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Abstract This paper presents the solution for the optimal lift and bank modulation of a reentry 
vehicle using the method of matched asymptotic expansions. The solution, which contains all effects 
of aerodynamic, gravitational, and centrifugal forces, is uniformly valid everywhere. 

The solution for the outer region, where gravitational force is predominant is obtained in closed 
form. To date, for the inner region, only four of the five adjoint equations for the free time problem 
have been integrated in closed form. The fifth equation has been integrated by considering the free 
range problem, or by using a linear approximation of the drag polar near the optimal lift control. By a 
new invariant relation, and a transformation of the fifth adjoint variable, it will be shown in this paper 
that, for the most general drag polar, the fifth equation can be integrated by quadrature. The equation 
will be completely integrated for a generalized drag polar. The inner solution will be matched with the 
outer solution providing a composite solution uniformly valid everywhere. 

I n t r o d u c t i o n  

THIS PAPER p r e s e n t s  the  so lu t ion  fo r  the  o p t ima l  l if t  and  b a n k  m o d u l a t i o n  of  an  
e n t r y  veh i c l e  us ing  the  m e t h o d  of  m a t c h e d  a s y m p t o t i c  e x p a n s i o n s .  T h e  so lu t ion ,  
w h i c h  c o n t a i n s  all  e f fec t s  o f  a e r o d y n a m i c ,  g rav i t a t iona l ,  and  cen t r i fuga l  f o r c e s ,  is 
u n i f o r m l y  va l id  e v e r y w h e r e .  

Equations of motion 
T h e  e q u a t i o n s  o f  m o t i o n  o f  a non- th rus t ing ,  l i f t ing veh ic l e  en te r ing  a p l a n e t a r y  

a t m o s p h e r e ,  a s s u m e d  to be  at  r e s t  a r o u n d  a spher ica l ,  non ro t a t ing  p l a n e t  a re  (Fig.  

1) 

d r  
d t  V sin y 

dO = V cos  y cos  ~b 
d t  r cos  tk 

d_~_~ = V cos  3' sin 
d t  r 
d V pSCDV 2 
d-T = 2m g sin 3' ( I )  

-;z-,d3" pSCL V 22~ ( ~-)  V o t  = c o s o ' -  g -  cos  3" 

V 2 -7:-d~b = pSCL V 2 sin tr - - -  cos  3" cos  ~ tan  ~b. 
Vot  2m cos  3' r 
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Fig. 1. Coordinates system. 

They are the equations governing the variations of the six variables r, 0, ~b, V, 3,, 
and ~O defining the state of the vehicle, considered as a point with constant mass m. 
The flight path angle ~/ is defined positive above the local horizontal plane. The 
initial plane is taken as plane of reference which we shall refer  to as the equatorial 
plane. The heading angle qJ is then positive toward the North pole, and the bank 
angle cr is selected such that for  positive or the vehicle is turning to the left. This 
bank angle is defined as the angle between the local vertical plane containing the 
velocity, that is the (r, V) plane, and the plane containing the aerodynamic force A 
and the velocity V, the (A, V) plane. 

The gravitational field is a Newtonian field, and we have 

gs r~ 2 
g(r)- -~ (2) 

where subscript s denotes a reference level, taken as sea level. 
It is adequate to use an exponential  a tmosphere 

p = p, e ~ (3) 

where y is the altitude and/3  a constant.  
The aerodynamic force is controlled through the bank angle or and the lift 

coefficient CL. It is assumed that there exists a lift-drag relationship for  each flight 
aerodynamic configuration. We shall use as lift control a rescaled lift coefficient A 
defined as 

CL = C*A (4) 

where C* is the lift coefficient corresponding to the maximum lift-to-drag ratio. In 
this way, when A = 1, the flight is effected at maximum lift-to-drag ratio. For  the 
drag coefficient we have 

c o  = c * [ ( ) t  ) (5) 
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where CI~ is the drag coefficient corresponding to maximum lift-to-drag ratio and 
f(A) is some function describing the drag polar. 

