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ABSTRACT 

We develop a general model of the renal medulla that is similar m geometry to the 

models reported by others. Two solutes are assumed to be present, one to play the role of 

salt and the other that of urea and similarly handled compounds. The equations fr’om 

irreversible thermodynamics are used to describe simultaneous solvent and solute flow 

across tubular membranes and a salt pump, saturable in the cis concentration and 

inhibited by trans concentrations is included in the AHL. We examine the input limit 

cases of the model, i.e., those for zero and infinite inflows in vasa rectae, Henle loop and 

collecting ducts. High inflow to vasa rectae washes out the gradients. For inflow to DHL 

there is an optimal value for building up the concentration gradients: for zero inflow, no 

concentration gradients are developed and as inflow increases above the optimal value, 

the concentration gradients decrease and all concentrations in DHL, AHL and inter- 

stitium tend towards those in the inflow to DHL. A central core model, the limit case for 

zero inflow in vasa rectae. is then described. 
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I. INTRODUCTION 

The countercurrent multiplier theory of the operation of the renal 

medulla is often attributed to Kuhn and Ryffel [l]. However, this theory 

was stated more explicitly by Hargitay and Kuhn [2] who proposed a model 
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for the operation of the system utilizing hydrostatic pressure as the driving 

force although they acknowledged that the known pressure differences in 

the kidney were too small to account for the total force required. Now, 

however, the evidence is overwhelming in favor of the driving force being 

the active extrusion of salt from the ascending limb of Henle, although 

there is disagreement as to whether the ion being pumped is sodium or 

chloride, and whether or not there is pump activity in the thin portion of 

that limb [3-91. 

The countercurrent hypothesis states that the loops of Henle, acting as a 

countercurrent multiplier system, establish an osmotic gradient along the 

renal pyramids with the tips of the pyramids having a higher osmotic 

pressure than the bases. This theory was supported by the experimental 

findings of Wirz, Hargitay, and Kuhn [3] who, from their measurements on 

the melting points of slices of the medulla, reported that the osmolality of 

the medulla increased from the corticomedullary border to the tips of the 

papillae. They also reported that all structures at any one level have the 

same osmolality, a fact we now know to be incorrect since the fluid leaving 

the ascending limb of Henle is hypotonic. The micropuncture work of 

Gottschalk and coworkers [lo] showed that when the hamster, the kangaroo 

rat, and the Psammomys were in an antidiuretic state, the fluid in the loops 

of Henle and the blood in the vasa rectae near the tips of the papillae had 

the same osmolality as the fluid in the collecting ducts at that level, and that 

these fluids were hyperosmotic. These findings have established the counter- 

current hypothesis as a viable theory, and since the early 1960’s all of the 

experimental evidence has been consistent with its general features. 

As the evidence in support of the countercurrent mechanism has in- 

creased, there has been a concomitant increase in the effort to develop more 

detailed models of the medulla. The early attempts were hampered by the 

fact that although the geometry of the medulla was fairly well worked out, 

the bulk of the evidence supporting the countercurrent hypothesis provided 

little insight into the details of how the various tubular segments functioned. 

In the early part of this decade, however, there were two significant 

developments which have had a major impact on the development of 

models of the medulla. 

The first of these was that techniques to measure the electrical and 

permeability properties of isolated tubular segments were perfected [ll]. 

The in vitro data so obtained gave, for the first time, direct evidence as to 

how these segments probably functioned in vivo thereby allowing refine- 

ments to be made to the countercurrent hypothesis. 

The second of these deals with the vasa rectae. If the assumption is made 

that the vasa rectae are highly permeable to nonprotein solutes and in 

equilibrium with the medullary interstitium at any given level in the 
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medulla, then it is possible to merge them with the interstitium to form a 

larger fluid filled space. The advantage to using this assumption is that it 

simplifies the geometry of the medulla considerably while leaving the 

concentrating mechanism intact. This assumption was first used by Kokko 

and Rector [6] and Stephenson [ 121. Kokko and Rector formulated a model 

of the inner medulla to examine the countercurrent multiplication system 

without active transport and used this assumption to simplify the calcula- 

tions. Subsequent computer simulations based upon this model were carried 

out by Stewart et al. [13,14] although it should be pointed out that they 

used an ad hoc assumption on water movement to force volume balance. 

Stephenson used it because under the assumptions of the central core model 

the functional role of the vasculature is retained but the model is greatly 

simplified. Initially, he analyzed the general properties of the central core 

model and calculated the energy requirements for the concentration of 

urine [12,15,16]. Later, he reported some concentration profiles in the 

medulla in a normalized form [ 171. 

In this paper, we will derive the equations describing two concentrating 

engines, the geometry and structure of which are motivated by our knowl- 

edge of the structure and function of the medulla. The first, called the full 

model of the medulla, includes provisions for all of the tubular segments 

which are present in this region, specifically the two limbs of Henle, the two 

limbs of the vasa rectae and the associated capillary plexus, and the 

collecting duct. The geometry of this model represents a first approximation 

to what we know about the anatomy and tubular function in the medulla. 

Even so, it leads to tremendous difficulties. Indeed, from the mathematical 

point of view it is a difficult two point boundary value problem, and from 

the physiological point of view, some of the input values and parameters are 

yet unknown. 

If we examine the full model closely we are led to the conclusion that the 

source of most of the mathematical problems lies with the inclusion of the 

vasa rectae in the model. Thus we are led in a natural way to seek 

circumstances under which the vasa rectae might be disregarded. Here the 

second significant development on the modeling of medullary function 

comes into play, and at this point we introduce the second model, namely 

the central core model. We point out that this version of the central core 

model is the same in general though differing in details from that given by 

Stephenson [ 121. 

In the next paper, we will use the central core model for our simulations. 

The question arises why we did not start with it and proceed directly to the 

simulations. The answer is twofold. One is that we wanted to spell out very 

carefully the mathematical and physiological consequences in passing from 

what we know of the medulla to the central core model. Indeed the 
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implications as to medullary function which we may deduce from the 

simulations can only be understood if one understands the basic assump- 

tions of the central core model. The other reason is that the necessity of 

having to pass from the full model to the central core mode1 points out the 

fact that much of the experimental data needed to solve the equations of the 

full model are missing and the mathematics is difficult. It is our hope that 

these deficiencies will stimulate interest in both directions. 

