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Abstract--In analyzing erosion of graphite at high strain rate (-IO’ sec ‘) and temperature (-4OOO”C), it is necessary 
to have some approximation for the constitutive equation. Data for graphite from static and low strain rate 
experiments were successfully correlated using the equation &T/DhG = C’(n/G)” which describes the flow of 
many metals and crystalline ceramics. Solution of the above equation for several specific cases of interest in 
hypersonic rain erosion at high temperature gives values for flow stress of from 2 to IO kbar. Changes in temperature 
of about 500°C or strain rate by a factor 100 shift this value by more than 50%. 

1. INTRODUCTION 

Graphite is a candidate material for use at extremely high 
temperatures, and one important limitation is its erosion 

resistance for such applications as turbine components 
and nose cones. Of interest with respect to the theoretical 
understanding of the erosion problem is the appropriate 
constitutive equation for the substrate material under 
typical conditions. Among several possibilities is that of 
dislocation motion controlled deformation. Here, we 
investigate the possibility that such a flow behavior 
describes the deformation of ATJS graphite. This would 

both provide a possible rate equation for testing by 
computer codes in simulating erosion and would provide a 
basis for comparison with other constitutive equations to 
aid in deciding the actual deformation mechanisms of 
graphite under high velocity impact loading. An ancillary 

feature is a direct comparison of graphite flow behavior 
with that of metals and crystalline ceramic materials. 

2. COWAMSOU OF GRAPHITE WITH METAL AND CERAMIC‘ 
CRYSTALS 

It is of interest to investigate the possibility of 
calculating the flow of graphite under some extreme 
conditions typical of those encountered by graphite 
subject to erosion by hyper-sonic impact at high 
temperatures. Such conditions are typified by strain rates 
up to 10h-lO’sec_ and temperature of 4000°C. Experi- 
mental measurements under these conditions are obvi- 
ously difficult and the application of usual strength data 
should lead to appreciable error. 

At elevated temperatures many metals and crystalline 
ceramics follow a rate equation of the form[l] 

c x &f(T) (1) 

where i is strain rate, D is resolved shear stress, and T is 

absolute temperature. Expressed in dimensionless 
form[l], guided by the fact that these materials deform by 
dislocation mechanisms involving vacancy diffusion, the 
equation assumes the form 

ikT/DbG = C’(a/G)” (21 

where k is Boltzmann’s constant, D is the self-diffusivity 

of the material in question, b is the dislocation Burgers 
vector, G the shear modulus and C’ is a constant. 

Figure 1 presents data which fit eqn (2), assembled 
from extensive results for a number of metals[l]. plus 
data for magnesia[2], alumina[3] and several alkali 
halides [4]. A further expectation of the correlation in Fig. 
1 is that materials with high stacking fault energies tend to 

lie on the low stress side of the range of observations, 
while those with low stacking fault energies lie on the high 

stress side. This expectation has been quantified [ 1,4], but 
in view of the great uncertainties in values for stacking 
fault energies[S], the details are not presented here. On 
the basis of the qualitative correlation, however, graphite 
would be predicted to fit on the high stress side if it is 
deforming by a dislocation mechanism analogous fo the 
crystalline materials. The stacking fault energy of 
graphite[6] is 0.7 erg/cm’ vs a range from I5 erg/cm’ 
(silver) [7] to 390 erg/cm* (LiF) [4,8] to -1100 erg/cm’ 
(tungsten)[5,9]. 

Indeed, data for graphite[lO] correlate very well with 
this prediction as indicated in Fig. 1. This data is primarily 
for ZTA graphite, but limited tests on ATJS graphite agree 
quite well with the data. 

Both of these grades are fine grained, premium 
materials in terms of manufacturing defects and have a 
very well developed graphitic structure, which means 
their properties are extremely anisotropic on the atomic 
scale. In well developed graphite crystallites the crystal 
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Fig. 1. Strain rate-stress correlation. D = D,, exp (-Q/U) exp 
PV/kT; D, = 1 cm*/sec[ll]; Q = 277 kcal/mole[lO]; G = C, in 
basal plane = 2.3 x lOa’ dyn/cm2[12]; b =2446x lo-” cm for 
dislocation Burgers vector in basal plane[6]; n = 8[10]; P = 
hydrostatic component of stress tensor = -(o, + g2 + a,)/3; P = 
activation volume for diffusion= atomic volume of carbon = 
5.17 x 10mz4 cm’; o = maximum resolved shear stress = 
(0, - u4/2; ol, oZr o3 = principal stresses; v = Poisson’s ratio = 

The very high compressive stresses produced under an 
impacting projectile would initially close the void space. 
Further deformation would require some sort of atomic 
mobility. For this reason the correlation of Fig. 1 is based 
on steady state creep data at 25OO”C, with compressive 
stresses of 2000-8OOOpsi, and strains 30.10. 