The controls tr and ;t are assumed to be contained in the set 

(6) 

For  free time problems, it is convenient to use the first of the eqns (1) to 
eliminate t. We have 

d_O = c o s ,  
dr  r c o s $  tan 3" 
d~k sin 
dr  r tan 3' 

dV___ 2 _ pSCoV_____~2_ 2g 
dr m sin 3' 
d~._pSCLCOSOr ( g  1) cos y 
d r -  2 m s i n y  - 7 - r  s i n  3" 

d.___~ = pSCL sin cr _ cos qJ tan 4~ 
dr  2m sin y c o s y  r t a n y  

(7) 

We define the following dimensionless quantities 

U = - -  

h=__y r = l + h  ' g =  1 
r, '  r, gs ( l + h )  2 

V 2 osSC* E *  C*  I 
gsr,' 2 m ~ '  C*'  e [3r," 

(8) 

Upon using the eqns (3)-(5) and (8) into eqns (7), we have the dimensionless 
equations of motion with the dimensionless altitude h used as independent 
variable. 

dO cos $ cot y 
dh (1 + h ) c o s  ~b 
d__~_~ = sin q~ cot y 
dh ( l + h )  
d_~ = BA sin o" e -h/" 
dh ~ sin 3' cos 3" 
d_._uu = _ 2B[(A )u e -hI" 2 
dh ~E* sin 3" (1 + h) 2 
dy  B X c o s o ' e  -h/" [[( 1 
dh = t s in  y + 1 + h )  

cos $ tan 4~ cot 3' 
(1 + h) (9) 

, ]  
u(1 + h) 2 cot 3'. 

Since ~ = 1/~rs is a small quantity, e.g. for the Earth's atmosphere ¢ = 1/900, 
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the set of eqn (9) is very convenient for an analytical integration using an 
appropriate perturbations theory. For a variational problem this set is coupled 
with the set of adjoint equations of the same order making the solution 
inextricably difficult. Fortunately, for optimization of an entry trajectory, since at 
high altitude the solution is nearly Keplerian, method of directly matched 
asymptotic expansions is available. It has been used to solve three dimensional 
entry at constant bank and lift coefficient (Busemann et al., 1975), or simple 
optimization problem (Shi, 1971). We shall apply this method, proven to be 
accurate, in finding general optimum control laws for the lift coefficient and the 
bank angle without any simplification to any restricted class of trajectories except 
that the time of flight is free. Since the motion is nearly Keplerian at high altitude, 
we shall use a new set of variables (a, fL I) to replace the set of variables (0, ~b, ~b). 
They are related by the equations 

cos I = cos ~b cos 

sin 4~ = sin I sin a (10) 

cos a = cos 4' cos (0 - fl). 

From Fig. 2, it is seen that I is the inclination of the plane of the osculating 
orbit and fl is the longitude of the ascending node. The angle a is the angle 
between the line of the ascending node and the position vector. Using the 
transformation (10) into eqn (9) we have the final form 

da sin a (BA sin tr e -h''] + cot Y 
d--h -= t ~ 7 \ ~ s i n y c o s y !  ( l + h )  

dl-I sin a (BAsin ~ e-~'~ 
dh s i n T \ ¢ s m T c o s T /  

O 

x/ 

\ 

x 
\ 

\ 

V 

a L 

/ i  

Fig. 2. The osculating plane and the elements of the orbit. 
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d I  (BA_.s__intz_ e-~" ~ (11) 
d-h = cos a \ • s m  3" cos 3' / 

d__uu = _ 2 B / ( a )u  e -h~" 2 
dh eE* sin 3' (1 + h) 2 

d.~ BAcoso-e-h~" [ 1 1 ] 
dh = ~s in3 '  + ( l + h )  u ( l + h ) 2  co ty .  

Optimal control  

The state equations, eqns (11) are most suitable for an integration using the 
method of  matched asymptotic expansions. Following the maximum principle, to 
have the optimum control we introduce the adjoint vector  p = (p~, pn, p~, p,, p , )  to 
form the Hamiltonian. 

H = 
BA sin tr e -h~" [ sin a sin a ] 

sin 3" cos  3' [ -Pa  ~ + p"  ~ + p '  cos a ] 

cot y _  2p.Bf(A)u e -h~" 2p, 
+ P ~ l + h  ~E* sin 3" - ( l + h )  2 

+ p , B A c o s t r e - h ' "  [ 1 1 ] 
+ p~ (12) sin3' l + h  u ( l + h ) 2  cot), .  

