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Data Interpolation, Causality Structure, 
and System Identification 1 

WILLIAM t .  PORTER 2 

Department of Electrical and Computer Engineering, 
University of Michigan, Ann Arbor, Michigan 48104 

Given a finite set {(x~, Yi)} of ordered pairs from X × Y where X, Y are 
Hilbert spaces over the same field, there are numerous techniques for con- 
structing a function, f ,  on X to Y such that f(xi) = y¢ • However, when X, 2" 
have a causality structure and f must be causal then the data interpolation 
problem is much more complicated. In this paper two interpolation methods, 
namely linear interpolation and interpolation via generalized Lagrange poly- 
nomials are considered. It is shown that these techniques can be modified to 
accomodate the causality constraint. The development is indicative of the 
modifications that must be made in any existing data interpolation algorithm if 
causal interpolation is required. 

1. INTRODUCTION 

I n  this paper  the  t e r m  sys tem is synonomous  w k h  funct ion.  T h e  range and 

domain  of  our  func t ion  lying in a Hi lber t  resolut ion space {H, pt}.  I t  is 

assumed tha t  our  sys tem is known only by exper imenta l  measurements ,  that  

is, a set of i n p u t - o u t p u t  pairs E = { (x i ,  Yi), i = 1 ..... n} exist f rom exper i -  

menta t ion .  T h e  p r imary  p rob l em is the  following. 

PRIMAL PROBLEM. Given  the  set E,  const ruct  a funct ion  f which  (a) is 

causal and (b) Yi ~- f ( x i ) ,  i = 1, 2,..., n. 
A n y  solut ion to this  p r o b l e m  is called an identification of the  system. Of  

course  the  sys tem per se is not identified, we have mere ly  const ructed a 

ma themat i ca l  m o d e l  wh ich  is consis tent  wi th  exist ing data. 
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Without the causality constraint the primal problem has both linear and 
nonlinear solutions in abundance. Two such solutions will be summarized 
here. 

Let H denote our Hilbert space with inner product (-, -) and suppose that 
the input set {xl} is linearly independent. Then there exists a dual set {x~ +} 
with the properties (see [Porter, 1966] Section 3.2) 

(i) (xl +, x3") = 3ij 

(ii) span ({x~+}) = span({x~}). 

The dual set satisfying both (i) and (ii) is in fact unique. We construct a linear 
map T by the formula 

Tu = ~ yi(xi+ , u). (1) 
1 

It is readily verified that T is a linear solution to the primal problem, 
A second seolution is supplied by Prenter [1971] who generalized the 

Lagrange and Hermite interpolating polynomials to Banach spaces. In our 
setting it suffices to form the functionals 

kv~i 

~b~(u) -~ i = 1,..., n. 

It is easily verified that 

leI H x, - x~H ~ 

¢,~(x~) = a , j .  

An immediate consequence is that the map 

n 

f(u) = ~ yi~bi(u) (2) 
1 

solves the primal problem. 
It is apparent that our two solutions are not unique. Indeed if g is any 

function on H whose null space includes the set {x~} then g may be added to f, 
or if g is linear added to T, thereby constructing other solutions, respectively, 
linear solutions, to the primal problem. On the other hand no system can 
actually be identified without testing every input in its domain and hence the 
abundance of solutions to the primal problem should not disturb us. 
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The  following sections of this paper analyze the constructions of Eqs. (1) 
and (2) when causality (definition to follow) is a constraint. 

2. MATHEMATICAL PRELIMINARIES 

The causality structure of interest in this paper is interwoven with the 
concept of a Hilbert resolution space. This has been thoroughly dealt with in 
[Porter and Zahm, 1969; DeSantis and Porter, 1973; Gohberg and Krein, 
1970; Saeks, 1973 and Porter, 1973] and our review here will touch on only the 
features necessary to proceed with the analysis. 

