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Counting Strategies and Semantic Analysis 
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University of Michigan 

This study examined strategic and semantic aspects of the answers given by 
preschool children to class inclusion problems. The Piagetian logical model for 
class inclusion was contrasted with an alternative, problem processing model in 
three experiments. A major component of the alternative model is an enumeration 
strategy which is advantageous for learning reliable counting skills. The counting 
strategy was found to explain the inclusion errors of young children better than did 
the logic of the task. It was also found that young children understand the semantics 
of inclusion but are unable to coordinate their semantic knowledge with their 
counting strategy. Methodologically, one of the experiments suggested a fruitful 
extension of task analysis (Simon, 1%9) to experimental design. 

The class inclusion problem occupies a central place in the Piagetian 
theory of cognitive development (Piaget, 1970). In this problem, a child 
must compare the numerosity of a part or subclass with that of its 
superordinate whole or supraclass (e.g., more dogs vs. more animals). 
When making these comparisons, young children commonly, but 
mistakenly, name the included subclass as more numerous. Genevan 
psychologists, in their more recent studies, have used this problem to 
examine children’s competence in logical reasoning (Inhelder & Piaget, 
1964; Inhelder & Sinclair, 1969). This view of class inclusion as a logical 
problem contrasts somewhat with Piaget’s earlier (1952) analysis, in which 
children’s performance on class inclusion was compared with their ability 
to conserve number. The present study returned to the earlier view by 
using the inclusion paradigm to investigate the development of enumera- 
tion skills, These skills were also examined for their interaction with 
semantic processes that mediate the resolution of verbally communicated 
problems. 

PIAGET’S LOGICAL MODEL 

Piaget’s model of inclusion performance is formalized as the logical 
operation: 

(A +A’ =B)-(B -A’ =A). 
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COUNTINGANDCLASS INCLUSION 6.5 

Here the letters indicate classes, the equations within parentheses indicate 
relations among classes, and the double arrow indicates that two 
classification schemes are reversible or interchangeable. For example, the 
logically equivalent schemes might be (the dogs plus the cats equal the 
animals) on the left side of the operation, and (the animals less the cats 
equal the dogs) on the right side. Inclusion errors are said to arise from the 
absence of a fully reversible operation. Once young children have 
decomposed the whole into parts by applying the operation from left to 
right, they are not free to recompose the whole by applying the reverse 
operation from right to left. They are thus unable to compare the 
numerosity of a decomposed part with that of its recomposed whole. (For 
elaboration, see Flavell, 1963, pp. 172-176, 190-191; Piaget, 1970.) 

Taken literally, this model implies that inclusion problems having the 
same logical structure should all elicit the same pattern of errors from 
young children. Empirically, however, there is wide variation in 
performance on problems having this basic structure (Klahr & Wallace, 
1972a). Admittedly, even Inhelder and Piaget (1964) do not interpret the 
model so strictly, but neither do they offer a qualifying amendment to their 
logical equation. Furthermore, no detailed description has yet been given 
of the psychological processes that accomplish the logical reversal. These 
deficiencies suggest the need for an alternative model. 

A PROBLEM PROCESSING MODEL 

The model to be proposed here emphasizes two aspects of problem 
processing: semantic analysis and the use of goal-directed strategies. 

Semantic Analysis 

As used in this model, semantic analysis indicates processes that 
translate strictly grammatical analysis into a characterization of the 
relevant problem-space. For example, given the verbally posed problem 
Are there more dogs or more animals? a strictly grammatical analysis 
would reveal, among other things, that more modifies both dogs and 
animals. Of course, such grammatical comprehension would hardly be 
sufficient to solve the problem. There must also be a semantic analysis to 
interpret the phrase more dogs or more animals as requesting a quantitative 
comparison of two classes. In addition, it would be necessary to determine 
from context the intended reference of dogs and animals. These nouns 
might refer in one context to concrete classes shown in a picture, while they 
could refer in another context to abstract classes mentioned in some 
immediately preceding conversation. 

When viewed in this way, the result of semantic analysis may be said to 
be twofold. A start-state is defined which identifies the referential and 
contextual sources of relevant information from which a solution may be 
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extracted. In addition, an end-state is defined which specifies the goal that 
must be reached for the problem to be solved. For the example given 
above, the start-state might be that the relevant dogs and animals were 
those shown in a picture. The end-state would be the achievement of two 
quantifications that need only be precise enough to determine which of the 
two classes is more numerous. In the experiments reported below, 
problems were examined which had similar start-states but different 
end-states, or the reverse. 

This view of semantic analysis differs from that used by other 
investigators of class inclusion. For both Hayes (1972) and Markman 
(1973), semantic analysis was concerned with the assignment of meanings 
to individual key words in the inclusion question. Here, in contrast, 
semantic analysis refers to the more integrative meaning assigned to the 
verbal statement of the inclusion problem as a whole. Moreover, this 
holistic meaning is characterized as the conjoint specification of a 
start-state and an end-state that are suitable for manipulation by a 
problem-solving system. A similar definition of semantic analysis has been 
proposed, and successfully implemented on a computer, by Winograd 
(1972). 

Goal-Directed Strategies 

Problem-solving strategies find a connecting path between the start-state 
and end-state that have been defined by semantic analysis. Strategies for 
finding goal-directed paths of this type are often used in models of artificial 
intelligence (Nilsson, 1971) and in research which simulates the 
problem-solving of children and adults by means of production systems 
(Klahr, 1973; Klahr& Wallace, 1972a; Newell & Simon, 1972). The present 
model, like a production system, assumes that a strategy either is stored in 
toto in memory or is assembled ad hoc from subroutines that are stored in 
memory. The relevance of strategies for class inclusion is that even when 
young children have correctly analyzed the semantics of the problem, their 
limited repertoires of enumeration techniques may only permit them to find 
false paths to the desired goal. The experiments reported below attempted 
to separate the semantic from the strategic components of inclusion 
performance. 