II. THE FULL MODEL OF THE MEDULLA 

The full model of the medulla which we give in this section is designed in 

accord with the general evidence for the countercurrent mechanism dis- 

cussed in the introduction. Therefore, it should be regarded as a model of a 

countercurrent concentrating engine, and the implications of the mode1 with 

respect to the medulla itself must be tempered by the underlying assump- 

tions. These assumptions can best be explained in terms of the schematic in 

Fig. 1. Geometrically we note that this schematic is similar to that used by a 

number of other authors in modeling renal medullary function. 

EORTEX 

GL 

I 

I 

LOOP OF 
HENLE 

VASA 
COLLECTING RECTA 

DUCTS 

FIG. I. Schematic diagram of model of renal medulla. l--descending limb of Henle; 

2-ascending limb of Henle; 3-collecting ducts; 4-interstitium; Sdescending vasa 

rectae; bascending vasa rectae; 7 -capillary nets connecting descending and ascending 

vasa rectae. 



A MODEL OF THE RENAL MEDULLA 311 

GEOMETRY 

Tubes 1 and 2 represent the descending (DHL) and ascending (AHL) 

loops of Henle, respectively. Notice that we have not included the end of 

the proximal tubule which penetrates into the medulla as it empties into the 

top of the descending limb. Tube 3 represents the collecting duct (CD). No 

provision has been made to allow for the highly branched nature of this 

tube, a feature of the model which we will discuss later. Since the inter- 

stitium itself can be regarded as a tube in which all of the other tubes lie, we 

have labeled it as tube 4. The descending (DVR) and ascending (AVR) vasa 

rectae are represented by tubes 5 and 6; tubes 7 represent the capillary 

meshwork connecting the two. 

The transition between the outer and inner medulla occurs at the 

junction of the thin AHL with the thick. We have diagrammed this as a 

linear transition beginning at L,, and ending at L,,. The reason for this is 

that even though the thick limbs are the same length to within a few 

percent, the transitions are not abrupt. We would like to point out that this 

linear transition has an important mathematical consequence. If this transi- 

tion were abrupt, then there could be discontinuities in certain parameters 

used in the equations at. this point resulting in difficulties in the numerical 

solutions. For example, urea permeability in the thin AHL is quite high, 

whereas it is virtually zero in the thick part. With an abrupt transition, the 

differential equations describing urea movemeat across the tubular walls 

would have a discontinuity at this point resulting in oscillations in the 

numerical solutions. To alleviate this problem, all changes in parameter 

values between the inner and outer zones have been accomplished by 

inserting a linear gradient across the transition from L,, to L,,. 

LOOPS OF HENLE 

The total amount of material which can exchange across the walls of the 

DHL and AHL at any given level in the medulla depends in part upon the 

total surface area per unit length and the total flow rate in the respective 

tubules at that level. At the corticomedullary border, the total flow into the 

DHL is determined by the total number of deep nephrons, the deep 

nephron glomerular filtration rate (GFR), and the percentage of water 

which is reabsorbed along the proximal convoluted tubule. The total surface 

area of the AHL and DHL at this point is determined by the total number 

of deep nephrons together with their respective radii. From species to 

species, there is a difference not only in the percentage of nephrons that are 

long looped, but in the number of these nephrons that actually extend to the 

tips of the papillae. This implies that in any cross section of the medulla the 

number of tubules can decrease as one goes from the corticomedullary 

border to the papillae. The result of this is a decrease both in surface area 

per unit length and in flow rate at deeper levels of the medulla. 
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COLLECTING DUCTS 

As indicated in Fig. 1, we regard the collecting ducts as tubes passing 

through the interstitium, and have assumed a constant surface area per unit 

length throughout the medulla. Thus we neglect the highly branched nature 

of these tubes and the fact that the confluence of these structures probably 

leads to a situation where the flow velocity stays relatively constant along 

the lengths of the ducts. Because of the complicated geometry of these 

tubes, it is difficult to estimate the changes in total surface area per unit 

length since the total number of collecting ducts decreases as one ap- 

proaches the papillae whereas their radii increase. In our initial model we 

assumed that all loops have the same length and have constant surface area 

per unit length. However, in programming the central core model, provision 

for a changing surface area per unit length as a function of distance was 

incorporated in the program. 

VASA RECTA 

The vasa rectae descend as parallel bundles from the corticomedullary 

border to form the capillary plexuses at different levels in the medulla [14]. 

We have lumped these plexuses into a series of tubes cross-connecting the 

DVR with the AVR. Since the vasa rectae do not enter into the computa- 

tional model, we will not enumerate the difficulties these simplifications 

present except to point out that the flow in the cross-connecting tubes is 

perpendicular to the DVR and AVR (see Fig. 2). 

INTERSTITIUM 

The interstitium is assumed to be well-mixed at any one level x from the 

corticomedullary border. As indicated by the schematic, the tubules interact 

indirectly via solute and solvent exchange with the interstitium. This ne- 

I I 
I 

t 
X j, (x,2) 

f&J)-- 

r-7 

z 

FIG. 2. Schematic diagram showing notation for capillary bed connecting DVR and 

AVR. 
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glects the anatomic evidence [18] which suggests that the tubules are not 

randomly distributed, and that there may be some direct exchange between 

tubules such as the DHL and AVR. 

TUBULAR FLUIDS 

The fluid in each tube is assumed to contain two solutes, one to play the 

role of salt and the other urea. In addition, the vasa rectae and their 

associated capillary plexuses are assumed to contain another solute to play 

the role of the plasma proteins. No attempt has been made to deal with the 

ions separately so it is immaterial to the model whether it is sodium or 

chloride which is actually transported. What is included is the effect of the 

net movement of salt and the resulting osmotic effect. 

