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Abstract—This paper presents the solution for the optimal lift and bank modulation of a reentry
vehicle using the method of matched asymptotic expansions. The solution, which contains all effects
of aerodynamic, gravitational, and centrifugal forces, is uniformly valid everywhere.

The solution for the outer region, where gravitational force is predominant is obtained in closed
form. To date, for the inner region, only four of the five adjoint equations for the free time problem
have been integrated in closed form. The fifth equation has been integrated by considering the free
range problem, or by using a linear approximation of the drag polar near the optimal lift control. By a
new invariant relation, and a transformation of the fifth adjoint variable, it will be shown in this paper
that, for the most general drag polar, the fifth equation can be integrated by quadrature. The equation
will be completely integrated for a generalized drag polar. The inner solution will be matched with the
outer solution providing a composite solution uniformly valid everywhere.

Introduction

THis PAPER presents the solution for the optimal lift and bank modulation of an
entry vehicle using the method of matched asymptotic expansions. The solution,
which contains all effects of aerodynamic, gravitational, and centrifugal forces, is
uniformly valid everywhere.

Equations of motion

The equations of motion of a non-thrusting, lifting vehicle entering a planetary
atmosphere, assumed to be at rest around a spherical, non rotating planet are (Fig.
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Fig. 1. Coordinates system.

They are the equations governing the variations of the six variables r, 6, ¢, V, v,
and ¢ defining the state of the vehicle, considered as a point with constant mass m.
The flight path angle y is defined positive above the local horizontal plane. The
initial plane is taken as plane of reference which we shall refer to as the equatorial
plane. The heading angle ¢ is then positive toward the North pole, and the bank
angle o is selected such that for positive o the vehicle is turning to the left. This
bank angle is defined as the angle between the local vertical plane containing the
velocity, that is the (r, V) plane, and the plane containing the aerodynamic force A
and the velocity V, the (A, V) plane.
The gravitational field is a Newtonian field, and we have

_&r’
g(r)= it (2)

where subscript s denotes a reference level, taken as sea level.
It is adequate to use an exponential atmosphere

p=p.e” (3)

where y is the altitude and B8 a constant.

The aerodynamic force is controlled through the bank angle o and the lift
coefficient C;. It is assumed that there exists a lift-drag relationship for each flight
aerodynamic configuration. We shall use as lift control a rescaled lift coefficient A
defined as

C.=C A (4)

where C¥* is the lift coefficient corresponding to the maximum lift-to-drag ratio. In
this way, when A = 1, the flight is effected at maximum lift-to-drag ratio. For the
drag coefficient we have

Co = CBH (V) &)
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where C¥ is the drag coefficient corresponding to maximum lift-to-drag ratio and
f(Ar) is some function describing the drag polar.
The controls o and A are assumed to be contained in the set

0<|A|< Amax
©

0<|o|< omax.

For free time problems, it is convenient to use the first of the eqns (1) to
eliminate . We have

d6__ cosy

dr rcos¢tany

d¢ _ siny

dr rtany
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We define the following dimensionless quantities
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Upon using the eqns (3)~(5) and (8) into eqns (7), we have the dimensionless
equations of motion with the dimensionless altitude h used as independent

variable.

do _ cosygcoty
dh (1+h)cos¢

d¢ _sin ¢ coty

dh = (1+h)

dy_BAsinoe™ cosy tan ¢ cot y

dh " esinycosy a+h ®)
du_ 2BfMue™ 2

dh = “eE*siny _(+hy

dy Blcosoe™ 1 1

d‘%“ €siny +[(1+h)‘u(1+h)2]"°”'