Essential Features of the Model 

Two counting strategies are assumed to form a developmental sequence. 
Strategy I, the earlier of the two, forbids double-counting. This constraint 
is assumed to derive from young children’s discovery that when they are 
attempting to determine how many members are in a class, they must 
exercise care to count each member once, but only once. For this reason, 
the child who is just learning to count should find it advantageous to use a 
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counting strategy that prevents any particular item from being counted 
twice. But a similar strategy, when employed for an inclusion problem, 
would lead the child to an incorrect solution. It would prohibit items 
counted as subclass members from being counted again as supraclass 
members. The postulated constraint against double-counting serves the 
same explanatory purpose as Piaget’s concept of irreversibility. However, 
in the problem processing model the child is viewed not as being deficient in 
logical capacity, but as preferring a counting strategy that is adaptive for 
learning to count but maladaptive for class inclusion. 

In actual use, a counting strategy might be applied to items appearing in a 
picture. Consider, for the sake of simplicity, a picture in which several dogs 
each exhibit a common patterriP, (dog-like) and several cats each exhibit a 
different patternP, (cat-like). Suppose that a child uses Strategy I to count 
the single class of animals in this picture. In this case, the child would first 
count the dogs, then the cats. The counting of animals would thus be 
reduced to two subproblems corresponding to the patterns PI and PO. 

This process of problem-reduction is an important feature of the model. 
The path from start-state to end-state is stepwise, proceeding by the 
successive reduction of higher and more complex goals to simpler goals. 

To achieve the reduction of a counting problem to subproblems, a child is 
assumed to use a SCAN operator. Briefly, SCAN is a recursive procedure 
by which an array of items is first scanned or inspected, then conceptually 
subdivided into mutually exclusive patterns. The termpattern is used in a 
very broad sense to indicate any organizational scheme, including 
appearance (e.g., color), relative location (e.g., spatial grouping), and even 
direction (e.g., left-to-right ordering over a specified range). Wohlwill 
(1968) and more recently Isen, Riley, Tucker, and Trabasso (1975) have 
reported that salient visual items and salient relations among items exercise 
an important influence on how children respond to inclusion questions. In 
view of these findings, it is assumed here that children use as patterns only 
the more prominent features of an array. For each such pattern or 
subdivision defined by SCAN, a SUBSCAN enumerates the correspond- 
ing subclass of items. Depending on the nature of the problem, an 
enumeration by SUBSCAN may be a precise numerical count, or it may be 
a roughly estimated count based on a perceptual judgment of length, area, 
or density. The flow-charts in Fig. 1 give more details, 

Empirically, there is evidence that young children do, in fact, subdivide a 
single class according to mutually exclusive patterns (Potter & Levy, 1968) 
and that their counting is more likely to be accurate when the class can be 
subdivided than when it cannot (Schaeffer, Eggleston, & Scott, 1974). 
Subdivision presumably helps the child to remember which items have 
already been counted and which have not. 

Using SCAN to accomplish a subdivision may be helpful to the child in 
an additional way. Suppose that the child wants to determine whether there 
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FIG. 1. Flow-charts for SCAN, SUBSCAN, and MATCH. Key to terms: P* is a set of 
patterns P (e.g., the patterns dog-like and cat-like). T* is a set of verbal targets T (e.g., the 
targets animals and dogs). NIL is the empty set. N( T) is the cumulative count of T. Initially 
all N(T) = 0. 

are more dogs or more cats, given the same picture as before. This problem 
requires a comparison of disjoint classes, so a subdivision to the mutually 
exclusive patterns P, (dog-like) and P, (cat-like) would clearly be 
appropriate. Strategy I could again be used to advantage. 

Recognizing the utility of this strategy for solving counting problems of 
various types, perhaps the child would be inclined to use it indiscrimi- 
nately. Suppose, as a final example, that the child is shown the same picture 
again and is asked whether there are more dogs or more animals. This is an 
inclusion problem. A subdivision by Strategy I would in this case yield a 
pattern PI (dog-like), which could properly be counted as the dogs, and a 
separate pattern P, (cat-like), which could coincidentally be counted as the 
animals, because cats are indeed animals. The unfortunate result would be 
a comparison between dogs and cats, not the intended one between dogs 
and animals. Strategy I, then, will produce a solution for an inclusion 
problem, but the solution is erroneous. 

One way the child could achieve a correct solution would be to use a 
counting strategy that employs SCAN more than once. One SCAN could 
count the total class of animals, as in the first example discussed above; 
another SCAN could count the dogs; and the respective totals could then 
be compared. This procedure is the essence of Strategy II, which is 
assumed to be developmentally more advanced. Strictly speaking, this 
counting method does not require that any logical inference be made. Its 
repeatable use of SCAN, however, is an approximate analog of the 
Piagetian concept of full reversibility. 

The greater complexity of Strategy II may be one reason for its later 
appearance during development. Necessitating an initial use of SCAN in 
one manner and its immediate reuse in another manner, Strategy II would 
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very likely require greater proficiency in problem-solving than Strategy I. 
More important, there is a very good reason why the young child might be 
reluctant to have anything like Strategy II available in a repertoire of 
frequently used problem-solving techniques, especially if the child’s skills 
in counting are still rudimentary. By permitting more than one use of 
SCAN on a particular problem, any such strategy would make the child too 
often vulnerable to errors of double-counting. 

This introduction to the problem processing model has intentionally 
omitted some details and ignored some difficulties that will be considered 
below. Hopefully, the essential features of the model are clear. The 
adequacy of the model was compared in three experiments with that of the 
Piagetian logical model. Consideration was restricted in these experiments 
to the causes of inclusion errors in very young children; the nature of older 
children’s proficiency in class inclusion was not examined. The subjects 
were all preschool children, 4 and 5 years of age. None had reached their 
fifth birthday in time to qualify for kindergarten. 

EXPERIMENT 1 

Parts (a) and (b) of Fig. 2 illustrate the two types of inclusion problems 
used in Experiment 1. Type (a), called concept inclusion, is a standard 
problem in which a pattern P, noticeably marks the subclass A (the boys), 
and a different pattern P, similarly marks A ’ (the girls), but no equally 
prominent pattern identifies uniquely the supraclass B (the children). This 
problem corresponds to the inclusion questionAre there more boys or more 
chifdren? Type (b) in Fig. 2, called percept inclusion, corresponds to the 

‘IF 

Suprocloss a 

Subclass A----------------( +Subcloss A’=( 

P-&----y--~ r&--l 

(0) Concept inclusion. Experiment 1 

‘r-a-----p--j -I;---’ 

(b) Percept mclusmn. Experiment I 
_--------------- 

1 f!!&@ gj&/$ 1 ‘p-g-q 

---- ---------- -- -------_1 

(c ) Both percept and concept inclusion, Experiment 3 

FIG. 2. Examples of problems for Experiments 1 and 3. 
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inclusion questionAre there more houses that have a door or more houses 
that have a window? In this case, the subclass A (houses having a door) 
corresponds directly to P, (door), and the supraclass B (houses having a 
window) corresponds directly to P2 (window). 