PHYSICAL PROCESSES TO BE MODELED 

The basic relations required to describe the processes in each tube are: 

(1) equations of conservation for solutes and solvent, (2) equations of 

motion that give the flow rates as functions of the pressure gradients and 

tube geometry, and (3) equations of state to describe the dependence of the 

tube diameter on pressure differences across the walls of the tubes. Since we 

treat fluids as incompressible, we do not require the equations of state for 

the fluids. Moreover, from the work which has been done on perfused 

isolated tubules [15] we are led to believe that the tubes are of relatively 

constant diameter over their length. Thus we treat them as rigid tubes 

thereby eliminating the equations of state for tube diameters. Furthermore, 

we believe that the pressure gradient and pressure filtration effects are small 

for all tubules except the vasa rectae which means that the equations of 

motion must be included only for the vasa rectae and their capillary 

networks. However, one must then make some assumptions about the 

pressure in the interstitium in order to obtain the pressure differences across 

the walls of the tubules 5, 6 and 7. Our conclusion, therefore, is that a 

reasonable first model of the countercurrent concentrating engine as it 

might apply to the medulla must include the conservation equations for all 

solutes and solvents for all tubes, and the equations of motion for at least 

tubes 5, 6 and 7. 

SYMBOLS AND NOTATZON 

In Table 1, we present a list of symbols together with their respective 

units which we will use. Except where it is essential for clarity, the 

independent variable x will not be exhibited. The tube numberings refer to 

those given in Fig. 1. Thus, the concentration of the kth solute in tube 5 at a 

distance x from the corticomedullary border is Cam which we will write 

csk. A schematic showing the notation for the capillary bed at a depth x is 

given in Fig. 2. 
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TABLE 1 

List of Symbols Used 

Symbol Dimension Meaning 

L 

4 
L2 

4, 

L 22 

4 

x 

k 

s, 

S,(x) 

F,* 

Ftk 

c,k 

J 1* 

Jik 

z 

f,(x,z) 

fkcx+-) 

.L(x.z) 

jk(x3r) 

L P 

Oik 

@,k 

cm 

cm 

cm 

cm 

cm 

cm 

cm 

cm*/cm 

cm2/cm 

cm3/min 

mmoles/min 

mmole/cm’ 

cm3/cm2.min 

mmole/cm2. min 

cm 

cm3/cm2.min 

mmole/min 

cm3/cm2.min 

mmole/cm2. min 

cm’/dyne.min 

mmole/dyne.min 

Total width of the medulla 

Total width of the outer medulla 

Total width of the inner medulla 

Beginning of linear transition from 

outer to inner medulla 

End of the linear transition from the 

outer to inner medulla 

Mean length of capillary bed between 

vasa rectae 

Independent variable-distance into 

medulla from corticomedullary 

border 

Solutes: k= 1 is salt: k=2 is urea 

Surface area per unit length of tube i, 

i= 1,2,3,5,6 

Surface area per unit length of 

capillary bed at depth x 

Volume flow rate in tube i 
Flow rate of solute k in tube i 

Concentration of kth solute in tube i 

Volume flux across wall of tube i, 

positive outwards 

Flux of solute k across tube i 

Independent variable--distance down 

capillary bed 

Density of volume flow in capillaries 

at depth x at a distance z down the 

bed 

Density of flow of solute k at the 

same point 

Density of volume flux across 

capillary bed at the same point 

Density of flux of solute across 

capillary bed at the same point 

Filtration coefficient for the wall of 

tube i 

Reflection coefficient of solute k for 

tube i 

Permeability coefficient of solute k 

across the wall of tube i 
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TABLE I (cont’d) 

Svmbol Dimension Meaning 

31s 

W dyne/cm2 

dyne/cm’ 

Hydrostatic pressure difference across 

the wall of tube i, Pa- P, 

Osmotic pressure difference across 

the wall of tube i due to impermeable 

solutes. 774 - 77, 

cm3/cm2.min 

Function describing active transport 

for solute /( across the wall of tube i 

Bulk flow into the capillaries from the 

DVR to the AVR; b,(x)=j,(x,O) 

mmole/cm3 

mmole/cm3 

mmole/cm3 

Protein concentration in the vasa 

rectae at depth x 

Protein concentration in the cap- 

illaries at depth x and at distances I 

along the capillaries 

Concentration of solute k in 

capillaries at depth x in the medulla 

and at distance z along the capillary 

connecting DVR and AVR 

III. THE EQUATIONS FOR THE FULL MODEL 

THE CONSERVATION EQUATIONS 

The conservation equations for all tubules but the interstitium can be 

written: 

dF,, __ = - S,J,k. 
dx 

The axial flow of solute k is 

where the first term in the equation is the bulk flow contribution and the 

second is the contribution of axial diffusion. Here A, is the cross-sectional 

area of tube i and Dk is the diffusion coefficient of solute k. For the renal 

medulla, we believe that the axial diffusion term is small in comparison with 

the bulk flow term, so we neglect it in what follows. Mathematically, we are 

seeking the zero-th order solution of a singular perturbation problem. 
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THE EQUATIONS FOR WATER AND SOLUTE MOVEMENT 

In Eqs. (1) and (2) J,, is the total flux of water across tube i and Jlk is the 

total flux of the solute k across tube i. The equations describing these 

should include expressions accounting for each mechanism by which such 

movement can occur. These include filtration and diffusion across the walls, 

active transport where applicable, and, in the vasa rectae, bulk flow out into 

the capillaries. For filtration and diffusion across the tubular walls, we will 

use the equations for simultaneous volume and solute flow from irreversible 

thermodynamics [20]. Thus 

J,,=-L,,(AP,-A~,)+L,,RTCu,(c,,-c,)+b,, 
k 

(4) 

and 

Jik = ( 1 - utk> 
(Clk + Cik) 

2 
J;,-w~~RT(c~~-c,~)+ T,,+b,cik. (9 

It follows from the discussion in the previous section that b, is zero except 

for tubes 5 and 6, and that AP, is zero except for tubes 5, 6 and 7. Note that 

we have used the arithmetic mean concentration in Eq. (5) instead of 

(cik- c,,)/ln(c,,/c,,) [20]. This is a good approximation so long as the 

concentration difference between interstitium and tubule is not large. 

THE PUMP TERM 

As we stated earlier, we will neglect the ionic nature of the salt and 

assume a solute is transported that gives the osmotic effect of the ion that is 

actually transported, i.e., it does not matter for this model whether it is 

sodium or chloride which is pumped. 