Let H denote a Hilbert space and ~ a linearly ordered set. Without loss of 
generalky we assume that v has a minimal element, t o , and a maximal element, 
t~o, respectively. A family • = {pt: t a v} of orthoprojeetors on H is a resolu- 
tion of the identity if 

(i) pro(H) = O, P t~ (H)  : H and P k ( H )  D PZ(H) whenever h ~ l 

(ii) E is strongly closed. 

In  (ii) we mean that if {PJ} is a sequence of ~ such that P~x --> Px ,  where P is 
an orthoprojector then P ~ ~. Our results have an easy interpretation i f ,  is 
discrete. We focus attention on the more difficult continuous case. We say 
that ~ is complete if for every h ~ l, h, I e v there exists m ~ ~ such that 
h < m < l and P~ C pr~ C pz. This means that for t' e v 

l im[J(P*--P*')xl]  = 0  all t ' ~ v ,  x ~ H .  
t-~t" 

An integral type notation will also prove useful. For y ~ H arbitrary and m 
a scalar valued function on v the integral/ ,  

f re(s) dP(s)y ,  I 

is interpreted in the following way (see [Porter, 1969], [DeSantis and Porter, 
1973], and [Gohberg and Krein, 1970]). I f  v is complete then with D a finite 
set{ts:t~_ l ~ t~ , t o = t o , t N =  too) 

I = lim ~. m(tk ' ) (P t* - -  pt~_l)y,  
refines 

where the limit is taken as ~2 is refined. This limit exists and is unique 
whenever m is sectionally continuous. Indeed if the structure of u is upgraded 
to that of a measure space the integral I can be justified for any square 
integrable m over this measure space (see [Masani, 1968], Section 5). 
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It  is convenient at this point to note that the causality constraint requires 
certain consistency conditions on the experimental data. For any causal 
function f (see [Porter, 1969], [DeSantis and Porter, 1973; Gohberg and 
Krein, 1970]) 

Thus  an obvious condition on the experimental data is that 

P~xi  = P~xj  ~ P~Yi = p t y j ,  t ~ v. (3) 

Moreover in the linear realization since 0 -~ T(O) the stronger condition 

P t x i  = 0 ~ P t Y i  = 0 t E v (4) 

must hold. 
Other consistency conditions also appear natural. In  the linear model if the 

input set is linearly dependent then the output set must submit to the same 
zero linear combination. In  the polynomic case the inputs must be distinct. 
These observations lead to the following definition. 

DEFINITION 1. The  primal problem is said to be w e l l p o s e d  if 

{P*xi:  i = 1,..., n}  

is linearly independent for all t =/= t o . 
The  order relation on the projection family assures that the rank of the set 

{P*xi} is nondecreasing with increasing t. The  well-posed condition then 
focuses on the immediate neighborhood of t o . The  apparant severity of this 
assumption is removed in Section 6. 

3. THE LINEAR MODEL 

As a prelude to the causal linear identification let us consider a map 
: v -+  H. I f  v is complete then ~ may be continuous (norm) that is 

lim II ~ / ( t )  - -  ~ ] (a ) !  1 = 0 ,  ~ ~ v .  
t-~a 

We may then think of ~/as a path in H. 
Suppose now that N = {~/i: i = 1 ..... n} is a family of  paths in H. N i s  said 

to be nondegenera te  if the set {~(t): i = i ..... n} is linearly independent for 
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every t ~ v. I f  v has the structure of a measure space then the nondegenerate 
condition may be modifiable a.e. 

For  fixed t ~ v let {~(t)} be linearly independent. Then  there exists a dual 
set {r/i+(t)} having the properties 

<~+(t), ~(t)> = 8~ (5) 

span{~i+(t)} = span{~7i(t)}. 

Indeed assuming coefficients {ai~.} such that 

I 

and employing Eq. (5) we arrive at the matrix identity 

[~,;] = [ < ~ ,  ~i>]-~, 

the invertibility of [<~/j, ~?i)] being a well-known consequence of the linear 
independence of {r/i}. For instance with n = 2 

det[<r/j, r/i)] : I[ rh II ~ II r/2 []~ - -  l<rh, r/2>l 2 

which, using the Cauchy inequality, shows that linear independence is 
necessary and sufficient. 

