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INHOMOGENEOUS 14 WNZ)k,,,, and [D, M(N,Z)h,,,,, then the resulting 
PARTIAL DIFFERENCE EQUATIONS 

Many mass equations M(N,Z) are obtained as 
analytic expressions from nuclear-structure considera- 
tions. While the underlying theory or model, such as the 
liquid-drop model or the shell model, establishes the 
analytic form of the equations, some of the parameters 
contained in the equations are generally not, or only 
poorly, predicted by the theory. These parameters are 
subsequently determined by minimizing the differences 
M(N,Z) - M,,,(N,Z) for all known masses. 

A different approach by means of inhomogeneous 
partial difference equations is described in the present 
contribution (see Refs. l-3 for details). If M,,,,,(N,Z) 
represents the exact masses of all known and unknown 
nuclei, the objective is to find a mass equation M(N,Z) 
which satisfies 

solutions Mr(N,Z) and M,(N,Z) of the inhomogeneous 
partial difference equations 

and 

D, M(N,Z) = PT MNZ)k,,,, (4) 

D, MNZ) = P’L WNZ)k,,, (5) 

must satisfy M,(N,Z) - M&N,Z) =. 0 for all values of N 
and Z for which both solutions are unique. This is a 
necessary condition, and the degree to which it is vio- 
lated, particularly for neutron-rich and proton-richnuclei, 
makes it possible3 to judge the reliability of the underly- 
ing theoretical assumptions and with it the reliability of 
mass predictions. 

M(N,Z) = M,,,,(XZ), (1) 

[or more realistically, of course, M(N,Z) z M,,,,(N,Z)]. 
If D represents a partial difference operator, then 

Another possible approach2 for treating the two 
Eqs. (4) and (5) consists of finding those solutions which 
satisfy both difference equations simultaneously with 
the original boundary condition again replaced by the 
x2-minimization. 

D W&Z) = P ~(NZ)l.n,,,, (2) 

is also correct. We now invert the problem. If 
ID WNZ)L,,,, is assumed to be known from nuclear- 
structure theories and if the inhomogeneous partial dif- 
ference Eq. (2) has a unique solution M(N,Z), then 
wxz) = ~,,,,,uw). 1 n order to obtain a unique so- 
lution over a range of N and Z values, it must be re- 
quired (boundary condition) to reproduce all precisely 
known experimental masses M,,,(N,Z). It is concluded 
that very limited information about &&&N,Z) may be 
sufficient to derive an exact mass equation 

The theoretical contributions on the right-hand 
side of Eqs. (4) and (5) generally contain small errors. 
The solutions MdN,Z) and M,(N,Z) may therefore in- 
clude systematic errors which will become important for 
neutron-rich and proton-rich nuclei. Such systematic 
errors can be reduced2 if the solutions are subjected to 
constraints which, for example, ensure that the solutions 
satisfy charge symmetry of nuclear forces or ensure 
reasonable predictions for the Coulomb energies. 

Partial difference operators D, and D, have been 
constructed from operators **“A defined by 

“,“Af(N,Z) =f(N,Z) -f(N - m, Z - n) (6) 

Solutions M(N,Z) of the inhomogeneous partial 
difference equation 

(this definition differs slightly from that used in Ref. 3). 
The quantity 

D MNZ) = ID WW)k,,,, (3) 

based on approximate theories or assumptions for 
[D WW)k,,,, will describe the exact masses only 

I,,,(N,Z) E l>OA O,‘AB(N,Z) = --l,OA O,‘AM(N,Z) (7) 

approximately, M(N,Z) ,” M,,,,,(N,Z). The earlier 
boundary condition has to be replaced by a x2-minimi- 
zation of the differences M(N,Z) - &i&,(&Z), and the 
range of validity is that for which Eq. (3) yields unique 
solutions. 

Furthermore, if two independent operators D, 
and D, can be found with theoretical predictions 

[B(N,Z) = binding energy] represents essentially the 
effective neutron-proton interaction1-4 Inp. The effective 
interaction Inp is responsible for the symmetry energy 
term in mass equations. Additional small contributions 
to Inp result from the neutron-proton pairing energy, 
from the Coulomb energy (since the isotope-shift coef- 
ficient of the nuclear-charge radius is generally different 
from zero), and from collective effects. Partial difference 
equations in accord with the above general considera- 

468 Atomic Dab and Nudem Data Tabler, WA 17, Nor. 5-6, May-he 1976 



J. JANECKE and B. P. EYNON Masses from Inhomogeneous Partial Difference Equations 

tions can now be obtained by considering the depend- 
ence on the neutron excess N - Z = 2T, and the nu- 
cleon number N + Z = A of the quantity Inp. We 
therefore define the transve:rse and longitudinal partial 
difference operators 