The equation for the pump term is: 

T,= 
cc,, 

A, + Gil + B;Ca, . 

The arguments for this form of the transport function have been given in 

[21]. Notice that this expression is saturating in the cis concentration c,,, and 

that the flux is inhibited by increasing trans concentration cd,. Notice also 

that this expression differs from that used by Stephenson [ 171 because of the 

presence of B,c,,. 

In our model we assume that salt is the only transported solute. This 

neglects the possibility of urea transport in the collecting duct, a possibility 

which has been mentioned by Schmidt-Nielsen [22]. 
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INTERSTITIUM 

For the interstitium, we can write the conservation equations for volume 

flow and solute flux as 

and 

Notice that F,,(L) is the volume flow rate leaving the collecting ducts, 

which we take as the urine flow rate. 

VASA RECTAE 

The vasa rectae are the only tubules for which the bi are nonzero. By 

definition. we have 

65(x)=L(x,O), (9) 

&j(X) = -f, (x,&h (10) 

For these tubules we also require the equations of motion. In the case of 

streamline flow in tubes where exchange is occurring across the tubular 

walls, the velocity profiles are no longer parabolic [23-251. The volume flow 

rate, however, is still proportional to the pressure gradient even though the 

coefficient is no longer the same as in Poiseuille’s equation. Thus, if K, is 

the constant of proportionality, 

F,,= -K,$$ 

and 

Fee= -K,z 

(11) 

(12) 

Flow in the vasa rectae is further complicated by the presence of proteins 

which are responsible for the colloid osmotic pressure. As a result, we must 

include the conservation equations for proteins. Assuming these proteins do 

not cross the walls of the vasa rectae but have free access to the capillary 
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beds, we can write the equations 

~50~~~~5,~~~=~50~~~~5,~~~+~5 Xc50(E)fv(uw~, 
I 

(13) 
0 

clo(O)F,,(O)=c,,(x)F,“(x)+~,l‘~c,o(5)11(5,L,)d5. (14) 
0 

Finally, in the capillary bed, equations similar to those for the DVR and 

AVR can be written. Since the arguments are essentially the same, we 

simply exhibit these equations. 

df, (x>z) 
___ = - SCjL(X,Z), 

dz (15) 

;,(x,z)= - Lp,,~APc-A~~,l+Lp,RT~ G(C,A -cc/J, (17) 
k 

(18) 

(19) 

BOUNDARY CONDITIONS 

The equations which we wish to solve are Eqs. (1) for tubes 1 through 6 

and (2) for the two solutes for tubes 1 through 6. This gives us 18 equations. 

In addition, Eqs. (11) and (12) give us two more. Thus, to solve these 

equations, we need 20 boundary values. These values consist of known 

values such as concentrations and initial flow rates in tubes 1, 3. and 5, and 

matching conditions at x = L. The boundary conditions which are obvious 

from physical considerations are listed in Table 2. This list contains only 18 

values, so we must find two more. These can be demonstrated for the lower 

boundary x= L, but we will defer consideration of this until we have 

obtained the central core approximation. 

There is another problem with respect to the boundary conditions, and 

this is that Eqs. (15) (16) and (19) must be solved at each level X. This then 

makes the problem an accessory two point boundary value problem, and 

demonstrates clearly the theoretical difficulties presented by the inclusion of 

the vasa rectae in the computational model. 
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TABLE 2 

Boundary Conditions for Full Model 

Known values Matching conditions 

F,,(O)* F,,(L)= -F,,(L)* 

F&3* F,,(L)= - F,,(L) 

F,,(O) c,k(L)=cx(L)* 

c&9* c,,(L) = %k(L) I 
k= 1.2 

C3k to)* 

c5k(o) 
I 

k= 1,2 P,(L)= P,(L) 

P,(O) 

F,,(L)=O* 

*The boundary values marked with an asterisk (*) are those 

remaining in the central core model. 

IV. THE LIMIT CASES FOR THE FULL MODEL 

In order to solve the equations which describe the model, we must have 

in addition to the boundary conditions numerical values for the parameters 

and inputs listed in Table 2. From a mathematical point of view, each of 

these parameters and inputs has a maximal interval containing all of the 

possible values it can assume. For example, the reflection coefficients all lie 

in the unit interval from zero to one. On the other hand, the inflow rate into 

the DHL has a minimum possible value of zero but there is no upper limit 

to the value it can assume. We stress the fact that these are the mathemati- 

cal limits as they apply to this model; the values for these parameters and 

inputs which are physiological are invariably more restricted and rarely 

extend to their mathematical limits. 

Suppose that among the parameters and inputs for the model we choose 

an arbitrary subset and allow each of the parameters and inputs in this 

subset to assume or approach one of its extreme values. This maneuver will 

change some of the Eqs. (l)-(20). and we can study the nature of the 

solutions of this new set of equations as the remaining parameters and 

inputs are varied. This is an example of a limit case for the model. Indeed, 

the limit cases for a model are those in which each parameter or input value 

is assigned or allowed to approach one of its extreme values either one at a 

time or in various combinations. By studying limit cases, one hopes to 

derive realistic simplifications of the model and to study the behavior of the 

full model as these cases are approached. 

For the model which we are considering there is a large number of 

possible limit cases, most of which are of little interest. Those cases in which 

we are interested and which we will consider in this and the next section 

involve the volume inflow rates into the DHL, the DVR and the CD, and 
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the solute permeabilities in the vasa rectae and their capillary plexuses. We 

wish to point out again that each of these is an input to the model and can 

be varied independently of the others. Of course it may well be that not all 

of the parameters can be varied independently in the renal medulla. 