Suppose N is a nondegenerate set of continuous paths. Then  

lim{<~7i(t + e), r/~(t + e)> - -  <r/i(t), r/3-(t)>} 

= l i m { < r / i ( t  + ~) - ~,(t), ~ ( t  + ~) - ~(t)> 

@ <r/i(t @ ~) - -  ~i(t), ~?¢(t)> - -  <r/i(t), ~lj(t -}- ~) - -  r/j(t)>} 

~<< lim{i I r/i(t @ E) - -  w~(t)l/2 + II r/i( t @ ~) - -  r/dt)iI" 11 ~j(t)ll 

÷ [[ */dt)ll- II r/~(t -f- ~) - -  w¢(t)ll} 

which shows that t - +  <r/i(t), ~j(t)) is a continuous function. Similarly the 
determinant, as a sum of products of continuous functions is continuous as is 
every cofactor of [<r/~., r/i)]. I t  follows then that the functions N + = {r/i+(t)} 
inherit continuity from N = {~i(t)}. (For convenience we assume dot bounded 
away from zero.) Finally if h ~ H is arbitrary then t--+ <r/j+(t), h) is a 
continuous scalar valued map. 

Return .now to the resolution family {pt: t ~ v}. For arbitrary x 6 H the 
map t - ~  P t x  is a continuous path with 0 ~< Ii P t x  !1 <~ I[ x ll, and [[ P t x  I! is 
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monotone nondecreasing. For a linearly independent set {xi} of H we define 
the t --~ H functions 

~i(t) = Pexi i = 1, 2,..., n. 

PROPOSITION (a). I f  for t' E v {~i(t')} is linearly independent then {~i(t)} is 
linearly independent for all t' ~ t ~ v. 

Proof. Z aiPtxi = 0 ~ • aiPVxi + ~ ~i(P ~ - -  PV)x~ = 0 however since 
Range (pt,) _1_ Range (pt  _ p,,)  we have Y', aiPt'xi = O, ~ a 1 = a 2 --  - -  
0~qq = 0 .  

PROPOSITION (b). I f  for t e v {~i(t)} is linearly dependent then {~i(t')} is 
linearly dependent for all t' <~ t. 

Proof [same style as Proposition (a)]. Suppose now that the primal 
problem is well posed. The  set {~7~} is constructed according to the formula 

Ptx s 
*?j(t) - -  1[ P*xj [] t e v, j = 1,..., n (6) 

and consists of a family of continuous paths on the unit ball with linearly 
independent values at all times. 

The  dual set {,/~+} consists of continuous paths with linearly independent 
values. We shall make use, however, of the set {Q~} computed by 

Q¢(t) = II P~xj [1-1 ~.+(t) t e u. (7) 

PROPOSITION (C). The set {Qj} consists of continuous paths with the property 

(i) <Qj(t), xi> = 3ij 

(ii) W u  = 0 =~ <Q~.(t), u> = o t ~< ft. 

Both of the stated properties follow by inspection. 
Using the continuity of Qj we see that the transformation 

T~u = f dP(s) yj<Qj(s), u> u, yj  @ H (s) 

is well defined (see Section 2) linear and bounded. 

THEOREM 1. The well-posed problem has the causal linear solution 

T = ~  Tj 
1 

where T~ , Qj are given by Eqs. (8) and (7), respectively. 
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P r o @  T h e  linearity of T is evident. Property (i) of Proposition (c) 
guarantees thaty~ = Tx~ , j  = 1,..., n. To see that T i s  causal notice that 

P~ f dP(s) yj<Oj(s), u> PBT~u 

= fs<.~ dP(s) yj<Qj(s), u> 

= £<.~ dP(s) yj<Qj(s), POu> 

= POTjP~u, 

where property (ii) was used. 

