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ABSTRACT 

Using formal algebraic definitions of “cladistic character” and “character compatibil- 

ity”, the concept of “binary factors of a cladistic character” is formalized and used to 

describe and justify an algorithm for checking the compatibility of a set of characters. The 

algorithm lends itself to the selection of maximal compatible subsets when compatibility 

fails. 

1. INTRODUCTION 

The basic concept of the compatibility of taxonomic characters has been 
an integral part of the method of phylogenetic systematists ever since 
Bentham and Hooker published their milestone work ca. 1870. It was 
certainly inherent in the concepts exposed by Hennig when he constructed a 
rational methodological basis for phylogenetic systematics in 1956, and 
preserved in the more modern logical interpretation of this work by Farris, 
Kluge and Eckardt [6]. Its first appearance as an isolated concept is perhaps 
with the work of Wilson [9]. The coinage “character compatibility” that we 
have adopted for use in this exposition has precedent in the work of Camin 
and Sokal [2], where the concept originated independently of Wilson. An 
explicit operational procedure for determing the compatibility of a specified 
pair of taxonomic characters structured to encode determinations of similar 
and different for a specified sample study of operational evolutionary units 
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(EU’s) was described by LeQuesne [8]. LeQuesne’s procedure is applicable 
as described to pairs of two state and linearly ordered three state qualitative 
characters. At the Third Annual International Conference on Numerical 
Taxonomy at Stony Brook, New York, Farris described an ingenious 
procedure for representing any cladistic character (the character state trees 
of Camin and Sokal) by several two state characters, thereby apparently 
extending the applicability of the LeQuesne criterion to the general cladistic 
character. A formal algebraic concept of true clad&tic character was re- 
cently offered by Estabrook, Johnson and McMorris [3], wherein a true 
cladistic character was characterized as a lower semilattice homomorphism 
from the true evolutionary tree to the character state tree. This concept 
permitted a formal algebraic definition of character compatibility 
(Estabrook et al. [4]) that purports to capture the concept employed by 
working taxonomists. 

Various of the works cited above offer more or less formal definitions of 
cladistic character and character compatibility. The basic concepts are easy 
to visualize. A cladistic character is the partial estimate of evolutionary 
relationships suggested in the natural way by the discrete observable expres- 
sions (character states) of a single (presumed) homologous correspondence 
(character) among the EU’s under study. If this partial estimate were 
historically true, such a cladistic character could have evolved its states 
without parallel evolution and without reversing evolutionary trends. A 
cladistic character that actually did evolve with no parallelisms or reversals 
is called divergent by many biologists. (In the terminology which follows, 
this would be called true on S’.) Two cladistic characters are mutually 
compatible if there exists an estimate (not necessarily true) of evolutionary 
history that, if it were true, would permit the logical possibility that both 
characters are divergent. 

A natural question is: “Does the pairwise possible divergence of three 
cladistic characters guarantee, as a logical possibility, the existence of an 
(estimated) evolutionary tree with respect to which all three could be 
simultaneously divergent?“, or more generally: “Does the pairwise compati- 
bility of an arbitrary finite collection of cladistic characters ensure, as a 
logical possibility, their simultaneous divergence?“. It has been apparent for 
years that the answer to this question is “yes”. In a somewhat more general 
form, it has recently been proved (Estabrook et al. [4]) as a theorem. We 
remark here that currently the analogous concept of character state graph 
applicable to the problem of estimation evolutionary relationships from 
protein sequence data is under study. At the 1974 Classification Society 
meeting in Ann Arbor, Michigan, Fitch presented some results indicating 
that the above theorem is not true for character state graphs. Estabrook and 
Landrum [5] suggest a simple operational procedure for determining the 
pairwise compatibility of character state graphs. 
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In this paper we formalize the concept of the binary factors of a cladistic 
character and prove that it is mathematically correct to construe them as 
such. After confirming the obvious result that the binary factors of a 
cladistic character are mutually compatible, we show that two cladistic 
characters are compatible if and only if each binary factor of one is 
compatible with every binary factor of the other. The definition is construc- 
tive in the sense that a computer algorithm can easily be transcribed directly 
from the form of the statement. Having thus represented all cladistic 
characters by their binary factors, the theorems ensure that the operational 
procedure of LeQuesne can be confidently implemented to effect the 
compatibility analysis, suggested by Farris, of an arbitrary collection of 
cladistic characters. 