INFLOW INTO THE DVR 

The minimum value which this inflow rate can assume is zero, i.e., 

F,,(O)=O. In this case, the vasa rectae and their associated capillary 

plexuses disappear from the model simplifying it considerably. To see this, 

note that the two terms on the right of Eq. (13) are nonnegative. Hence if 

F,,(O)=O, either c,,(x)=0 or F,,(x)=0 or both. We argue on physical 

grounds that both must be zero. Recall that the equations we have set up 

are for the steady state. But consider the transients after F,,(O) is set to 

zero, assuming the system retains its properties otherwise. The osmotic 

pressure of the plasma proteins would pull interstitial fluid into the vasa 

rectae to generate a flow that would flush out the plasma proteins so that in 

the steady state cso(x)= c6e(x)~0. Thus AT, tends to zero and so does AP, 

because there is no pressure gradient at x =0 and because of the high 

permeabilities of urea, salt and water the concentration differences across 

the walls of the vessels must tend to zero. In effect the contents of the 

vessels equilibrate with the interstitium. Thus we argue that J,, goes to zero 

in the steady state. As a result FSL.(x) must be a constant but since 

F,,(O)=O, F,,(x)=O. 

The other extreme occurs when F,,(O)~cc. In the limit, because flow is 

continuous, it is easy to see that F,, and Fe0 become infinite throughout the 

system whence Fsk and Fbk also become infinite. Moreover, in this case, the 

fluid entering the DVR is identical in composition with that leaving the 

AVR, so c,,(O) = csk(x) = csk(x) for all x. What is the effect of this upon the 

model? If we approach this limit in such a way that the derivatives in (1) 

and (2) tend to zero, then from (5) we see that we must have cdk(x) 

approach c,,(O) as a limit assuming of course that the solutes are highly 

permeable. The physiological implications of this limit case are obvious. If 

we assume that the vasa rectae are highly permeable to salt and urea, then 

as F,,(O) increases, the initial concentrations csk(0) will be propagated 

further and further down the DVR, and the high permeability will promote 

equilibration between the interstitium and the vasa rectae. The net effect 

will be to wash out whatever gradients might have existed in the inter- 

stitium, almost completely. 

INFLOW INTO THE DHL 

As with the DVR, the minimum value which this inflow rate can assume 

is zero, i.e., F,“(O)=O. In this case, there may be transient movement of 

fluid and solute into and out from various portions of the DHL and AHL 



A MODEL OF THE RENAL MEDULLA 321 

while the pump in the AHL depletes the salt concentration in this tubule. In 

the long run, no inflow into the DHL means that no salt is delivered to the 

pumps, and no gradient in the interstitium can be developed. 

What happens as F,,(O)-+cc? Starting at low values of F,,(O), as flow 

into the DHL increases, more and more salt is delivered to the pumps in the 

AHL. Initially, we expect to see an increase in concentration gradient in the 

interstitium. However, as F,,(O) increases two other effects appear that slow 

the increase in concentration gradient and then decrease it. One is basically 

a saturation of total pump capacity. The easiest way to see this is to 

consider what happens as inflow to the AHL increases for constant salt 

concentration in the fluid entering the AHL. At a high enough flow rate the 

pumps cannot significantly decrease the concentration in the lumen so all 

pumps see the same concentration in the lumen and so the maximum total 

pump capacity is attained for that inflow concentration. The other effect is 

similar to that described for the vasa rectae. At low flow rates, the luminal 

fluid is concentrated as it traverses the DHL thus delivering a concentration 

to the AHL that is higher than that entering the DHL; this is the counter- 

current multiplier action. However, the faster the flow rate in the DHL the 

less effect the interstitial concentration has on the luminal fluid so that in 

the limit the entering concentration is propagated all the way down the 

DHL and eventually that is the concentration delivered to the AHL. A very 

rapid flow in the DHL also tends to wash out the interstitial gradient. We 

conclude that as F,,(O) increases, the interstitial gradient first increases, but 

eventually plateaus and then decreases. 

INFLOW TO THE CD 

Both of these extreme cases are of little interest. Indeed, the case when 

FsO(0)=O represents a model with no CD, and the case when F30(0)+oo 

represents infinite urine flow of the same composition as the fluid entering 

the CD. 

SOLUTE PERMEABILITIES IN THE DVR AND AVR 

The limit cases considered here form the basis for the derivation of the 

central core model. We will defer the discussion of this until the next 

section. 

PHYSIOLOGICAL IMPLICATIONS OF THE INFLOW LIMIT CASES 

What can we learn about medullary function by looking at limit cases? 

Although the limit cases may not occur in vivo the effects described above 

in going to the various limits may well be important in normal function. 

Indeed, the effect of F,,(O) increasing is usually invoked as one of the 

mechanisms operative in diuresis. 
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What determines the inflow rates into the DHL, the DVR, and the CD, 

i.e., F,,(O), F,,(O), and FsL’(0)? First, it is obvious that they are not 

independent in the real situation, so the question then becomes a question 

of their interdependence and how this fits in with the limit cases. In what 

follows in this section we argue on physiological and physical grounds; the 

limit cases have not actually been approached in simulations on a full 

model containing vasa rectae. 

We know that the blood supplying each nephron arrives via the afferent 

arteriole into Bowman’s capsule, and leaves the capsule via the efferent 

arteriole. The efferent arteriole gives rise to the peritubular capillaries, and 

the vasa rectae and its capillary plexus. Thus the fluid arriving at Bowman’s 

capsule is divided into two parts, that which becomes the glomerular filtrate 

and that which leaves in the efferent arteriole. 

The first control point for the blood supply to the nephron then is the 

smooth muscle surrounding the afferent arteriole. When these muscles 

constrict, the total flow into the nephron is decreased over what it was 

before. and in the extreme would correspond to the case when F,,(O)+0 

and F,,(O)-+O. As we have seen, this would be equivalent to removing this 

nephron as a functional unit. In this case we can say that this unit 

contributes little to F,“(O), but, as there are other factors involved in F,,(O), 

we can make no overall conclusion about this flow rate. We can think of 

this particular situation occurring when there is a redistribution of blood 

flow within the kidney. 

The next control point would be the smooth muscles surrounding the 

efferent arteriole. Indeed, for any given inflow rate in the afferent arteriole 

and blood composition, the distribution between GFR and flow rate in the 

efferent arteriole can be controlled by constricting or relaxing these 

muscles. However, these flow rates are not the flow rates for the fluids 

entering the DHL and DVR because of the fact that there is reabsorption of 

water and solutes by the peritubular capillaries along the proximal con- 

voluted tubule. Thus F,,(O) is determined by the GFR along with this 

reabsorption and F,,(O) is determined by the initial flow in the efferent 

arteriole along with this reabsorption where we must also take into account 

the possibility that not all of the capillaries lead into the DVR. 