Since € = 1/Br. is a small quantity, e.g. for the Earth’s atmosphere € = 1/900,
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the set of eqn (9) is very convenient for an analytical integration using an
appropriate perturbations theory. For a variational problem this set is coupled
with the set of adjoint equations of the same order making the solution
inextricably difficult. Fortunately, for optimization of an entry trajectory, since at
high altitude the solution is nearly Keplerian, method of directly matched
asymptotic expansions is available. It has been used to solve three dimensional
entry at constant bank and lift coefficient (Busemann et al., 1975), or simple
optimization problem (Shi, 1971). We shall apply this method, proven to be
accurate, in finding general optimum control laws for the lift coefficient and the
bank angle without any simplification to any restricted class of trajectories except
that the time of flight is free. Since the motion is nearly Keplerian at high altitude,

we shall use a new set of variables (e, 2, I) to replace the set of variables (9, ¢, ¢).
They are related by the equations

cos I =cos ¢ cos ¢
sin ¢ = sin [ sin a (10)
cos a =cos ¢ cos (0 — ().
From Fig. 2, it is seen that I is the inclination of the plane of the osculating
orbit and () is the longitude of the ascending node. The angle « is the angle

between the line of the ascending node and the position vector. Using the
transformation (10) into eqn (9) we have the final form

do _ _sina (BA sin o e”"") cot y
dh tan I \ € sin y cos y (1+h)

dQ _sina (BA sin & e“"")
dh sinlI \esinycosy

Fig. 2. The osculating plane and the elements of the orbit.
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g! _ (BA sin o e""") (11)
dh ~“**\esinycosy

du _ 2Bf(Mue™ 2

dh eE*siny (1+h)

dy_BAcosage™ [ 11 ]

dh =~ esiny a+h) u(l+hy ot

Optimal control

The state equations, eqns (11) are most suitable for an integration using the
method of matched asymptotic expansions. Following the maximum principle, to
have the optimum control we introduce the adjoint vector p = (p., Pa, P1 Pus Py) 1O
form the Hamiltonian.

_BAsinge™" [_ sin sin o
esinycosy | Petanl  PoSsinl

coty 2p.Bf(Mue™ 2p,
“1+h €E*siny (+h)

p,BA cosoe" [ 1 1 ]
T esiny TP TvR warnp) oty 12

+ pr cos a]

+ D

To minimize any performance index, at each instant we maximize H with
respect to A and o. The lift control is either |A| = A... or a variable A such that
dH/dA =0. For variable lift control we have

sin o
cos y

df _E* [(_ sin o sin &

dr " 2p.u “tanl  P%sinT * p, cos a]' (13)

+ p: cos a)

The bank control is either |o| = o'max OF a variable o such that dH/de = 0. For
variable bank control we have

[_ sine sina
pycosyl PetanT” PoSinT

tano = + pr cos a]. (14)

In particular, when the vehicle is flown with both variable lift and bank control we
can combine the equations to obtain

daf . _ E* (_ sin o sin o
dxr ™% =3pucosy \ PetanT Pa'Gop TP cos a) (15)
and
df - E*p, 16
qx COST =55 (16)

The optimal control laws are independent of the vehicle characteristic
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coefficient B, as defined in eqn (8). Hence the result obtained is valid for a general
type of entry vehicle. But they are function of the maximum lift-to-drag ratio E*
as it should be, since E* is an important design parameter for vehicle
performance.

The control laws can be expressed in terms of the state variables if the
unknown adjoint vector p can be expressed in terms of these variables through
integration of the adjoint equations

dp. 6H
dn =~ ox {an

where x is any one of the state variables.

In general, the five equations (17) are coupled with the five equations (11).
These equations can be integrated analytically if we consider separately the flight
in two widely different regions: an outer region, at high altitude, where
aerodynamic force is weak compared with gravitational force, and an inner
region, near the planetary surface where aerodynamic force is predominant. The
inner and outer solutions are matched directly and a composite solution, valid
everywhere, is constructed by additive composition.

Outer expansions (Keplerian region)

The outer expansions are introduced to study the limiting condition of the
solution in the region near the vacuum where the gravitational force is
predominant. They are obtained by repeated application of the outer limit, which
is defined as the limit when € —» 0 with the variable h and other dimensionless
quantities held fixed.

We assume the following expansions

a = alh)+ea,(h)+- -
Q=Q¢h)+eQy(h)+---
I=1I(h)+el(h)+--- (18)
u = u(h)+eu(h)+---
v =vylh)+ey(h)+---.