D,s -I,--lAl,oAo,lA (8) 

and 

D, E _ LlALoA’hlA. (9) 

For the contributions which vary smoothly with N and Z 
(or A and T,), Eqs. (7), (8), and (9) can be written 
approximately as 

a 
( 

a2 1 a2 = -___ ---- 
ar, aA 4 aT; 1 ’ 

(11) 

=-2aa2-raz 
( aA aA > 4@-’ (12) 

The inhomogeneous partial difference Eqs. (4) and 
(5) based on the operators of Eqs. (8) and (9) are sche- 

-+ 
z+ -= 

LB -+ 
N 

z +- 

@ 
- += 
+- 

N 

with In&NJ) E ’ 
N 

I theor 

I theor 

Fig. 1. Schematic representation of the transverse and longitudinal Fig. 2. Plot of the effective neutron-proton interaction I,,, derived 
inhomogeneous partial difference Eqs. (4) and (5) based on the from the experimental masses as a function of A by means of Eq. 
operators D, and DL of Eqs. (8) and (9). The boxes represent (7). The lines are calculated from the Bethe-Weizsacker liquid- 
nuclei from the nuclidic chart with N horizontal and 2 vertical. drop-model equation for nuclei along the line of P-stability (fig- 
The presence of a plus or a minus sign in a box indicates that the ure taken from the first article in Ref. 1; B-W parameters used are 
mass value of the respective nucleus is to be added or subtracted listed there) 

matically represented in Fig. 1. Included in the figure is 
the schematic representation of the definition for the 
effective neutron-proton interaction Inp from Eq. (7). 
The connection with the Garvey-Kelson nuclidic mass 
relations5 becomes quite apparent in this notation. The 
transverse and longitudinal Garvey-Kelson relations are 
represented by the homogeneous partial difference 
equations 

D, M(N,Z) = 0 (13) 
and 

D, M(N,Z) = 0. (14) 

Figure 2 shows about 500 values for &, calculated 
from Eq. (7) and the experimental masses of Ref. 6. The 
data are plotted as a function of A separately for even-A 
and odd-A nuclei. The even-A-odd-A effect has been 
explained by de-Shalit4 who showed that InP can be 
written in the form 

I,, = I, + (- 1)AI’. (15) 

Here, IO represents an averaged interaction between a 

odd-A 

.  .  .  

.  .  
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neutron and a proton in the outermost shells of an 
odd-odd nucleus while I’ accounts for the increased 
binding (pairing energy) in the ground state. The overall 
behavior is quite well described even by simple mass 
equations. The two lines in Fig. 2 are calculated1 for 
nuclei along the line of ,&stability from the Bethe- 
Weizsgcker liquid-drop-model mass equation. The ex- 
perimental evidence for the dependence on the two 
variables nucleon number and neutron excess is dis- 
cussed in Ref. 1. 

General solutions of the inhomogeneous third- 
order transverse and longitudinal partial difference 
equations 

- l,-lA*+“Ao,lAM(XZ) = [l,-lA&,(N,Z)lu,,,, (16) 

and 

-l,lA1,oAo*lAM(N,Z)= [lJAZ,,(N,Z)kbeor (17) 

[Eqs. (4) and (5) with (8) and (9)] consist of a particular 
solution of the inhomogeneous equation and the most 
general solution of the homogeneous equation. Solu- 
tions can easily be obtained if certain simple assump- 
tions are made about the A- and T,-dependence of 
&J&Z) = Z&A, T,) which convert Eqs. (16) and (17) 
inio homog&ous equations. If ZnP is assumed 
independent of T, or independent of A, then 

JqXZ) = g,(N) + g,(Z) + g,(N + a 

and 

MNZ) =&f,(N) -+JJZ) +fs(N - z> 

to be 

(1fO 

(19) 

are the most general solutions of the homogeneous 
transverse and longitudinal Eqs. (16) and (17), respec- 
tively. If ZnP is assumed to be independent of T, and A 
(separately for even-A and odd-A), then Eqs. (18) and 
(19) represent again the most general solutions, and the 
most general simultaneous solution is 