With these facts in mind, let us consider the inflow into the DHL, DVR, 

and CD for a gicen flow rate and blood composition in the afferent arteriole. 

As F,,(O)+0 we must have F,,(O) increasing although we cannot say by 

how much. The contribution of this nephron to flow in the CD would 

become negligible. A situation such as this could arise in the event that the 

nephron was damaged. In this case. the effect of F,,(O) would be to 

decrease the medullary gradient, and we would expect in the extreme an 

isotomc urine. It is also possible to conceive of the situation in which inflow 



A MODEL OF THE RENAL MEDULLA 323 

to the DHL becomes small with a concomitant rise in F,,(O) as the transient 

behavior of the kidney in passing to a more diuretic state. 

On the other hand, as the inflow into the DHL becomes large we would 

expect a drop in the inflow into the DVR. The initial result would be an 

increased delivery of salt to the pumps in the AHL. As F,,(O) decreases, the 

effect that the vasa rectae has on the concentration gradient in the medulla 

is decreased, the establishment of the gradient depending primarily on the 

action of the loops of Henle. Thus again we would expect to see an optimal 

flow rate for F,,(O) where the maximal gradient is established followed by a 

decrease in the gradient. 

Finally, the flow into the CD is partly coupled to that leaving the AHL 

so FJO) cannot be varied entirely independently of F,,(O). For species that 

have only long Henle loops all of which go into the medulla. F3JO) must be 

determined almost entirely by FzO(0) and the subsequent action of the distal 

tubules on this fluid. However, for many species only a portion of the Henle 

loops are in the medulla; most of the cortical nephrons have short Henle 

loops that just get into the outer medulla. For such kidneys F3”(0) must be 

determined more by what goes on in the cortical nephrons than by the 

outflow from the AHL of the juxtamedullary nephrons. 

V. THE CENTRAL CORE MODEL 

In the previous section we saw that in the limit case when F,,(O)=0 the 

vasa rectae and their associated capillary plexuses dropped out of the 

model. In this section we will consider another limit case, specifically that in 

which these vessels are infinitely permeable to salt, urea, and other small 

solutes, and show that it leads to the same conclusion. Stephenson [12] was 

the first to consider the consequences of such an assumption, and at almost 

the same time, Kokko and Rector [6] pointed out that this assumption 

greatly simplified their calculations for mass balance in the inner medulla. 

The assumption that Stephenson made was that the reflection 

coefficients in the vasa rectae and their capillaries for NaCl, urea, and other 

small solutes were close to zero, i.e., that these solutes were highly perme- 

able. This meant that these tubules could be merged functionally with the 

interstitium into a single fluid-filled space called the central core. Thus, this 

leaves the machinery of the concentrating mechanism intact, implicitly 

retains the functional effect of the vasa rectae in this limit case but greatly 

simplifies the model. 

THE CENTRAL CORE ASSUMPTION 

With the above information in mind, we will sketch the derivation of the 

central core model. 
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for the combined volume flow rates at level x in the interstitium and vasa 
rectae. Then, from (7) we obtain upon differentiating 

dF 3 dF, 
-=- 
dx c- dx ' 

j=l 

(21) 

Differentiating (8) and rearranging terms, we have 

d(F,,c,, + FskC5k + F6kCd 3 d(F;,C,k) 
=- 

dx c dx (22) 
j=l 

If the vasa rectae are highly permeable to the solutes in both limbs and in 
the capillary beds so that u5k, usk, and uck are approximately zero, then we 
may assume cdk = c5k = cdk = c,,, and Eq. (22) may be simplified 

d (FCa) 3 d(&jk) -=- 
dx c dx ’ (23) 

j=l 

This equation tells us that if this assumption is true, then the details of the 
vasa rectae and their capillary beds may be ignored as far as the concentrat- 
ing process is concerned, and they can be lumped with the interstitium into 
an enlarged functional unit. Note that in reaching this conclusion, we have 
assumed that the loops of Henle and the collecting ducts interact with the 
vasa rectae only via the interstitium. 

Thus the complicated model shown in Fig. 1 reduces to the simpler one 
shown in Fig. 3. The central core, i.e., the interstitium and the vasa rectae, is 
labeled with the subscript 4. This makes our notation the same as that used 
by Stephenson [ 12,171 and should facilitate comparison of his work and 
ours. 

THE EQUATIONS OF THE CENTRAL CORE 

The equations for the central core model may be obtained directly from 
(1) and (2) for the loop of Henle and the collecting duct, and Eqs. (21) and 
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FIG. 3. Schematic diagram of central core model. 

(23) for the interstitium. They are: 

d4, 
dx - - SiJm, 

J,,= L,RT~~,,(c,cc,,)~ 

dF,, - = - S,J,,, 
dx 

(27) 

Notice that this gives us 12 equations. The solution of these equations gives 

us FiFio(x) and F,k(x). From (3) ignoring the axial diffusion term, we may 

solve for c,~(x), i.e., 

& (xl 
c,/,(x)= -. 

F,, (x> 
(28) 

BOUNDARY VALUES FOR THE CENTRAL CORE MODEL 

There are 10 boundary values listed in Table 2 which apply to the central 

core model. Since we have 12 equations we need two more. We will derive 

these now. 

From (28) when x# L, we have c,,(x)F,,(x)= Fhk(x). One of the 

boundary conditions imposed on our model is F,,(L)= 0. Assuming that 

cdk( L) is finite, it follows because of the continuity of cdk(x) that Fdk(L) = 0. 
Thus (28) is not defined when x = L. At this point, however, we may invoke 
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I’Hopital’s rule. If dF,,/dx does not vanish when x= L, 1’Hopital’s rule 

states that 

dFddx 
c4k(L)= :?“, dF,,.dx ’ 

Substituting (24) and (26) into this expression gives 

i s,J,k 

j=l 

Cam= lim -. 

(29) 

(30) 

J=I 

This provides two nonlinear relations between cJ, and c42 and the other 

concentrations at the lower boundary x = L. In any numerical solution of 

(24) (25) (21), and (23) these can be used as added constraints thus giving a 

full set of 12 boundary conditions. 