To minimize any performance index, at each instant we maximize H with 
respect  to A and tr. The lift control is either Ial = Am~ or a variable a such that 
dH/dA = 0. For variable lift control we have 

d[  E*  r /  sin a sin a .  a )  sin tr + ] 
d---A = 2p .u  L k -p"  + p" + p' cos / cos (13) 

The bank control is either ]tr I = trm~ or a variable a such that dH/dtr = O. For 
variable bank control we have 

sin a sin a ] 
= ~ -p~t-~ni+Pns-~-[+p, cos a . (14) tantr  p,  cos3, 

In particular, when the vehicle is flown with both variable lift and bank control we 
can combine the equations to obtain 

and 

E *  / sin a . sin a ) 
d_/.f sin tr = k-Pa ~ * Pa ~ + p, cos a (15) 
dA 2p.u cos 3' 

dd--•A cos  tr E * p v  = 2--~,u" (16) 

The optimal control laws are independent of  the vehicle characteristic 
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coefficient B, as defined in eqn (8). Hence the result obtained is valid for a general 
type of entry vehicle. But they are function of the maximum lift-to-drag ratio E* 
as it should be, since E* is an important design parameter for vehicle 
performance. 

The control laws can be expressed in terms of the state variables if the 
unknown adjoint vector p can be expressed in terms of these variables through 
integration of the adjoint equations 

d p x  O H  

d--h = Ox (17) 

where x is any one of the state variables. 
In general, the five equations (17) are coupled with the five equations (11). 

These equations can be integrated analytically if we consider separately the flight 
in two widely different regions: an outer region, at high altitude, where 
aerodynamic force is weak compared with gravitational force, and an inner 
region, near the planetary surface where aerodynamic force is predominant. The 
inner and outer solutions are matched directly and a composite solution, valid 
everywhere, is constructed by additive composition. 

Outer expansions (Keplerian region) 
The outer expansions are introduced to study the limiting condition of the 

solution in the region near the vacuum where the gravitational force is 
predominant. They are obtained by repeated application of the outer limit, which 
is defined as the limit when ~-> 0 with the variable h and other dimensionless 
quantities held fixed. 

We assume the following expansions 

a = a o ( h ) + E a , ( h ) + "  • • 

l] = rio(h) + El~,(h) + • • • 
I = I o ( h )  + d , ( h )  + "  • • 

u = u o ( h )  + ~ . u , ( h )  + "  • • 

"/= vo(h) + cy,(h) + .  • ". 

(18) 

By substituting into eqns (11) and equating coefficients of like power in ¢, the 
differential equations with zero order of ¢ are 

da0 _ cot ~o 
dh l + h  

dido 
dh = o 
dI__~o = 
dh 0 

duo 2 
dh (1 + h) 2 
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d y 0 = [  1 1 ] 
dh ( l + h )  u o ( l ~ - h )  2 co t  3'0. (19) 

T h e  solut ion  of  the s y s t e m  is 

u 1 
2 l + h  - c ,  

(1 + h)u~/2 cos  3' = c2 
2 c2 1 

cos  (ct -- c3) = .k/(2c~c2 + 1)(1 + h)  - ~/(2c~c22 + 1) 

~ C 4  

I = c 5  

(20) 

w h e r e  the  cj are  cons t an t s  o f  integrat ion.  
S ince  we  cons ide r  only  first o rde r  solut ion,  subscr ip t  ze ro  has  been  omi t t ed  fo r  

conven i ence .  T h e  ad jo in t  equa t ions ,  eqns  (17), in the  ou te r  region,  are 

dp .  _ 0 
dh 
d p a  
dh = 0  

dp___~ = 0 
dh 
dpu _ p ,  co t  3' 
dh u2(1 + h)  2 

d--~ - =  +p, l + h - u ( l + h ) 2  sin23'" 

(21) 

U p o n  using the  solut ion  (20) and integrat ing we  have  

pu - 2u 

p~ = a5 tan 3' - 

p~ ~ a l  

p a  = a2 
pj = a3 

alc2 sin 3' 
- - a---2-5 + ( 2 c - - ~ T 7 ) ~  m + a4 

2a~[c,( l  + h) + c,c22 + 1] 
(2czc22 + 1) 

(22) 

w h e r e  the at cons t i tu te  ano the r  se t  of  cons t an t s  o f  in tegra t ion  prov id ing  a 
c o m p l e t e  solu t ion  in the  ou te r  region.  

Inner expansions (aerodynamic-predominated region) 
T h e  inner  e x p a n s i o n s  a re  in t roduced  to s tudy  the  l imiting condi t ion  of  the  

solut ion  nea r  the  p l ane t a ry  su r face  whe re  the  a e r o d y n a m i c  fo r ce  is p r edominan t .  
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They are obtained by repeated application of the inner limit, which is defined as 
the limit when ~-> 0 with the new stretched altitude 

/~ =-h (23) 

and other dimensionless quantities held fixed. 
We assume the following expansions 

= ao(K) + ,oT,(h) + . . .  
f l  = r i o ( h ) +  E ~ , ( h ) + . • • 

I = I o ( h )  + , I , ( h )  + "  • • 

u = a o ( ~ )  + ~ a , ( g )  + . .  • 
h 

V = +o(h)+ e % ( h ) + .  • .. 