4. THE POLYNOMIC SOLUTION 

The  polynomic solution to the well-posed problem is akin in spirit to the 
linear solution. With ~"  the scalar field of H l e t  K denote the set of all functions 
f :  v × H--+ o~. We are interested in the n 2 elements mij s K ,  i , j  = 1,..., n 
defined by  

/ 
<Pt(u - -  x¢),  ! x i  7_ xj)> u ~ H,  t o # t ~ v 

mA.,  t) = (l° LI p~(x~ - xj)lL ~ (9) 

! ~ t  0 . 

We note that if {x~} are from a well-posed problem the mij are well defined. 
The  relevant properties of mij are the following: 

(i) Ptu  = P tv  ~ mi~(u , 5) = miJ(v, /3) t9 <~ t 

(ii) mij(O , t ) - m j i ( O , t ) =  1 t o - - /= tev  

(iii) mu(xi  , t) -= 1 t o =/= t e v 

(iv) mi~(x¢ , t) = 0  t o y  

(v) mij(u , t) is continuous except at t o . 

T h e  first four properties follow by inspection. Property (v) assumes that v 
is complete and follows from the identity 

< A ( u  - x3 ,  (x~ - x~)> 
mij(u, t") - -  mi~(u, t ')  ~- ]l A ( x i  - -  x~)l[ 2 -~-II P~'(xi - -  x~)H ~ 

]I A(xi - x;)!l ~ (P t ' (u  - x¢), (xl - x¢)> 
/I P * ' ( x i  - x j ) l l  2 " H P ~ " ( x i  - x j )[ l  ~ ' 

where A = p t .  _ p~.. 
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The mis functions are intermediary to the n functions M i which are 
defined by 

Mdu , t) = f i  m~(u, t) i = 1,..., n. (10) 
4v~i 
j=l  

The relevant properties of Mi are inherited from the mi~ and include 

(i') P t u = P t v - - M ~ ( u ,  fi) = M,(v, 8) fi <~ t 

(ii') Mi(xj,  t) = Sis 

(iii') Mi(u, t) is continuous except at to. 

Once again these properties presume that the {xj} come from a well-posed 
problem and that v is complete. 

THEOREM 2. The causal Lagrange interpolation of the well-posed problem 
is given by 

f(u) = ~ f dP(s)yiMi(u, s), (11) 
i=1 

where Mi is defined in Eq. (10). 

Proof. Property (i') provides the causality of f.  Property (ii') assures 
Yi = f(ui) and Property (iii') gurantees the existence of the integral of Eq. (11). 

5. COMPARATIVE EXAMPLE 

It is constructive to compare the two data interpolation techniques by 
means of a concrete example. For this let v = (0, 1] and H =L2(0, 1) 
equipped with the (truncation) projections 

(ptx)(s) "~- lO (s) s > ~ t t ,s  ~ (0, 1]. (12) 

It is easily verified that {H, pt} is a Hilbert resolution space. 
Suppose now that three input-output pairs have been observed. To be 

explicit let 

xi(t) = 1 y l ( t )  = s i n  t 

x ~ ( t )  = t y ~ ( t )  = c o s  t 

x3 ( t  ) - ~  t ~ y ~ ( t )  ~ -  e t, t ~ v.  
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Using Eq. (12) and mundane computations it follows that 