M(NZ) = h,(N) + h,(Z) + VAN - Z12 

+ Qoo + Q,, + 77‘$,, + %L~ Gv 

Here, g,(k),fi(k), and h,(k) are arbitrary functions, and 
the Q are arbitrary constants. The quantity a,, is unity 
for N = odd, Z = odd and is zero otherwise. The quan- 
tities a,, , S,, and S,, have similar meanings. The func- 
tions h,(N) and h2(Z) must contain nuclear and Cou- 
lomb energy contributions to satisfy charge symmetry of 
nuclear forces. Thus, 

h,(N) + h,(Z) = h,,,(N) + hnuc,(Zj + h,,,,(Z) (21) 
with 

h,,,,(k) = h,(k)> (22) 

h,,,,,(k) = h,(k) - h,(k). 
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The same is the case for the functions g,(k) and A(k) as 
well as for the functions Gi(k), Fi(k), and H,(k) intro- 
duced below. The functions g&k),h(k), and hi(k) can be 
determined from a x2-minimization to the experimen- 
tally known masses. Equations ( 18) and ( 19) represent, of 
course, the transverse and longitudinal Garvey-Kelson 
mass equations.5 Since the above assumptions are 
strongly violated near T = 0, the solutions can be used 
only for nuclei with N > Z (and N = Z = even). 

Many theoretical expressions for the right-hand 
sides of the inhomogeneous partial difference Eqs. (16) 
and (17) are easily available. Any given mass equation 
M,,( N,Z) contains terms which describe the dependence 
on T, and A of the effective interaction I,, . These terms, 
mostly contained in the expression for the symmetry 
energy, can be obtained by calculating the required 
difTerences. The underlying theoretical considerations 
for these contributions are, of course, those used in the 
derivation of the respective mass equation. The most 
general solutions of Eqs. (16) and (17) then become 

M(N,Z) 

= M,,(W) + G,(N) + QZ) + G,(N + Z> (23) 

and 

WNZ) 

= h&(xz) i- Fl(w + &(z) + F,(N - z). (24) 

The most general simultaneous solution is 

MN,Z) 