(24) 

By substituting into eqns (11) and equating coefficients of like powers in e, the 
differential equations with zero order of e are 

sin o(= s n og 
d/~ tan fo sin ~o cos ~ -  

d~o _ sin&o (BA sin~r e -~) 

sinTo si .  +o cos +o- 
dL (BA sin cre -~) 
d/~ = cos O7o sin qo cos ~o / 

dao _ 2B/(A)aoe -~ 
d/~ E* sin ~/o 
dqo _ BA cos o" e -~ 

d/~ sin ?o 

(25) 

This set of equations has two first integrals 

sin o7o sin Io = sin 73 

cos o7o = cos 83 cos (e, - D.o). 
(26) 

The integration of the other equations requires the knowledge of lift and bank 
control. For constant A and tr, the equations have been integrated completely 
(Busemann e t  a l . ,  1975). Although complete solution for variable A and tr does not 
seem possible, it is not necessary for obtaining the optimal control since we are 
only seeking the solution of the adjoint vector p. 

The adjoint equations in the inner region are 

] d/L BA sin t r e  -h I- _ cos O7o cos . . . . . .  P= _ _  _ / ~ .  a o + p,  sin 6o 
d/Y sm¢/oCOSqo[ tan lo  sinlo 

di0. _ 0 
d~7 
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dl0, BA sin or e -~ [ _ sin &o . sin ao cos Io] 
. . . . . . .  i - p  --7--7-i-2 -~/Ta 
d/~ sin 370 cos qo k sin Io sin s Io J 
d/7. _ 2/~.Bf(A) e 

d/~ E * sin 370 

d/7:=BAsin  e_al- _ s i n 6 o t .  - s i n d o + _  c o s - I [  1 
d/~ or [ - P ' t a - - ~ o  pn ~ P, aOj\sin~ 370 

_ 2/LBf(A)ao e -~ cos % + / L B A  cos ~ e -~ cos 37o 
E *  sin ~ 370 sin ~ % 

1%) 
COS 2 

(27) 

By changing the independent  variable f rom/~  to 1)o, and integrating, it is found  
that  

/7. = sin [o(& sin l'lo - 51 cos fZo) + a2 cos I"o 

On = a:  

/7~ = ax sin ~o + ti3 cos rio. 

(28) 

Next ,  it is seen that  

a4 /7, = _-- (29) 
Uo 

where  the tij are constants  of integration. 
To integrate the equat ion fo r / 7 ,  we observe by direct  verification that  the 

fol lowing quant i ty  

_ s i n 5 o + _  s i n S o ,  
K = - p .  tan----~o Pn sin----~o-r/7~ cos 5o (30) 

is cons tan t  in the inner region. Then we write the solution for  variable lift and 
bank control ,  eqns (15) and (16), in the inner region 

K E */7, (3 1) 
tan or =/7,  cos 37-------o' cos or = 2/7,aof'(A) 

where  f '  = d//dA. Equat ion  f o r / 7 ,  when  changed to 370 as independent  variable, 
becomes  

d/7, ( 1 sin ~o ~ 2/7.aof(A) cos -70 +/7, cot qo. 
d~o = K t a n c r  s-~-n~/o cos---~o] E~-s-~n~rs-~n~o (32) 

With the solutions (29) and (31), we write 

1 s i nqo~  4~,2f(A)f ' (A)cot37o+i0,  cot~o.  
dl0, _ K 2 sin co s--~-~o ] - E *2AI0, d~/o p ,  cos ~/o ~/o 

(33) 
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Le t  
K 2 

I" - - -  4 - / L  2. ( 3 4 )  
COS 2 370 

Using F to  replace  10, we have  a l inear equa t ion  

dF _ 2 cos  370 F 8(*42f(A)f'(A) cot  37o. (35) 
d37o " - - sin To E *2A 

F r o m  eqns  (15) and (16) we not ice  that  

E*_~ 2 r K 2 ] E*2F 
[f ' (A)]2= [ ~ + / ~ 2 ] _  (36) 

4tL z 4ti4 z • 

On the o ther  hand,  we wri te  eqn (35) 

dF [ 4a42f(X )f'(A ) ] 
d37o = 2 cot  qo F E,2A ]. (37) 

If the drag polar  f u n c t i o n / ( A  ) is known,  f r om eqn (36), A can be so lved in te rms of  
F and upon  subst i tut ing into eqn (37), F is obta ined  by  simple quadra ture .  