/ .  t 

Ii 2 %  It 2 = Jo 12 d/? = t t e ~, 

[[ P*x2 [I 2 = /3 ~ d/? = (1/3) t 3 t e v 

f0' 1[ p ,xa  [12 = fia dfi = (1/5) t 5 t e v 
(13) 

f ,  t 
II P ' ( x l  - x~)l! ~ = Jo (/? - 1)2 # = (1 /3)  t 3 - t 2 + t t e ,  

I1 p~(x l  - ~3)[i ~ = (/?~ - 1) 2 a/? = (1/5)  t 5 - (2 /3)  t3 + t t ~ v 

I! P'(x2 - x3)II ~ = (/?2 _ / ? ) 2  d/? ~ (1/5)  t5 - (1 /2)  t~ + (1/3)  t~ t ~ v 

which verifies that the problem is well posed. 
For  convenience we treat the somewhat shorter polynomial realization 

first. T h e  computation of Eq. (9) is very explicit, for example, 

ml~(u, t) = II P t (x l  - x~)l[ -2 [u(/?) - / ? ] [ 1  - / ? ]  d/?, t ~ v. 

Using these formulas and Eq. (13), the functions Mi(u,  t) of Eq. (10) are 
explicitly given by 

Ml(u ,  t) = [[ P t ( x  1 - -  x2)[i -2 "H P*(xl - -  xa)l[ -2 

" I f ;  [~(/~) - / ~ ] [ 1 - / ? ]  d/? t . I f ;  [~(/?) - / ? q [ 1 - / ? 2 ]  a~ 1 

M~(u,  t) = [I P'(*~ - -  x~)l[ -~ "tl P ~ ( x ~  - -  x~)ll -~ 

tfot [ u ( / ? ) - / ? ] [ 1 - / ? ]  dfi} l f~ [u ( / ? ) -  f le] [1- /?z]  dill (14) D 

Ma(u,  t) = [{ P t (x l  - -  xa)[I -~ "{I Pt(x2 - -  xz)[[ -2 

• If] [u(f i ) -  1][/? z -  1] dill lfo t [u(/?)- f i][fiz--/?] dill. 
i t  remains only to evaluate Eq. (11). For every u ~ H the functions Mi(u  , t) 
are continuous in t, thus the integral of Eq. (11) exists and is well defined as 
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we have noted earlier. In the present example each Yi is itseif a continuous 
function. Using the above resolution space structure it follows easily that 

dP(s) y,  = lim(P ~+" --  P"- ')y~ = l 0 t v6 s 
,-,o" yi(t) t = s 

hence 

~P(s) yiMi( . ,  s) = y,(s) M,(u, s), ~ e v. 

It follows also that f (u )  ~ H is the continuous function whose value at t E v is 
given by 

[f(u)](t) = sin(t) Ml(u, t) @ cos(t) M2(u , t) -~ etM3(u, t). (15) 

By obvious manipulations on Eq. (14) Eq. (15) can be reorganized into a 
(nonlinear) integral kernal form. 

The  computations in the linear interpolator are just as straightforward 
although somewhat more arduous. Using Eq. (13) we first identify {~i(t)}. 
Recalling that ~/,(t) for fixed t E v is an element of L2(0 , 1) we have 

t;-~/z [3 <~ t [~l(t)](~) = /3 > t 

[~(t)](~) (16) ~o / 3 > t  

[~ ( t ) ] (~ )  
~o ~ > t .  

The second step is to compute N = [@/i(t), ~j(t)>] which in general will 
depend on t (but not/3). In the present case N is constant and given by 

| )~[(31/2 (3)~/2 (5)~/3] 
N = 1 (151~/4 ] . 

L(5)'/3 (15)~/4 

The inverse of this matrix is given by (we spare the reader some details) 

/ 2[--19(3) ~ --12(3)~ 6(5) ~ ~] 
N-1 = 64 --12(15)~1. 

[ 6(5) ~ --12(15) ~ 36 J 

The rows of N -1 contain the coefficients oLi~ needed in the formula 

3 

~+(t) = ~ cqj~(t) i = 1, 2, 3 t e v. 
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For instance 

7h+(t ) = 9~71(t) - -  12(3)~-~(t) + 6(5)~-~z(t) t ~ v. 