= I,, + H,(N) + f&(Z) + ql(N - Z)’ 

+ ~~~~~ + d, + a0 + 77.+soe. (25) 

Here, Gi(k), F,(k), and Hi(k) are arbitrary functions and 
the qi are arbitrary constants. These can again be deter- 
mined from a x2-minimization of the differences be- 
tween experimental and calculated masses for those 
regions of N, Z, N + Z, and N - Z for which experi- 
mental masses are known. While the expression for 
M,(N,Z) enters explicitly into the solutions (23), (24). 
and (25), the only quantities which these solutions and 
M,,(N,Z) have in common are certain third-order par- 
tial differences which are generally on the order of 
10 keV (see Fig. 5 of Ref. 1). 

CALCULATIONS AND COEFFICIENTS 

Computer programs have been written by us 
which make it possible to obtain the functions G,(k). 
F,(k), and Hi(k) as numerical values for each integer 
argument from systems of a few hundred linear equa- 
tions in a few hundred unknowns. Since use is made of 
sparse matrix subroutines, the computing time is only 
about ten seconds for a given equation on the University 
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of Michigan AMDAHL 47lOV/6 computer and about 
twice as long on the compatible IBM 370/168. 
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tron-proton interaction Znp on sheI!-model configura- 
tions becomes too important in light nuclei and cannot 
be neglected. The selection of the above solution is 
based on the standard deviations un and oe in conjunc- 
tion with their variation under constraints (see Ref. 2 for 
more details). 

Preliminary results for the transverse and longitu- 
dinal inhomogeneous equations according to Eqs. (23) 
and (24) have been obtained3 for several shell-model 
and liquid-drop-model expressions for Inp. The standard 
deviations urn between calculated and experimental 
mass-excess values are typically 110 keV and 200 keV, 
respectively. The consistency test mentioned earlier has 
been applied to a few cases.” Detailed results are availa- 
ble for the simultaneous solutions according to Eq. (25). 
Solutions have been obtainNed for 16 different assump- 
tions and theories about I,,(N,Z) including shell- 
mode17p8 and liquid-drop-modelg-I1 expressions. The 
standard deviations a,,, between calculated and experi- 
mental mass-excess values (N 2 20 and Z > 20) are 
typicahy 250 keV. However, it was found that the stan- 
dard deviations uc for reproducing the experimental Cou- 
lomb displacement energies were much bigger and 
ranged from about 650 to 1750 keV. The functions 
H,,,,(k) and Hc,Jk) display a divergent behavior. It 
was further observed that there exist strong correlations 
between the Coulomb energy and the symmetry energy 
terms. A misrepresentation of the former is always ac- 
companied by a misrepresentation of the latter thus 
affecting mass predictions for very neutron-rich and 
proton-rich nuclei. 

The functions H,(N) and H,(Z) were obtained 
from a slightly modified x2-minimization procedure by 
solving a system of about 220 linear equations in about 
220 unknowns. The new experimental mass values of 
Wapstra and Bos12 were used as input data. By quad- 
ratically adding 100 keV to the experimental uncertain- 
ties, values with uncertainties less than 100 keV are 
thereby given essentially equal weight, and reduced 
weight is given to those with larger uncertainties. 

Mass excesses bMN,Z) are calculated from 

A similar situation exists for the transverse Gar- 
vey-Kelson mass-equation.5 The standard deviation (J, 
for the differences between. calculated and experimental 
mass-excess values is about 120 keV, but the calculated 
Coulomb displacement enlergies exhibit deviations with 
u, z 2700 keV. 

(the S,, etc. are again Kronecker symbols) with 

AM,,(N,Z) = NAM, + ZSM, - B,,(N,Z), (27) 

Be& N,Z) = d - ,# (N -j 'j2 - yA"'3 + T) (N - Z)2 
A4/3 

- 8642 
i 
, _ 0.76361 2.453 

r&II3 22/3- ,$~2/3 I 

+ 7000 exp -6 IN-Z1 A 

+ 14.33 x 10-322.““. (28) 

Additional constraints were introduced in order to 
overcome this problem. Since the terms H,(N) and 
H,(Z) of Eq. (25) contain nuclear and Coulomb energy 
contributions, obvious constraints are H,(k) = H,(k) or 
0, = 0 which eliminate any modifications of the Cou- 
lomb energy or symmetry energy terms of M,,(N,Z). 
Results were again obtained from x2-minimizations for 
the various assumptions and theories about I,,. The 
functions H,,,,(li) z N,(h-) and Hc,,,(li) E H,(k) - H,(k) 
are now well behaved. Figure 3 shows an example based 
on the constraint TJ, = 0. The dependence of H,,,,(Z) 
on Z is smooth. and H ,,& N or Z) displays pronounced 
shell and pairing effects as expected. 

With the exception of the pairing energy term 
+(9600 keV)A-li2 which is replaced by contributions to 

Or’ the many new mass equations obtained, one 
was chosen for presentation in this contribution (refer- 
red to as solution S-C in Ref. 2). It is the simultaneous 
solution Eq. (25) of the inhomogeneous equations de- 
rived under the constraint n1 = 0 with the effective 