A literal reading of the Piagetian model predicts that performance on 
percept and concept inclusion should be the same, because they have the 
same logical structure (A + A ’ = B). The problem processing model, 
however, makes a different prediction. Since, in the case of percept 
inclusion, the subclass A is marked by two separable patterns P, and Pp, 
this class may be counted first as one pattern and then again as the other 
pattern. In this way, the subclass may be counted twice, even though each 
pattern is counted only once. There could be strict observance of the 
Strategy I constraint against the double-counting of patterns, yet the 
subclass A could still be correctly included in the enumeration of the 
supraclass B. Accordingly, it was anticipated that children who used 
Strategy I would perform well on percept inclusion, despite their poor 
performance on concept inclusion.’ 

A second hypothesis was also tested. Presumably young children prefer 
Strategy I,, but it may be possible to induce them to adopt a more advanced 
strategy under facilitating circumstances. As an attempt to provide such 
circumstances, a special procedure was used with some of the children, in 
the expectation that it would improve their performance. The procedure 
required the children to execute, just before the inclusion question was 
asked, a pointing sequence that did not involve overt counting, but was, 
nevertheless, isomorphic with the sequence of attention deployment 
characteristic of Strategy II. 

Method 

Subjects 

The subjects were 24 girls and 24 boys who attended nursery schools in Ann Arbor, 
Michigan. Six additional children from the same schools were excluded from the final sample 
because they failed to satisfy the performance criterion on a control task, as described below. 

Materials 

The stimulus materials were prepared on white cards, 13 x 20 cm, which comprised three 
distinct sets of problems. 

I. Five concept inclusion cards each depicted three children, approximately 4 x 1 cm. The 

’ Although performance on percept inclusion was expected to be better than on concept 
inclusion, it was still not expected to be perfect. Erroneous answers could result even on 
percept problems ifthe child using Strategy I assigned patterns to classes in a manner different 
from that shown in Fig. 2(b). For example, P, could be defined as (having both a door and a 
window), and P2 could be defined as (not having both), in which case the subclass A would 
mistakenly be found to be more numerous. In general, the assignment of patterns to classes is 
a problematic issue which the present model handles less well then would be desirable. 
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supraclass of three children included subclasses of either two identical boys and one girl as in 
Figure 2(a), or one boy and two identical girls. 

2. Five percept inclusion cards each depicted three houses, approximately 4 x 3 cm. Like 
the example in Figure 2(b), there were always two classes (houses having a door and houses 
having a window), of which one represented a supraclass of all three houses, and the other an 
included subclass of two houses. 

3. Four control cards were similar in construction. Their purpose was to assess the child’s 
ability to compare the numerosity of a class of three items with that of a class of two items, 
given mutually exclusive classes that did not require double-counting of particular items. 
There were thus five items on each card rather than three. Two of the control cards had either 
three houses with a door and two with a window, or the reverse, but no house had both a door 
and a window. For these cards the child was asked, “Are there more houses that have a door 
or more houses that have a window?” just as in the case of the cards for percept inclusion. The 
other two control cards had either two boys and three girls, or the reverse, and for these cards 
the subject was asked, “Are there more boys or more girls?” 

The restriction, in all problems, to comparisons of three vs. two was motivated by 
Gelman’s (1972) report that young children can accurately compare exact numerosities only 
for very small numbers. A child’s data were used in the analyses reported below only if that 
child demonstrated competence in making comparisons of this magnitude by correctly 
answering at least three of the four control questions. Of the 48 children who satisfied this 
requirement, eight gave three correct answers and 40 gave four. 

In all three sets of problems, the depicted items were arrayed along a horizontal line, with 
equal spacing between items. Within each set, halfthe comparison problems had items ofeach 
subclass contiguously juxtaposed (e.g., boy-boy-girl), while the other half had them placed 
discontiguously (e.g., boy-girl-boy). 

Procedure 

All subjects were shown all three sets of problems. The first card in each of the percept and 
concept inclusion sets was a familiarization card whose purpose was to ensure that the child 
could correctly match the descriptive name for a class with its pictorial representation. The 
child was shown the familiarization card first, and was asked questions of the form: “How 
many of these houses have a door? How many have a window?” and “How many boys are 
there here? How many girls? How many children?” Most subjects answered these questions 
correctly on their first attempt, but if not, the questions were restated more explicitly as, e.g., 
“Is that a// the children? Tell me how many are all the children?” One or at most two 
restatements of this type were always sufficient to elicit a spontaneously correct answer from 
each subject retained in the final sample. 

For half the children of each sex, the order of administration was percept inclusion, concept 
inclusion, control; for the other half, the order of the first two sets was reversed. The control 
set was always given last in order to prevent any potential effect it might have had of biasing 
the child toward making exclusive comparisons on subsequent inclusion problems. 

Half the children in each sex x order group were assigned to the no-pointing condition. In 
this condition, a child was simply asked the relevant comparison question for each card. The 
other half were given pointing instructions just preceding each inclusion question. The 
instructions were of this type: “Point and show me all the boys. (Pause) Now show me all the 
children.” If the child pointed incorrectly, prompting instructions were given, such as: “Is 
that nil the children? Show me a// the children.” The sequence of hand movements required 
by the pointing instructions was identical to the order in which patterns would be enumerated 
by means of Strategy II. 

The order of mention for the subordinate and superordinate terms was fixed for a given 
problem, but was counterbalanced across problems in each set. This order of mention was the 
same for the pointing instructions (if given) as for the comparison question itself. Within the 
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percept set it was possible to counterbalance whether houses that have a door or houses that 
have a window represented the supraclass and was thus the correct answer. Of necessity, the 
term children always named the correct answer in the concept set. 

