K 

then the question as to whether or not Eqn. 30 can be approximated by Eqn. 25 will be 
answered once we know how close ~ and fl are to unity. 

If Q lies somewhere around 10 and $2 is 60 raM, then it is clear that fl ~ 1. 
Thus the estimates of K from either equation should be in reasonable agreement. 
However, e depends both on $2 and N. When N -- 0, e ~ 1 but as N increases, a de- 
creases to values on the order of 0.8. Any error will of course be compounded by 
integration, so we would expect a deviation in the values of v estimated from the two 
equations. 

The point, however, is not so much this analysis but the fact that we can 
integrate Eqn. 30 using the same assumptions under which Eqn. 25 was integrated. 
Doing so, we obtain 

 ,Kt = -  CQ(S2+k)(P+S2)+S2(P+S2)(QS2+K)ln 1 -  

PQ 

_ (P + $2)(QS2 + K)+_KQ(S2 + k) N. (31) 

e O  

Motivated by ref. 2 we rewrite this 

l l n  ( 1 _  N 2 ) = -  (P+S2)(QS2+K)+KQ(Sz+k) N 
t KQ(Sz+k)(P+Sz)+Sz(P+SE)(QSz+K) t 

PQvK 

KQ(S 2 + k)(P + $2) + S2(P + $2)(QS2 + K) 

We can then plot 1/t ln(l - N / S 2 )  vs Nil. I ra* is the slope of this line, then 

, (P + S2)(QS 2 + K) + KQ(S 2 + k) 

KQ(S 2 + k)(P + S2) + S2 (P + $2)(QS2 + K)" 

(32) 

(33) 
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If  we set Q K/K 1 ~ 2  ic,  P = 310 mM, S 2 ~ 60 mM, KI~2 ic = 1.8 mM and k 1.6 
raM, we obtain 

K [(12662a* + 34.22)K + 762000a* + i 2703} = 0 (34) 

which gives 

762000o* + 12703 
K = (35) 

12662cr* + 34.22 

For some of the data which we used previously to estimate K we replotted 
according to this scheme and found th.at the new estimate of K was usually larger but 
reasonably close to the estimate according to the scheme in ref. 2. This confirms our 
statement that/~ ~ 1 should produce estimates of K that are close for either scheme. 
The important point, however, is that this equation is just as sensitive as Eqn. 29 to 
small changes in or*, i.e. it too cannot be used as a reliable way to estimate K. 

As a result of the analysis presented in this section, we are forced to reject the 
estimates of K given in ref. 2. 
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