One important implication of the correlation in Fig. 1 is 
that the graphite deforms at steady state in compression 
by dislocation motion, since it follows the same rate law 
as metals and crystalline ceramics which so deform. 
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structure is the well known hexagonal form[l3]. These 
crystallites are on the order of lO_‘cm in diameter. It 
should be remembered that the macrostructure of 
artificial graphites is composed of grains, each made up of 
many crystallites. In a fine grained material like ATJS 
(grain size -15 x 1O-3 cm) there are many millions of 
crystallites per grain. As a result, there is always a 
substantial amount of micropore volume ranging in size 
from several hundred angstroms downwards. The ZTA 
grade is subjected to a hot deformation at very high 
temperatures during its manufacture. This process 
squeezes the grains together, rotating them so as to 
eliminate almost all the macropores, but giving a material 
that is. highly anisotropic on both the micro and macro 
scales. This results in superior creep properties in 
directions parallel to the average basal plane orientation. 

The carbon materials other than diamond all have 
varying amounts and distributions of voids, which are 
really more like built in cracks due to the inherent space 
filling limitations of a multigrained layered structure. It is 
therefore very easy to see how the mechanical property 
measurements are dominated by the manner in which an 

external load opens or closes up the spaces. The 
macroscopic strains may be largely made up of crack 
opening displacement which may be largely reversible. 
Such recovery of creep strain has long been noted in 
graphites. Recovery of compressive strain under a 
hardness test is also well known. Tensile creep data vary 
with 4, the angle between the axial load-force direction 
and the mean crystallographic c-axis orientation of the 
graphite. For $J = o”, tensile creep rates are a factor of 10’ 
larger than compressive creep. This may be visualized as 
slowly opening the microcracks and extending them into 
one another. Compression, on the other hand, would tend 
to close these voids as well as the macropores so as to 
finally force deformation to take place within the 
crystallites. This picture would predict the observed 
coincidence of tensile and compressive creep for I#J = 90”, 
where relatively little of the easy crack opening displace- 
ment could occur. 

We consider five explicit cases. In all cases, uniaxial 
strain ej is assumed, corresponding to impact of a 
semi-infinite plate in the x3 direction, so (T, = a2 # m3. The 
best guess at typical conditions is T = 4OOO”C, 6 = 
lo6 set-’ as a near maximum imposed strain rate, Case A. 
Cases B, T = 3500°C and C, T = 25OO”C, both with E = lo6 
were selected to show expected variation with tempera- 
ture. Case D, T = 4Ooo”C, i = 10’ set-’ was selected to 
indicate variation with strain rate. Finally, Case E with an 
“apparent” artificial modulus “G” = 1OOG was selected to 
show a possible equation for prismatic dislocations with a 
concordant much higher shear modulus Css. For conveni- 
ence, eqn (2) is recast in the form 

u/G = C(ikT/DGb)“” (3) 

C was computed from the data in Ref. [lo] and Fig. 1 to be 
0.0148. The explicit equations for the various cases then 
assume the form 

*(al - oj) = a exp [C(2u1 + Us)] 

with the parameters as given in Table 1. 

(4) 

Table 1. Data for various cases of eon (4) 
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Table 2. Data for five solutions of eqn (4). (+) and (-) correspond to the two solutions for each case. Stresse, are 
given in kbars 