By substituting into eqns (11) and equating coefficients of like power in ¢, the
differential equations with zero order of € are

gﬂ__cot 20
dh 1+h
a0, _

an -0
dl, _

an -9
du, 2

dh = (1+h)
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dyo_[_1 1
dh—[ﬂ+h) ma+hy]““w- (19)

The solution of the system is

E__l___: C
2 1+h ™'
(1+hyu'?cosy=c,
_ C22 — 1
cos (o —c3) = VQeic? +D(1+h) V2’ +1) @0
Q= Ca
I=cs

where the ¢; are constants of integration.
Since we consider only first order solution, subscript zero has been omitted for
convenience. The adjoint equations, eqns (17), in the outer region, are

dp. _

an ~°
dpa _
an =0
dp, _
an =0 @
dp._ _ _p,coty
dh = W1+ hy
dpyz[paJr (1_ 1 )] 1
dr ~ T+h " P \Ton " u@+hy/ sin7y
Upon using the solution (20) and integrating we have
Do = a1
Pa=a:
p: =a; 22)
__as ac, sin y
Pe="2%u 2cic + 1)u”2+ s
2
p, = astan y 2ajlei(1+h)+cic’+1]

Q2cicr+1)

where the g; constitute another set of constants of integration providing a
complete solution in the outer region.

Inner expansions (aerodynamic-predominated region)

The inner expansions are introduced to study the limiting condition of the
solution near the planetary surface where the aerodynamic force is predominant.



326 F. Frostic and N. X. Vinh

They are obtained by repeated application of the inner limit, which is defined as
the limit when € -0 with the new stretched altitude

h=

[N~

(23)

and other dimensionless quantities held fixed.
We assume the following expansions

a = alh)+ea(h)+- -
Q=0uh)+eQh)+- -
I=1Iyh)+el(h)+--- (24)
u = iio(h)+ e (h)+- - -
v = Jo(R) + €yu(h) + - - -.

By substituting into eqns (11) and equating coefficients of like powers in ¢, the
differential equations with zero order of € are

da, _ _sind, (B/\ sin o e"')

dh  tan I, \sin ¥, cos o
dQ, _sind, (BA sin o e“)
dh  sin T, \sin 7, cos ¥,
d ) %
U cos g, (Zroince ) 25)
dh sin ¥, COS Yo
di, _ _2Bf(Mise*
dh E* sin ¥,
d¥% _BAcosoe™
dﬁ sin ')_’0 .
This set of equations has two first integrals
sin @, sin I, = sin &, (26)

COS o = cOS &3 cos (€4 — ().

The integration of the other equations requires the knowledge of lift and bank
control. For constant A and o, the equations have been integrated completely
(Busemann et al., 1975). Although complete solution for variable A and o does not
seem possible, it is not necessary for obtaining the optimal control since we are
only seeking the solution of the adjoint vector p.

The adjoint equations in the inner region are

dp. BAsinoe™” [ _ COSd, - COSdo

o - - — a——+ p; sin do]
dh  sin Y0 €OS Yo tan I, sin I
dpa _ 0

dh
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dp:_ BA sino e*I _ sind, _ sinaocos I,

== — | —Pa—>= a 5= 27

dh  sin yocos Yo sin” I, sin” Io

dp. _2p.Bf(A) e

dh  E*sin¥

dp_-y . _ﬁ[ - Sin &() - Sin &0 - - ]( 1 1 )
Z=BAsinog e " |—P. —+ ——=+tpPrcos a —— —

dh P tan I, po sin I, pr *Nsin? 7o cos® o

_2p.Bf(M)iige " cos Yo, 5 BAcosa e cos ¥,
E* sin® ¥, Py sin® ¥o )

By changing the independent variable from A to Q,, and integrating, it is found
that

P = sin Io(a@s sin Qo — @, cos Qo) + d cos I,
Pa=a, (28)

131 = ﬁl Sin Qo+ d; CcOS Qo.