2. DEFINITIONS AND RESULTS 

We begin by recalling some of the relevant definitions and results from 
our earlier papers [3, 41. We suppose throughout that all sets are finite. 

DEFINITION I 

A tree poset is a partially ordered set having the property that a < c and 
b < c together imply a < b or b < a. A tree semilattice is a tree poset in 
which any two elements a and b have a greatest lower bound, denoted 
a//b. 

In what follows, S will denote a fixed set of EU’s under study, S’ will 
represent the (unknown) true evolutionary history of S, and S* will repre- 
sent an estimate of S’. By taking x < y to mean “x is an ancestor of y”, we 
view S as a tree poset, and S’ and S* as tree semilattices in which xh is 
the most recent common ancestor of x and y. In most cases S would consist 
of the maximal elements of S’ (contemporary EU’s) and have no compara- 
bilities. 

DEFINITION 2 

A cladistic character on S is a map K: Sd P, and a cladistic character on 
S* is an onto map K: S*--+P, where P is a tree semilattice (the character 
state tree). 0-A P. 

By Theorem 2 of [4] we may restrict our attention to characters which 
are order-preserving [a < b implies K(a) < K(b)]. The following definition is 
discussed in [3]. It corresponds loosely to what many biologists would call 
divergent. 

DEFINITION 3 

A cladistic character K: S’+P is true if and only if it satisfies the 
following three conditions for all a, b E S’. 
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(i) nEZC_‘(K(a)), where a= AK-‘(K(a)). 

(ii) a < b implies K(a) < K(b). 
(iii) K(a) < K(b) implies a < 6. 

LEMMA 1 (SEE [3]) 

A cludistic character is true if and only if it is a semilattice homomotphism 

(K(uAb)=K(u)//K(b) for all u,bES’). 

DEFINITION 4 

A set of cladistic characters Ki : S+P,, i = 1,. . . , n, is compatible if there 
exists a tree semilattice S* extending S (S c S* and x < y in S implies 
x < y in S*) such that each Ki can be extended to a cladistic character 
K: : S*+ Pi that would be true if S* = S’. 

Notice that compatibility guarantees nothing except the existence of a 
logically possible estimate S*, whereas incompatibility guarantees that the 
characters, as presently structured, cannot all be true on S’. An “internal” 
test for compatibility is given by Theorem 3 of [4]. Its application is made 
easier, computationally, by the pairwise criterion (Theorem 4 of [4]) men- 
tioned in the introduction, and easier still by use of the pairwise criterion in 
conjunction with binary factorization, which we describe next. 

DEFINITION 5 

A binary character is a cladistic character whose character state tree has 
two elements. 

Recall that if K, : S-+ P, and K, : S+P2 are two characters, we define 
K, x K2 : S+P, x P, by (K, x KJ(x)= (K,(x), K*(x)). Notice that K, X K2 is 

not in general a character, since P, X P, is not a tree unless either P, or P, 
has only one element. In particular, when K, and K2 are binary, P, X P, 

looks like 

(4 0) 

0 

(0, I) 

FIG. 1. 
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Assuming, as we do, that all characters on S are order-preserving, the 
special case of Theorem 3 of [4] of interest to us here is as follows. 

THEOREM1 

Two binary characters K, : S+ P, and K2 : S+P2 are compatible if and 

only if the image of K, X K2 in P, X P, is a treeposet. 

We caution the reader that this theorem may fail when K, and K2 are not 

binary. 

DEFINITION6 

Let K: S-P be a cladistic character, and let p,, . . . ,p, be the nonzero 
elements of P. For each i = 1 ,..., n, let Ti={O,l}, and define Ki:S+Ti by 
K,(x)= 1 if K(x) >pi and K,(x)=0 otherwise. The binary characters K, are 
called the binary factors of K, and we write K = K, 63 . . . ‘SK,,. 

The following fact is not of interest computationally, but it describes the 
sense in which the Ki constitute a factorization of K. 

LEMMA2 

Let K: S+P be a character with binary factors K,, . . . , K,, and let 

K,x... xK,,:S+T,x..- x T, be defined as in the n = 1 case above. Then 
there is a (semilattice) embedding + of P in T, X . . . X T,, such that 

K,x... x K,=+aK. 