a 

(+)g, (-)a, 

5.31 -5.33 

-4.63 -15.40 

-14.56 -25.46 

-24.50 -35.53 

-34.43 -45.59 

-44.36 -55.66 

-54.30 -65.73 

-64.23 -75.80 

-74.16 -85.87 

-84.09 -95.94 

-94.02 -106.01 

103.94 -116.09 

113.87 -126.16 

123.80 -136.53 

133.72 -146.31 

143.65 -156.39 

153.57 -166.46 

163.49 -176.54 

173.41 -L"6.62 

183.34 -196.70 

193.26 -206.78 

203.17 -216.86 

213.09 -226.95 

223.01 -237.03 

232.92 -247.12 

242.84 -257.20 

c 

(+)a, (-)a1 

32.90 -34.17 

23.45 -44.76 

14.01 -55.37 

4.58 -G5.99 

-4.84 -76.61 

-14.25 -87.25 

-23.65 -97.90 

-33.04 -108.5, 

-42.43 -119.24 

-51.80 -129.93 

-61.16 -140.63 

-70.5L -151.34 

-79.85 -162.06 

-89.16 -172.80 

-98.53 -183.55 

-LO,.80 -194.31 

-117.10 -205.09 

-126.J8 -215.R8 

-135.66 -1'6.68 

-144.92 -237.50 

-154.17 -248.34 

.163.40 -259.19 

-172.63 -270.05 

-181.84 -280.94 

-191.04 -291.83 

-200.22 -302.75 
- 

D E 

(+)@a (-)a> (+)o, (-:c> 

4.19 -4.21 315.0, -315.17 

-5.76 -14.25 305.10 -325.60 

-15.72 -24.30 295.13 -335.84 

-25.67 -34.34 2SJ.13 -345.8, 

-35.63 -44.39 275.23 -35'."3 

-45.58 -54.44 265.2, -365.94 

-55.53 -64.48 255.27 -3,'.9, 

-65.48 -74.53 245.33 -,86.00 

-75.44 -84.58 235.33 -3'J6.04 

-85.39 -94.63 225.37 -406.31 

-95.34 -104.68 215.40 -116.10 

.105.29 -114.73 205.43 -426.14 

.115.24 -124.78 195.4, -43b.?, 

.125.19 -134.83 185.50 -446.20 

.L35.14 -141.88 L7S.53 -456.14 

.L45.09 -154.93 165.57 -466.2, 

.L55.03 -164.98 155.60 -4,b.il 

-164.98 -175.04 Llj.61 -411'..34 

.1,4.93 -185.09 135.61 -‘I :6.?, 

.184.8, -195.15 125.70 -506.41 

.194.82 -205.20 115.73 -516.44 

-204.76 -215.26 135.7, -516.4, 

-214.71 -225.3, 95.80 -53i,.jL 

-224.65 -235.37 65.E3 -546.k.4 

-234.59 -245.43 75.8, -5TC.5, 

.244.54 -2 b5.48 65.90 -566.61 

The results of computer calculations of eqn (4) are 

presented in Table 2 as values of ui for the two solutions 
of eqn (4) for given values of u,. The + or - in eqn (4) 
correspond to the respective solutions where u, > oi and 
UI < 03. 

Work by McClintock[l4] on erosion indicates that 

other constitutive laws give values of 10, - (~~1 in the range 
roughly 2.3-10 kbar. The results in Table 2 show that the 
typical Case A gives results, (u,- uj/ -3.2 kbar, very 
close to the lower band of these other equations. 
Comparisons with the other cases show that changes in 
temperature of 500°C or changes in strain rate by a factor 

of 10’ can shift the value of IuI - uII by more than 50%. 
Hence, the typical constitutive equation for the present 
flow case gives results of the order of the other possible 
constitutive equations; moreover, moderate changes in 
the typical parameters can shift the results to the lower 
bound of the other possibilities. 

Gilman [ 151 has discussed both empirical and theoreti- 

cal evidence to support a relation between the hardness, 
H, and the dynamic compressive yield stress, Y, for brittle 
materials. The empirical relation is 

H=?.lY. (5) 

Gilman calculates H = 1+3Y for silicon. In a very recent 
paper Oku and Eto[ 161 show data for a large number of 
graphites that are in remarkable agreement with eqn (5). 
Their correlation between compressive strength and 
Vickers hardness yields 

H = 2.27u,. (6) 

Using Gilman’s relationship for calculating hardness from 

glide plane stiffness, G,,, 

H = O.l67G,,> (7) 

yields, with C, = CR, = 2.3 x 10”’ dyn/cm’, H = 
39 kg/mm’. 

Kegley and Leslie [ 171 measured the Knoop indentation 
hardness to be 34 for penetrating pyrolytic graphite sheet 
with the long axis of the indentor parallel to the layer 
structure. This result indicates that the low temperature 
modest strain rate compressive deformation of graphite 
can be calculated with the ordinary notions of plastic 
deformation. Using the calculated hardness together with 
eqn (5) gives 

Y = 1.8 kbar 

which compares well with the deductions from the 
correlation of Fig. 1 at high temperatures and high strain 
rate. It is interesting to note that the hardness for a knoop 
indentor forced into the layer structure with its long axis 
in the “C” direction is about lOOkg/mm’ which would 
give Y = 4.6 kbar, while for a lamellar pyrolytic carbon 
with a layer structure, but not necessarily with graphite 
stacking regularity, the average Diamond Pyramid Hard- 
ness was -200 kg/mm’ which corresponds to Y = 
9.2 kbar. It is difficult to predict whether the highly 
amorphous forms of carbon could be treated in the same 
ways. 

Since Drucker [18] has shown the relation of compres- 
sive strength to erosion resistance, it would be extremely 
valuable to have some simple method of estimating this 
property at the conditions of stress, strain rate, and 
temperature of interest. 



22 J. P. HIRI :H et al. 

The preliminary results presented here indicate that at 
least for highly graphitic materials the hardness might be 
used to estimate the compressive flow stress and that 
corrections for temperature and strain rate might be 
applied on the basis of Fig. 1, and eqn (2). 
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