Results and Discussion 

Preliminary analyses investigated sex differences and effects due to 
order of presentation. No reliable differences were found, and .95 
confidence limits indicated that the maximum population difference for any 
of the observed sex or order contrasts was not more than a single correct 
response. 

Confidence limits were obtained in other analyses as well, and these 
limits are reported below in the notation of the example 5 (4, 6) where 4 
and 6 are the .95 population limits for a statistic whose sample value was 5. 
All confidence levels are .95 unless indicated otherwise. 

Comparison of Percept and Concept Performance 

Or primary interest was the difference in performance within a subject on 
percept vs. concept problems. Achieved levels of performance were 
defined as the proportions of children reaching the criteria1 level of at least 
three correct answers for the four problems in an inclusion set. Table 1 
shows these proportions by pointing instructions and inclusion type. 
Reading across each row separately in Table 1, it can be seen that for both 
rows the confidence interval in the percept column does not overlap with 
that in the concept column. This nonintersection indicates that under both 
pointing and no-pointing instructions, reliably more of the children 
achieved the performance criterion on percept than on concept problems. 

As implied by these grouped data, individual children almost always 
performed better on percept inclusion than on concept inclusion. 
Eliminating the children who answered either all eight questions correctly 
or none correctly, the proportion of the remaining children who gave at 
least one more correct answer for percept than for concept inclusion was 
.88 (.73, .97), N = 43. 

These findings contradict a strict reading of the Piagetian model, since 
percept and concept problems having identical logical structures elicited 

TABLE 1 

PROPORTIONSOF CHILDREN ACHIEVING THE PERFORMANCE CRITERIONS 

Instructions Percept inclusion Concept inclusion 

Pointing .83 (.60, .%) .29 (.12, .56) 
No-pointing .63 (.40, .82) .OO (.OO, .16) 

n N = 24 per cell. The values in parentheses are .95 confidence limits. 
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clearly different patterns of performance. It might be argued, however, that 
the percept problems were less difficult because the children did not 
actually make class comparisons. Perhaps they counted doors and 
windows without ever comparing the class of houses that have a door with 
the class of houses that have a window. Some recognition of the classes 
must have occurred, however, at least at the level of a grammatical analysis 
which identified the full description of each class as a distinct noun phrase. 
If the children subsequently ignored the class aspects of the problem, they 
may have done so because they retained only the information that was 
vital for their use of Strategy I. This interpretation of the children’s 
performance is consistent with the view that inclusion questions actually 
test children’s counting strategies, not their skill in manipulating the logic 
of class relations. 

There were, however, methodological difficulties which made this 
interpretation uncertain. These difficulties were examined in Experiment 
3, and are discussed below in the section which reports that experiment. 

Effects of Pointing Instructions 

The effects of the pointing procedure were first examined by combining 
the percept and concept questions and computing the total number of 
correct answers given by a subject for the combined set of all questions. 
The mean number correct was greater with pointing instructions (4.9, 
s = 1.8) than without them (3.2, s = 1.4). A Mann-Whitney test revealed 
that this difference was reliable,z = 3.04,~ < .Ol. However, .99confidence 
limits indicated that the gain due to pointing could be negligibly greater than 
zero, and could be no more than three additional correct responses out of 
the total of eight questions. So although reliable, the effect was not 
impressively large. 

Returning to Table 1, the pointing procedure was also examined for its 
effect on the proportions of children achieving the performance criterion on 
each type of inclusion problem. For concept inclusion, reading down the 
right-hand column of the table, it can be seen that the confidence interval 
for pointing subjects overlaps somewhat with that for the no-pointing 
subjects. Despite this slight intersection, the improvement associated with 
pointing was reliable in the case of concept inclusion,p < .Ol by Fisher’s 
exact test (which is more powerful as a single test than the two separate 
confidence intervals). For percept inclusion, reading down the left-hand 
column of the table, the intersection of the confidence intervals was much 
larger, and the gain due to pointing was not trustworthy, Fisher’sp = . 10. 
There was no unequivocal indication in the data that the pointing 
instructions interacted in any additional way with sex, problem-type, or 
order or presentation. 

The gain due to pointing may have reflected the children’s momentary 
adoption of Strategy II, as hypothesized. If so, it is not surprising that the 
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effect was more reliable for concept inclusion, which virtually required the 
more advanced strategy, than for percept inclusion, which did not. 

Unfortunately, a weakness in the experimental design permitted an 
alternative interpretation of these results. The weakness was that the 
pointing sequence immediately preceded each comparison question; 
consequently, the children’s greater success could have resulted from 
memory for numbers counted covertly at the time of pointing. The 
hypothesis of immediate memory was unanticipated. Nevertheless, it is 
generally congruent with the problem processing model, for it implies that 
pointing prompted the children to count as they pointed, helping them in 
this way to separate the two classes as they counted and to keep the two 
totals separate in memory. 

Thus the original hypothesis and the memory hypothesis both conform 
to the problem processing model, although for different reasons. Neither 
hypothesis, however, seems consistent with the Piagetian model. There is 
no obvious way in which the pointing sequence could have served to 
correct a logical deficit. 

Of course, the two hypotheses are also inconsistent with each other, but 
a choice between them is not justified by the available data. It therefore 
remains to be demonstrated whether pointing provided a partial substitute 
for the advanced counting method, offering the children a manual analog 
which they could then use to guide their own discovery of the full strategy, 
or whether, instead, it provided a nearly complete substitute, requiring the 
children only to preserve the separate identities of previously computed 
totals. 

EXPERIMENT 2 

An essential feature of the SCAN operator, as illustrated earlier in Fig. 1, 
is its use of a MATCH routine.2 MATCH enforces the requirement that 
whenever a single SCAN is used, for example, to count the two classes of 
dogs and animals, each dog-like pattern must always be counted as a dog, 
never as an animal. A pattern is assigned by MATCH to the class which 
names the pattern most specifically, considering only the target classes 
which are to be counted during the current application of SCAN. 