Proof: Define C#B : P+ T, X . . 1 X T, by +(p) = (a,, . . . , a,,) with a, = 1 if and 
only if p >pi, It is clear that K, X * + * x K,, = ~$0 K and that + is one-to-one, 
so we must show that + is a semilattice homomorphism. For p,q E P set 

+(p/\q)=(a ,,..., a,), +(p)=(b, ,..., b,), and +(q)=(c, ,..., c,). Then ai=1 is 
equivalent to p~q > pi, which is equivalent to p >pi and q z pi, which is 
equivalent to bi = 1 and ci = 1, which is equivalent to biAci = 1. Hence 

+(PA\4)=(P(P)A+(4)* 

The next fact is intuitively clear, but we will need to make use of it. 

LEMMA 3 

Let K-K,@‘.-. C3 K,, be a character on S. Then Ki is compatible with Kj 

for each i andj. 

Proof. Assume that, for some i and j, Ki is not compatible with Kj. Using 
Theorem 1 and the diagram for P, x P, which preceeds it, we may suppose 
that we have x,y,z~S with (Ki(x),Kj(x))=(l,l), (Ki(y),Kj(y))=(O,l), 

and ( Ki (z), Kj (2)) = (1,O). Since pi,pi < K(x) and P is a tree, we must have 

pi < pi or pi < pi, but pi < pj < K(y) contradicts Ki(y)= 0 and pi < pi < K(z) 
contradicts Kj(z) = 0. 
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We now show that compatibility can be checked working only with 
binary factors, to which Theorem 1 can be applied. 

THEOREM2 

Let K=K,@... @K, and L=L,@... @L,,, be characters on S. Then K 

and L are compatible if and only if K, is compatible with Lj for i = 1,. . . ,n and 
j=l ,...,m. 

Proof Suppose that K: S+ P and L : S+ Q are compatible. Let K* : S* 
+P and L* : S*+Q be the extensions of Definition 4, let +K : P 
+T,x... XT, and &:Q+T,x... x T,,, be the maps of Lemma 2, and 
let pi : T, x . . . x Tk+ T, be the projection map pi(x,, . . . ,x,J= xi. All maps 
involved are homomorphisms, and we define homomorphisms K: : S*+ T, 

and Lj* : S*+ q. by KF = pio&o K* and L,? = pj+=o L*. These extend Ki and 
Lj, since Ki = pi~&~ K and L, = P~O+~O L, and are onto, since K* and L* are. 
Thus K, and Lj are compatible. 

Suppose, conversely, that each Ki is compatible with each Lj. The set of 
characters K,, . . . , K,,, L,, . . . , L,,, is pairwise compatible by Lemma 3 and 
hence compatible by Theorem 4 of [4]. Thus there is an extension S* of S 
and extensions Ki*, Lj* of the Ki, L, to S*. Now it is an easy exercise to show 
that if B is a subsemilattice of a tree semilattice A, then f:A +B given by 

f(a) = max{ b E B 1 b < a} is a semilattice homomorphism which leaves ele- 
ments of B fixed. Let fK be the homomorphism obtained in this manner 
whenA=Im(KTx... X K,*), which is a tree semilattice by Lemma 1 of [4], 
and B=(Im(K,x... X K,,)), the semilattice generated by Im(K, X . . . X 

K,) in T, x . . . X T,. Since (Im(K, X . . . x K,)) c$+( P), we may define a 
semilattice homomorphism K* : S*+P by K*(x)=c#IK’(&(K~ X . . . X 

K,*(x))). We define L* : S*+ Q in a similar manner, and it is clear that K* 
and L* extend K and L. If K* and L* are onto, we are done. If not, we 
observe that Im(K* X L*) is a tree subsemilattice of P X Q (Lemma 1 of [4] 
again), and hence K* and L* are compatible by Theorem 3 of [4], making K 

and L compatible as well. 

CONCLUSION 

To test a set of characters for compatibility, one may take them two at a 
time, compute their binary factors using Definition 6, and apply Theorem 1 
to pairs of binary factors. This procedure is justified by Theorem 4 of [4] 
and by Theorem 2. If a set of characters proves to be incompatible and it is 
felt that maximal compatible subsets are most likely to be historically 
correct, then the data from the pairwise checking can be compiled in a 
“compatibility table” which can be used to select maximal compatible 
subsets. 
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