THE SIGNIFICANCE OF THE CENTRAL CORE MODEL 

We have just seen that the central core assumption, that is, the limit case 

in which the reflection coefficients for salt and urea in the vasa rectae and 

their capillary meshwork are close to zero which means that c4/, = cjk = chk = 

c,~ results in the disappearance of the vasa rectae from the model. This 

implies that the details of the action of the vasa rectae have no influence on 

the rest of the model. Thus, within the range of blood flows for which this 

assumption is a good approximation, changing the blood flow to the 

medulla cannot affect the gradient except possibly in an indirect fashion 

through an effect on the GFR of the juxtamedullary glomeruli and a 

consequent change in inflow into the DHL. It is clear that there must be 

situations in which this is a fairly good approximation; the problem is that 

we do not know whether these situations overlap the physiologically realiz- 

able states of the medulla. Nonetheless, as a model of a concentrating 

engine, it should provide some insight into the operation of the full model. 

VI. PARAMETERS AND INPUT VALUES 

FOR THE CENTRAL CORE MODEL 

The parameters and input values required for the central core model are 

of the following types: the geometric parameters, the thermodynamic 

parameters of the tubules, those which characterize the action of the salt 

pumps, and the composition and flow rates of the fluid entering the tubules. 

Recall that the notation for each is listed in Table 1. 
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GEOMETRIC PARAMETERS 

The geometric parameters which have been directly measured and r.:- 

ported in the literature are summarized in Table 3, arranged in order of 

increasing maximum urine concentration attainable. The reference for each 

entry is given in square brackets. 

Of course what is required for the model is the surface area per unit 

length for the various tubules. For the ascending and descending limbs of 

Henle, these have been computed from a knowledge of the luminal diame- 

ters, and are summarized in Table 4. Notice that we have sufficient 

information to calculate or make reasonable estimates only for the rabbit, 

rat. hamster and man. 

The major problem was obtaining estimates for the collecting ducts. The 

numbers for the collecting ducts in man were calculated from C:iver’s data 

[27]. According to Oliver. there are about 350 collecting trees in the human 

kidney, each tree being formed by 8 or 9 successive dichotomous branch- 

ings of a papillary duct, and resulting in an estimated 90,000 to 180,000 

collecting ducts at or near the corticomedullary border. Since the mean 

number of ducts decreases as one moves from the corticomedullary border 

into the medulla, we have used the smaller number, 90,000. From the data 

in Table 3, we estimated an average diameter for the collecting duct as 

double that of the limbs of Henle. Using these figures, we obtain a surface 

area per unit length in the human kidney which is just about the same as 

that estimated for the loops of Henle. If the ratio of the collecting ducts to 

long LOOPS of Henle remains the same in the other species and if the average 

diameters of the collecting ducts is double that of the loops of Henle the 

surface area per unit length of the collecting duct is approximately the same 

as for the loops of Henle. These figures are also summarized in Table 4 with 

the figures for the nonhuman cases being put in parenthesis to stress their 

hypothetical nature. 

THERMODYNAMIC PARAMETERS 

Almost all of the measurements of the reflection coefficients, permeabil- 

ity coefficients, and filtration coefficients have been obtained for the rat 

and rabbit. As we mentioned in the introduction, the data on the rabbit 

tubules come from experiments on isolated tubules whereas the rat data 

come from estimates based upon micropuncture studies. Table 5 presents 

our summary of the data available in the literature. It is interesting to note 

that in many cases there are sizable differences in the permeability proper- 

ties of the same tubular segment between the rat and the rabbit. 

TRANSPORT PARA METERS 

The equation for the pump, Eq. (6) has three independent parameters. 

This form has the advantage that, as for the Michaelis-Menten equation, the 
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TABLE 4 

Lengths and Surface Areas of Tubules 

Man Rabbit Dog Rat 

L, (cm) 1 .O? 0.5 0.6 0.25 

L, (cm) 1.0 1 .o 1.1 0.50 

Diameter 
Thm and thick Henle ( p) 22 27 22 18 

S--cm2/cm 1200 800 2800 50 

Descending and thin 

and thick ascending 

S--cm*/cm 1200 (800) (2800) (50) 
Collecting ducts 

net flux is saturable in the cis concentration; it has the added advantage of 

being inhibited by an increase in the trans concentration. As pointed out by 

Jacquez et al. [21], Eq. (6) describes the experimental data on transport 

across renal tubules fairly well, and values for the parameters have been 

given for the proximal and distal tubules of the rat in [21]. We defer 

presenting the values which we will use in our simulations until the next 

paper. 

TUBULAR FLUID COMPOSITION AND FL0 W RATES 

For input into the model we must have the flow rate and composition of 

the fluids entering the DHL and CD at the corticomedullary border. Since 

the model predicts the flow rate and composition of the fluids leaving the 

top of the AHL and the bottom of the CD, we must also have the 

experimentally determined values for these to serve as the basis for com- 

parison. 

The urine flow rate and composition has been measured in several 

species. Thus it is an easy matter to compare the predicted values with the 

observed values. Moreover, micropuncture studies have given us values for 

the fluid composition in various tubular segments, but unfortunately these 

are available only for certain species of rodents. The remaining values that 

are required must be estimated from our knowledge of GFR and tubular 

reabsorption and secretion. 