An interesting prediction follows from this feature. It concerns a 
coextensive comparison in which the semantic supraclass and subclass are 
equivalent (e.g., all the available animals are dogs). In this case, Strategy I 
would first enumerate the subclass term, since every item would have to be 
MATCHed as more specifically identifiable by its subclass than by its 
supraclass name. But then the prohibition of Strategy I against 

’ The MATCH feature was motivated by a deficiency noted by Hayes (1972) in a produc- 
tion system designed as a model for class inclusion by Klahr and Wallace (1972a, 1972b; 
see also the modification of the model by Klahr, 1973). 
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double-counting would ensure that the count for the remaining supraclass 
term would erroneously equal zero. Children who use Strategy I should 
therefore resolve a coextensive comparison of this type by answering that 
the subclass is more numerous. Shown three dogs, for example, and asked 
whether there are more dogs, more animals, or the same number, they 
should always answer that there are more dogs, never that there are more 
animals or that the numbers are equal. Experiment 2 tested this prediction. 

Method 

Subjects 

The 11 children in Experiment 2 included all but three of the children who, in Experiment 1, 
had given a correct answer to every percept question and an erroneous answer to every 
concept question. This criterion ensured that the subjects in Experiment 2 were children who 
consistently counted as ifthey were using Strategy I. They had shown no tendency to guess or 
to use a nonsystematic strategy. 

Materials and Procedure 

The stimulus materials were 15 cards similar to the ones used in Experiment 1. Three sets 
contained five cards each: (a) concept cards with children (boys and girls), (b) concept cards 
with animals (dogs and cats), and (c) percept cards with houses (having a door and/or a 
window). The sets were presented to all subjects in the order just given. The problems within 
each set were of three types. 

2 + I Znclusionproblems. Presented on the first and third card in each set, these problems 
had a supraclass of three items which included complementary subclasses of two and one 
items (e.g., two dogs and one cat = three animals). The 2 + 1 problems were comparable to 
the ones used in Experiment 1, and their purpose was to assess whether the child’s current 
counting strategy would produce the same response patterns as before. 

2 + 2 Problems. Presented on the second card in each set, these problems were designed to 
determine whether the answer the same number was available in the child’s response 
repertoire. As the necessarily correct answer for any coextensive comparison, this answer 
must be available to the child as a minimum requirement for correct coextension performance. 
In the problems depicting animals and children, the 2 + 2 problems presented an inclusive 
comparison (e.g., dogs vs. animals, given two dogs and two cats = four animals). A child who 
did not double-count would give the Same number as an answer to an inclusion question of this 
kind. This answer would also be expected for an exclusive comparison of the percept type 
(e.g., houses having a door vs. houses having a window, given two houses having only 
a door and two houses having only a window = four houses). The 2 + 2 problems for 
the percept set were designed in this way. Consequently, the same number was the 
predicted answer for all the 2 + 2 problems. 

3 = 3 Coextension problems. Presented on the last two cards in each set, these problems 
had a supraclass of three items which was coextensive with a subclass of the same three items 
(e.g., three dogs = three animals). It was expected that the children would erroneously name 
the semantic subclass as their answer for each coextension problem in the two concept sets. 
However, because they had previously demonstrated competence in percept inclusion, the 
children were expected to correctly answer the same number for the coextension problems in 
the percept set. 

The comparison question was always phrased, “Are there more (class 1). more (class 2), or 
the same number?” The respective order of mention for the subclass and the supraclass was 
counterbalanced across questions in each set. At the very beginning of the experiment, and 
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before presentation of any comparison problems, the experimenter demonstrated with his 
fingers the meaning of the same number. 

Results and Discussion 

As just explained, specific responses were predicted for each of the 15 
questions asked of each child. The median number of the 15 questions 
answered by a child exactly as predicted was 14 (11, IS), p = .99. 

For the 3 = 3 problems in the concept sets, the predicted (incorrect) 
answer was the name of the semantic subclass. The median number of 
times a child gave this predicted but incorrect answer to the four questions 
of this type was 4 (3, 4),p = .99. 

Two lines of evidence implied that these consistently incorrect answers 
could not be attributed merely to the unavailability of the correct answer, 
which was the same number. First, for the comparable 3 = 3 coextension 
problems in the percept set, most children correctly answered the same 
number, as expected. There were only two of these problems, but eight of 
the 11 children answered both correctly. Second, the same number was also 
the predicted answer for the 2 + 2 problems, of which there were three. 
Here the median number of times a child gave the expected answer of 
equivalence was 3 (2, 3),p = .99. 

Finally, there was no marked indication that any child’s counting 
strategy had changed during the time between Experiments 1 and 2. In the 
present experiment, the 2 + 1 inclusion problems numbered six in all, and 
the median number of these six questions answered by a child in the 
expected manner was 6 (4, 6), p = .99. 

These results offered consistent empirical support for two components 
of the problem processing model. In support of the SCAN component, 
children whose inclusion performance suggested their use of Strategy I 
were indeed operating under a constraint against double-counting, and this 
constraint applied to coextensive as well as inclusive comparisons. In 
support of the MATCH component, these children identified the patterns 
they were counting as corresponding to the more specific class name, if 
two class names were available to be used. 

EXPERIMENT 3 

The primary purpose of Experiment 3 was to clarify the reasons for the 
difference observed in Experiment 1 between the percept and concept 
problems. One explanation of this difference was that some idiosyncratic 
property of the particular category used for the percept problems in that 
experiment (i.e., houses) may have made them easier than the concept 
problems which were drawn from a different category (i.e., children). In 
Experiment 3 this confounding of problems and categories was eliminated. 
Four categories were used, and for each category both a percept and a 
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concept problem were prepared. Part (c) of Figure 2, presented earlier, 
provides an example that corresponds to the category of grown-ups. 
Associated with this category were both (a) the percept problem Are there 
more grown-ups who have a picnic basket or more grown-ups who have a 
chair? and (b) the concept problem Are there more mothers or more 
grown-ups? A percept and a concept problem which are related in this 
manner have virtually identical start-states or sources of contextual 
information, because their pictorial representations are the same. Such 
identity of start-states minimized the likelihood that idiosyncratic 
properties of pictorial representations could cause a difference in 
performance between the two types of problems. 