neutron-proton interaction Inp taken from the liquid- 
drop-model expression of Seeger.l’ It should be used 
only for A 2 65. The dependence of the effective neu- 

0 40 80 120 160 
N or 2 

Fig. 3. Plot of’ the functions F&,(X-) G H,(k) and H,,,,(h) s II,(k) 
- H,(k) for the simultaneous solution, Eq. (26) with Eqs. (27) and 
(28). of the inhomogeneous Partial difference Eqs. (4) and (5) 
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H,(N) and H,(Z), Eq. (28) is a binding energy expres- 
sion of Seeger.l’ The small third-order differences in the 

inhomogeneous partial difference Eqs. ( 16) and ( 17) 
depend essentially only on the symmetry energy terms 
with ,B and 17. All quantities are-in units of keV. 

Values of Coefficients 

hM, = 8071.43 keV. mass excess of the neutron 
AMH = 7289.03 keV, mass excess of hydrogen 

a = 15971.3 keV, volume-energy coefficient 
a = 30047 keV, first symmetry-energy coefficient 
y = 20806 keV, surface-energy coefficient 
TJ = 45350 keV, second symmetry-energy coefficient 
r0 = 1.16552 fm, charge-radius constant 

Tl= 0 keV, symmetry-energy parameter 
‘qr72 = q3 = - 108.0 keV, pairing-energy parameters 

T‘I = 7J5 = 0 keV, pairing-energy parameters 

The functions H,(N) and H,(Z) are given in the table. by J. H. Sanders and A. H. Wapstra (Plenum Press, 
The functions H,,,,(k) E H,(k) and H,,,,(k) s H,(k) London-New York, 1975) 
- H,(k) are displayed in Fig. 3. The standard devia- 
tion for the differences between calculated and ex- 
perimental mass-excess values (N 2 20 and Z 2 20) is 

(J?n = 289 keV, the standard deviation for the differences 
between calculated and experimental Coulomb dis- 
placement energies is ci, = 432 keV. About 5000 pre- 
dicted mass values for nuclei with A 2 65 are included 
in the tabulation. 
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It should be pointed out that multiparameter mass 
equations like the present one must be considered with 
some caution. It has been shown2 that x2 per degree of 
freedom (which characterizes the goodness of fit) over 
the domain of measured mass values generally decreases 
inversely with the number of parameters. However, very 
little can be inferred from a small value of urn alone 
about the expected reliability outside and particularly 
far away from the region of known masses. It is for this 
reason that other criteria2 including consistency tests3 
are important. 
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S. Liran and N. Zeldes, in International Conference 
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Boer and H. J. Mang (North-Holland Publishing 
Co., Amsterdam, American-Elsevier, New York) 
p. 322; S. Liran, Ph.D. thesis, Hebrew University of 
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TABLE. Functions H,(N) and H*(Z) in keV 

HI(N) 

‘. ii . VI *n c -1 . P.7 F.J 0.C 0 J 2.3 . .? 0 . 0.0 10 
I’ : . _. . * 1 

25:,:; 
- r 2 ? 2.6 . 

-,&:'; -1146.7 -32L6.0 
.:. 1 

-268G -5041.3 
6.C -1441.2 20 

712.4 -4?&.5 -3736.1 -4389.6 33 
.-;',7:, .' -35'C.U -197Ci.4 -2F18.3 -983.3 -2127.L -383.7 -167T.fl 17.3 -1378.7 40 

117.6 -7: ?5." -274.5 -2rov.c -13Ck.l -2458.9 -2353.4 -4658.3 -4484.3 -6924.9 53 
-5i2’.1 -5tb8P .4 -3?5h.l -42CB.Q -2718.1, -312C.7 -1341.,? -1751.13 -129.7 -968.3 6@ 

65?.-' -314.1 7793.5 lS3.7 146f .1 418.6 77Gl ‘1 392.0 1353.9 -146.7 7ti 
U?C .3 -1C62.T - 2 8 3 . " -2C57.2 -1471.1 -33f3.4 -2857.3 -4711.3 -4UV3.C -6351.0 83 

-6.259 ,I- -9'23.3 -Gl86.7 -6213.4 -$696 ..I -?r,f5.7 -3468.7 -3845.2 -2456.1 -3626.9 90 
-79 3: ;" -U:O?.l I 3 j i‘ J .- 

-:f3;e:1 
-4547.9 -31̂ 17.5 -SI,l.C -4438.6 -5523.9 -4988.3 -5904.5 100 

-545F.S -6321.5 -c:35.; -5335.7 -6772.7 -6279.4 -7237.3 ..656(i.4 -7130.5 110 
-'!fqr ,' 

-7lPV2:; 
-74h? .l -hR93.? -8lQ4.4 -7912.7 -9447.u -9127.6 -1C482.3 -1043ti.2 -11887.8 12G 

-1311El.C -134e2.e -14981.5 -15147.7 -15928.4 -14118.': -13648.3 -72'315.9 -11973.7 13c 
-1C*5?.4 -1nE38.Q .-977G.L -9911.3 -931Y.2 -7ic4 . 5 -9136.5 -9777,: -9013.3 -9756.8 140 

--"UYtT .3 . l’“i4.3 -9486 .n -1Pfl2k.3 -9591 .a -0fTfifi.c -3377.3 -9803.4 -9352.4 -9037.u 152 
-"13E.3 -c-799.5 -"?C'7.7 -9264.8 -8120.4 -d734.8 ; . J II , 9 0.c 3.3 160 

0.0 0 .o 0 .o 0.0 0.0 1p 
0 .o 0 .o 0 . 0 

0.0 0”:: 0.0 
0.0 0.0 

0.0 2; 
0.0 0.0 -1441.2 2r\ 

751r,5 -532.7 733.5 -852.5 f33.z -1625.3 -564.5 -2485.3 -788.7 -1203.5 3c 
:19.1 -738.1 16li.l 562.7 2186.5 043.3 2239.3 87J.2 1967.4 657.2 40 

21ST.7 Jj>.r, lR13.j -7.3 320.3 -1L 33.9 -263.6 -2174.3 -7445.4 -3571.0 5c 
-1171 .3 -222?.' -FZ'..E -1606.r 7 S '4 . ij 17C..2 2125.3 1657.3 3264.4 2515.1 6G 

'?EO.l 2?97.7 4168.C 3139.7 4232.6 328C.8 4376.3 3633.3 4633.5 3969.2 7u 
5' 3P .? YL76.IJ 5236.6 43p9.3 511.8 433r.5 5325.4 4c79.7 4416.e 3024.8 8C 
3192.7 2'8'7.6 3956.7 4372.E 52117.5 6323.1 7899.6 7711.4 8786.e 8198.5 96 
??23.? 7511 .5 7VE2.3 68i5.4 7?9l; .6 6ClC.tl 6286.2 5216.3 5460.8 4502.9 100 

The first line gives H,(l), H,(Z), H,(lO); the second line , gives H,(ll),H,(12), ,H,(20), etc. 
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