Recognizing that ~i(t) for fixed t c v still depends on another variable and 
noting that [Qi(t)](/3)= I] Ptxi ]]-l[,qi+(t)](/3) it follows directly that (here 
t ¢ o )  

~3t-~[3 -- 12fit -~ -j- lO/3~t -2] /3 < t 
[Ql(t)](/3) ~o f i >  t 

i12t-~[--3 + 16/3t -~ -- 15/32t -2] /3 ~< t 
[Q2(t)](/3) (17) ~0 /3 > t 

t30t-a[1 --  6/3t -1 + 6fl~t -~] 13 ~ t 
[Q~( t ) ](/3) 

~o /3 > t. 

Turning now to Eq. (8) we have, for instance, that 

t 
(Ql(t), u) = ~o 3t-113 - 12/3t-1 + l o ~ t  -~] u(3) d3 

aad from our above observations, 

f dP(t) yl(Q~(t), u) : f~ 3y~(t)t [3 - 12/3t -1 + 10{~2t -2] u(/3) 6/3. 

To draw our results together let w(t, fl) be defined on (0, 1] z by 

w(t, f i ) - -  3 s i n t  3 - -  12 + 1 0  
t 

12 c o s  t 
+ [ t - -3 + 16 -- 15 

t 2 

+~5--30e* [ 1 - - 6  ( f i T ) + 6  (~)2] .  

Then the linear interpolation T, is given by 

f0 (T.)(t) = ~(t, 3) u(/3) d~. (18) 

The reader may wish it verify directly that Yi ~ Txi i -~ 1, 2, 3. The linearity 
and causality of T follows from Eq. (17). 
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6. ~XTENSIONS, t/EMARKS~ AND CONCLUSION 

T h e  example of Section 5 provides the basis for a comparison of the two 
causal data interpolation techniques. First the Lagrange interpolator of 
Eq. (15) is arrived at through computations which are apparently easier in 
that  linearity requires the inversion of the matrix N. Secondly, the Lagrange 
interpolator adjusts more readily to additional input -output  pairs. Suppose 
that  Eqs. (15) and (18) are in hand and an additional input -output  pair (x*, y*)  
then become available. T h e  existing functions {mij} are undisturbed while 
some additional ones are computed and the functions {Mi} are adjusted 
easily by including the requisite additional factor. In  the linear interpolator 
N changes and N -1 must be recomputed. 

Suppose now that x* == ~, o~x i and that linearity is not violated, that 
is y * =  ~ aiy i . T h e  linear interpolator requires no adjustment, the 
polynomic interpolator does. Of course if linearity is violated, linear inter- 
polation must  be adjusted to a "best  fit" context. 

Our  attention now turns to ill-posed problems. Since the data can fail to be 
well posed in a variety of ways we shall be content to touch on two of the 
adjustments. Suppose that the input pair (x 1 ,Yl) violates the well-posed 
condition, in particular suppose that for 

= inf{t: P~x 1 ~ 0} 

we have t o < Y. Both interpolation methods can proceed with the size of the 
data set changing at t = },. T h e  result is a possible t ime discontinuity in the 
functions {Q3} and {Ms}. This  complicates but does not destroy either 
procedure. 

In  the well-posed condition of Definition 1, an apparently severe constraint 
is imposed, namely that {Ptx i , i ~ 1,..., n} is assumed linearily independent 
for all t =/: t o . This  assumption can be alleviated without difficulty. T o  see 
how this can be achieved suppose that tl* = inf{t ~ v: rank(span{Ptxi}) = n}, 
and let n 1 = rank(span{Ptl*xi}). Now assuming tl* =/= t o and n 1 =/= 0 we 
continue tz* = inf{t E v: rank(span{Ptxi}) ~ nl} while n 2 -= rank(span{Pt2*x2}), 
until the interval v is divided into at most n parts with the rank constant on 
the parts into at most n parts with the rank constant on the parts and monotone 
increasing. The  linear solution to the primal problem proceeds as before 
except the number  of pairs (x i ,  Yi) considered is cut down to the rank number  
of the interval in question (always choosing a basis). Since linearity is assumed 
not to be violated, the excluded data will still be reproduced by the linear 
solution. 
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Finally, the example of Section 5 benefited greatly from the occurrence 
of a constant matrix N. The conditions under which this occurs are rather 
complex and will be dealt with in the appendix. 