We will defer until the next paper our table of input concentrations and 

flow rates, and summarize here only our values for urine concentration and 

flow rates. Table 6 lists the excretion rates for rat, rabbit, dog and man 

which we have taken from one of the biological handbooks [58], and Table 

7 gives urine concentrations under conditions of hydropenia and water 

diuresis. 
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TABLE 5 

Thermodynamic Parameters 

Descending limb of Henle Rabbit Rat 

k Na 
(cm.min-‘x 10b3) 

ONa 

k “X.2 

(cm.min-‘X 10v3) 

O”,,, 
RTL,T=37” 

( 

cm3 cm3 ~.- 
cm2. min mmole 

0.966[39] 

0.96[39] 0.36[6] 

0.90[46] No ADH: 7.8[42] 

ADH: 12.0 
0.95[46] 0.44[6] 

0.247[46] 0.06599[42] 

Ascending limb of Henle 

THIN: 15.3[7] 

THICK: 3.76[8] 

Thin: 70.2[7] 

THICK: 0.636[8] 

THIN: 4.02[7] 

THICK: 0.516[47] 

THIN: 0.00142[7] 

THICK: 0.000183[8] 
O.OOOOO764[48] 

THIN: l[6] 

THIN: 1[6] 

No ADH: 8.4[42] 

ADH: 9.6[42] 

THIN: 0.3[6] 

0.0050[42] 

Collecting duct 

k N.9 No ADH: 0.036[49] 

UNa 

%I 

k urea 

~urea 
RTL, 

No ADH 

1[50,51] 

l[50,51] 

No ADH: 0:18[50] 

0.63[41] 
0.096[52] 

0.055[ 161 

ADH: 0.12[50] 

0.732[41] 

0.090[52] 
0.058[ 111 

1[51,52] 

0.000652[40] 

0.00785[41] 

0.00278[54] 

RTL, 

ADH present 

0.0202[40] 

0.0264[41] 

0.0135[54] 

7.56(corrected for 

active transport[50]) 

I1591 

l[591 
No ADH: 12.0[11] 

8.28[55] 

ADH: 18.0[11] 

l2.12[55] 

0.4[ 171 

0.00478[42] 

0.00467[55] 

0.00580[55] 

Antidiuresis: 0.00488[56] 

0.00539[57] 
0.0341[42] 

0.0239[55] 

0.0228[55] 
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TABLE 6 

Excretion Rates 

Units Rat Rabbit Dog Man 

Volume ml/kgm-day 15-30 50-75 20-100 9-29 

Sodium mEq/kgm-day 4.5( 1.7-7.3) 1.9(0.0413) 2.6(1.14.1) 

Chloride mEq/kgm-day 3.4(0.9-8.2) 0.5(0.1-1.4) 2.0(&10.3) 2.8(1.13-5.0) 
Urea mmoles/kgm-day 16.7-26.7 20-25 5.s8.3 3.3-8.3 
Creatinine mmoles/kgm-day 0.21-0.35 0.18-0.44 0.27-0.7 1 0.2(0.13-0.27) 

TABLE 7 

Concentration in Urine 

(mEa/L or mmoles/L) 

Rat Rabbit Doe Man 

Sodium 

Chloride 

Urea 

90 60 74(2- 189) 114(35%167) 

96 41(3.4-94) 76(&289) 110(49%2 10) 

111 

VI. SUMMARY AND CONCLUSIONS 

In this paper we have developed two models for concentrating engines 

which can be viewed as first approximations to the concentrating 

mechanism in the medulla. Although from the point of view of mimicking 

medullary function the full model is probably a better approximation, we 

found that it presented insurmountable theoretical and experimental diffi- 

culties. Hence we were led to the central core model. 

How do these models fit into the overall picture of the modeling of 

medullary function? The model of Hargitay and Kuhn assumed that the 

movement of water across the walls of the loops of Henle was due to 

pressure filtration although they acknowledged that the known pressure 

differences in the kidney were too small to account for the total force 

required [2]. Kuhn and Ramel [4] changed this to the active extrusion of 

sodium as the driving force of the system and at the same time omitted the 

vasa rectae and the flow of water across the tubular walls. These omissions 

along with the omission of nontransported solutes such as urea makes such 

a model unrealistic. Pinter and Shohet [.59] were the first to try to include 

the vasa rectae in such a model but they did not allow the water to move 

across the walls of the tubules. Stephenson [60] showed that such a model 

could not concentrate solute and Kelman et al. [61] showed that the 

concentration profile was nonmonotonic. 

Jacquez et al. [21] formulated a model of both the medulla and cortex 

that included the movement of a transported solute, a nontransported 
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solute, and water. The model of the medulla included the vasa rectae, the 

loops of Henle, and the collecting ducts; the geometry was essentially the 

same as Fig. 1. The equations used to describe the model consisted of 

equations for the conservation of water, of transported solute, and of 

nontransported solute, but the equations of motion of volume flow down 

the tubules were omitted. No solutions of the equations were presented. 

Marumo et al. [62] published the same type of model and included the 

equations of motion for flow in the tubules but used a sodium pump that 

was linear in the sodium concentration in the ascending limb of Henle. 

They publish graphs that show a concentration effect. Furukawa et al. [63] 

also worked on the same type of model except for the nature of the 

transport function and the fact that they tapered the medulla towards the 

papillae. 

Lieberstein [64] returned to the original model of Hargitay and Kuhn in 

that his driving force was pressure filtration; active transport of solute as 

the driving force was specifically excluded. In view of the evidence for 

active transport, this model would appear to be incorrect. 

Koushanpour et al. [65] in their simulation of the medulla used only the 

conservation equations. They also assumed known linear gradients in the 

transported and nontransported solutes. These assumptions simplify the 

mathematics considerably since they uncouple the equations for solute and 

solvent movement in each tubule from those in the other tubules, but this 

approach is really an evasion of the basic problem which is to see if and 

how such a model develops a concentration gradient in the medulla. 

Kokko and Rector [6], as we have pointed out previously, presented a 

model for the countercurrent multiplication system in which there was no 

active transport in the inner medulla. This model focuses on the action of 

the loops of Henle and the collecting ducts in the medulla. Some of the 

mathematical analysis of this model was done by Stewart et al. [13]. 

Palatt and Saidel [66] tried to incorporate some of the anatomical 

interrelations described by Kriz [I81 into a model in which the descending 

vasa rectae exchange solutes and water with the ascending loop of Henle, 

and the ascending vasa rectae exchange with the descending loop of Henle; 

the capillary plexus exchanges with the ascending loop of Henle and the 

collecting ducts. The model does not include equations of motion for the 

vasa rectae or the capillary bed, and the equations for water movement 

across the tubular walls do not include the filtration terms. 

As we have stated, the central core model was originally introduced by 

Stephenson [12]. It will serve as the basis for our simulations which we 

present in the next paper. 

The authors thank Dr. James A. Schafer and Dr. John Stephenson for their 

critical review of this and the succeeding paper. 
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