Another possible explanation of the difference in performance con- 
cerned the child’s comprehension of semantic hierarchies. Whether 
percept and concept problems have different start-states as in Experiment 
1 or identical ones as in Experiment 3, their end-states are never the same 
because the target names for the supraclass and subclass always form a 
semantic hierarchy for concept inclusion, but never do for percept 
inclusion. So the difficulty may simply be that children are unable to reach 
an end-state which requires a semantic comparison. To test this possibility, 
additional inclusion problems were constructed in the form of simple 
stories. One such story was prepared for each of the four categories, and 
each story ended with a request for a semantic comparison identical to the 
one used in the corresponding concept problem. For example, at the end of 
one story was a question that asked whether there had been more mothers 
in the story or more grown-ups. 

The story problems were actually of two slightly different types. In 
story-picture problems the semantic inclusion question was accompanied 
by the same picture that had been prepared for the corresponding percept 
and concept problems. The story-picture problems were included for 
clarificational purposes that are described below with the appropriate data 
analyses. Of more immediate interest were the story-only problems, in 
which the inclusion task was purely verbal and was not accompanied by a 
picture. The solution to a story-only problem must be found by examining 
hierarchical relations in semantic memory, since the absence of pictures 
would prevent the application of any counting method. Nelson (1974) has 
reported that young children do in fact have hierarchical relations stored in 
semantic memory. It was therefore expected that children would succeed 
on the story-only problems. 

Two previous studies (Winer, 1974; Wohlwill, 1968) have reported that 
children’s performance was, in fact, better on purely verbal inclusion 
problems than on numerically identical problems that were presented with 
pictures. In these studies, however, the class relations in the inclusion 
problems did not always form a simple semantic hierarchy. An example of a 
simple hierarchy is (oranges + bananas = fruit). Instead, complex noun 
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phrases were occasionally used, as in the example (oranges + carrots 
= things to eat). In addition, the children in these studies were told the 
number of members comprising each subclass in a problem. As a result of 
these procedures, the children’s solutions may have been based in part on 
numerical comparisons or on contextual analyses of the meanings of noun 
phrases, rather than on inferences drawn exclusively from relations 
implicit in a semantic hierarchy. In the present experiment, the story 
problems contained only simple semantic hierarchies, and no numerical 
information was given verbally. 

To summarize, the design crossed four categories with four problem- 
types. The Piagetian model did not differentiate the problem-types, 
assigning the same logical structure to all of them. The problem processing 
model did differentiate them, making two important predictions. (a) 
Start-states were identical for a concept problem and its corresponding 
percept problem, and the concept problem was predicted to be more 
difficult. (b) End-states were identical for a concept problem and its related 
story-only problem, and again the concept problem was predicted to be 
more difficult. Confirmation of both these predictions would clearly imply 
that the difficulty of concept inclusion must reside neither in the properties 
of its start-state nor in those of its end-state. Rather, the difficulty would 
have to be in the mediating strategy. 

Method 

Subjects 

The subjects were 24 boys and 24 girls who attended nursery schools in Ann Arbor, 
Michigan. None had participated in Experiments 1 or 2. One additional child was dropped 
from the study because he failed on a warm-up comparison between a group of three items and 
a separate group of two items. 

Materials 

Four pictures were prepared, 13 x 13 cm, each representing a different semantic category. 
In each picture there were three members of the pertinent category. The inclusion question for 
a picture always required a comparison of this supraclass of three items with an included 
subclass of two items. The three items in each picture formed a nonlinear triangular array. 
Like the example in Figure 2(c), each picture could accompany either a percept or a concept 
question. 

The four categories, and the names associated with their supraclasses and subclasses, were: 
(a)grown-ups (two mothers with both a picnic basket and chair, one father with only a chair), 
(b) animals (two rabbits with both a carrot and pink spot, one turtle with only a spot), (c) 

fruit (two bananas which were both situated in a bowl and being cut by a knife, one orange 
which was only being cut by a knife), and (d) children (two boys with both a hat and an 
ice-cream cone, one girl with only an ice-cream cone). 

Procedure 
The instructions for the four types of inclusion problems are illustrated by those used for the 

cateogry of grown-ups. 
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Percept inclusion. Before showing the picture, the experimenter said, “This is a picture of 
some grown-ups. Some of the grown-ups have a picnic basket, and some of the grown-ups 
have a chair.” Then the experimenter presented the picture and said, “Do you see all the 
picnic baskets? Do you see all the chairs? Are there more grown-ups who have a picnic basket 
or more grown-ups who have a chair?” 

Concept inclusion. Comparable preparatory remarks came first: “This is a picture of some 
grown-ups. Some of the grown-ups are mothers, and some of the grown-ups are fathers.” 
Then came the pictures and these remarks: “Do you see all the mothers? Do you see all the 
grown-ups? Are there more mothers or more grown-ups?” 

Story-only inclusion. No picture was shown. Instead, the following story was told: 

This is a story about two girls. These two girls went to the park one day, to have a picnic. 
When they arrived at the park, they saw that there were lots of grown-ups in the park. 
Some of the grown-ups were mothers, and some of the grown-ups were fathers. Now do 
you remember the two girls? Well, one of the girls said, “I have an idea. Let’s go around 
the park and say ‘Hello’ to all the mothers.” So this girl wanted to way “Hello” to who, 
to all the -? Then the other girl said, “I have adifferent idea. Let’s say ‘Hello’ to all 
the grown-ups.” So this girl wanted to say “Hello” to who, to all the -? Now which 
girl do you think wanted to say “Hello” more times, the one who wanted to say “Hello” 
to all the mothers or the one who wanted to say “Hello” to all the grown-ups, to all 
the mothers or to all the grown-ups? 

At the two points in the story indicated by a blank line, the child was required to supply the 
correct answer. If necessary, preceding portions of the story were repeated or clarified, until 
the child could answer correctly. This procedure was intended to ensure that the semantic 
information relevant to the inclusion question had been stored in memory by the child, and 
was accessible. 

Story-picrure inclusion. Exactly the same story was told, but just preceding the inclusion 
question, the associated picture was presented with these instructions: “Now I’m going to 
show you who was in the park. Do you see all the mothers? Do you see all the grown-ups?” 
Then the inclusion question was asked with the same phrasing used in the story-only problem. 