APPENDIX 

In the comparative example of Section 5 the matrix N = [(~?i(t), ~)j(t))] 
turned out to be independent of t. As this result is unexpected, we explore 
it fully in this appendix. 

Consider the power functions x~(t) = P ,  t ~ [ O , T ] ,  j = 0 , 1  .... , n - - 1 .  
By direct inspection we see that 

f0 t 1[ Ptx¢ II 2 ~- fi 25 dfi ~- (2j q- 1) -1 t 2j+1 

and hence the ~/~- functions, in this case, take the form 

~Tj(fi, t ) =  I (2j0 + 1)~ t~ (fl~-)~ 
o ~ t  

t ~ (0, T] (19) 
t < fd .~  T. 

A consequence of this is that Nij(t)  is independent of t. In fact 

t 
Nij = (~i(', t),-q~(-, t)) = [(2j q- 1)(2i + 1)] } t -I fo (fi/t)i+J dfi 

= [(2j + 1)(2i + 1)] ~ fo ~ a i+~ dc~ 

= [ ( 2 ~ ?  1)(2i + 1) -~ 
+ j  + 1) 5 ] i , j  = i,...,n. 

Thus any collection of power functions has the interval invariance property. 
In retrospect, Eq. (19) shows that the power functions have the property 

x(3) = Axt-l,'~x(3/t)[I P'x rl, 3 ~< t s (0, r].  (20) 

If x, y satisfy Eq. (20) then 

* fo 1 fo X(fi) y(fi) dfi = A.Av {I e t x  [I "IF P~Y 11 x(c~) y(c~) d~ (21) 
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holds and the interval invariance property follows. This discovery, however, 
is of no assistance in moving beyond the power functions as we see in the 
] e m m a .  

LEMMA l. X satisfies Eq. (20) i f  and only i f  x is a power function. 

Proof. It is convenient to use the integral form of Eq. (20) 

t--~x ~ <~ t e (0, T], 

The  continuity (and differentiability) of the multiplier of x(fi/t) for t > 0 
can be seen to imply (fix fi) the differentiability of x. Differentiating with respect 
to fl results in 

Assuming x(fi) ~ 0 and dividing we have 

,8~t .  

or for j~ ~ 0 

_ (1) 
x(~) x(~lt) 

~(~/t) 
~(~) ~(~/t) 

The  independence of variables fl, t implies that both sides of this last equality 
are constant, hence 

~(~) = ~ x(~) 

for some k, the solution to which is x(fi) ~- c~ ~. 

Interval Invariance Criteria 

In view of Lemma 1 it remains only to examine Eq. (21). Our next lemma 
provides a necessary and sufficient condition. 

L~MMA 2. In g2(o, T), (Ptx,  pry)  - -  ;~ ]] pt  x l] " It P~Y H, t ~ [0, T] i f  and 
only i f  x(t) l1 pry ]] = yy(t)l1P*x IT, t c [0, T]. 
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I t suf f ices  to consider A > 0  in which case (P'x,  P ~ )  is non- Proof. 
negative and we may square both sides of the hypothesis 

x(s) y(s) ds = a 2 xZ(s) ds " y2(s) ds, t ~ (0, T]. (22) 

Differentiating both sides we have 

2x(t) y(t) f ;  x(s) y(s) ds = ,~ lx2(t) f]  yZ(s) ds -}- y~(t) f ;  x~(s) ds I . 

Using the hypothesis of the lemma 

2Zx(t)y(t)]lPtxl] • ]l P+y ]1 = A~{llPtyil2x~(t) + ]]Ptxll~y2(t)} re(O, T] 

rearranging terms we have on (0, T] 

[A }1 pry 1] x(t)] ~ - -  [2 ]] P~x 1] y(t)][;~ ]] P~y ]] x(t)] + [a 11P~x ll Y(t)] 2 = 0. 