We cons ider  a genera l ized  drag polar  of  the fo rm 

f(A)  ( n - 1 ) + A "  (38) 
n 

with of  course  n = 2 for  parabol ic  polar. 
Then  

4'1~4 2 2(n-l) 
F = ~ - ~  A (39) 

and eqn (37) has the fo rm 

U p o n  integrat ion 

dh"  rt 
d37o (A 1) cot  qo. (40) 

h"  -- 1 + d5 sin 370 (41) 

where  ti5 is the last cons tan t  of  integrat ion for  the adjoint  sys tem.  The  solut ion for  
p ,  is then  

4042  ~! K 2 
/5, 2 = E , 2  ~, + d5 sin 37o) t2("-')/'1 cos  2 370" (42) 
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It seems surprising that the solution (41) for the lift control is the same as for the 
free range problem (Contensou, 1965). The reason for this is that, by using the 
orbital elements as variables we obtain the integrals (26) which, upon identifying 
with relations (10), show that the positions O and ~b remain constant in the inner 
region. Also, it should be noted that K is not a new constant of integration. In the 
inner region, it is simply a combination of existing constants of integration. 

Asymptotic  matching and composite  solution 

The constants of integration 4j in the inner expansions will be determined by 
matching with the outer expansions. In this problem, matching will be 
accomplished by expanding the inner solutions for large h, expressing the results 
in terms of the outer variables and matching with the outer solutions for small h. 

The outer state variables, eqns (20), become for small h 

u = 2(c,  + 1) 

C2 
cos 7 %/[2(c, + 1)] 

c22- 1 
cos (ix - c3) - ~/(2c,c2 2 + 1) 

D,= c4 
I = c 5 .  

(43) 

The outer adjoint variables, eqns (22), become for small h 

iO,~ = a l  

p ,  = a2 

Pl = a3 
a5 ~ a~c2~v/[2(Cl + 1) - c22] 

P u = a 4  4 ( c t + l ) -  2(ct+1)(2clc22+1) 
asx/[2(c~ + 1) - c22] 2at(c1 + c~c22 + 1) 

Pv + c2 (2clc22 + 1) 

(44) 

The upper sign (-+) correspond to positive sin 3t. On the other hand, the inner 
adjoint variables, eqns (28), (29) and (42), become for large /~ 

p~ = sin c5(43 sin c4 - 01 COS C4) + 42 COS C 5 

#a = 42 
/~, = 41 sin c4 + 43 cos c4 

a4 
/~u - 2(cl  + 1) 

f4a,: ( ./[2(c, + 2g (Cl + i)] 
: ,  = L-E-  i + _ 4 ,  t -f 7 J l - c 2 2 

(45) 

where /~ is the limit of K for large /l. 
By equating the two sets of equations (44) and (45) by pair we can evaluate the 
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constants of integrations aj, in terms of the constants of integration a~ and cj. 
The composite expansions, uniformly valid everywhere ,  can be constructed by 

the method of additive composition. The additive composition is obtained by 
taking the sum of the inner and the outer expansions and subtracting the part 
they have in common. 

For  p~, pn and p~, it is clear that they are identical to the inner solution, so that 
instead of using the constants aj, we can write the composite solution with the 
constant t%, and we have 

p.,~ = sin I(3~ sin l'l - 3, sin f~) + 32 cos I 
pnc = 32 

p,, = 3~ sin 1~ + 33 cos lq. 
(46) 

It is easy to verify, using the exact  equations, that this solution is exact. In this 
case, the method has a perfect  matching. The solutions for p,,, and p~c are only 
correct  to the zero order  of E. 

For  P,c, using the method of additive composition, we have 

a4 
p.c =pu + P .  2 (c ,+  1) 

where pu is the outer solution, expressed in outer variables, and iG is the inner 
solution, expressed in inner variables. Fortunately all the outer solutions can be 
expressed in terms of the independent variable h, so that we can have the 
composite solution expressed explicitly in terms of the inner variables alone as 
was the case of eqn (46). Hence,  expressing pu in terms of h, we have 

~4 ~4 
P"c u 2(c, + 1) ~- aa 

a f f l + h )  + a , c : x / [ 2 c , ( l + h ) 2 + 2 ( l + h ) - c z  2] 
4[c,(1 + h ) +  1 ] -  2(2c,c22+1)[c , (1+h)+1] 

(47) 

Similarly, we have for p~. 