Each child was given only four inclusion problems, with each of the four categories and each 
of the four problem-types appearing just once for that child. There are 24 distinct ways in 
which the four categories could be matched to the four problem-types. Two children, one boy 
and one girl, were assigned randomly to each distinct matching. 

It was necessary to counterbalance, across the children, both the presentation order of the 
categories and the necessarily related presentation order of the problem-types. An algorithm 
was employed which yielded the following scheme for the groups of 24 children of each sex. 
The categories appeared six times in each offour distinct orders which formed a Latin square, 
and the problem-types, which had previously been assigned to these categories, appeared just 
one time in each of the 24 distinct orders that were possible. Finally, for two categories the 
subclass was mentioned first for all children, and for the other two the supraclass was always 
mentioned first. 

Results and Discussion 

The four categories and four problem-types generated a contingency 
table with 16 cells. In Table 2 are shown the proportions of children 
assigned to each of these cells who answered the corresponding inclusion 
question correctly. When similar contingency tables were prepared 
separately for boys and for girls, the mean sex difference over the 16 cells 
was zero, and no difference between marginal proportions was greater than 
.13. Consequently, the data of boys and girls were combined in Table 2. 
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TABLE 2 

PROPORTIONS OF CHILDREN ANSWERING CORRECTLY BY PROBLEM-TYPE AND CATEGORY” 

Problem-type 

Category Percept Concept Story-only Story-picture 

Grown-ups .75 .42 .7.5 .75 
Animals .42 .08 .58 .58 
Fruit .58 .33 .58 .33 
Children .67 .08 .75 .50 

Marginal proportion .60 .23 .67 .54 
.95 limits (.46, .72) (.14, .36) (.53, .79) (.41, .67) 

a Data from a given child appeared just once in each row and once in each column. 
Consequently, N = 12 (six boys and six girls) for each cell proportion, and N = 48 for 
marginal proportions. 

Reading across each row in the table, it may be seen that the rank order of 
difficulty for problem-types was reasonably consistent from one category 
to another. 

A more rigorous test of this consistency was made by subjecting the 16 
entries in Table 2 to an analysis of variance. Problem-types were a fixed 
effect in this analysis, and categories (not subjects) were the random 
component.3 The effect of problem-types was significant, F(3,9) = 11.03, 
p < .Ol. Because the denominator for this F-ratio was the interaction 
between problem-types and categories, this finding supported the claim 
that here and probably also in Experiment 1, the differences among prob- 
lem-types were generalizable across categories. 

The comparative difficulty of particular problem-types was investigated 
more precisely than in Table 2 by means of the pairwise comparisons 
shown in Table 3. Each two-way classification in Table 3 is balanced in the 
sense illustrated by the following example. Exactly as many children had, 
e.g., the category of fruit for percept inclusion and the category of animals 
for concept inclusion, as had the reverse. 

Part (a) of Table 3 strongly confirms the prediction that the concept 
problems would be more difficult than the percept problems, x2 (1) = 13.5, 
p < .Ol (McNemar’s test of symmetry). It could be argued, however, that 
this difference in difficulty only indicated that the children guessed 
randomly on percept problems, which they may have found confusing, 
while giving systematically false answers to the concept problems. 

3 There was a slight but unavoidable dependency among the errors in this analysis, since 
any given subject contributed to four of the 16 proportions. This dependency was minimized, 
however, by the counterbalancing scheme which assured that within each sex, no two 
subjects appeared together in the same cell more than once. 
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TABLE 3 

TWO-WAY CLASSIFICATIONS FOR PAIRS OF PROBLEM-TYPES” 

Pair of problem-types 

Percept (P) 
Concept (C) 

Story-only (SO) 
Concept (C) 

Story-only (SO) 
Story-picture (SP) 

Story-picture 
(SP) 

Concept (C) 

P+ P- so+ so- so+ so- sp+ SP- 
c+ 8 3 C+ 5 6 sp+ 21 5 C+ 5 6 
C- 21 16 C- 27 IO SP- 11 11 C- 21 16 

(a) (b) (cl (4 

u Each of (a) through (d) is a two-way classification of children giving correct (+) and 
erroneous (-) answers for two problem-types. Total N = 48 children for each two-way 
classification. 

Returning to Table 2, presented earlier, it may be seen that the confidence 
interval of the marginal proportion for percept inclusion did not, in fact, 
reject the chance level of performance (SO). 

Additional data were available, however, which caused the guessing 
hypothesis to be rejected. These additional data came from the responses 
of the no-pointing subjects in Experiment 1 to the first percept problem 
only. The first percept problem under the no-pointing treatment in the 
earlier experiment was methodologically comparable to the percept 
problems in Experiment 3. Five categories were thus available. The 
corresponding proportions were .75 (N = 24) for the category of houses in 
Experiment 1 and the four values in Table 2 (each N = 12) for the 
categories in Experiment 3. Only one of these values is less than .50. 
Because the Ns varied, the categories were not combined. Instead, the five 
proportions were treated as data for a sample of categories, and were found 
to reject the hypothesis that the grand mean for all possible categories is not 
greater than SO, t(4) = 2.14, p < .05 one-tailed. The comparatively high 
level of success on percept problems was thus not an artifact of guessing, 
but, more likely, a systematic consequence of the counting strategy used 
by the children on these problems. 

Returning to Table 3, part (b) may be seen to provide clear confirmation 
of the prediction that the story-only problems would be easier than the 
concept problems, x2 (1) = 13.4, p < .Ol. Moreover, the earlier Table 2 
shows that more than half of the children succeeded on the story-only 
problem for each category. The marginal proportion in that table eliminates 
the guessing hypothesis. These findings imply that the children’s success 
on the story-only problems followed from their use of a semantic strategy 
based on the information implicit in simple hierarchies. Conversely, the 
children’s failure on the concept problems could not have been caused by 
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misunderstanding of semantic hierarchies, since the same semantic 
categories were used for both concept and story inclusion. 