Next, it is seen that

pu = (29)

:.l:n
< »

where the d, are constants of integration.
To integrate the equation for p, we observe by direct verification that the
following quantity
K =—p. %01 5, 20204 5 cos o (30)
tan I, sin I,

is constant in the inner region. Then we write the solution for variable lift and
bank control, eqns (15) and (16), in the inner region

E*p,

tan o =—i—~ COSOT =53-—¢-
zﬁuﬂof'(A)

P, COS Yo @D

where f' = df/dA. Equation for p,, when changed to ¥, as independent variable,
becomes

4Py _ K tan 0'( 1__sin ) _ ZPuiof M) COS Yo | 5o 5 (32)

d¥o sin yo cos’ yo/ E*A sin o sin ¥,

With the solutions (29) and (31), we write

dp, K ( 1 *sin?o)_45142f()*)f'()\)c0t%+ﬁ cot Yo (33)
3 )

d¥o  Pv €OS 7o \sin 7o  COS’ Yo E*Ap,
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Let

2

_ = 2
a2 (34)

Using I' to replace p, we have a linear equation

dl' _2cos Yo _ 8a’f(A)f'(A)

7 sinvo E¥y otV G3)

From eqns (15) and (16) we notice that

E¥[ K? E*T
1 2 _ 521 —
[P = 423 | somrse + 7] = a7 (36)
On the other hand, we write eqn (35)
= 2 ’
g—;=2cot Yo [F—i‘“—“-féﬁ%@], 37

If the drag polar function f(A) is known, from eqn (36), A can be solved in terms of
I' and upon substituting into eqn (37), I' is obtained by simple quadrature.
We consider a generalized drag polar of the form

n—1D+A"

foy ==L (38)
with of course n =2 for parabolic polar.
Then
r =422 e (39)
and eqn (37) has the form
‘é’:_,: = (A" — 1) cot 7o, (40)
Upon integration
A" =1+ dssin ¥, 41

where ;s is the last constant of integration for the adjoint system. The solution for
p, is then

4a - e K’
=2 _ 4 = [2(n-Din] __
p, = £+ (1+ ds sin y,) cos’ 7y 42)
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It seems surprising that the solution (41) for the lift control is the same as for the
free range problem (Contensou, 1965). The reason for this is that, by using the
orbital elements as variables we obtain the integrals (26) which, upon identifying
with relations (10), show that the positions 8 and ¢ remain constant in the inner
region. Also, it should be noted that K is not a new constant of integration. In the
inner region, it is simply a combination of existing constants of integration.

Asymptotic matching and composite solution

The constants of integration g; in the inner expansions will be determined by
matching with the outer expansions. In this problem, matching will be
accomplished by expanding the inner solutions for large f, expressing the results
in terms of the outer variables and matching with the outer solutions for small A.

The outer state variables, eqns (20), become for small h

u=2c+1
Cos y = — i (43)
Y TV + 1]
_ sz -1
cos(a—c3) = _—\/(2c.022 D
Q =C4
I = Cs.
The outer adjoint variables, eqns (22), become for small h
pa =a,
Pa= a,
Pr=as
as + 01C2\/[2(Cl + 1) - 022] (44)

Pu= Q=4 1) 2c, + D2cici+ 1)
_ L asVIAei+ D=l _2aicitcic’+1)
L C2 Qcic’+ 1)

The upper sign (x) correspond to positive sin y. On the other hand, the inner
adjoint variables, eqns (28), (29) and (42), become for large A

Po = sin ¢s(@; sin ¢, — @, cOS ¢4) + @, cos Cs

Do=a;

Pr=da,sin c,+ @ cos ¢,

_ __ as

p. 2(c,+ 1) (45)
__[4as ( - \/ [2(c. +1)— czz])zm—w” _2K*c, + 1)]"2

py = [E*" 1xa, 2c, +1) P

where K is the limit of K for large k.
By equating the two sets of equations (44) and (45) by pair we can evaluate the
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constants of integrations g, in terms of the constants of integration g; and c;

The composite expansions, uniformly valid everywhere, can be constructed by
the method of additive composition. The additive composition is obtained by
taking the sum of the inner and the outer expansions and subtracting the part
they have in common.

For p., pa and py, it is clear that they are identical to the inner solution, so that
instead of using the constants a;, we can write the composite solution with the
constant @, and we have

Pac =SINI(@;sin Q—a,sin )+ d,cos I
Pac = @ (46)
Pic = a, sin Q)+ a, cos (.