- + a _ ~ s X / [ 2 c , ( l + h ) Z + 2 ( l + h ) _ c 2 Z ] _ 2 a , [ c l ( l + h ) + c t c 2 2 + l ]  
p~c = - c2 (2c,c22+ 1) 

[4&2 T) 2~"-''/" K 2 ],,2 
+ ~ (1 + at sin - cos2~-~ - 

_ a , x / [ 2 ( c , + l ) - c 2 2 ]  2a~(c,+c~cz 2+1) + ~- 
c2 (2c,c22 + 1) (48) 

Using the composite solution, eqns (46)-(48) in the eqns (15) and (16) we have 
the optimal control for  variable lift and bank, uniformly valid everywhere  in terms 
of the state variables a, ~ , / ,  u and ~/, of the independent variable h, and a mixed 
set of constants of integration. 

It has been shown in the past (Vinh et al., 1975) that, under certain simplifying 
assumptions, the adjoint equations can be integrated separately and hence, the 
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solution for optimal aerodynamic controls contains 5 independent constants of 
integration. Since theoretically the adjoints equations are coupled with the state 
equations some dependence of the adjoint solutions on the initial state variables 
must exist. It is displayed in the composite solutions for p. and p~, eqns (47) and 
(48). 

For practical applications, the constants of integration al, a2 and d3 in the 
exact solutions, eqns (46), are considered as arbitrary and to be determined by the 
appropriate transversality conditions. 

The expression K in the composite solution for p,, eqn (48), is no longer a 
constant but it is varying according to 

K - s in  a +  s in  a 
= P~ tan I pa~ ~ + Pl~ cos a (49) 

where the adjoints p,c, Pac and p~c are given by eqn (46). 
The constants c~ and c2 in the solutions (47) and (48) can be evaluated by using 

the outer solutions for u and y, eqns (20), applied at the initial conditions. Hence 

ui 1 
c l -  2 l + h ,  
c2 = (1 + h , ) u Y  2 cos y~ 

(50) 

where subscript i denotes the initial conditions. 
The constants a~, a2 and a3 are obtained by matching the inner and outer 

solutions for p~, Pa and p~. 

a, = sin/,(a3 sin ll, - a, cos II,) + a2 cos L 
a2 = a2 

a3 = ~l sin l)i + a3 cos [l,. 
(51) 

Finally, either set (a4, as) o r  (1~4, as) can be used as the remaining independent 
constants of integration. They are related by matching the solutions for p, and p~. 
We have the relations 

and 

a4 a ,  ~ a , c 2 x / [ 2 ( c ,  + 1) - c~ ~] 
2(c, + 1) = a4 4(c, + 1 ) -  2(c, + 1)(2c,c22 + 1) 

± a5x/[2(c, + 1) - c2  2] 2 a , ( c ,  + c,c22+ 1) 
c2 (2c,c22 + 1) 

r4 , 2 2e:~c,+ 1)] '/2 
= L E  -g~ V \  2(c ,+1)  ] ]  - c2 2 

where the c o n s t a n t / (  is the limit of K for large/7, that is 

(52) 

(53) 

sin a sin a 
~[, = a,  t~n  li + a2 s~n li + a3 cOs °t. (54) 
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The  limiting cons tan t  value a is p rov ided  by 

C2 2 -  1 
cos  (a  - c3) - X/(2c,c22 + 1) (55) 

with c3 obta ined  f r o m  the initial condi t ions  applied to  the outer  solut ion 

c2 2 1 
cos  (a, - c3) = X/(2C~C22+ 1)(1 + h,) X/(2c,c22+ 1)" (56) 

In summary ,  the opt imal  solut ion conta ins  5 arbi t rary  cons tan t s  of  integrat ion d,, 
and depends  on  the five initial condi t ions  ai, gl,, L, u~ and y,. 

A check  of  the computa t iona l  s teps p resen ted  above  will conv ince  the reader  
that  the ai and the c~ can be expressed  explici t ly in terms of  the d~ and the x, fo r  
any  arbi t rary  n. Hence ,  a l though s o m e w h a t  c u m b e r s o m e ,  the opt imal  solut ion can 
be expressed  explicit ly in terms of  five cons tan t s  of  integrat ion a~, of  the five state 
variables a,  fl ,  I, u, y and their  initial values,  and the independen t  variable h. 
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