If this interpretation is correct, then why did the children not use the 
same semantic strategy to find correct solutions for the concept problems, 
which employed the same semantic categories? One explanation is that 
when given the opportunity to use either the semantic strategy leading to a 
correct solution or a counting strategy leading to an erroneous one, the 
children simply made the mistake of preferring to count. If ,so, then the 
children should also have preferred counting over semantic inference on 
the story-picture problems, which permitted both strategies. These 
problems should then have caused poorer performance than the story-only 
problems, which permitted only the semantic solution. But part(c) of Table 
3 shows that the two types of story problems did not differ reliably, x2 
(1) = 2.25. 

An alternative explanation is that on concept problems the children 
never even recognized the possibility of a purely semantic solution. This 
hypothesis is supported by part (d) of Table 3, which shows that 
performance was reliably better on story-picture than on concept 
problems, x2 (1) = 8.33, p < .Ol. Both of these problem-types supplied 
semantic as well as pictorial information in the presentation of the inclusion 
task. Their semantic end-states were also the same. So the difference 
between them must have been strategic. Apparently, the story procedure 
made the pertinent hierarchies in semantic memory more accessible, or 
their relevance more noticeable (cf. Winer, 1974). 

IMPLICATIONS 

The main implication of these findings is that inclusion errors in young 
children may be more precisely represented as the outcome of 
problem-solving strategies than as a reflection of logical deficits. 
Methodologically, the success of the problem processing model suggests 
that a similar model might prove useful in other studies. 

Methodology 

The experimentally coordinated manipulation of start-states and 
end-states appears to be particularly effective as a method for investigating 
problem-solving strategies. It could provide researchers of cognitive 
development with a useful complement to the commonly used paradigm of 
training studies. Use of the method depends upon a precise analysis of two 
factors: (a) the sources of relevant information external to the subject, 
which constitute the initial conditions of the task, and (b) the minimal 
requirements for a solution, which constitute the terminal conditions of the 
task. The initial and terminal conditions are both under experimental 
control. Systematic manipulation of both factors within a single ex- 
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periment may help to elucidate the nature of the internal resources 
which constitute the subject’s problem-solving techniques. In essence, 
the suggested method is an extension to experimental design of an analysis 
originally applied by Simon (1969) to the methodology of artificial 
intelligence. 

The methods used in the present study were comparable in another way 
to those of artificial intelligence. Although the problem processing model 
was not actually implemented on a computer, it could have been. Using 
methods proposed by Nilsson (1971), a more technical version of the model 
was developed than has been presented here. The precision demanded by 
this technical enterprise was instrumental in suggesting the hypotheses that 
were subsequently supported by the experiments. Indeed, even the less 
detailed model presented here may suggest additional hypothesis which 
could be tested. Arguments have often been advanced for the potential 
value of technical models in the study of cognition and cognitive 
development (e.g., Klahr, 1973; Reitman, 1965). The positive results of the 
present study give support to these arguments. 

Developmental Theory 

The study also has implications for development theory. In particular, it 
suggests three possible reasons for the difficulty of class inclusion. 

First, although preschool children are able to use an appropriate 
semantic strategy, they do so only when its relevance is made more 
noticeable by elaboration of the verbal context in which the inclusion 
question is embedded. In this respect, children’s inclusion errors are 
analogous to their failure, in memory tasks, to spontaneously use 
mnemonic strategies which are demonstrably within their competence 
(Hagen & Kingsley, 1969; Moely, Olson, Halwes, & Flavell, 1969). As in 
memory development, one developmental aspect of class inclusion may 
thus be the acquisition of skill in thoroughly searching a problem-space for 
possible solution strategies. 

Second, the exigencies of learning to count appear to make concept 
inclusion difficult by predisposing children to use a counting strategy that 
forbids the double enumeration of patterns. What might change with 
development is the likelihood that the child will double-count by employing 
the SCAN operator twice, rather than only once. A process that could 
explain this change is simply the automation of counting skills. As the child 
becomes more experienced and proficient in counting, an application of 
SCAN may require less careful monitoring. The portion of the child’s finite 
problem-solving capacity which is freed in this way might then be available 
to organize an additional SCAN. Examining the effects of preparatory 
activities, such as the pointing sequence in Experiment 1, is one way to study 
children’s capacities for organizing a strategy and monitoring its execution. 
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Experimental study of such activities, with more careful controls, may be a 
fruitful area for additional research. 

Finally, it may be that with age children become increasingly skillful in 
the interactive exchange of information between the two cognitive systems 
whose respective functions are semantic analysis and problem-solving. As 
they were described earlier, these two systems operated in a fixed order 
that began with grammatical analysis, proceeded to semantic analysis, and 
ended with problem-solving. There is no real necessity for this order to be 
so rigid; in fact, greater flexibility could be quite advantageous. For 
example, when children solve the inclusion problem by the semantic 
strategy (without counting), they must use semantic information in the 
service of the problem-solving system. Older children may use this 
approach with comparative ease, but the younger children in this study and 
elsewhere (Winer, 1974; Wohlwill, 1968) used it only with the inducement 
of a semantically elaborated statement of the problem. 

Another example, ironically, might be the solution of an inclusion 
problem by a clever use of Strategy I. In the familiar case of the dogs and 
the animals, one might successfully restrict SCAN to a single application 
by using the patterriP, (four-legged) to count the animals and the pattern P2 
(has-a-long-snout) to count the dogs. To succeed in this way, however, a 
child would presumably have to decide upon Strategy I, but somehow hold 
it in reserve while searching a cognitive dictionary for the names of both a 
common feature shared by dogs and animals, and a distinct feature unique 
to dogs. This approach is clearly not used by preschool children, and it may 
or may not be used by older children. The suggestion here is that if older 
children use Strategy I in this more sophisticated way, it may be because 
they have acquired greater skill in coordinating reciprocal exchanges of 
information between the semantic and problem-solving systems. 

To summarize, there are reasonably good indications that young 
children’s errors on class inclusion follow from their inflexible use of 
Strategy I. Whether older children succeed on similar problems because 
they use Strategy II, a clever form of Strategy I, or some other approach, 
remains unknown. Nevertheless, it is possible to suggest three develop- 
mental processes which may contribute to children’s eventual acquisition 
of competence in this domain. These processes are recognition of relevant 
strategies, automation of counting, and growth in the capability for 
interactive communication among cognitive systems. It remains for future 
research to determine the validity of each process as a dimension of 
cognitive growth and its specific importance to class inclusion. 
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