It is easy to verify, using the exact equations, that this solution is exact. In this
case, the method has a perfect matching. The solutions for p.. and p,. are only
correct to the zero order of e.

For p.., using the method of additive composition, we have

) ds
=py + Py — ———
Puc = Pu T Pu = 30-7371)

where p, is the outer solution, expressed in outer variables, and p, is the inner
solution, expressed in inner variables. Fortunately all the outer solutions can be
expressed in terms of the independent variable h, so that we can have the
composite solution expressed explicitly in terms of the inner variables alone as
was the case of eqn (46). Hence, expressing p, in terms of h, we have

_ A as __asl+h) acxVRe(1+h)Y+2(1+h)=c:]
Pe = T2+ ) M A+ )+ 11 2Qccs + Dlcd + k) +1]

47
Similarly, we have for p,,

=, as 2 _ 2_2al[cl(l+h)+clclz+l]
DPre icz \/[2C|(1+h) +2(1+h) Cz] (2C|C22+1)

ﬂl—i _— 2An—1yin _ K’ ]”2
+[E*2(1+a5 sin y) cosTy
- asVI[2ci+ 1) — c>’] 4 2a\(ci+cic -+ 1)

s Qcic+1) (48)

Using the composite solution, egns (46)—(48) in the eqns (15) and (16) we have
the optimal control for variable lift and bank, uniformly valid everywhere in terms
of the state variables a, Q, I, 4 and ¥, of the independent variable h, and a mixed
set of constants of integration.

It has been shown in the past (Vinh et al., 1975) that, under certain simplifying
assumptions, the adjoint equations can be integrated separately and hence, the
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solution for optimal aerodynamic controls contains 5 independent constants of
integration. Since theoretically the adjoints equations are coupled with the state
equations some dependence of the adjoint solutions on the initial state variables
must exist. It is displayed in the composite solutions for p, and p,, eqns (47) and
(48).

For practical applications, the constants of integration d,, d. and a; in the
exact solutions, eqns (46), are considered as arbitrary and to be determined by the
appropriate transversality conditions.

The expression K in the composite solution for p,, eqn (48), is no longer a
constant but it is varying according to

sin a sin a
K=-p, anT + pac snl + p1. COS (49)

where the adjoints p.., pa. and p;. are given by eqn (46).
The constants ¢, and c, in the solutions (47) and (48) can be evaluated by using
the outer solutions for « and v, eqns (20), applied at the initial conditions. Hence
W1
GT271+h, (50)
c,= 14+ h)u'?cos v,

where subscript i denotes the initial conditions.
The constants a;, a. and a; are obtained by matching the inner and outer
solutions for p., pa and p,.

a, =sin I;(d,sin }; — @, cos ;) + d,cos I,
a, = dz (51)
as= a, sin {; + a, cos ().

Finally, either set (a., as) or (44, as) can be used as the remaining independent
constants of integration. They are related by matching the solutions for p, and p,.
We have the relations

as - _ as alcz\/[2(cl + 1) — sz]
et D M Rt D 2eit DRerc 1) (52)
and
L V2 + D —¢’] 2ai(ci+eici+1)
- C2 (2C1Cz2 + 1)
_[4as - \/(2(& +1)— ci))""‘”’" _2K%(ci+ 1)]”2
= [F’ (1 =BV 2@+ Tt ¢
where the constant K is the limit of K for large &, that is
=  sina sin a
K =a, tanl G T 7 + as;cos a. 54)
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The limiting constant value « is provided by

_ _ sz - 1
cos{a —cy)= MV(ZC,CZZ D (55)
with ¢; obtained from the initial conditions applied to the outer solution
2
Cs 1 (56)

cos (@i~ ¢3) = o A YA+ k) Ve e+ 1)

In summary, the optimal solution contains 5 arbitrary constants of integration a,
and depends on the five initial conditions «;, £, I, u and 7.

A check of the computational steps presented above will convince the reader
that the a; and the ¢; can be expressed explicitly in terms of the a; and the x; for
any arbitrary n. Hence, although somewhat cumbersome, the optimal solution can
be expressed explicitly in terms of five constants of integration a;, of the five state
variables a, Q, I, u, y and their initial values, and the independent variable h.
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