Using the quadratic formula we have 

a !] P*Y 11 x(t) = (1 i (1 - -  a2) }) )1Ptx 11 y(t), t ~ (0, T]. 

This  establishes L e m m a  2 and using the symmetry of Eq. (22) in x, y we have 
moreover that 

r = (a-1 :• (a-1 - 1)~) ~: 1. 

T h e  ease • = 0 results easily in x(t) y(t) = 0, t e [0, T] and for )~ < 0 we 
replace x by --x.  

T o  illustrate the use of Lemma  2 let us prove that 

LEMMA 3. I f  y(t) ~- ¢, t ~ [0, T]for arbitrary j then x ~L z (0, T) satisfies 
the hypothesis ofLemma 2 if and only i f  x(t) = ~t~ for some ~, m. 

Proof. Fory( t )  = V, t ~ [0, T] we have from Eq. (19) that 

y(t) - -  (2j + 1) ~ t -~.- t ~ (0, T]. 
II P~y H 

In  view of L e m m a  2 it suffices to determine all x eL~(0, T) satisfying 

x(t) = y  [(2j + 1) t - - l fo  x2(s)ds]. 

643/29/3-4 
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Since the right-hand side is positive we can square both sides without loss 
of generality and setting z(t) = x~(t), t ~ (0, T] we have 

t 
tz(t) = 7~(2j + 1) fo z(s) ds, 

Differentiation yields 

or rearranging 

te(o, T]. 

z(t) + t£r(t) -~- 72(2j @ 1) z(t) 

~(t) = Izt-lz(t), t ~ (0, T] 

where / ,  = (2j + 1) 7 3 - -  1. The  unique solution to this last equation is 

z ( t )  = ~t~ = x~(t), t e (o, T] .  

Since x(t) ~ 0 the lemma follows. 
In the applications that give rise to this Appendix the condition I[ P*x [1 ¢ 0, 

t > 0 arises naturally. We shall adopt this condition in the following Corollary 
to Lemma 2 which is a constructive technique for generating interval invariant 
sets. 

COROLLARY 1. In L.~(O, T) the relations (Ptx, pry} = A 1] Ptx [] "H P~Y H, 
t~[0, T]; [I P~x [1 ~ 0, II P~y ll ¢ o, t > O hold if  and only i f  

x(t) ~y(t) [f~ y2(s) ds] (~-1)/~ = t e (0, T] (23) 

holds for some scalar [3. 

Proof. Noting that x2(t)[ffo x2(s) ds] = d In [f~ x~(s) ds we have by squaring 
the necessary and sufficient equation of Lemma 2 

x2(t) y2(t) if; [fo d In x~(s) as] = ~d y~(s) dsj ] ]] pt  x Hz -- )t II pry 1[2 

= o  

( .¢~ - -  x ~ ( s )  d s  = e c d s  . (24) 
Jo 
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Equat ion (23) follows by taking derivatives, then square roots while noting 
that  x(t)  and y ( t )  have the same sign. 

Equat ion (24) reveals how close the power functions and the interval 
invariance proper ty  are tied together. By inspection we see that the following 
corollary holds. 

COROLLARY 2. The set {xi} CL2(0, T )  is interval invariant i f  and only i f  the 

set {,~i}, where ki(t)  ~- !1 Ptx i  il 2 are powers of  Xl . 

EXAMPLE. Suppose that we wish to construct an interval invariant set 
containing y( t )  ~- e ~, t ~ [0, T]. We  have immediately 

f~  y2(s) ds =- ½[e 2t - -  1] t e [0, T],  

and any x satisfying 

x(t)  ~- fiet[e 2t - -  1](z-l)/2 t e (0, T] 

for i A ! < 1 is a suitable addit ion to the set. 
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